084 刚体平面运动微分方程
刚体平面运动微分方程
刚体平面运动微分方程
一般来说,物体运动过程中都受到各种力的作用,此外,如果是连续体,由于运动而产生的声学变化也都会影响运动状态,因此就需要研究物体运动中力和声学变化之间的关系。
在力学分析中,相对论块集体动力学(Classical Dynamics)是最基本的物理系统,它描述了物体运动的微分方程,从而可以求出物体的运动状态。
平面运动动力学是指物体运动过程中的动力学分析,可以用来描述物体在平面上的运动状态,包括具体的位置、速度、加速度等。
可以使用牛顿第二定律将机械力和物体加速度联系起来,写成机械力和物体加速度的微分方程,它的形式为:
F=m·a,
其中F表示机械力,m表示物体的质量,a表示物体的加速度。
物体在平面上的运动还会受到一些拖拽力的影响,比如阻力和空气阻力等,如果将拖拽力也考虑在内,则可以将上述方程修正为:
其中b表示拖拽力,v表示物体运动状态时的速度。
此外,如果物体处于受到旋转力作用的情况下,则可以将其表述为:
F=m·a+b·v+c·(ω×r),
其中c表示旋转抗力,ω表示旋转角速度,r表示物体圆心到物体某一点的距离。
由此可以得到物体平面运动的微分方程:
其中Δp表示物体加速度变化,F表示物体受到机械及其拖拽力和旋转抗力的作用。
从而可以根据上述微分方程,求出物体在平面上运动过程中的状态和性质,从而又可以了解物体在机械及其拖拽力和旋转抗力作用下,在平面上的运行状态。
刚体的平面运动
瞬时针方向
例2: 图示椭圆规。已知 :AB =l=20㎝, vA=20㎝/s,φ=30°, C为杆AB的中点。试求 :vB 、ωAB 、 vC 。
解: (1)分析各刚体的 运动,选取研究对象
选取AB作为研究对 象
(2)分析与AB连接点的运 动,选取运动已知的点 为基点
选A点 —— 基点(A点 运动已知)
解
(1)分析运动,确定基点。轮I做平面 运动,O点加速度可求,选其作为 基点。
(2)基点O的速度、加速度、轮I角速度
vo L 1,ao L12
vo r
L r
1
(3)求B点的加速度
aB ao aτBo aBno
v0
aτBo 0
aBno
r 2
L2 r
12
aB
ao2
aBnO
2
L1
1
vB= vA+ vBA
大小: ? ? 方向: (4)由三角关系求出所求量。
vA A r 900
o
l
vA
B
vB vBA
vB
vBA
vc
vCA
vA
B vA
AB
C vA
A
y
vB
vr =vBA
y'
r'B B
ve =vA
vA S
A
x'
0
x
1、定义
第三节 速度投影定理
平面图形上任意两点的速度在该两点连线上的投影相 等。——速度投影定理
vC vA2 vC2A 2vA vCA cos vA2 (AB l / 2)2 2vA (AB l / 2) cos
20(cm / s)
动力学3-刚体平面运动微分方程_2019
第7章 取x为广义坐标
mx mg sin F
0 N mg cos
x R
质
1 mR2 FR
y
点
2
系
x
动 力
x 2 g sin
3
O
学
F 1 mg sin
3
C A mg
N mg cos
N
F
x
第7章
质 点 系 动 力 学
讨论:
0 F 1 mg sin 0
ml
2
YB
l 2
sin
XA
l 2
cos
(c)
第7章
质 点 系 动 力 学
例1
解
m
l 2
(
cos
2
sin )
XA
(a)
m
l 2
(
sin
2
cos
)
YB
mg
(b)
1 ml2
12
YB
l 2
sin
XA
l 2
cos
(c)
将式(a)和(b)代入(c):
3g 2l
C
yC B
x P xC
第7章
质 点 系 动 力 学
解法三:动量矩定理
以A为矩心,动量矩定理:
J A
1 ml2
3
mg
1 2
l
以B为矩心,动量矩定理:
JB
1 ml2
3
mg
1l 2
TAl
求解
3g 2l
084 刚体平面运动微分方程
6 刚体平面运动微分方程 刚体的平面运动可简化成刚体的平面图形S 在某一固定平面内的运动,用3个独立坐标描述。
作用在刚体上的外力可简化为S 平面内的一平面力系F i (=1, 2,…,n )。
设坐标系Oxy 为固定的惯性参考系,Cx ′ y ′为质心平移坐标系,如图8-6所示。
平面图形的运动可用质心坐标x C , y C 和绕质心的转动角ϕ描述。
刚体的绝对运动可分解成跟随质心的平移和相对质心平移坐标系的转动。
由动量定理所述,刚体跟随质心的平移仅与外力系的主矢有关,由质点系相对质心的动量矩定理可知,刚体相对质心平移坐标系的运动仅与外力系对质心的主矩有关。
于是,由式(8.1.11)可写出y C x C F ym F x m R R ,==&&&& (8.1.55) 式中m 为刚体的质量,F R x , F R y 分别是外力系的主矢在y x ,方向上的分量。
由式(8.1.54)在垂直于平面图形S 方向上的投影,可得Cz CzM tL =d d (8.1.56) 其中M Cz 是外力系对通过质心且垂直于平面图形S 的轴之矩的代数和。
而ϕ&C Cz J L =,J C 是刚体对于通过质心且垂直于平面图形S 的轴的转动惯量。
应用质心运动定理和相对质心的动量矩定理,得到了三个动力学方程,给出了三个广义坐标x C , y C 和ϕ的封闭方程组,用以解决刚体的平面运动问题。
动力学方程组m (8.1.57)Cz C ni iy C n i ix C M J F ym F x ===∑∑==ϕ&&&&&&,,11称为刚体平面运动微分方程组。
给出相应的初始条件,例如,t =0时,刚体质心的位置分别为x C 0和y C 0,质心在初始时的速度分别为和,平面图形S 在初始时的角位移和角速度分别为ϕ0C x &0C y&0和0ϕ&。
02-23.3 平面运动刚体的运动微分方程(课件)
3、平面运动刚体的运动微分方程平面运动刚体的运动微分方程y x C '':过质心平移参考系平面运动随质心平移 绕质心转动()()e e ()C C C ma FJ M F α⎫=∑⎪⎬=∑⎪⎭()()2e 22e 2d d d ()d C C C r m F tJ M F t ϕ⎫=∑⎪⎪⎬⎪=∑⎪⎭投影式: ()()()e e e ()Cx xCy y C C ma F ma F J M F α⎫=∑⎪⎪=∑⎬⎪=∑⎪⎭()()()e te ne ()Ct C n C C ma F ma F J M F α⎫=∑⎪⎪=∑⎬⎪=∑⎪⎭以上各组均称为刚体平面运动微分方程平面运动刚体的运动微分方程已知:半径为r ,质量为m 的均质圆轮沿水平直线滚动,如图所示.设轮的惯性半径为,作用于轮的力偶矩为M .求轮心的加速度.如果圆轮对地面的滑动摩擦因数为f ,问力偶M 必须符合什么条件不致使圆轮滑动?C 例 1M平面运动刚体的运动微分方程解: N 2Cx Cy C ma Fma F mg m M Fr ρα⎫=⎪=-⎬⎪=-⎭()()2222N ,,,CC C C F r Mra M r m r F ma F mgρρ+==+==纯滚动的条件: s NF f F ≤即22s Cr M f mgρ+≤C a 0C a r α=分析圆轮,受力和运动情况如图所示。
由平面运动刚体运动微分方程:平面运动刚体的运动微分方程例2已知:均质圆轮半径为r 质量为m,受到轻微扰动后,在半径为R 的圆弧上往复滚动,如图所示.设表面足够粗糙,使圆轮在滚动时无滑动.求:质心C 的运动规律.平面运动刚体的运动微分方程t Ca rα=解: t sin Cma F mg θ=-C J Frα=-θcos 2mg F r R v m N C -=-()θr R s -=0d d 2322=-+s rR gt s )sin(00βω+=t s s ()r R g -=3220ω0,0v s== s 初始条件 ()gr R v s 23,000-==β运动方程为()⎪⎫ ⎛⋅-=t gr R v s 2sin 30分析圆轮,受力和运动情况如图所示。
08-理论力学-第二部分运动学第八章刚体的平面运动
形S在该瞬时的位置也就确定了。
88
运动学/刚体的平面运动
四、平面运动的分解 ——平移和转动
当图形S上A点不动时,则
刚体作定轴转动 。
当图形S上 角不变时,
则刚体作平移。
故刚体平面运动可以看成是 平移和转动的合成运动。
例如:车轮的平面运动可以看成: 车轮随同车厢的平移 和相对车厢的转动的合成。
99
2121
如图示平面图形,某瞬时速度瞬心为P点, 该瞬时平面图形内任一点B速度大小
vB vP vBP vBP
B
大小:vB BP
方向:BP,指向与 转向相一致。
vB
S
vA
C
vC
同理:vA=ω·AP, vC=ω·CP
由此可见,只要已知图形在某一瞬时的速度瞬心 位置和角速度 ,就可求出该瞬时图形上各点的速度。
的平面Ⅱ内的运动。
66
运动学/刚体的平面运动
二、平面运动的简化 刚体的平面运动可以简化为
平面图形S在其自身平面内的运动。 即在研究平面运动时,不需考虑 刚体的形状和尺寸,只需研究平 面图形的运动,确定平面图形上 各点的速度和加速度。
三、平面运动方程 为了确定代表平面运动刚体的
平面图形的位置,我们只需确定平 面图形内任意一条线段的位置。
vBA
s
B
vB vA
A
vA
方向: AB, 指向与 转向一致。
即:平面图形上任一点的速度等于基点的速度与该点随
平面图形绕基点转动的速度的矢量和。 ——基点法
基点法是求解平面图形内一点速度的基本方法。 1414
运动学/刚体的平面运动
二、速度投影法
由于A, B点是任意的,因此
第四章 刚体的平面运动
vB = vA cot ϕ
vA vBA = sin ϕ
vBA vA ωAB = = l l sin ϕ
例2 如图所示平面机构中,AB=BD= DE= l=300mm。在图示位置时,BD∥AE,杆AB的角速度为 ω=5rad/s。 求:此瞬时杆DE的角速度和杆BD中点C的速度。
解:1 、 BD作平面运动
2 2 vC = vB − vCB ≈1.299m s
方向沿BD杆向右
2、速度投影定理
由
r r r vB = vA + vBA
沿AB连线方向上投影
r r ( vB ) AB = ( vA ) AB
同一平面图形上任意两点的速度在这两点连线上 的投影相等。
例5 如图所示的平面机构中,曲柄OA长100mm, 以角速度ω=2rad/s转动。连杆AB带动摇杆CD,并拖 动轮E沿水平面纯滚动。已知:CD=3CB,图示位置 时A,B,E三点恰在一水平线上,且CD⊥ED。 求:此瞬时点E的速度。
由速度投影定理得
vB sin β = vC cos β
vC = vB tan β = rω0 tan β
圆轮瞬心在E 圆轮瞬心在E点
vA = vB = rω0
vC rω0 ωC = = tan β R R
§4-4 用基点法求平面图形内各点的加速度
A :基点
Ax ' y '
:平移坐标系
r r rt rn aB = ae + ar + ar r r rt rn aB = aA + aBA + aBA
va= vB
ve= vA
vr= vAB
r r r v =v +v
B A
BA
工程力学:第八章 刚体的平面运动
大小
at BA
AB
方向垂直于 AB,指向同
大小 aBnA 2 AB
aBnA 方向由 B指向 A
动力学
研究受力物体的运动与作用力之间的关系
➢质点动力学的基本方程 ➢动量定理 ➢动量矩定理 ➢动能定理
质点动力学
牛顿三定律:
第一定律(惯性定律)
第二定律(力与加速度之间的关系的定律)
第三定律(作用与反作用定律)
刚体绕定轴的转动微分方程
主动力: F1, F2 , , Fn
Jz
d
dt
M z (Fi )
或 J z M z (F )
或
Jz
d2
dt 2
Mz(F)
转动微分方程
简单形状物体的转动惯量计算
(1)均质细直杆对一端的转动惯量
Jz
1 3
ml 2
均质细直杆对中心轴 ml 2
的转动惯量
12
(2)均质薄圆环对中心轴的转动惯量
质点和质点系的动量矩
质点Q对点 O 的动量矩
MO (mv) r mv
对 z 轴的动量矩 M z (mv) MO (mv)xy
z
MO(mv) Mz(mv)
q
O
r
A mv
Q y
A
x
Q
[M O (mv )]z M z (mv )
质点系的动量矩
z
vi
m2
O ri
mi m1
y
x m3 mn
二者关系
求平面图形内各点速度
基点法
已知平面图形内A 点的速度和图形 的角速度,则另一点B 点的速度:
vB vA vBA
其中 vBA AB
速度投影定理
刚体的平面运动
a
A
n BA
aA
于是, B 点的加速度便是 A的加速度( 牵连加速度) 与B点绕A点转动的加速度 ( 相对加速度) 的矢量和.
需要注意的是:
a B a A a n a BA BA
考虑到A , B 两点加速度的分解, 上式可写成:
n n a B a B a A a A a n a BA BA
刚体的运动方程退化为:
t
刚体绕O´ 轴作定轴转动. 转动方程为 t 由此可见, 刚体的平面运动可以看成是由刚体的平动和定轴转动叠加而成 的运动. 如图上的刚体作平面运动, 可以看作以O´ 描述的刚体的平动和刚体绕O´ 点转动的合成运动. 我们在这里称O´ 点为‘ 基点 ’.
VM
V MO'
VO'
M
: 取O´ 点为基点, ( 这时, 可想象平面 上建立了一个运动的状态可用 O´ 点来描述的平动坐标系. 于是, M 点的速度便是 O´ 的速度( 牵连速 度)
VO'
O´
与M 点绕O´点转动的速度( 相对速度) 的矢 量和.
VM
V MO'
VO'
M
Va Ve Vr V M VO' V
V B
2 r2
2 r1 r2 0
方向如图示
例三.( 习 9 – 12 ) 图示小型精压机的传动机构, OA = O1B = r = o.1 m , EB = BD = AD = l = 0.4 m .在图示瞬时, OA AD , O1B ED , O1D 连线为水平. OD 及 EF 连线为铅直. 已知曲柄 OA 的转速为 n = 120r/min , 求: 此时压头 F 的速度. E C B O1 解: ED , AD 杆平面运动. 由结构及 E , B 点可能的运动方向 ED 杆的速度瞬心为 C 点 ( 如图示 )
9、第九章刚体的平面运动
① 图示平行四连杆机构O1 AB O2 ,ABC为一刚性三角形板, 则C点的速度为: 1) Vc=AC·ω
C 2) Vc=CO1·ω
3) Vc=AO1·ω
B
4) Vc=BC·ω
A
C点的切线加速度为: 1)aτ= AO1ε ω 2) aτ= ACε ε
3) aτ= CO1ε
4) aτ= BCε ②.平动刚体上的( 任一条直线的方位 )始终保持不变
刚体平面运动实例
第九章 刚体的平面运动
§9-1 刚体平面运动的概念
在运动中,刚体上的任意一点与某一固定 平面始终保持相等的距离。即:平面图形上 各点都在该平面内运动。
所以,刚体的平面运动可简化为平面图 形在它自身平面内的运动来研究。
§9-2 刚体的平面运动分解为平动和转动
平面图形上各点的运动可以代表刚体内所有点 的运动。因此,刚体的平面运动可简化为平面图形 在它自身平面内的运动来研究。
2
ω0
vA
加速度分析:
aB aA aBnA aBA O
a
n A
A
aB B
a
n BA
a
BA
vB
向虚线方向投影:
aB cos 30 aA cos 30 aBnA
aB
aA
aBnA cos 30
r
2 0
2
2r
2 0
33
aB
r
2 0
(1
4) 33
1.77
r
2 0
B
1.77
2 0
练习题:曲柄OA以匀角速ω0 绕O转动,OA=r,AB=2r,磙子半径r,
P为BCA杆的瞬心
B
所以AB上C点的速度如图:
理论力学第4节 刚体的定轴转动和平面运动微分方程
圆盘质心 加速度
aC
2M 3mR
FN
2)如果作用于圆盘的力偶矩 M
圆盘连滚带滑,所受摩擦力为
3 2
fmgR
时,则
F mgf
aC fg
2(M mgfR) mR2
0
d
dt
maC F
FN mg
1 mR 2 M FR
2
纯滚动 应满足
M C aC
mg F
FN
F f FN
M
3 2
fmgR
解得
F
2M 3R
,M
3 2
RF
,aC
2M 3mR
讨论
M
1)为使圆盘作纯滚动,应满足
作用于圆盘 的力偶矩
M
3 2
fmgR
C aC mg F
• 刚体绕定轴转动的运动微分方程:绕定轴转动的刚 体对转轴的转动惯量与其角加速度的乘积,等于作 用在刚体上的所有外力对转轴力矩的代数和。
例11-5 如图所示一均质圆盘质量 m = 100kg,半径 r = 0.5m,转速 n 擦因数 f = 0.6。开始加制动闸,使闸块对轮
dt
J C
n
M C (Fi(e) )
i1
式中 M 为刚体的质量,aC 为质心的加速度,J C为刚 体对通过质心Cz轴的转动惯量。
MaC
F (e) R
y
d(JC)
dt
JC
n
M C (Fi(e) )
i1
d
dt
d 2
刚体平面运动
aC = aB + aCB
aC = R (α O + α C )
(1)
工程力学研究所 税国双
理论力学II
分别取两圆柱为研究对象 画受力图.其 中TA = TB = T
TA R = MR2 α O /2 = TR TB R = MR2
α C /2 = TR
(2) (3) O
RO
A
TA Mg
Mg - T = M aC 联立(1)----(4)式得: aC = 0.8 g T = 0.2 Mg
Mg
a
I N
M (a -R α) = F MR2 α = F R 联立(1) (2) (3)式得:
(2) (3)
F
α=
a 2R
ac = 1 a 2
工程力学研究所 税国双
理论力学II
例: 均质圆柱体O 和C的质
O A
量均为M,半径相等.圆柱O可 绕通过点O 的水平轴转动. 一绳绕在圆柱O上 , 绳的另 一端绕在圆柱C上. 求圆柱下 落时,其质心C 的加速度及 AB段绳的拉力。
例:质量为M长为l 的
O1 O2
均质杆AB用等长的细 绳悬挂静止如图所示.若 突然把绳O2B剪断, 求
A C B
此瞬时绳O1A的拉力T 为多少.
工程力学研究所 税国双
理论力学II
解:取杆为研究对象进行运动分析. 剪断O2B的瞬时
ωAB= 0 aC = aA+aτCA
x
O2
a A= 0
(1)
O1
×
A C B
y'
y
F1
c
Fn
ϕ
x'
Fi
macx = m&&c = ∑ Fix( e) x &&c = ∑ Fiy( e) macy = my
08刚体的平面运动
24
已知刚体上两点A和B的速度相互 平行,并且速度的方向垂直两点的 连线AB,则瞬心在通过AB的直线 和通过vA和vB矢端的直线的交点上。 如vA //vB ,且AB连线与速度方向 不垂直,则速度瞬心在无穷远处。 此时,平面图形作瞬时平动。
25
例题
刚体的平面运动
例 题 6
A
vO B O
vO B Oω vC=0 vO C vBO
v A 2vO
vB
vD
vCO
2vO
2vO
其中,i ,j 为x,y 轴的单位矢量。
11
2. 速度投影定理
同一平面图形上任意两点的速度在这两点连 线上的投影相等。
vBA
证明:
vB =vA +vBA
A vA
vB
∵(vB )AB= (vA )AB+ (vBA) AB
例 题 5
图所示平面机构中,曲柄OA=100 mm,以角速度ω = 2 rad/s转动。连杆AB带动摇杆CD,并拖动轮E 沿水平面滚
动。已知CD = 3CB,图示位置时A,B,E 三点恰在一水
平线上,且CD⊥ED,试求此瞬时E点的速度。
D
30
E
B
60
A C O
ω
19
例题
刚体的平面运动
例 题 5
A
解: 基点法 因为轮心O点速度已知,故选O为基点。 应用速度合成定理,轮缘上C点的速度可
D
vCO
vO B
Oω vC=0 vO C
表示为
vC vO vCO
其中 vCO 的方向已知,其大小vCO =R ω 。 车轮作无滑动的滚动,它与地面的
9.4 刚体平面运动微分方程
(讲解完毕)
有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)
5
例9.4-3 图示匀质圆轮半径为r, 质量为m1 .三角块质量为m2, 倾角为θ, 放 在光滑水平面上. 圆轮沿斜面向下自由纯滚动(两者之间有摩擦), 推动三 角块向左运动.求: 1) 圆轮角加速度ε和三角块加速度ae ; 2)地面对三角块 的支持力、圆轮与三角块之间的相互作用力(支持力与摩擦力)
设系统从静止开始运动, 能否对圆轮与三角块接触点处应 用速度瞬心动量矩定理?
例9.4-4 图示系统中物块1质量为m. 定滑轮2和动滑轮3半径都为r, 质 量也都为m, 对各自质心轴的回转半径都为ρ. 动滑轮3在重力作用下 向下运动, 通过缠绕的细绳(不打滑)带动系统运动. 求轮2、轮3各自 的角加速度ε2、ε3及细绳拉力.
4
例9.4-2 图示匀质圆环半径r=1m, 其上焊接的匀质细杆OA长度也为r, 圆环1和细杆2质量相等, m1=m2=m=1kg. 用手扶住圆环, 使其在OA杆处 于水平位置时静止, 然后放手,圆环作纯滚动, 求放手后瞬间圆环的角 加速度ε、地面对圆环的摩擦力FS及法向支持力FN .
JP
JC
(m1
1 L cos
2
aCy
1 L cos
2
1 L 2 sin
2
14
8
图2
9
→ JC
aC
[m1r 2
aO
→
1
ma1Ot(C4
r)2a]OnC[11211m2r
2
m2
(
1 4
vO r
r)2 ] aO
29 24
rε
mr2
10 12
rε 0.25 r 0
12-3 相对质心的动量矩定理--刚体平面运动微分方程
求:下降高度h时,质心的速度、加速度以及绳索的拉力。 下降高度 时 质心的速度、加速度以及绳索的拉力。
B h C A
§12-6 刚体的平面运动微分方程 解: 以圆柱体为研究对象。 以圆柱体为研究对象。
r r 受力分析: g 受力分析:m , F T 运动分析: r 运动分析: a , α C
列写平面运动微分方程, 列写平面运动微分方程,
C
的加速度。 求:重物A的加速度。 重物 的加速度
B r O R
D
A
第十二章 动量矩定理
重物 解: (1) 重物A:
maA = mg − F ① 1 1 T1
A
r F T1
(2) BC固连体 固连体: 固连体
r r r r 受力分析: 受力分析: 2 g, F , F , F m T2 s N r 运动分析: 运动分析:aO, α
r aA
r F T2
⇒F = F ⑥ T1 T2
aA = m ( R+ r) + m ( ρ2 + R2 ) 1 2
2
B r
mg ( R+ r) 1
2
rO mg 2
P
R
r aO
r F s
D
请同学们思考: 请同学们思考:
A
r F N
若固定滑轮D的质量不可忽略,那么 若固定滑轮 的质量不可忽略,那么D 的质量不可忽略 两端绳索的拉力是否相等?如何求? 两端绳索的拉力是否相等?如何求?
α
r aC
x
2
§12-6 刚体的平面运动微分方程 解:
2 1 aC = g, F = m g T 3 3
h B
vC = ?
dvC dvC ds aC = = dt dt ds dt dvC 2 = vC = g ds 3 vC 2 h ∴ ∫ vCdvC = g∫ ds 0 3 0
理论力学(30-23) 6-3 刚体平面运动微分方程
质量为m,半径为 R的均质圆盘沿倾角为 α 的斜面上只滚不滑,如图所示.试求圆盘 的质心加速度和斜面对圆盘的约束力.不 计滚动摩阻.
y x
O C
自由度=1
A N
mg F x
质 系 动 量 和 动 量 矩 定 理
取x为广义坐标
&& x = R &&
y x
&& = 2 g sin α x 3
F = 1 mg sinα 3
质 系 动 量 和 动 量 矩 定 理
|
一般对C点列平面运动微分 方程.偏心情况能否直接 用对A点的动量矩定理求解?
dLA = M (Ae) + mv C × v A dt
O
y x
LA = L + rC × m v C C
( e) A是瞬心: dtA = M A
C A mg F x
dL
N
LA = J Aω = ( JC + mρ 2 )ω
y
A
θ
质 系 动 量 和 动 量 矩 定 理
取θ 为广义坐标
xC = 1 l sin θ 2 yC = 1 l cos θ 2 && && xC = l (θ cos θ θ&2 sin θ ) 2 l (θ sin θ θ&2 cos θ ) && &&C = y 2
A
θ
XA
C P O
YB
x
B
(a)
刚体平面运动微分方程:
&& m l ( θ sin θ θ& 2 cosθ ) = YB mg (b) 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6 刚体平面运动微分方程 刚体的平面运动可简化成刚体的平面图形S 在某一固定平面内的运动,用3个独立坐标
描述。
作用在刚体上的外力可简化为S 平面内的一平面力系F i (=1, 2,…,n )。
设坐标系Oxy 为固定的惯性参考系,Cx ′ y ′为质心平移坐标系,如图8-6所示。
平面图形的运动可用质心坐标x C , y C 和绕质心的转动角ϕ描述。
刚体的绝对运动可分解成跟随质心的平移和相对质心平移坐标系的转动。
由动量定理所述,刚体跟随质心的平移仅与外力系的主矢有关,由质点系相对质心的动量矩定理可知,刚体相对质心平移坐标系的运动仅与外力系对质心的主矩有关。
于是,由式(8.1.11)可写出
y C x C F y
m F x m R R ,==&&&& (8.1.55) 式中m 为刚体的质量,F R x , F R y 分别是外力系的主矢在y x ,方向上的分量。
由式(8.1.54)在垂直于平面图形S 方向上的投影,可得
Cz Cz
M t
L =d d (8.1.56) 其中M Cz 是外力系对通过质心且垂直于平面图形S 的轴之矩的代数和。
而ϕ
&C Cz J L =,J C 是刚体对于通过质心且垂直于平面图形S 的轴的转动惯量。
应用质心运动定理和相对质心的动量矩定理,得到了三个动力学方程,给出了三个广义
坐标x C , y C 和ϕ的封闭方程组,用以解决刚体的平面运动问题。
动力学方程组
m (8.1.57)
Cz C n
i iy C n i ix C M J F y
m F x ===∑∑==ϕ
&&&&&&,,1
1
称为刚体平面运动微分方程组。
给出相应的初始条件,例如,t =0时,刚体质心的位置分别为x C 0和y C 0,质心在初始时
的速度分别为和,平面图形S 在初始时的角位移和角速度分别为ϕ0C x &0C y
&0和0ϕ&。
作用力已知时,方程(8.1.57)和该初始条件构成一初始值问题。
可解得任意时刻的质心坐标和转角。
刚体平面运动的动力学的分析过程中建立了质心平移坐标系,将运动分解为跟随质心的
平移和相对质心的转动,实际上就是采用运动学中的基点法来分析运动。
但是,在运动学中基点是可以任意选择的。
而在动力学中,平移参考系的原点应选在刚体的质心上。
从动力学角度来看,方程组(8.1.57)已经封闭,可提供三个独立的方程来解刚体平面运动问题。
但是在具体应用时,经常遇到除了三个基本未知之外还存在其它未知量而使方程组变得不封闭的情况,此时需要从运动学寻找补充方程。
例8.1-7: 半径为r ,质量为m 的均质圆柱体,
放置于固定的倾角为θ的粗糙斜面的顶端,在重力的作用下向下运动。
设轮与斜面间的滑动摩擦因数为f s ,不计滚动摩阻,求圆柱体质心的运动规律。
(a)
解:圆柱体作平面运动,建立Oxy 为固定坐
标系,如图 (a)所示。
圆柱体受到的作用力有,静滑动摩擦力F ,斜面对圆柱体的约束力F N ,如图 (b)所示。
设x C , y C 和α分别为圆柱体质心坐标和角加速度,则柱体的运动微分方程为
F mg x
m C −=θsin && θcos N mg F y m C −=&& (a)
Fr mr =α2
2
1
初始条件为
t (b) 0,0,0===C C x x &在上述方程组中,除,还有4个未知量, F 0=C y &&C x
&&N , F 和α。
补充方程可从运动学关系中寻找。
圆柱体运动时只滚不滑,有
αr x C =&& (c) 联立求解方程(a)和(c)得到
θθθcos ,sin 3
1
,sin 32N mg F mg F g x
C ===&& (d) 利用初始条件(b),可以积分得到圆柱体质心的运动规律
θsin 3
1
2gt x C = (e)
圆柱体作纯滚动的条件为F ≤f s F N ,所以滑动摩擦因数因满足
θtan 3
1
≥s f (f)
圆柱体运动时即滚又滑,式(a)仍成立,但其中F 为动摩擦力,满足
(g)
N F f F s =O
B A 联立求解方程(a)和(g)并利用初始条件(b),得到
)cos (sin 2
2
θθs C f g t x −= (h)
例8.1-8:质量为m 均质杆AB 长为l ,放置
在铅直平面内,杆的一端A 靠在光滑的铅直墙上,另一端B 放在光滑的水平地面上,并与水平面成ϕ0角,如图所示。
此后,杆由静止状态倒下。
试求:(1) 杆在任意位置时的角速度和角加速度;(2) 当杆脱离墙时,此杆与水平面所夹的角。
解:研究平面运动的杆,Oxy 为固定坐标系,杆在脱离墙之前受有重力m g ,墙面和地面的约束力F AB A 和F B ,如图所示,在杆与水平面成ϕ角的任一位置时,杆的运动微分方程为
A C F x m =&&, mg F y
m B C −=&&,
ϕ2121l ϕsin 2
cos l
F A −ϕ2F ml B =&& (a) 例8.1-8图
上述三个方程包含五个未知数:x C , y C , F A , F B 和ϕ,所以必须补充方程,补充方程可由运动关系得到。
因在任一位置,有
ϕϕsin 2
,cos 2l
y l x C C == (b)
上两式两边分别求导两次,得
ϕϕϕϕsin 2cos 22&&&&&l l x C −−=, ϕϕϕϕcos 2
sin 22&&&&&l l y C +−= (c) 式(c)即为补充方程。
因为,而当0>C x
&&0ϕϕ=时,0=ϕ&,所以0<ϕ&&。
联立求解方程(a)和(c),并注意杆的角加速度ϕ
α&&−=,得
)sin (sin 302ϕϕϕ−=l
g
&, ϕαcos 23l g = (d) 通过式(b),将ϕ
&和ϕ&&的值代入式(a)中第一式,得 ]sin 4
3)sin (sin 23[cos 0ϕϕϕϕg
g m F A +−−= (f)
当杆脱离墙时,0=A F ,所以
)sin 3
2arcsin(0ϕϕ= (g) 例8.1-9:质量为m 的均质杆AB 长为l ,A 端用光滑铰链与天花板连接,另一端B 用水平细绳系于墙上,使杆与水平面成θ角,如图(a)所示。
试求细绳剪断瞬时铰链的约束力。
A
解:取杆AB 为研究对象,建立固定坐标
系Axy 。
细绳剪断瞬时,杆受到重力m g ,铰链A 的约束力F x 和F y 的作用,如图(b)所示。
设杆的角加速度为α,由刚体平面运动微分方程得
例8.1-9图
θcos mg F x m x C −=&&, θsin mg F y
m y C −=&&, 2
1212l
F ml x =α (a) 剪断细绳瞬时,杆没有运动,角速度ω=0。
质心加速度的分量分别是切向和法向加速度,故
α2
l
x C −=&&, (b) 02==ωr y
C &&式(b)即为补充方程。
由式(a)和(b)消去加速度量,可解出
θsin mg F y =, θcos 4
1
mg F x =
例8.1-9代表了一种类型的问题,称为突然解除约束问题。
此类问题解除约束的前、后瞬时,系统的速度与角速度连续,而加速度与角加速度将发生突变。