数列求和的常见方法
数列求和的九种方法
数列求和的九种方法数列求和是数学中的一项基本技巧,在解题过程中经常会遇到。
为了求和一个数列,我们需要确定数列的通项公式,即根据数列中的规律找到一个表示该数列的函数。
在数列求和的过程中,有许多不同的方法可以使用。
下面将介绍九种常见的数列求和方法:逐项相加法、换元法、望眼法、边缘和法、归纳法、递推法、辅助行法、减法求和法和计算机辅助法。
1.逐项相加法逐项相加法是最基本的数列求和方法,即将数列中的每一项相加得到总和。
这种方法适用于数列的项数较少且没有明显的规律的情况。
2.换元法换元法是将数列中的每一项用一个新的变量表示,从而简化数列求和。
通过代入和逆代(将通项公式反解为原始项)两种方法,将数列求和转化为变量求和,从而计算出数列的总和。
3.望眼法望眼法是通过观察数列中的规律,寻找数列中的重复子列来简化求和。
通过找到重复子列后可以将数列分解为几个相同的子列求和,从而简化计算。
4.边缘和法边缘和法是将数列中的每一项的和用前面项的和表示,从而将数列求和转化为前缀和的计算。
该方法适用于数列中的每一项与前面的项之间有明显的关系的情况。
5.归纳法归纳法是通过数学归纳法的思想,利用数列的递推关系来计算数列的总和。
通过假设前n-1项的和为Sn-1,并推导得到前n项的和Sn的表达式,从而计算数列的总和。
6.递推法递推法是通过数列的递推关系来计算数列的总和。
通过将数列中的每一项与前面的项之间的关系列出,从而将数列的求和转化为递推关系的计算。
7.辅助行法辅助行法是将数列构造成一个表格的形式,通过辅助行的计算来求解数列的总和。
通过辅助行的计算,可以将原本复杂的数列求和转化为简单的表格求和。
8.减法求和法减法求和法是通过将数列求和转化为数列的差的求和来计算数列的总和。
通过将数列中相邻项之间的差进行求和,从而求解数列的总和。
9.计算机辅助法计算机辅助法是利用计算机的计算能力来求解复杂的数列求和问题。
通过编写计算机程序来实现数列求和,从而计算出数列的总和。
数列求和的几种常用方法
数列求和的几种常用方法数列求和是数列部分的重要内容,题型复杂多变,我们根据不同题型总结出一些方法.它对数列的学习是有好处的.一、 反序相加法例1 求数列{n}的前n 项和.解 记S n =1+2+…+(n-1)+n,将上式倒写得: S n =n+(n-1)+…+2+1把两式相加,由于等式右边对应的项和均为n+1,∴2 S n =n(n+1),即S n =21 n(n+1) 说明 此法亦称为高斯求和.二、 错位相减法若{a n }为等差数列,{b n }为等比数列,则{a n b n }的前n 项和可用错位相减法.例2 求和S n =nn n n 212232252321132-+-++++- 解 由原式乘以公比21得: 21S n =1322122322321+-+-+++n n n n 原式与上式相减,由于错位后对应项的分母相同,可以合并,∴S n -21S n =21+112212212121+---+++n n n 即 S n =32232++-n n 一般地, 当等比数列{b n }的公比为q, 则错位相减的实质是作“S n - qS n ”求和.三、 累加法 例3 求和S n =2222321n ++++分析 由133)1(233+++=+k k k k 得133)1(233++=-+k k k k ,令k=1、2、3、…、n 得23-13=3·12+3·1+1 33-23=3·22+3·2+1 43-33=3·32+3·3+1 …… (n+1)3-n 3=3n 2+3n+1把以上各式两边分别相加得:(n+1)3-1=3(12+22+…+n 2)+3(1+2+3+…+n)+n =3S n +23n(n+1)+n 因此,S n =61n(n+1)(2n+1) 想一想 利用此法能否推导自然数的立方和公式:213)]1(21[+=∑=n n k n k 点拨 利用(k+1)4=k 4+4k 3+6k 2+4k+1进行累加.归纳 推导自然数的方幂和∑=n k r k 1公式的方法。
数列求和的七种基本方法
数列求和的七种基本方法数列求和是数学中常见的问题之一,它在各个领域都有广泛的应用。
本文将介绍数列求和的七种基本方法,包括等差数列求和、等比数列求和、算术平方平均数列求和、等差等比混合数列求和、调和数列求和、几何级数求和和级数求和。
通过了解和掌握这些方法,相信读者能更好地解决数列求和问题。
一、等差数列求和等差数列是指一个数列中的每两个相邻的项之差都相等。
求和等差数列的公式为:Sn = n(a1+an)/2,其中Sn是数列的和,n是项数,a1是第一个数,an是最后一个数。
二、等比数列求和等比数列是指一个数列中的每两个相邻的项之比都相等。
求和等比数列的公式为:Sn=a1(1-q^n)/(1-q),其中Sn是数列的和,a1是第一个数,q是公比,n是项数。
三、算术平方平均数列求和算术平方平均数列是指一个数列中的每两个相邻的项的算术平方平均数都相等。
求和算术平方平均数列的公式为:Sn=n(2a1+(n-1)d)/2,其中Sn是数列的和,n是项数,a1是第一个数,d是公差。
四、等差等比混合数列求和等差等比混合数列是指一个数列中的每两个相邻的项之比和差都相等。
求和等差等比混合数列的公式为:Sn = (a1+an)/2*n+(q^n-1)/(q-1),其中Sn是数列的和,n是项数,a1是第一个数,an是最后一个数,q是公比。
五、调和数列求和调和数列是指一个数列中的每一项的倒数都与它的序号之比都相等。
求和调和数列的公式为:Sn=Hn/a,其中Sn是数列的和,Hn是调和数列的第n项,a是常数。
六、几何级数求和几何级数是指一个数列中的每个数都与前一项的比值都相等。
求和几何级数的公式为:Sn=a*(1-q^n)/(1-q),其中Sn是数列的和,a是第一个数,q是比值,n是项数。
七、级数求和级数是无穷多个数连加的结果,求和级数的公式为:Sn=a/(1-r),其中Sn是级数的和,a是第一个数,r是比值。
这七种基本的数列求和方法能够解决大部分数列求和问题。
数列求和的几种常见方法
A
1
一、等差数列的前n项和:
Sn
n(a1 2
an
)
Sn na1n(n21)dபைடு நூலகம்
A
2
二、等比数列的前n项和:
Sn
a1(1qn) 1q
(q1)
Sn
a1anq 1q
(q1)
A
3
习题:
1、计算 1 + 2 + 2 2+ 2 3+ L + 2 n的和
2n1 1
11 1
1
2、计算
+ 2 22
所以 Tn=32-21n-n2+n+11=32-n2+n+13.
A
8
习题:
3、数列{an}的通项式为 an =n3n
求数列{an}的前 n 项和 Sn.
Sn
(2n1)3n1 4
3
A
9
四、裂项相消法:
例 3、数列{an}的通项式为
an
=
1 n(n +
2)
求数列{an}的前
n
项
和 Sn.
3 2n3 4 2(n1)(n2)
+ 23
+L+ 2n-1
的和
1
1
2 n1
A
4
三、错位相减法求和: 例1、计算 12+222 +233 +L+2nn 的和
2
1 2n1
n 2n
A
5
错位相减法:
若数列{an}的通项公式形如an=bncn, 而{bn}是等差数列,{cn}是等比数列, 则可采用此法。
A
6
例 2、数列{bn}的通项式为 bn =
数列求和的8种常用方法
数列求和的8种常用方法数列求和是数学中非常常见的问题,它的解法有很多种。
下面我将介绍8种常用的方法来求解数列的和,让我们一起来看看吧。
一、等差数列求和公式对于等差数列$a_n=a_1+(n-1)d$,其中$a_n$表示第n个数,$a_1$表示第一个数,d表示公差,我们可以利用等差数列求和公式求解:$S = \frac{n}{2}(a_1 + a_n) = \frac{n}{2}(2a_1 + (n-1)d)$其中S表示数列的和,n表示数列的项数。
二、等比数列求和公式对于等比数列$a_n = a_1 \cdot q^{(n-1)}$,其中$a_n$表示第n个数,$a_1$表示第一个数,q表示公比,我们可以利用等比数列求和公式求解:$S = \frac{a_1(q^n - 1)}{q - 1}$,其中q≠1或者当q=1时,$S=a_1n$其中S表示数列的和,n表示数列的项数。
三、几何级数求和公式对于几何级数$s_n = a_1 + a_2 + \dots + a_n$,其中$a_1$表示第一个数,q表示公比,我们可以利用几何级数求和公式求解:$S = \frac{a_1(q^n - 1)}{q - 1}$,其中q≠1四、等差数列-等比数列混合求和公式对于等差数列-等比数列混合数列$s_n = a_1 + a_2 + \dots + a_n$,其中$a_n = a_1 + (n-1)d$,$a_1$表示第一个数,d表示公差,我们可以利用等差数列-等比数列混合求和公式求解:$S = \frac{a_1(q^n - 1)}{q - 1} + \frac{n(n-1)d}{2}q^{(n-2)}$,其中q≠1五、反比例数列求和公式对于反比例数列$s_n = \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}$,其中$a_1$表示第一个数,我们可以利用反比例数列求和公式求解:$S = \frac{n}{a_1}$六、算术-几何级数求和公式对于算术-几何级数$s_n = a_1 + a_2 + \dots + a_n$,其中$a_n = a_1 + (n-1)d$,$a_1$表示第一个数,d表示公差$S = \frac{a_1}{1-q} + \frac{d}{(1-q)^2}$,其中q≠1七、差分数列求和公式对于差分数列$s_n = a_1 + a_2 + \dots + a_n$,其中$a_n = a_1+ (n-1)d$,$a_1$表示第一个数,d表示公差,我们可以利用差分数列求和公式求解:$S = \frac{n}{2}(2a_1 + (n-1)d)$其中S表示数列的和,n表示数列的项数。
数列求和的常用方法
数列求和的常用方法一、公式法1、 差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn例1、设{}n a 是公比大于1的等比数列,n S 为数列{}n a 的前n 项和.已知37S =,且123334a a a ++,,构成等差数列.(1)求数列{}n a 的等差数列.(2)令31ln 12n n b a n +==,,,,求数列{}n b 的前n 项和T .二、倒序相加法若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前n 和公式的推导方法).例2、设函数222)(+=x x x f 的图象上有两点P 1(x 1, y 1)、P 2(x 2, y 2),若)(2121OP OP +=且点P 的横坐标为21. (I )求证:P 点的纵坐标为定值,并求出这个定值;(II )若;求,),()3()2()1(*n n S N n nn f nf nf nf S ∈+⋯+++=三、裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有:(1)n n n n -+=++111(2)111=- (3)])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n若数列}{n a 为等差数列,0≠n a ,公差0≠d ,)11(11,11111111++++++-=∴=-=-n n n n n n n n n n n n a a d a a a a d a a a a a a则数列}1{1+n n a a 的前n 项和)11(1)11(1)11(113221+-++-+-=n n n a a d a a d a a d S111111111)11(1++++=-⋅=-=n n n n a a na a a a d a a d 。
数列求和的8种常用方法
数列求和的8种常用方法数列求和是数学中常见的问题,解决数列求和问题有很多方法。
下面将介绍数列求和的8种常用方法。
1.直接相加法:这是最基本的方法,实际上就是将数列中的所有项相加。
例如,对于等差数列1,3,5,7,9,可以直接相加得到1+3+5+7+9=252.偶数项和与奇数项和之和法:对于一些数列,可以将其分解为偶数项和与奇数项和,然后再求和。
例如,对于等差数列1,3,5,7,9,可以分解为偶数项和4+8和奇数项和1+3+5+7+9,再相加得到(4+8)+(1+3+5+7+9)=373.首项与末项和的乘法法:对于等差数列,可以利用首项与末项之和的公式来求和。
首项与末项之和等于和的平均数乘以项数。
例如,对于等差数列1,3,5,7,9,首项与末项之和等于(1+9)*(项数/2)=10*5/2=254.首项与公差与项数的乘法法:对于等差数列,可以利用首项、公差和项数的乘积来求和。
等差数列的和等于首项乘以项数,再加上项数与公差之积的和。
例如,对于等差数列1,3,5,7,9,和等于1*5+(5*4)/2=10+10=20。
5.平均数法:对于一些特殊的数列,可以利用平均数的性质来求和。
平均数等于数列中的第一项与最后一项的平均值。
例如,对于等差数列1,3,5,7,9,平均数等于(1+9)/2=5,然后将平均数乘以项数,得到5*5=256.高斯求和法:高斯求和法是一种数学推导方法,用于求等差数列的和。
首先将数列化为由首项和末项构成的和,然后将数列顺序颠倒,再将之前的和与颠倒后的和相加,得到的结果就是等差数列的和。
例如,对于等差数列1,3,5,7,9,将其化为(1+9)+(3+7)+5,然后将数列颠倒得到5+(7+3)+9,再相加得到257. telescopage法(消去法):telescopage法是一种利用抵消的思想来求和的方法。
可以将数列中相邻的两项之差相消为0,最终得到一个简单的表达式,然后再求值。
例如,对于数列1, 2, 3, 4, 5,可以将(2-1) + (3-2) + (4-3) + (5-4)相加,得到1 + 1 + 1 + 1 = 48.更一般的求和方法:对于一些复杂的数列,可能需要应用更一般的数学方法来求解。
数列求和方法总结
数列求和方法总结数列求和是数学中一个非常常见且重要的问题,它出现在各个领域的数学问题中,并且在高中数学及以上的学习中经常遇到。
在解决数列求和问题时,我们可以通过多种方法,其中包括代入法、消元法、几何法、差分法、数学归纳法等等。
下面我将对这些方法进行详细的总结与说明。
1. 代入法:代入法是一种常见的求和方法。
我们可以通过代入来求和项的个数和具体数值。
首先,我们需要确定数列的通项公式,然后将要求和的项数具体代入到通项公式中,求出每一项的数值,最后再将这些数值相加即可得到所求的数列的和。
例如,要求等差数列1、3、5、7、9的前n项和,我们可以先找到通项公式为an=2n-1,然后代入每一项的数值,得到1、3、5、7、9,最后相加得到的和为(1+9)*5/2=25。
2. 消元法:消元法是一种常用的数学方法,在求和问题中也有广泛应用。
通过对求和式进行变形,我们可以通过消除多项式的常数项、控制变量项或者引入新的变量来简化求和的步骤,从而得到更简单的表达式。
例如,要求等差数列1、2、3、4、5的前n项和,我们可以通过对求和式进行变形,得到Sn=(n+1)*n/2。
3. 几何法:几何法是一种求解数列求和的常见方法,它通常适用于等比数列求和问题。
当数列的各项之间的比值存在规律时,我们可以通过将数列的各项代入到几何模型中来计算求和的方法。
例如,要求等比数列1、2、4、8、16的前n项和,我们可以将这些数列代入等比数列的几何模型中,即1、2、2^2、2^3、2^4,可见,这是一个以2为公比的等比数列。
根据等比数列的求和公式Sn=a1*(r^n-1)/(r-1),代入数值可得到所求的和。
4. 差分法:差分法是一种通过对数列进行差分来求和的方法。
它通常适用于数列之间的差为常数或规律的数列,通过对数列进行差分可以简化求和的过程。
例如,要求等差数列1、3、5、7、9的前n项和,我们可以通过差分法来解决,即将数列进行差分得到2、2、2、2,可以发现这是一个公差为2的等差数列。
几种常见数列求和方法的归纳
几种常见数列求和方法的归纳一、等差数列求和法:等差数列是指数列中相邻两项之差都相等的数列。
设等差数列的首项为a₁,公差为d,项数为n,则该等差数列的和Sn可以通过以下方法求得:1.公式法:Sn = (a₁ + an) × n / 2公式法是等差数列求和的基本方法,通过等差数列的首项、末项和项数来计算数列的和,适用于任意长度的等差数列。
2.利用首项、末项和项数求和法:(1) 当首项a₁和末项an已知时,可以通过以下公式求和:Sn = (a₁ + an) × n / 2(2) 当首项a₁和项数n已知时,可以用公式an = a₁ + (n - 1) × d 求得末项an,然后带入公式进行求和。
(3) 当公差d和项数n已知时,可以用公式an = a₁ + (n - 1) × d求得末项an,然后带入公式进行求和。
等差数列的求和方法简单且适用范围广,常用于等差数列的求和问题。
二、等比数列求和法:等比数列是指数列中相邻两项之比都相等的数列。
设等比数列的首项为a₁,公比为r,项数为n,则该等比数列的和Sn可以通过以下方法求得:1.公式法:若r≠1,则有Sn=a₁×(1-r^n)/(1-r)当公比r=1时,有Sn=a₁×n公式法是等比数列求和的基本方法,通过等比数列的首项、公比和项数来计算数列的和,适用于任意长度的等比数列。
2.利用首项、末项和项数求和法:(1) 若首项a₁和末项an已知,公比r不等于1时,可以借助等比数列的性质得出Sn=a₁×(1-r^n)/(1-r)(2) 若首项a₁和项数n已知,公比r不等于1时,可以用公式an = a₁ × r^(n-1)求得末项an,然后带入公式进行求和。
(3) 若公比r和项数n已知,可以用公式an = a₁ × r^(n-1)求得末项an,然后带入公式进行求和。
等比数列的求和方法依赖于公式的推导和性质的运用,使用起来较为灵活,常用于等比数列的求和问题。
数列求和7种方法
数列求和7种方法一、求等差数列的和:等差数列的通项公式为 an = a1 + (n-1)d ,其中an 表示第 n 个数,a1 表示首项,d 表示公差,n 表示项数。
1.直接求和法:根据数列的首项 a1、末项 an 和项数 n,直接相加即可。
例如:已知等差数列的首项 a1 = 2,公差 d = 3,项数 n = 5,求和公式为 S = (a1 + an) * n / 2 = (2 + 2 + 4 * 3) * 5 / 2 = 35 2.公式法:利用等差数列的求和公式:S = (a1 + an) * n / 2例如:已知等差数列的首项a1=2,公差d=3,项数n=5,代入公式即可得到结果。
3.递推法:利用数列的递推关系a(n)=a(n-1)+d,可得到递归式,通过递归累加求和。
例如:已知等差数列的首项a1=2,公差d=3,项数n=5,则S(n)=S(n-1)+(a(n-1)+d)=S(n-1)+a(n-1)+d。
二、求等比数列的和:等比数列的通项公式为 an = a1 * q^(n-1),其中an 表示第 n 个数,a1 表示首项,q 表示公比,n 表示项数。
4.直接求和法:根据数列的首项 a1、末项 an 和项数 n,直接相加即可。
例如:已知等比数列的首项a1=2,公比q=3,项数n=5,求和公式为S=(a1*(q^n-1))/(q-1)=(2*(3^5-1))/(3-1)=2425.公式法:利用等比数列的求和公式:S=(a1*(q^n-1))/(q-1)。
例如:已知等比数列的首项a1=2,公比q=3,项数n=5,代入公式即可得到结果。
6.迭代法:利用数列的递推关系a(n)=a(n-1)*q,可得到递归式,通过递归累加求和。
例如:已知等比数列的首项a1=2,公比q=3,项数n=5,则S(n)=S(n-1)+a(n-1)*q=S(n-1)+a(n-1)*q。
三、其他数列的求和方法:7.利用数列的递归关系:对于一些特殊的数列,可能没有通项公式,但可以根据数列的递归关系利用递归求和。
数列求和的常用方法
数列求和的常用方法1、拆项分组法:即把每一项拆成几项,重新组合分成几组,转化为特殊数列求 和。
例:求数列n {223}n +-的前n 项和n S .2、错项相减法:适用于差比数列(如果{}n a 等差,{}n b 等比,那么{}n n a b 叫做差比数列)即把每一项都乘以{}n b 的公比q ,向后错一项,再对应同次项相减,转化为等比数列求和。
例:若数列{}n a 的通项n n n a 3)12(⋅-=,求此数列的前n 项和n S3.裂项相消法:即把每一项都拆成正负两项,使其正负抵消,只余有限几项,可求和。
适用于数列11n n a a +⎧⎫⎨⎬⋅⎩⎭和⎧⎫(其中{}n a 等差)。
可裂项为:111111()n n nn a a d a a ++=-⋅1d=-例:求和:S=1+n++++++++++ 321132112114.倒序相加法:n n n a a a a S ++++=-121121a a a a S n n n ++++=- 把这两个式子相加: ()()()11212a a a a a a S n n n n ++++++=- 例:设221)(xxx f +=,求:⑴)4()3()2()()()(213141f f f f f f +++++; ⑵).2010()2009()2()()()()(21312009120101f f f f f f f ++++++++数列求和练习题:1. 求和12321-++++n nx x x (0≠x )2. 求和)12)(12(1751531311+-++⨯+⨯+⨯n n3. 求和n n +++++++++113212311214. 数列,1614,813,412,211的前n 项和5. 已知数列}{n a 的前n 项和12-=n n S ,则22221na a a ++6.等比数列}{n a 同时满足下列条件:①3361=+a a ,②3243=a a ,③三个数432,2,4a a a 依次成等差数列.(1)求数列}{n a 的通项公式; (2)记nn a n b =,求数列}{n b 的前n 项和T n .7.等差数列}{n a 各项均为正整数,31=a ,前n 项和为n S ,在等比数列}{n b 中,11=b 且6422=S b ,公比为8。
数列求和7种方法(方法全-例子多)
解:由等差数列求和公式得
1
S
2
(利用常用公式)
f(n)
Sn
(n 32) Sn 1
-
n
-
64
-
C.n
(
丄
50
当n 88,即n=8时,f(n仏
1
50
、利用常用求和公式求和
利用下列常用求和公式求和是数列求和的最基本最重要的方法
na1
2、
等比数列求和公式:
Sn
a1(1 qn)
1 q
n
1
3、
Sn
k
二n(n
1)
k 1
2
n
.3
r1“
…2
5、
Sn
k
[n(n
1)]
k 12Βιβλιοθήκη 1、等差数列求和公式:Sn,吟型na1Td
[例1]已知log3x
(q
1)
a anq
1 q
数列求和的基本方法和技巧
一、总论:数列求和7种方法:
利用等差、等比数列求和公式
错位相减法求和
反序相加法求和
分组相加法求和
裂项消去法求和
分段求和法(合并法求和) 利用数列通项法求和
二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减 法,
三、逆序相加法、错位相减法是数列求和的二个基本方法。
(q
1)
4、Sn
n
k2
k 1
1
—n(n 1)(2 n 1)
6
解:由log3x
一,求x x2x3
log23
xn的前n项和.
1
log23
log3x
log32
数列求和的8种常用方法(最全)
数列求和的8种常用方法(最全)一、前言在高中数学以及各类应用数学问题中,数列求和问题是非常常见的。
解决数列求和问题不仅需要对常用数列的规律进行深刻的理解,还需要掌握多种数列求和的方法。
本文将介绍数列求和的八种常用方法,并且会结合具体的数列实例来进行讲解。
尽力做到对每一种方法的介绍都能够做到极致详细,希望对读者有所帮助。
二、数列求和的8种常用方法1. 等差数列求和公式对于一个首项为$a_1$,公差为$d$,共有$n$ 项的等差数列,其求和公式为:$$S_n = \frac{n}{2}(2a_1 + (n-1)d)$$其中,$S_n$ 代表前$n$ 项的和。
举例:求和数列$1,3,5,7,9$ 的和。
分析:此数列的首项为1,公差为2,总共有5项。
解答:$$S_5 = \frac{5}{2}(2\times 1 + (5-1)\times 2)=25$$因此,数列$1,3,5,7,9$ 的和为25。
2. 等比数列求和公式对于一个首项为$a_1$,公比为$q$,共有$n$ 项的等比数列,其求和公式为:$$S_n = \frac{a_1(1-q^n)}{1-q}$$其中,$S_n$ 代表前$n$ 项的和。
举例:求和数列$2,4,8,16,32$ 的和。
分析:此数列的首项为2,公比为2,总共有5项。
解答:$$S_5=\frac{2\times (1-2^5)}{1-2}=-62$$因此,数列$2,4,8,16,32$ 的和为-62。
3. 几何级数通项公式求和对于一般形式为$a_1r^{n-1}$ 的数列,其求和公式为:$$S_n = \frac{a_1(1-r^n)}{1-r}$$其中,$S_n$ 代表前$n$ 项的和。
举例:求和数列$1,-\frac{1}{2},\frac{1}{4},-\frac{1}{8},\frac{1}{16}$ 的和。
分析:此数列的首项是1,公比是$-\frac{1}{2}$,总共有5项。
数列求和7种方法(方法全,例子多)
数列求和的基本方法和技巧(配以相应的练习)一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和分段求和法(合并法求和) 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。
数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧.一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和.解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n--1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当88-n ,即n =8时,501)(max =n f题1.等比数列的前n项和S n=2n-1,则=题2.若12+22+…+(n -1)2=an 3+bn 2+cn ,则a = ,b = ,c = .解: 原式=答案:二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位)①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S练习题1 已知 ,求数列{a n }的前n 项和S n .答案:练习题2 的前n 项和为____答案:三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n n n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加) ∴ nn n S 2)1(⋅+=[例6] 求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5题1 已知函数 (1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n [例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和)=)111(8+-n =18+n n[例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵n n n n tan )1tan()1cos(cos 1sin -+=+ (裂项) ∴89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和) =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2 ∴ 原等式成立练习题1.答案:.练习题2。
数列求和常见的7种方法
数列求和常见的7种方法数列求和常见的7种方法一、总论:数列求和7种方法:利用等差、等比数列求和公式错位相减法求和反序相加法求和分组相加法求和裂项消去法求和分段求和法(合并法求和)利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。
数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧.一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法.二、错位相减法求和这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{an·bn}的前n项和,其中{an}、{bn}分别是等差数列和等比数列.三、反序相加法求和这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:六、分段求和法(合并法求和)针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求Sn.七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n项和,是一个重要的方法.。
数列求和的常见方法
数列求和的常见方法一 、公式求和法正整数和公式有:()();213211+=++++n n n ()()();6121212222++=+++n n n n()().212132333⎥⎦⎤⎢⎣⎡+=+++n n n例1 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.变式:⑴等比数列 ,222132,,,中的第5项到第10项的和为:⑵等差数列{}n a 的前n 项和为18,前n 2项为和28,则前n 3项和为二、分组求和法有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.形如:①{}n n b a +,其中{}{}⎩⎨⎧是等比数列;是等差数列;n n b a ②()()⎩⎨⎧∈=-==*Nk k n n g k n n f a n ,2,,12,例2 已知数列{}n a 的通项公式为,132-+=n a nn 求数列{}n a 的前n 项和.变式:1.求数列{}2)12(-n 的前n 项和n S.2.求数列 ,321,,321,21,1n +++++++的前n 项和n S .三、错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求和.例3.(2010年全国高考宁夏卷17)设数列{}n a 满足121123,2-+⨯=-=n n n a a a .(1) 求数列{}n a 的通项公式; (2) 令n n b na =,求数列的前n 项和n S【能力提升】错位相减法适用于数列{}n n b a ,其中{}n a 是等差数列,{}n b 是等比数列.若等比数列{}n b 中公比q 未知,则需要对公比q 分11≠=q q 和两种情况进行分类讨论.变式:1.已知数列{}n a 的通项公式为1(1)()2n n a n =+,求其前n 项和公式n T2.求数列)0()12(,5,3,112≠--a a n a a n ,的前n 项和n S .四、倒序相加法如果一个数列{}n a ,与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法.【例4】设221)(xx x f +=,求: ⑴)4()3()2()()()(213141f f f f f f +++++;⑵).2010()2009()2()()()()(1111f f f f f f f ++++++++变式:求证:nnn n n n n C n C C C 2)1()12(5321+=++⋅⋅⋅+++【能力提升】倒序相加法来源于课本,是等差数列前项和公司推导时所运用的方法,它是一种重要的求和方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列求和的常见方法
数列问题中蕴涵着丰富的数学思想方法,是高考用来考查考生对数学思想方法理解程度的良好素材,是历年高考的一大热点,在高考命题中,多以与不等式的证明或求解相结合的形式出现,一般数列的求和,主要是将其转化为等差数列或等比数列的求和问题,因此,我们有必要对数列求和的各种方法进行系统探讨。
一 、公式求和法
通过分析判断并证明一个数列是等差数列或等比数列后,可直接利用等差、等比数列的求和公式求和,或者利用前n 个正整数和的计算公式等直接求和。
因此有必要熟练掌握一些常见的数列的前n 项和公式.
正整数和公式有:
()();
2
13211+=++++n n n ()()();
6
121212222++=+++n n n n
()().212132
3
3
3
⎥⎦
⎤
⎢⎣⎡+=+++n n n
例1 设S n =1+2+3+…+n ,n ∈N *,求1
)32()(++=
n n
S n S n f 的最大值.
解:由等差数列求和公式得 )1(21+=
n n S n , )2)(1(2
1
++=n n S n (利用常用公式)
∴ 1)32()(++=
n n S n S n f =64
342++n n n
=
n
n 64341+
+=
50
)8(12+-
n
n 50
1≤
∴ 当
8
8-
n ,即n =8时,501)(max =n f
【能力提升】公式法主要适用于等差、等比数列或可转化为等差、等比数列的数列
的求和,一些综合性的数列求和的解答题最后往往就归结为一个等差数列或等比数列的求和问题.
二、分组求和法
有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.形如:
①{}n n b a +,其中{}{}⎩⎨⎧是等比数列;是等差数列;
n n b a ②()()⎩
⎨⎧∈=-==*
N k k n n g k n n f a n
,2,,
12, 例2 已知数列{}n a 的通项公式为,132-+=n a n
n 求数列{}n a 的前n 项和.
分析:该数列的通项是由一个等比数列{}n
2
与一个等差数列{}13-n 组成的,所以
可将其转化为一个等比数列与一个等差数列进行分组求和.
【解析】()()()
132********-+++++=++=n a a a S n
n n
=()()[].13522222
1
-++++++n n
=()
()[]2
13221212-++--n n n =.22
1
232
21
-+++n n n 【能力提升】在求和时,一定要认真观察数列的通项公式,如果它能拆分成几项的
和,而这些项分别构成等差数列或等比数列,那么我们就可以用此方法求和. 三、错位相减法
如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求和.
例3.(2010年全国高考宁夏卷17)设数列{}n a 满足21
112,32n n n a a a -+=-=
(1) 求数列{}n a 的通项公式; (2) 令n n b na =,求数列的前n 项和n S
解:(Ⅰ)由已知,当n ≥1时,
111211[()()()]n n n n n a a a a a a a a ++-=-+-+
+-+
21233(222)2n n --=++
++
2(1)12n +-=。
而 12,a =所以数列{n a }的通项公式为212n n a -=。
(Ⅱ)由212n n n b na n -==⋅知
35211222322n n S n -=⋅+⋅+⋅+
+⋅ ①
从而
23572121222322n n S n +⋅=⋅+⋅+⋅+
+⋅ ②
①-②得
235
2121(12)22222n n n S n -+-⋅=+++
+-⋅ 。
即 211[(31)22]9
n n S n +=-+
点评:本题主要考察由递推关系求数列通项的方法以及运用错位相减法求数列的和。
熟练数列的基础知识是解答好本类题目的关键。
【能力提升】错位相减法适用于数列{}n n b a ,其中{}n a 是等差数列,{}n b 是等比数列.若等比数列{}n b 中公比q 未知,则需要对公比q 分11≠=q q 和两种情况进行分类讨论.
四、倒序相加法
如果一个数列{}n a ,与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法.
例4求证:n
n n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++
证明: 设n
n n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①
把①式右边倒转过来得
113)12()12(n
n n n n n n C C C n C n S ++⋅⋅⋅+-++=-
(反序)
又由m
n n m n C C -=可得
n
n n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②
①+②得
n n
n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=-
(反序相加)
∴ n
n n S 2)1(⋅+=
【能力提升】倒序相加法来源于课本,是等差数列前项和公司推导时所运用的方法,它是一种重要的求和方法。
当求一个数列的有限项和时,若是“与首末两端等距离”的两项和都相等,即可用此法.
五、裂项相消法
把数列的通项分成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.适
用于类似⎭
⎬⎫
⎩⎨⎧+1n n a a c (其中{}n a 是各项不为0的等差数列,c 为常数)的数列,以及部分无
理数列和含阶乘的数列等.用裂项法求和,需要掌握一些常见的裂项方法:
()
();11111⎪⎭
⎫ ⎝⎛+-=+k n n k k n n ()()();12112121121212⎪⎭⎫ ⎝⎛+--=+-n n n n
()
()()()()();
211
11212113⎥⎦
⎤⎢⎣⎡++-+=++n n n n n n n ()(
)
.114n k n k n k n -+=++
例5 (2010山东理数18)已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前n
项和为n S . (Ⅰ)求n a 及n S ; (Ⅱ)令b n =
2
1
1
n a -(n ∈N *),求数列{}n b 的前n 项和n T . 【解析】(Ⅰ)设等差数列{}n a 的公差为d ,因为37a =,5726a a +=,所以有
1127
21026
a d a d +=⎧⎨
+=⎩,解得13,2a d ==, 所以321)=2n+1n a n =+-(
;n S =n(n-1)
3n+22
⨯=2n +2n 。
(Ⅱ)由(Ⅰ)知2n+1n a =,所以b n =
211n a -=21=2n+1)1-(114n(n+1)⋅=111
(-)4n n+1
⋅,
所以n T =
111111(1-+++-)4223n n+1⋅-=11
(1-)=
4n+1⋅n 4(n+1), 即数列{}n b 的前n 项和n T =
n
4(n+1)。
【能力提升】用裂项相消法求和的关键是先将形式复杂的式子转化为两个式子的差的形式因此需要掌握一些常见的裂项技巧.
六、并项求和法
针对一些特殊的数列,将其某些项合并在一起就具有某种特殊的性质,因此,在求数列的前n 项和时,可将这些项放在一起先求和.
例6 数列{}n a 的前n 项和是n S (
)*
∈N
n ,若数列{}n
a 的各项按如下规则排列:
,,6
1
,54,53,52,51,43,42,41,32,31,21 若存在自然数k ()*∈N k ,使10,101≥<+k k S S ,
则=k a .
分析:数列的构成规律是分母为2的一项,分母为3的两项,分母为4的三项,···,故这个数列的和可以并项求解. 【解析】5543213,3432123,2332121,2110631=++++==+++==++==
S S S S ,215654321515=+++++=S 而,37654321=+++++这样102
21
21>=S ,而
,102521571521575432121520=+<+=+++++=S 故75=k a ,故填.7
5
【能力提升】当一个数列连续的几项之间具有明显的规律性,特别是一些正负相间或者
是周期性的数列等,可以考虑用并项求和的方法.
一般的数列求和,应从通项入手,若无通项,先求通项,然后通过对通项变形,转化为与特殊数列有关或具备某种方法适用特点的形式,从而选择合适的方法求和。
高考数学试题中所涉及的数列求和问题往往具有一定的技巧性,需要考生具有很强的分析问题、解决问题的能力才能解决,但是基本的求和方法就是上面介绍的这些。
希望广大考生熟练掌握,灵活适用.。