证明时域卷积定理

合集下载

卷积分

卷积分

-T0
T0 h(-T0/2- τ)
-T0 -2T0 0 2T0 A2
T0
-T0
T0
卷积与相关
(7) t= -T0时,y( -T0)=A T0
2
x(t)
y(t) 2A2T0
-T0
T0 h(-T0- τ)
-T0 -2T0 0 2T0 A2
T0
-T0
T0
卷积与相关
x(t)
(8) t= -3T0/2时,y( -3T0/2)=3A2T0/2
-T0 -2T0 0 2T0 A2
T0
-T0
T0
卷积与相关
x(t)
(5) t= 2T0时,y(2T0)=0
y(t) 2A2T0
-T0
T0 h(T0/2- τ)
-T0 -2T0 0 2T0 A2
T0
-T0
T0
卷积与相关
(6) t= -T0/2时,y( -T0/2)=3A T0/2
2
x(t)
y(t) 2A2T0
x(t)
(1)反折; 反折; 反折 (2)平移; 平移; 平移
0 t (4)积分
h(t)
(3)相乘; 相乘; 相乘 (4)积分。 积分。 积分
t
0
t (1) (1)反折
x(t)
h(-τ)
0 x(t) h(t1 -τ)
0
τ
(2)平移
(3)相乘
h(t1 -τ)

00
0
τ
卷积与相关
4 含有脉冲函数的卷积 • 设 h(t)=[δ(t-T)+ δ(t+T)] • 卷积为
卷积与相关
• 例 三角脉冲频谱计算
x(t) h(0-τ)

函数的卷积及其公式的应用

函数的卷积及其公式的应用

函数卷积及其应用摘要 卷积是一个很重要的数学概念.它描述了对两个〔或多个〕函数之积进展变换的运算法则,是频率分析的最有效的工具之一。

本文通过对卷积的概念,性质,具体应用以及对卷积公式,卷积定理等方面进展较为全面和系统的论述和总结,使得对卷积的内涵有更全面更深刻的理解和认识。

关键词 卷积 卷积公式 性质 应用1引言卷积是在信号与线性系统的根底上或背景中出现的。

狄拉克为了解决一些瞬间作用的物理现象而提出了"冲击函数〞这一符号,而卷积的诞生正是为了研究"冲击函数〞效劳的;卷积是一种数学积分变换的方法,也是分析数学中一种重要的运算。

卷积在物理学,统计学,地震预测,油田勘察等许多方面有十分重要的应用。

本文通过对卷积的概念,性质,应用等方面进展较为全面和系统的论述和总结,使得对卷积的内涵有更全面更深刻的理解和认识。

2卷积的定义和性质 2.1卷积的定义〔根本内涵〕设:)(),(x g x f 是1R 上的两个可积函数,作积分:()()τττd x g f -⎰+∞∞- 随着*的不同取值,这个积分就定义了一个新函数)(x h ,称为函数()x f 与)(x g 的卷积,记为)(x h =)()(x g x f *(或者()()x g f *) .注(1)如果卷积的变量是序列()()n h n x 和,则卷积的结果:∑+∞-∞=*=-=i n h n x i n h i x n y )()()()()(,其中星号*表示卷积。

当时序n=0时,序列h(-i)是)(i h 的时序i 取反的结果;时序取反使得)(i h 以纵轴为中心翻转180度,所以这种相乘后求和的计算法称为卷积和,简称卷积.另外,n 是使)(i h -位移的量,不同的n 对应不同的卷积结果. 〔2〕如果卷积的变量是函数)(t x 和)(t h ,则卷积的计算变为:)()()()()(t h t x dp p t h p x t y *=-=⎰+∞∞-,其中p 是积分变量,积分也是求和,t 是使函数)(p h -位移的量,星号*表示卷积.〔3〕由卷积得到的函数g f *一般要比g f 和都光滑.特别当g 为具有紧致集的光滑函数,f 为局部可积时,它们的卷积g f *也是光滑函数. 2.2卷积的性质性质〔交换律〕设)(x f ,)(x g 是1R 上的两个可积函数,则)()()()(x f x g x g x f *=*. 证=*)()(x g x f ()()τττd x g f -⎰+∞∞-令τ-=x u ,则u x -=τ,τd du -= 所以=*)()(x g x f ()()τττd x g f -⎰+∞∞-=()()du u g u x f ⎰-∞∞+--=()()du u x f u g ⎰+∞∞--=)()(x f x g *性质〔分配律〕设)(),(x g x f )(x h 是1R 上的三个可积函数,则()()[]x h x g x f +*)()()()()(x h x f x g x f *+*=.证 根据卷积定义()()[]x h x g x f +*)(=()()()[]ττττd x h x g f -+-⎰+∞∞-=()()τττd x g f -⎰+∞∞-+()()τττd x h f -⎰+∞∞-性质〔结合律〕设)(),(x g x f )(x h 是1R 上的三个可积函数,则()()[]()x h x g x f **()()()[]x h x g x f **=.证 令()()=*=x g x f x m )(()()τττd x g f -⎰+∞∞-,()()()()()dv x h v x g x h x g x s ⎰+∞∞--=*=,则()()[]()x h x g x f **=()()x h x m *=()()du u x h u m -⎰+∞∞-=()()()du u t h d u g f -⎥⎦⎤⎢⎣⎡-⎰⎰+∞∞-+∞∞-τττ=()()τττd du u t h u g f ⎥⎦⎤⎢⎣⎡--⎰⎰+∞∞-+∞∞-)(令v x u u x v -=-=则,,上式=()()τττd dv v h v x g f ⎥⎦⎤⎢⎣⎡--⎰⎰+∞∞-+∞∞-)( =()()du u x s f -⎰+∞∞-τ=()()x s x f *性质()()x g x f x g x f *≤*)()(. 证明 =*)()(x g x f ()()τττd x g f -⎰+∞∞-≤()()τττd x g f -⋅⎰+∞∞-=()()x g x f *.性质〔微分性〕设)(),(x g x f 是1R 上的两个可积函数,则())()()()()()(x g x f x g x f x g x f dxd'*=*'=*. 证明 ()()()()()τττττd h dxx df d dx x dg x f x g x f dx d ⎰⎰∞+∞-∞+∞-=-=*-)()( 即意义 卷积后求导和先对其任一求导再卷积的结果一样. 性质〔积分性〕设()()()x h x g x f *=,则()()()()()()()x h x g x h x g x f11)1(---*=*=.意义 卷积后积分和先对其任一积分再卷积的结果一样. 推广 ()()()()()()()()x h x g x h x g x fn n n *=*=.性质〔微积分等效性〕设)(x f ,)(x g 是1R 上的两个可积函数,则()()ττd g x f x g x f x⎰∞-*'=*)()(.例2.1设()0010≥<⎩⎨⎧=x x x f ,()000≥<⎩⎨⎧=-x x e x g x ,求()x g x f *)(.解 由卷积定义知()x g x f *)(=()()τττd x g f -⎰+∞∞-=()()t t t tx e e e d e-----=-=⋅⎰1110ττ例2.2 设函数试计算其卷积()()()t f t f t y 21*=. 解 由卷积定义知所以()()()t f t f t y 21*==()()τττd t f f -⎰+∞∞2-1显然这个积分值与函数()ttt ><⎩⎨⎧=-τττμ01,所取非零值有关,即与参数t 的取值有关.()1当t 0<时,因30<<<τt ,所以()0=-τμt ,此时()()()t f t f t y 21*==003)(=⋅⎰--ττd e t()2当30<<t 时,只有t <<τ0时,有()1=-τμt ,此时()()()t f t f t y 21*==t tt e d e ----=⎰10)(ττ()3当3>t 时,因为t <<<30τ,所以()1=-τμt ,此时()()()t f t f t y 21*==()t t e e d e ----=⎰1330)(ττ综上所述,有()()()t f t f t y 21*==()33001-103><<<⎪⎩⎪⎨⎧⋅---t t t e e e tt3.卷积定理3.1 时域卷积定理设两函数)(),(21t f t f ,的傅里叶变换分别为:[],)()(1~1t f s F =ω[],)()(1~1t f s F =ω则两函数卷积的傅里叶变换为:[]),()()()(2121~ωωF F t f t f s ⋅=*上式称为时域卷积定理,它说明两信号在时域的卷积积分对应于在频域中该两信号的傅立叶变换的乘积.证明 []=*)()(21~t f t f s ()()dt e d t f f t j ωτττ-+∞∞-+∞∞-⎰⎰⎥⎦⎤⎢⎣⎡-21 =()()τττωd dt e t f f tj ⎥⎦⎤⎢⎣⎡-⎰⎰+∞∞--+∞∞-21=()()τωτωd e F f t j -+∞∞-⎰21=()()ττωωd e f F t j -+∞∞-⎰12=()()=⋅ωω12F F ),()(21ωωF F ⋅ 3.2频域卷积定理设两函数)(),(21t f t f ,的傅里叶变换分别为:[],)()(1~1t f s F =ω[],)()(1~1t f s F =ω则两函数卷积的傅里叶变换为:[]),()(21)()(2121~ωωπF F t f t f s *=上式称为频域卷积定理,它说明两信号在时域的乘积对应于这两个函数傅氏变换的卷积除以π2.证明 ()()()()ωππωωπωd e du u w F u F F F s tj ⎰⎰∞+∞-∞+∞-⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡*21211-~212121 于是例3.1 求积分方程的解,其中()()t f t h ,为函数,且()()()t h t f t g 和,的Fourier 变换都存在. 解 假设()[](),ωG t g F =()[](),ωH t h F =()[](),ωF t f F = 由卷积定义知现对积分方程两端取Fourier 变换可得解得所以原方程的解为例3.2 求常系数非齐次线性微分方程 的解,其中()t f 为函数. 解 设()[]()[]()ωωF t f F Y t y F ==),(现对原方程两端取Fourier 变换,并根据Fourier 变换的性质可得 解得所以原方程的解 由卷积定理得=()()τττd e f t f et t--∞+∞--⎰=*212. 例3.3求微分积分方程的解.其中c b a t ,,,+∞<<∞-均为常数. 解 设()[]()()[]()ωωH t h F X t x F ==,现对原方程两端取Fourier 变换,并根据Fourier 变换的性质可得解得()()()⎪⎭⎫⎝⎛-+=++=ωωωωωωωc a i b H i c b ai H X ,所以原方程的解4.卷积公式及其应用与推广 4.1卷积公式设X 和Y 的联合密度函数为)y x f ,(,则Y X Z +=得概率密度为证明 Y X Z +=的分布函数是:⎰⎰=≤+=≤=Dz xy f p z Z p Z F )()z Y X ()()(其中D ={}z y x y x ≤+:),(于是⎰⎰⎰⎰⎰⎰+∞∞-∞-+=+∞∞--∞-≤+-===zy x u yz zy x Z dudy y y u f dxdyy x f dxdy y x f Z F ),(),(),()(=⎰⎰∞-+∞∞--z dydu y y u f ),(从而⎰+∞∞--='=dy y y z f Z F Z f z z ),()()(由X 和Y 的对称性知⎰+∞∞--='=dx x x z f Z F Z f z z ),()()(。

卷积简单介绍

卷积简单介绍

卷积是分析数学中一种重要的运算。

设:,是上的两个可积函数,作积分:可以证明,关于几乎所有的,上述积分是存在的。

这样,随着的不同取值,这个积分就定义了一个新函数,称为函数与的卷积,记为。

我们可以轻易验证:,并且仍为可积函数。

这就是说,把卷积代替乘法,空间是一个代数,甚至是巴拿赫代数。

卷积与傅里叶变换有着密切的关系。

例如两函数的傅里叶变换的乘积等于它们卷积后的傅里叶变换,利用此一性质,能简化傅里叶分析中的许多问题。

由卷积得到的函数一般要比和都光滑。

特别当为具有紧支集的光滑函数,为局部可积时,它们的卷积也是光滑函数。

利用这一性质,对于任意的可积函数,都可以简单地构造出一列逼近于的光滑函数列,这种方法称为函数的光滑化或正则化。

卷积的概念还可以推广到数列、测度以及广义函数上去。

函数f与g的卷积记作,它是其中一个函数翻转并平移后与另一个函数的乘积的积分,是一个对平移量的函数。

积分区间取决于f与g的定义域。

对于定义在离散域的函数,卷积定义为1. 首先将两个函数都用来表示。

2. 对其中一个函数做水平翻转:→3. 加上一个时间偏移量,让能沿着轴滑动。

4. 让t从-∞滑动到+∞。

两函数交会时,计算交会范围中两函数乘积的积分值。

换句话说,我们是在计算一个滑动的的加权平均值。

也就是使用当做加权函数,来对取加权平均值。

最后得到的波形(未包含在此图中)就是f和g的卷积。

如果f(t)是一个单位脉冲,我们得到的乘积就是g(t)本身,称为冲激响应。

计算卷积的方法[编辑]当为有限长度,为有限长度的信号,计算卷积有三种主要的方法,分别为1.直接计算(Direct Method) 2.快速傅里叶转换(FFT)和3.分段卷积(sectioned∙作法:利用卷积的定义∙若和皆为实数信号,则需要个乘法。

∙若和皆为更一般性的复数信号,不使用复数乘法的快速算法,会需要个乘法;但若使用复数乘法的快速算法,则可简化至个乘法。

因此,使用定义直接计算卷积的复杂度为。

3.8 卷积特性(卷积定理)

3.8 卷积特性(卷积定理)
23
一、时域抽样
FT [ f s (t )] = Fs (ω ) FT [ f (t )] = F (ω ) FT [ p (t )] = P(ω )
f s (t ) = f (t ) p ((ω ) P(ω ) 2π
P(ω) = 2π ∑Pδ (ω nωs ) n
π π πt FT [cos( )] = π [δ (ω + ) + δ (ω )] τ τ τ
2
2
1 πt F (ω ) = G (ω ) FT [cos( )] 2π τ
G (ω ) = Eτ Sa (
ωτ
2
)
πt π π FT [cos( )] = π [δ (ω + ) + δ (ω )] τ τ τ
1
ω1 ω 0
0 ω2 ω0
ω0
2ω 0 ω 0 + ω1 ω 0 + ω 2
ω
10
ω2 ω0
ω1
ω1
ω0
ω2
1 FT[ f (t) cosω1t] = [F(ω +ω1) + F(ω ω1)] 2
1 2
ω1 ω 2 2 ω 1 ω 1 ω1 ω 2
0
ω 2 ω1 ω 1
2 ω 1 ω1 + ω 2
6



F (ω )
2 sin ω
ω
e
j 2ω
dω = ?
F (ω) = F(ω) 1
2sin ω
ω
e j 2ω
f1(t) = f (t) FT 1[2Sa(ω)e j 2ω ]



F(ω)
1
2sin ω

离散傅立叶变换(DFT)的性质

离散傅立叶变换(DFT)的性质

~ (n)R (n) = 1[x((n)) + x*(( N − n)) ]R (n) xep (n) = xe N N N N 2 ~ (n)R (n) = 1[x((n)) − x*(( N − n)) ]R (n) xop(n) = xo N N N N 2
~ ~ ~ 由于 x(n) = x(n)R (n) = [ x (n) + x (n)]R (n) N e o N ~ ~ = xe (n)RN (n) + xo (n)RN (n)
*
为纯虚序列时, 当x(n)为纯虚序列时,根据特性之四,则 为纯虚序列时 根据特性之四, X(k)=Xop(k)
* 又据X 的对称性: 又据 op(k)的对称性: op(k) = −Xop(( N − k))N RN (k) 的对称性 X
∴X(k) = −X*(( N − k))N RN (k)
总结: 总结:共轭对称性
X(0) = 1+ 2W40 + 3W40 + 4W40 = 1+ 2 + 3 + 4 = 10
X(1) = 1+ 2 41 + 3 42 + 4 43 W W W = 1+ 2 41 − 3 − 4 41 = −2− 2 41 = −2 + 2 j W W W
(1)、 (k) = Xep (k) + Xop(k) X
(2)、 ep (k) = X (−k) = X ((−k))N RN (k) X = X (( N − k))N RN (k)
* ep * ep * ep
* * (3)、 op(k) = −Xop(−k) = −Xop((−k))N RN (k) X * = −Xop(( N − k))N RN (k)

信号与系统的卷积运算

信号与系统的卷积运算

信号与系统的卷积运算信号与系统是电子工程和通信工程等领域中的重要学科,它研究信号在系统中的传输和处理过程。

其中,卷积运算是信号与系统中的一种重要数学运算,它在信号处理和系统分析中得到广泛应用。

一、卷积运算的定义卷积运算是一种基于积分的数学运算,用于描述两个函数之间的相互作用。

在信号与系统中,卷积运算可以理解为将两个信号进行线性加权叠加的过程。

在时域中,给定两个函数f(t)和g(t),它们的卷积运算表示为h(t) = f(t)*g(t),其中"*"代表卷积运算符号。

卷积运算的公式为:h(t) = ∫f(τ)g(t-τ)dτ其中,τ代表一个积分变量,它与t无关。

卷积运算的结果h(t)是一个新的函数,描述了信号f(t)和g(t)之间的相互作用。

二、卷积运算的性质卷积运算具有多种性质,使其成为信号处理和系统分析中的重要工具。

下面介绍几个常用的卷积运算性质:1. 交换律:f(t)*g(t) = g(t)*f(t)2. 结合律:f(t)*(g(t)*h(t)) = (f(t)*g(t))*h(t)3. 分配律:f(t)*(g(t)+h(t)) = f(t)*g(t) + f(t)*h(t)这些性质使得卷积运算可以方便地应用于信号处理和系统建模中。

三、卷积运算的应用卷积运算在信号与系统领域有着广泛的应用,下面介绍几个典型的应用场景:1. 系统响应计算:在系统分析中,可以使用卷积运算来计算系统对输入信号的响应。

假设系统的冲激响应为h(t),输入信号为x(t),那么系统的输出可以表示为y(t) = h(t)*x(t)。

通过卷积运算,可以方便地计算系统的输出。

2. 信号滤波:在信号处理中,卷积运算可以实现信号的滤波功能。

通过选择合适的滤波器函数,可以对信号进行频率域的加权叠加,实现滤波的效果。

例如,可以使用低通滤波器对信号进行平滑处理,去除高频噪声。

3. 信号复原与恢复:在通信领域中,卷积运算可以用于信号的复原与恢复。

圆周卷积

圆周卷积
The Discrete Fourier Transform ( DFT )
五. 圆周卷积定理 ( Circular convolution )
1. 圆周卷积和的定义:
两个长度为 N 的序列 的如下计算称为圆周卷积和,用 符号 N 表示: (N表示圆周卷积的点数)
x1(n)
N
x2
(n)
N 1 m0
将 Y (k) 周期延拓: Y~(k) X~1(k)X~2(k)
则有: ~y (n) IDFS Y~(k)
N 1
~x1 (m)
~x2
(n
m)
m0
N 1
x1((m))N x2 n mN m0
在主值区间 0 m N 1, x1((m)) N x1(m) ,所以:
y(n) ~y(n)RN (n)
其中
k e j
k
z
z e j
1 zN
N (1WNk z 1) ze j
1 N
1 e jN
j k 2
1 e N
k e j
1 N
1 e jN e j 2k
j k 2
1 e N
1 1 e j (N 2k ) j k 2
N 1e N
j N 2k
N
1
W (mn N
)
k
k 0
x(n rN ) r
利用性质
N 1 j 2 pk N ,p rN
eN
k 0
0
,其他
p
由 ~xN (n) x(n rN ) 可知: r ~xN (n) 是 x(n) 以 N 为周期的周期延拓; 也就是说: 频域抽样造成时域周期延拓。
3. 频域抽样定理:
x1

用matlab验证卷积定理

用matlab验证卷积定理

用matlab验证卷积定理
卷积定理
一、实验目的
通过本实验,验证卷积定理,掌握利用DFT和FFT计算线性卷积的方法。

二、实验原理
时域圆周卷积在频域上相当于两序列DFT的相乘,因而可以采用FFT的算
法来计算圆周卷积,当满足
121
L N N
≥+-时,线性卷积等于圆周卷积,因此可利用FFT计算线性卷积。

三、实验内容和步骤
1.给定离散信号()
x n和()
h n,用图解法求出两者的线性卷积和圆周卷积;2.编写程序计算线性卷积和圆周卷积;
3.比较不同列长时的圆周卷积与线性卷积的结果,分析原因。

四、实验设备
计算机、Matlab软件
五、实验报告要求
1.整理好经过运行并证明是正确的程序,并且加上详细的注释。

2.给出笔算和机算结果对照表,比较不同列长时的圆周卷积与线性卷积的结果对照,作出原因分析报告。

3.结出用DFT计算线性卷积的方法。

傅里叶变换中的卷积算法与应用实例

傅里叶变换中的卷积算法与应用实例

傅里叶变换中的卷积算法与应用实例傅里叶变换(Fourier Transform)是一种线性变换,它可以将一个信号从时域(time domain)转换到频域(frequency domain)。

傅里叶变换广泛应用于许多领域,如信号处理、图像处理和光学等。

其中,在信号处理中,卷积是一种重要的运算,而傅里叶变换可以通过卷积定理来实现卷积运算。

本文将介绍傅里叶变换中的卷积算法,并给出一些实例应用。

傅里叶变换中的卷积算法傅里叶变换中的卷积算法是基于卷积定理的。

卷积定理简单来说就是:时域卷积等于频域乘积,而频域卷积等于时域乘积。

具体来说,给定两个连续函数f(x)和g(x)的卷积,可以表示为:(f * g)(x) = ∫f(y)g(x-y)dy其中,*表示卷积运算,∫表示积分运算。

根据卷积定理,我们可以将其改写为两个函数在频域的乘积:F(u)G(u) = ∫ [ ∫f(y)e ^(-2πixy) dy ] e ^(2πixu) dx * ∫ [ ∫g(z)e ^(-2πixz) dz ] e ^(2πixu) dx其中,F(u)和G(u)表示f(x)和g(x)在频域上的傅里叶变换,e^(2πixu)表示旋转因子。

根据卷积定理,时域卷积f*g等于y方向上的图像f(x)和x方向上的图像g(x)的卷积F(u)G(u)的反变换,也就是在频域反变换为时域。

在计算卷积时,我们通常选择采用快速傅里叶变换(FFT)算法来计算离散傅里叶变换(DFT),以实现计算效率的提高。

应用实例一:图像模糊在图像处理中,模糊是一种特殊的图像滤波技术,可以通过在图像上添加高斯噪声或运动模糊等技术来实现。

图像模糊涉及一个重要的卷积过程,即图像卷积。

对于一张图像,可以将其看作一个二维数组。

我们可以对每一个像素点进行卷积操作,以实现图像的模糊。

具体来说,我们可以将一张图像与一个卷积核进行卷积运算。

卷积核通常是一个小矩形,其中包含一组数值。

卷积核越大,图像的模糊效果会越明显。

§5.2 拉普拉斯变换性质

§5.2  拉普拉斯变换性质
§5.2
• 线性性质 • 尺度变换 • 时移特性
拉普拉斯变换性质
• 卷积定理 • s域微分 • s域积分 • 初值定理 • 终值定理
• 复频移特性 • 时域微分 • 时域积分

第 1页
一.线性性质 线性性质
若f1(t)←→F1(s) Re[s]>σ1 , f2(t)←→F2(s) Re[s]>σ2 σ σ 则 a1f1(t)+a2f2(t)←→a1F1(s)+a2F2(s) Re[s]>max(σ1,σ2) σ σ (t)=δ(t)+ε(t)←→1+1/s, 例1:f(t)=δ(t)+ε(t)←→1+1/s,σ>0


第 12 页
.s域微分和积分 八.s域微分和积分
Re[s]>σ 若f(t)←→F(s) , Re[s]>σ0, 则
d F (s) d n F ( s) (−t ) f (t ) ←→ (−t ) n f (t ) ←→ ds d sn
∞ f (t ) ←→ ∫ F (η )dη s t
Re( s) > σ 0
d 例2: [cos 2tε (t )] ←→ ? dt
d 例3: [cos 2t ] ←→ ? dt


第 8页
六.时域积分特性 时域积分特性
若L[ f ( t )] = F ( s ), 则
证明: 证明: Re[s]>max(σ Re[s]>max(σ0,0)
( −1 ) (0 − ) t f ( τ ) d τ = F ( s) + f L ∫ s s −∞

t0 s a
t

函数的卷积及其公式的应用

函数的卷积及其公式的应用

函数卷积及其应用摘要 卷积是一个很重要的数学概念.它描述了对两个(或多个)函数之积进行变换的运算法则,是频率分析的最有效的工具之一。

本文通过对卷积的概念,性质,具体应用以及对卷积公式,卷积定理等方面进行较为全面和系统的论述和总结,使得对卷积的内涵有更全面更深刻的理解和认识。

关键词 卷积 卷积公式 性质 应用1引言卷积是在信号与线性系统的基础上或背景中出现的。

狄拉克为了解决一些瞬间作用的物理现象而提出了“冲击函数”这一符号,而卷积的诞生正是为了研究“冲击函数”服务的;卷积是一种数学积分变换的方法,也是分析数学中一种重要的运算。

卷积在物理学,统计学,地震预测,油田勘察等许多方面有十分重要的应用。

本文通过对卷积的概念,性质,应用等方面进行较为全面和系统的论述和总结,使得对卷积的内涵有更全面更深刻的理解和认识。

2卷积的定义和性质2.1卷积的定义(基本内涵)设:)(),(x g x f 是1R 上的两个可积函数,作积分:()()τττd x g f -⎰+∞∞- 随着x 的不同取值,这个积分就定义了一个新函数)(x h ,称为函数()x f 与)(x g 的卷积,记为)(x h =)()(x g x f * (或者()()x g f *) .注(1)如果卷积的变量是序列()()n h n x 和,则卷积的结果:∑+∞-∞=*=-=i n h n x i n h i x n y )()()()()(,其中星号*表示卷积。

当时序n=0时,序列h(-i)是)(i h 的时序i 取反的结果;时序取反使得)(i h 以纵轴为中心翻转180度,所以这种相乘后求和的计算法称为卷积和,简称卷积.另外,n 是使)(i h -位移的量,不同的n 对应不同的卷积结果.(2)如果卷积的变量是函数)(t x 和)(t h ,则卷积的计算变为:)()()()()(t h t x dp p t h p x t y *=-=⎰+∞∞-,其中p 是积分变量,积分也是求和,t 是使函数)(p h -位移的量,星号*表示卷积.(3)由卷积得到的函数g f *一般要比g f 和都光滑.特别当g 为具有紧致集的光滑函数,f 为局部可积时,它们的卷积g f *也是光滑函数.2.2卷积的性质性质2.2.1(交换律)设)(x f ,)(x g 是1R 上的两个可积函数,则)()()()(x f x g x g x f *=*. 证 =*)()(x g x f ()()τττd x g f -⎰+∞∞-令τ-=x u ,则u x -=τ,τd du -= 所以=*)()(x g x f ()()τττd x g f -⎰+∞∞-=()()du u g u x f ⎰-∞∞+--=()()du u x f u g ⎰+∞∞--=)()(x f x g *性质2.2.2(分配律)设)(),(x g x f )(x h 是1R 上的三个可积函数,则()()[]x h x g x f +*)()()()()(x h x f x g x f *+*=.证 根据卷积定义()()[]x h x g x f +*)(=()()()[]ττττd x h x g f -+-⎰+∞∞-=()()τττd x g f -⎰+∞∞-+()()τττd x h f -⎰+∞∞-)()()()(x h x f x g x f *+*= 性质2.2.3(结合律)设)(),(x g x f )(x h 是1R 上的三个可积函数,则()()[]()x h x g x f **()()()[]x h x g x f **=.证 令()()=*=x g x f x m )(()()τττd x g f -⎰+∞∞-,()()()()()dv x h v x g x h x g x s ⎰+∞∞--=*=,则()()[]()x h x g x f **=()()x h x m *=()()du u x h u m -⎰+∞∞-=()()()du u t h d u g f -⎥⎦⎤⎢⎣⎡-⎰⎰+∞∞-+∞∞-τττ=()()τττd du u t h u g f ⎥⎦⎤⎢⎣⎡--⎰⎰+∞∞-+∞∞-)(令v x u u x v -=-=则,,上式=()()τττd dv v h v x g f ⎥⎦⎤⎢⎣⎡--⎰⎰+∞∞-+∞∞-)(=()()du u x s f -⎰+∞∞-τ=()()x s x f *()()()[]x h x g x f **=性质2.2.4 ()()x g x f x g x f *≤*)()(. 证明 =*)()(x g x f ()()τττd x g f -⎰+∞∞-≤()()τττd x g f -⋅⎰+∞∞-=()()x g x f *.性质2.2.5(微分性)设)(),(x g x f 是1R 上的两个可积函数,则())()()()()()(x g x f x g x f x g x f dxd'*=*'=*. 证明 ()()()()()τττττd h dxx df d dx x dg x f x g x f dx d⎰⎰∞+∞-∞+∞-=-=*-)()( 即())()()()()()(x g x f x g x f x g x f dxd'*=*'=* 意义 卷积后求导和先对其任一求导再卷积的结果相同.性质2.2.6(积分性) 设()()()x h x g x f *=,则()()()()()()()x h x g x h x g x f11)1(---*=*=.意义 卷积后积分和先对其任一积分再卷积的结果相同. 推广 ()()()()()()()()x h x g x h x g x fn n n *=*=.性质2.2.7(微积分等效性)设)(x f ,)(x g 是1R 上的两个可积函数,则()()ττd g x f x g x f x⎰∞-*'=*)()(.例2.1 设()0010≥<⎩⎨⎧=x x x f ,()000≥<⎩⎨⎧=-x x e x g x ,求()x g x f *)(.解 由卷积定义知()x g x f *)(=()()τττd x g f -⎰+∞∞-=()()t t t tx e e e d e-----=-=⋅⎰1110ττ例2.2 设函数()()()()()t e t f t t t f t μμμ-=--=21,3试计算其卷积()()()t f t f t y 21*=. 解 由卷积定义知()()()其他300131<<⎩⎨⎧=--=ττμτμτf()()()tte t ef t t ><⎩⎨⎧=-=----τττμτττ0)(2 所以()()()t f t f t y 21*==()()τττd t f f -⎰+∞∞2-1显然这个积分值与函数()ttt ><⎩⎨⎧=-τττμ01,所取非零值有关,即与参数t 的取值有关.()1当t 0<时,因30<<<τt ,所以()0=-τμt ,此时()()()t f t f t y 21*==003)(=⋅⎰--ττd e t()2当30<<t 时,只有t <<τ0时,有()1=-τμt ,此时()()()t f t f t y 21*==t tt e d e ----=⎰10)(ττ()3当3>t 时,因为t <<<30τ,所以()1=-τμt ,此时()()()t f t f t y 21*==()t t e e d e ----=⎰133)(ττ综上所述,有()()()t f t f t y 21*==()33001-103><<<⎪⎩⎪⎨⎧⋅---t t t e e ett3.卷积定理3.1 时域卷积定理设两函数)(),(21t f t f ,的傅里叶变换分别为:[],)()(1~1t f s F =ω [],)()(1~1t f s F =ω则两函数卷积的傅里叶变换为:[]),()()()(2121~ωωF F t f t f s ⋅=*上式称为时域卷积定理,它表明两信号在时域的卷积积分对应于在频域中该两信号的傅立叶变换的乘积.证明 []=*)()(21~t f t f s ()()dt e d t f f t j ωτττ-+∞∞-+∞∞-⎰⎰⎥⎦⎤⎢⎣⎡-21=()()τττωd dt e t f f t j ⎥⎦⎤⎢⎣⎡-⎰⎰+∞∞--+∞∞-21=()()τωτωd e F f t j -+∞∞-⎰21=()()ττωωd e f F t j -+∞∞-⎰12=()()=⋅ωω12F F ),()(21ωωF F ⋅ 3.2频域卷积定理设两函数)(),(21t f t f ,的傅里叶变换分别为:[],)()(1~1t f s F =ω [],)()(1~1t f s F =ω则两函数卷积的傅里叶变换为:[]),()(21)()(2121~ωωπF F t f t f s *=上式称为频域卷积定理,它表明两信号在时域的乘积对应于这两个函数傅氏变换的卷积除以π2.证明 ()()()()ωππωωπωd e du u w F u F F F s tj ⎰⎰∞+∞-∞+∞-⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡*21211-~212121 ()du d e u F u F tj ⎥⎦⎤⎢⎣⎡-=⎰⎰∞+∞-∞+∞-ωωππω2121)(21()()()t f t f du e t f u F jut 1221)(21⋅==⎰+∞∞-π于是[])()(21)()(2121~ωωπF F t f t f s *= 例3.1 求积分方程()()()()τττd t g f t h t g -+=⎰+∞∞-的解,其中()()t f t h ,为已知函数,且()()()t h t f t g 和,的Fourier 变换都存在. 解 假设()[](),ωG t g F =()[](),ωH t h F =()[](),ωF t f F =由卷积定义知()()()()t g t f d t g f *=-⎰+∞∞-τττ现对积分方程两端取Fourier 变换可得 ()()()()ωωωωG F H G ⋅+=解得()()()ωωωF H G -=1所以原方程的解为()()()ωωωπωd e F H t g ti ⎰∞+∞--=121例3.2 求常系数非齐次线性微分方程()()()t f t y t y dtd -=-22的解,其中()t f 为已知函数. 解 设()[]()[]()ωωF t f F Y t y F ==),(现对原方程两端取Fourier 变换,并根据Fourier 变换的性质可得 ()()()()ωωωωF Y Y i -=-2解得()()21ωωω+=F Y 所以原方程的解 ()()()⎥⎦⎤⎢⎣⎡+=+=-∞+∞-⎰ωωωωωπωF F d e F t y t i 212111121 由卷积定理得()()[]ωωF F F t y 12111--*⎥⎦⎤⎢⎣⎡+==()()τττd e f t f et t--∞+∞--⎰=*212.例3.3 求微分积分方程()()()()t h dt t x c t bx t x a t=++'⎰∞-的解.其中c b a t ,,,+∞<<∞-均为常数.解 设()[]()()[]()ωωH t h F X t x F ==,现对原方程两端取Fourier 变换,并根据Fourier 变换的性质可得 ()()()()ωωωωωωH X i c bX X ai =++解得()()()⎪⎭⎫⎝⎛-+=++=ωωωωωωωc a i b H i c b ai H X ,所以原方程的解 ()()dt e c a i b H t x ti ωωωωπ⎰∞+∞-⎪⎭⎫⎝⎛-+=214.卷积公式及其应用与推广4.1卷积公式设X 和Y 的联合密度函数为)y x f ,(,则Y X Z +=得概率密度为⎰+∞∞--='=dx x z f x fZ F Z f Y Xz z )()()()(⎰+∞∞--='=dy y f y z fZ F Z f Y Xz z )()()()(证明 Y X Z +=的分布函数是:⎰⎰=≤+=≤=Dz xy f p z Z p Z F )()z Y X ()()(其中D ={}z y x y x ≤+:),(于是⎰⎰⎰⎰⎰⎰+∞∞-∞-+=+∞∞--∞-≤+-===zy x u yz zy x Z dudy y y u f dxdyy x f dxdy y x f Z F ),(),(),()(=⎰⎰∞-+∞∞--z dydu y y u f ),(从而⎰+∞∞--='=dy y y z f Z F Z f z z ),()()(由X 和Y 的对称性知⎰+∞∞--='=dx x x z f Z F Z f z z ),()()(。

信号与系统-时域 卷积定理

信号与系统-时域 卷积定理

τ δ (ω ) = lim Sa(ωτ ) τ →∞ π
FT[cosω1t ] = π [δ (ω + ω1 ) + δ (ω − ω1 )]
f 0 (t )
F0 (ω )
τ
τ 2
1
−τ 2
2
−1
− ω1
πδ (ω + ω 0 )
− ω1
F (ω )
ω1
ω
πδ (ω − ω 0 )
ω
ω1
四、周期单位冲激序列的FS δ T (t ) =
l 取f(t)的一个周期 f 0 (t )
,其FT为 F0(ω)
2 2
F 0 (ω ) =
l 所以

T1
− T1
f 0 ( t ). e
ω = nω1
− jω t
dt
1 Fn = F0 (ω ) T1
三、正余弦信号的傅立叶变换 ——用频移特性 F0 (ω ) = FT [ 1 ] = 2πδ (ω )
三 频域抽样
l 设连续频谱函数 F (ω ) 对应的时间函数为f(t),
抽样冲激序列 δ ω1 (ω ) =
l 抽样后的频率函数 l 根据卷积定理可得
2π – 其中 ωs = T1

∞ n =−∞
δ (ω − nω1 )
F1 (ω ) = F (ω ) δ ω1 (ω )
∞ 1 f1 (t ) = ∑ n =−∞ f (t − nT1 ) ω1

FT
nω1τ F (ω ) = Eτω1 ∑ Sa δ (ω − nω1 ) 2 1 n = −∞

小结——单脉冲和周期信号的傅
立叶变换的比较 是连续谱, 它的大小是有限值; l 周期信号的谱 F(ω) 是离散谱, 含谱密度概念,它的大小用冲激 表示; 1 l F0 (ω) 是 F(ω) 的包络的 ω 1 。

(2021年整理)信号与系统专题练习题及答案

(2021年整理)信号与系统专题练习题及答案

(完整)信号与系统专题练习题及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)信号与系统专题练习题及答案)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)信号与系统专题练习题及答案的全部内容。

信号与系统专题练习题一、选择题1.设当t<3时,x (t)=0,则使)2()1(t x t x -+-=0的t 值为 C 。

A t>-2或t 〉-1B t=1和t=2C t>—1D t>—22.设当t<3时,x(t)=0,则使)2()1(t x t x -⋅-=0的t 值为 D 。

A t 〉2或t>—1B t=1和t=2C t>-1D t 〉-23.设当t 〈3时,x (t )=0,则使x(t/3)=0的t 值为 C 。

A t>3B t=0C t 〈9D t=34.信号)3/4cos(3)(π+=t t x 的周期是 C .A π2 B π C 2/π D π/25.下列各表达式中正确的是 BA 。

)()2(t t δδ= B. )(21)2(t t δδ= C 。

)(2)2(t t δδ= D. )2(21)(2t t δδ= 6. 已知系统的激励e(t)与响应r(t)的关系为:)1()(t e t r -= 则该系统为 B 。

A 线性时不变系统B 线性时变系统C 非线性时不变系统D 非线性时变系统7。

已知 系统的激励e (t)与响应r(t )的关系为:)()(2t e t r = 则该系统为 C 。

A 线性时不变系统B 线性时变系统C 非线性时不变系统D 非线性时变系统8。

傅里叶变换的基本性质

傅里叶变换的基本性质

傅里叶变换的基本性质(一)傅里叶变换建立了时间函数和频谱函数之间转换关系。

在实际信号分析中,经常需要对信号的时域和频域之间的对应关系及转换规律有一个清楚而深入的理解。

因此有必要讨论傅里叶变换的基本性质,并说明其应用。

一、线性傅里叶变换是一种线性运算。

若则其中a和b均为常数,它的证明只需根据傅里叶变换的定义即可得出。

例3-6利用傅里叶变换的线性性质求单位阶跃信号的频谱函数。

解因由式(3-55)得二、对称性若则证明因为有将上式中变量换为x,积分结果不变,即再将t用代之,上述关系依然成立,即最后再将x用t代替,则得所以证毕若是一个偶函数,即,相应有,则式(3-56)成为可见,傅里叶变换之间存在着对称关系,即信号波形与信号频谱函数的波形有着互相置换的关系,其幅度之比为常数。

式中的表示频谱函数坐标轴必须正负对调。

例如:例3-7若信号的傅里叶变换为试求。

解将中的换成t,并考虑为的实函数,有该信号的傅里叶变换由式(3-54)可知为根据对称性故再将中的换成t,则得为抽样函数,其波形和频谱如图3-20所示。

三、折叠性若则四、尺度变换性若则证明因a>0,由令,则,代入前式,可得函数表示沿时间轴压缩(或时间尺度扩展)a倍,而则表示沿频率轴扩展(或频率尺度压缩)a倍。

该性质反映了信号的持续时间与其占有频带成反比,信号持续时间压缩的倍数恰好等于占有频带的展宽倍数,反之亦然。

例3-8已知,求频谱函数。

解前面已讨论了的频谱函数,且根据尺度变换性,信号比的时间尺度扩展一倍,即波形压缩了一半,因此其频谱函数两种信号的波形及频谱函数如图3-21所示。

五、时移性若则此性质可根据傅里叶变换定义不难得到证明。

它表明若在时域平移时间,则其频谱函数的振幅并不改变,但其相位却将改变。

例3-9求的频谱函数。

解:根据前面所讨论的矩形脉冲信号和傅里叶变换的时移性,有六、频移性若则证明证毕频移性说明若信号乘以,相当于信号所分解的每一指数分量都乘以,这就使频谱中的每条谱线都必须平移,亦即整个频谱相应地搬移了位置。

Z变换的基本性质

Z变换的基本性质

所 x ( 1 ) 以 liz X m ( z ) x ( 0 )
z
x ( 2 ) li z 2 m X ( z ) x ( 0 ) x ( 1 ) z 1 z
X
27
真分式

说明: x(0)Lim X(z) z
f(0)L s ism F 真 (s)

1.由无穷远处的X(z)可递推出x(k)任意时刻值,无需反变换.
导再乘-z.
X
22

例题 页
1 .求以 下序 列的 z变换
1) f1 (k ) (1) k (k 1) (k 1)
2) f 2 (k ) (k 1) 2 (k 1)
3) f3 (k )
k (k 1) (k )
2
2 .已知 序列 f ( k )的单 边 z变换 为 F ( z )
k
R:O z m C e k ω a 0,e x k ω 0
同理
X
4
同理


sin k ω 0)h (k) ( z2 2 zz sch ω ω h 00 1
R:O z m C e ω 0 a ,e ω x 0
X
5
例2


注意:如果在某些线性组合中某些零点与极点相抵消,
则收敛域可能扩大。
z2 X z z 2 x 0 z1 x
同理:
xk2(k) x ( k 2 )( [ k 2 ) ( k ) ( k 1 )]
x (k 2 )(k 2 ) x (k 2 )(k ) x (k 2 )(k 1 ) x (k 2 )(k 2 )+ x ( 2 )(k )+ x ( 1 )(k 1 )
k
1)f (k) (1)i

信号与系统考试题及答案

信号与系统考试题及答案

信号与系统考试题及答案第一题:问题描述:什么是信号与系统?答案:信号与系统是电子工程和通信工程中重要的基础学科。

信号是信息的传递载体,可以是电流、电压、声音、图像等形式。

系统是对信号进行处理、传输和控制的装置或网络。

信号与系统的研究内容包括信号的产生、变换、传输、处理和控制等。

第二题:问题描述:信号的分类有哪些?答案:信号可以根据多种特征进行分类。

按照时间域和频率域可以将信号分为连续时间信号和离散时间信号;按照信号的能量和功率可以分为能量信号和功率信号;按照信号的周期性可以分为周期信号和非周期信号;按照信号的波形可以分为正弦信号、方波信号、脉冲信号等。

第三题:问题描述:什么是线性时不变系统?答案:线性时不变系统是信号与系统领域中重要的概念。

线性表示系统满足叠加性原理,即输入信号的线性组合经过系统后,输出信号也是输入信号的线性组合。

时不变表示系统的性质不随时间变化而改变。

线性时不变系统具有许多重要的性质和特点,可以通过线性时不变系统对信号进行处理和分析。

第四题:问题描述:系统的冲激响应有什么作用?答案:系统的冲激响应是描述系统特性的重要参数。

当输入信号为单位冲激函数时,系统的输出即为系统的冲激响应。

通过分析冲激响应可以得到系统的频率响应、幅频特性、相频特性等,从而对系统的性能进行评估和优化。

冲激响应还可以用于系统的卷积运算和信号的滤波等应用。

第五题:问题描述:如何对信号进行采样?答案:信号采样是将连续时间信号转换为离散时间信号的过程。

常用的采样方法包括周期采样和非周期采样。

周期采样是将连续时间信号按照一定的时间间隔进行等间隔采样;非周期采样是在信号上选取一系列采样点,采样点之间的时间间隔可以不相等。

采样频率和采样定理是采样过程中需要考虑的重要因素。

第六题:问题描述:什么是离散傅里叶变换(DFT)?答案:离散傅里叶变换是对离散时间信号进行频域分析的重要工具。

通过计算离散傅里叶变换可以将离散时间信号转换为复数序列,该复数序列包含了信号的频率成分和相位信息。

二维卷积定理证明

二维卷积定理证明

二维卷积定理证明二维卷积定理是信号处理中一个重要的定理,它表明在时域进行卷积运算等价于在频域进行逐点相乘。

本文将从定义二维卷积和频谱的角度出发,详细推导二维卷积定理,并对其进行证明。

一、概述1.1 二维卷积在信号处理中,卷积运算是一种常用的操作,可以用来描述信号在时间或空间上的加权和。

在二维卷积中,我们通常处理二维离散信号,如图像。

定义二维卷积运算如下:设有两个二维离散信号f(x,y)和h(x,y),其中f(x,y)的定义域为Df,h(x,y)的定义域为Dh,则二维离散卷积定义为:g(x,y) = f(x,y) * h(x,y) = ΣΣ f(m,n) * h(x-m,y-n)其中,x和y为卷积结果的坐标,m和n为求和变量,取值范围由定义域所限。

1.2 频谱在信号处理中,频谱表示信号在频域的分布情况。

在二维情况下,信号的频谱可以通过二维傅里叶变换得到。

设二维离散信号f(x,y)的频谱表示为F(u,v),其中u和v为频谱的坐标,定义如下:F(u,v) = ΣΣ f(x,y) * exp(-j2π(ux+vy))其中,exp是欧拉公式的指数形式,j为虚数单位。

二、二维卷积定理的推导为了推导二维卷积定理,我们首先将卷积过程转化为频域运算。

根据频谱的定义,我们可以将二维卷积定义进行改写:g(x,y) = f(x,y) * h(x,y)= ΣΣ f(m,n) * h(x-m,y-n)= ΣΣ [1/N^2 ΣΣ F(u,v) * exp(j2π(um+vn))] * h(x-m,y-n)= 1/N^2 ΣΣ F(u,v) * [ΣΣ h(x-m,y-n) * exp(j2π(um+vn))]其中,N为信号的长度(宽度),F(u,v)为f(x,y)的频谱。

进一步化简,使用了卷积的定义公式,并进行变量替换:= 1/N^2 ΣΣ F(u,v) * [ΣΣ h(u,v) * exp(j2π[(u(x-m)+v(y-n))]/N)] = 1/N^2 ΣΣ F(u,v) * [ΣΣ H(u,v) * exp(j2π[(u(x-m)+v(y-n))]/N)]其中,H(u,v)为h(x,y)的频谱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档