MSD相关资料

合集下载

MSD培训资料

MSD培训资料

NO 中温或低温
烘烤
YES
高温烘烤
元件是否要立即使用
NO
真空包装
返回仓库
YES
放入干燥器 保存
附图4
MSD失效器件的干燥方法
烘烤方式:125℃、90℃、40℃ 烘烤温度:_________________ 防潮等级Level:___ 物料号: 物料描述: 湿敏元件放 湿敏元件取 进烘箱的时 操作员 出烘箱的时 操作员 间 间
MSD的基础知识
湿敏元件的级别
防潮等级标志 Level 1 Level 2 Level 2a Level 3 Level 4 Level 5 Level 5a Level 6 打开包装后的有效时间 28 C/85% RH 不受限 at <=30° 28 1 年 at <=30oC/60%RH 28 4周 at <=30oC/60%RH 28 7天 (168小时) at <=30oC/60%RH 28 3 天 (72小时) at <=30oC/60%RH 28 2 天 (48小时) at <=30oC/60%RH 28 1 天 (24小时) at <=30oC/60%RH
MSD的基础知识
引言
随着电子技术的不断发展,人们对电子产品的可靠性越来越关注, 这同样促使制造厂商对潮湿敏感器件(moisture-sensitive devices,简 称MSD)的关注程度不断上升。在以往的电子组装过程中,这些可能都 不是问题。但是随着元器件朝着小型化和廉价化方向的发展,塑料封装 已经成为了常规做法。这时,确保潮湿气体不会进入器件内部就非常重 要。因为潮湿气体会对MSD产生影响,造成产品进行返修甚至要废弃该组 装件。更为重要的是那些看不见的、潜在的缺陷,这些有可能对产品的 可靠性造成严重的威胁。相对于十几年的ESD有关的问题,企业普遍都 对潮湿问题缺乏理解和控制,它不仅是制造问题,更重要的是设计选型 的问题。随着塑料封装的普及,塑料封装所引起的MSD失效率已经越来 越突出,该问题已经成为塑料封装三大问题之一,再加上芯片集成度越 来越高,特征尺寸越来越小,每一年半就翻一翻,集成电路功率越来越 高,IC封装成本已经成为微电子发展的瓶颈。在封装成本的压力下,封 装材料及引线等技术在不断变化。以上挑战造成MSD问题越来越突出,已 经成为影响产品可靠性重要因素之一。

MSD潮湿敏感性元件管控程序(含表格)

MSD潮湿敏感性元件管控程序(含表格)

潮湿敏感性元件管控程序1.0目的规范MSD部品的管控流程,防止MSD部品因不当管理而影响其品质,确保产品质量。

2.0 适用范围适用于与MSD部品的采购、检验、储存和使用全过程相关的单位和个人。

3.0 术语和定义3.1 MSD:潮湿敏感性元件(moisture-sensitive device)4.0 职责和权限4.1 BOM整理部门4.1.1 负责确认所需的部品是否为MSD部品并在“部品认定报告”中标出。

4.1.2 负责新认定部品的“部品规格书”中有关MSD部品防潮等级、包装、标签要求等资料的确认。

4.2 采购部4.2.1 负责向MSD部品供应商了解并索要MSD部品的防护要求等技术资料。

4.2.2 与MSD部品供应商的联络及不合格部品的处理工作。

4.3 品保部4.3.1 负责“MSD部品清单”的制订和维护。

4.3.2 负责MS部品的收货、检验及不合格MSD部品的反馈。

4.4 仓储部4.4.1 负责MSD部品的搬运、储存、防护和进出库管理工作。

4.5使用单位4.5.1负责MSD部品的领用、使用过程的防护和使用异常的反馈。

5.0 流程图:无6.0 活动内容6.1 BOM工程在新部品认定时应与供应商/客户沟通,确认该部品是否属于MSD,若属于MSD部品,应要求采购部或客户提供相应的防潮等级、包装、标签、储存寿命期限、储存条件、使用条件、在何种情况下必须烘烤以及烘烤条件等资料。

6.2 品保部IQC课技术人员跟据生产BOM“部品规格书”与“部品认定报告”中的相关信息对“MSD部品清单”及时更新。

6.3 品保部IQC课收货时,对有MSD标识的部品和列入MSD部品清单”的部品收货员不得拆开内包装袋,对包装已经破损、漏气的应填写“收货差异报告”并在“收货单”上注明。

6.4 抽样和检验6.4.1 品保部IQC检验员检验前应核对BOM“MSD部品清单”,确认是否属于MSD 部品,对有MSD标志但未列入“MSD部品清单”的,应保留原包装并通知品保部部IQC技术员进行处理。

MSDS促进剂

MSDS促进剂

MSDS促进剂MSD促进剂是一种化学品,其主要组分包括亚硝酸盐、有机羟类化合物、氯酸盐和纯水。

该产品属于第5.1类氧化剂,对人体健康有一定危害。

接触皮肤会导致瘙痒和皮肤病,接触眼睛会引起结膜炎和角膜炎。

如果误食,会导致食道灼伤和腹泻。

因此,在操作该化学品时,需要采取相应的安全措施。

如果皮肤接触到该化学品,应立即用水和肥皂或温和的清洁剂清洗患部。

如果液体或固体经由衣服渗入皮肤,应脱去衣服并用水和肥皂或温和的清洁剂清洗。

如果清洗后仍感到刺激,应立即就医。

如果眼睛接触到该化学品,应立即用大量水冲洗眼睛并不时地撑开上下眼皮,然后立即就医。

在操作该化学品时,不要戴隐形眼镜。

该化学品不易燃,不会产生有害燃烧产物。

如果发生泄漏,应隔离泄漏污染区,限制出入,并使用大量清水冲洗。

如果泄漏量较大,应围堤收容,待处置。

在操作该化学品时,应注意避免接触酸性物质和醇类,并确保通风良好,远离可燃物、氧化剂和有机物。

应穿戴工作服和橡胶手套,并戴上安全护目镜。

工作场所严禁抽烟和饮食,维持良好的内务管理,并不可佩戴隐形眼镜。

处理完该物品后,应彻底洗手并维持作业场所清洁。

MSD促进剂是一种淡黄色液体,其熔点无资料,pH值为7-9,相对密度大于1,闪点无意义,易溶于水。

该化学品稳定,不会聚合,但应避免与强酸性物质等禁配物混合使用。

根据大鼠经口LD50的数据,MSD促进剂的急性毒性为85 mg/kg,LC50无资料。

因此,在使用该化学品时,应注意遵守相应的安全操作规程,以保障人体健康和安全。

环境生态学是一门研究生态系统与环境相互作用的学科。

它主要关注的是环境中的生物、非生物因素对生态系统的影响和生态系统对环境的影响。

环境生态学的研究对象包括森林、湖泊、草原、海洋等各种生态系统。

通过对这些生态系统的研究,我们可以更好地了解它们的生态特征、结构和功能,从而更好地保护和管理它们。

环境生态学的研究方法包括实地调查、实验研究和模型模拟等。

实地调查是环境生态学中最基本的研究方法之一,它可以帮助我们了解生态系统的实际情况和问题。

潮湿敏感材料(msd)作业指导书a0

潮湿敏感材料(msd)作业指导书a0

潮湿敏感材料(msd)作业指导书a0(MSD)作业指导书页码第12 页共12页生效日期2009-07-101.目的:为了潮湿敏感材料的储存﹑保管﹑分装﹑领/发料过程等作业过程确保品质,避免由于吸湿造成在回流焊接过程中的器件损坏,特制定本办法。

2.范围:东志所有潮湿敏感材料(主要是MSD的IC和钽电容)。

3.职责:3.1 研发提供有MSD材料的明细及MSL等级及通知各部门3.2 采购落实和要求供应商达到封装要求和在LABEL上注明MSL等级;要求贴片厂根据MSD之MSL等级要求作业3.3品质按要求并在规定的时间内完成检验3.4仓库按MSD作业导书执行4.流程图:无5.内容:5.1 MSD物料之MSL要求如下:Moisture Sensitivity levels and Floor LifeFloor LifeLevel Time Conditions1 Unlimited < or =30c/85%RH2 1 year < or =30c/60%RH2a 4 weeks < or =30c/60%RH3 168 hours < or =30c/60%RH4 72 hours < or =30c/60%RH5 48 hours < or =30c/60%RH5a 24 hours < or =30c/60%RH6 Time on Label < or =30c/60%RH5.2 MSL等级说明:MSL1是在温湿度在< or =30c/85%RH环境时,拆开真空包装后,(MSD)作业指导书页码第12 页共12页生效日期2009-07-10 曝露时间是没有限制(Unlimited);MSL2是在温湿度在< or =30c/60%RH环境时,拆开真空包装后, 曝露时间超过1年, 必须烘烤 (Baking)才能避免爆裂(Pop Corn Effect);依此类推至MSL5a;MSL6是在温湿度在< or =30c/60%RH环境时,拆开真空包装后, 曝露时间超过标签上的要求时间(Time on Label),必须烘烤 (Baking)才能避免爆裂(Pop Corn Effect)5.3 收料时应带静电手套或静电环,检查外箱是否破损,封装是否完整无破损现象。

MSD6A628VX开发资料

MSD6A628VX开发资料

MSD6A628VX开发资料与技术支持一、概述:MSD6A628VX是mstar推出的低成本单芯片安卓Android4.4智能网络电视方案芯片,四核A7处理器,主频1.5GHZ 主芯片MStar 628 GPU 为mali-450MP2 ,内存1GB,内置4G INAND 存储空间;外置可扩展64G.支持DTMB/ DVB-T/ DVB-C,支持3D,支持wifi、支持RJ45网口、支持热拔插MOUSE、键盘,U盘等。

性能参数如下:多媒体:1.支持110Mbit串行和22MByte并行的MPEG-2 TS码流;2.支持1080P/60fps的HEVC/H.265,支持62.5Mbps码率的H.264视频解码;3.支持MPEG-1、MPEG-2视频解码,支持1080P、1080i、720P和SDTV4.支持双码流的3D解码;5.支持MPEG4解码,支持DivX家庭影院,支持FLV;6.支持25Mbps码率的VP解码;7.支持AVS+解码,支持Real,支持VC-1视频解码;8.支持H.264编码功能;9.硬件支持PNG/GIF/JPEG解码,最大分辨率8192*8192 8bit10.支持NTSC/PAL/SECAM视频解码,支持多种TV音频处理;11.支持RGB标准输入接口,支持自动配置和检测;12.支持DVI/HDCP/HDMI1.4a输入,支持MHL2.1;13.支持8/10bit LVDS输出;14.支持MSTAR Advanced Color Engine(ACE-PRO)15.支持CVBS视频编码;16.支持VIF/DVB-C/DVB-T/DTMB解调;17.一个USB3.0,3个USB2.0端口,支持Host功能;18.内置10/100Mbps的网口,包含PHY层,支持网络唤醒;提供开发资料,联系QQ:921685776邮箱:zgtech@英文概述:MSD6A628 is a Powerful ARM-based,highly-integrated Smart TV solution that supports dual 8/10bit LVDS output,channel decoding, MPEG decoding, 3D formatter, and media-center functi onality enabled by a high performance AV CODEC and CPU.主要功能:1. Cortex A7 Quad Core CPU and Mali450MP2 GPU2. DTMB/ DVB-T/ DVB-C Front-End Demodulator3. 512MB Embedded DDR3 for Android4.44. 3D Formatter Engine5. A Multi-Standard A/V Format Decoder6. The MACE-PROUC Video Processor7. Home Theater Sound Processor8. Internet and Variety of Connectivity Support9. Peripheral and Power Management10,512MB Embedded DDR3,590-ball HSBGA package二、原理图三、PCB。

CE-MSD

CE-MSD

CE and CE/MS for the analysis of natural productsApplicationGordon Ross, Yi Li andCarsten BuhlmannNatural products have played a major role in human health care for centuries. The discovery that compounds from natural sources arehighly effective against “modern” disease, such as breast cancer, in combination with the realization that there are thousands of uncharac-terised and even unknown species still to be investigated, means thatthe analytical investigation of natural products is of great importance. Whether the source is animal or plant, it is frequently the case that the effective components are present in a rich matrix of other compounds. This presents specialized problems to the investigating scientist. Notonly should the separation technique employed be capable of high reso-lution and high efficiency separations, the detection technique chosen should be highly selective and hopefully capable of providing as much identification data points as possible.Capillary electrophoresis (CE) is a high efficiency, high resolution tech-nique with the added benefits of being able to handle very complex matrices. Since CE is performed using an open tube of very small diameter, it is not prone to fouling as is an LC column, and can easilybe washed by flushing to prevent carryover. This makes the system inherently more robust, more reliable and reduces the sample prepara-tion required. In this application note we show a number of applica-tions demonstrating the utility of CE with UV and MS detection for the analysis, component identification and quantification, and characteriza-tion of traditional Chinese medicines.Mahuang (Ephedra sinica stapf )is a Chinese herbal medicine com-monly used in the treatment of asthma and respiratorial infec-tions. Its active ingredients (ephedrine, norephedrine, psu-doephedrine and norpseu-doephedrine) are strong central nervous system stimulants.Mahuang can be used alone or to potentiate the effects of other herbal medicines. In order to eval-uate the herbal quality, HPLC maythreaded through the UV detector interface before leaving the instru-ment for MS connection thus pro-viding tandem UV and MS detec-tion.Mass SpectrometryAn Agilent 1100 series MSD single quadrupole mass spectrometer was used for all CE/MS analyses.An Agilent CE/MS sprayer kit (Agi-lent part number G1607A) was used to couple the CE with MS using electrospray ionization (ESI). The sprayer was of a triple tube design accommodating theseparation capillary, a tube for delivery of sheath liquid and an outer tube for delivery of the neb-ulizing gas and is arranged orthog-onal to the MS entrance capillary in the ion source. The sheath liq-uid was delivered by an Agilent 1100 Series isocratic LC pump equipped with a 1:100 splitter. The traditional medicines samples used in the described applications were the kind gift of Professor Liu, Peking University, Beijing-PRC.ExperimentalCapillary Electrophoresis All analyses were performed using the Agilent Capillary Elec-trophoresis system which isequipped with diode array detec-tion and controlled by the Agilent ChemStation software. For CE/MS analyses the CE instrument was fitted with the CE-MS adapter kit (Agilent part number G1603A) which prepares the CE for coupling with the MS.This includes an MS cassettewhich allows the capillary to beCE conditions Capillary:80.5 cm (72 cm) × 75 µm Buffer:25 mM borate pH 9.3Detection:200/10 nm Injection:500 mbar · s Voltage:30 kV Temperature:20 °CFigure 1Analysis of a Muhuang extractbe used to determine the concen-trations of these active ingredi-ents. However, this is complicated by the long run time necessary (30minutes) and contamination of the LC column. The LC method is also a gradient method which requires column re-equilibration and wash-ing between runs. The CE method described here is simple and rapid requiring only a four-minute capil-lary wash between runs.Sample extraction1 g herb extracted with 20 ml water and heated to 80°C for 30 minutes then filtered through 0.2 µm pore and injected.ResultsFigure 1 shows the separation of Mahuang extract. The ephedrine peak appears after approximately 6 minutes but the rest of the sam-ple shows an enormous complexi-ty. If using LC, the remaining1. Identification of Ephedrine in Mahuangsample must be washed from the column after detection of the active ingredients. However in CE, the capillary is simply flushed through with fresh buffer. Figure 2 shows the analysis of a standard solution of ephedrine and a Mahuang extract and compares the spectra of the indicated peaks. Ephedrine could therefore be identified by its spectra and its migration time and confirmed by spiking with a known standard. For ephedrine the analysis was linear over the range 1 µg/ml to1 mg/ml with r2= 0.9995.Figure 2Comparing the spectra of ephedrine in Mahuang with that of a standard2. Identification and quantitation of the alkaloids berberine, palmatine and jatrorrhizine in Mahonia stemMany species of the Mahonia plant are used in China as traditional medicines. Some of the active components have been identified as alkaloids and pharmacological research has determined that the plant has antibacterial, antioxi-dant, antifungal, anticancer and antiproliferative properties. Here we describe the quantitation of three alkaloids in the stem of vari-ous Mahonia species. Sample extraction2 g of pulverized Mahonia stem was ultrasonicated in 10 ml methanol for 30 minutes. This was repeated twice using 5 ml methanol and ultrasonicated for 20 minutes. The combined extracts were centrifuged for 10 minutes (4000 rpm) and filtered through a 0.45-µm membrane before injection.Prior to each run the capillary was flushed for two minutes with 0.1 M NaOH, two minutes with water and five minutes with buffer. Replenishment of buffer vials was performed every 6th run to achieve best reproduceability.ResultsA typical separation of a Mahonia stem is shown in figure 3. Detec-tion at 265 nm confers some selec-tivity on the analysis and the three alkaloids berberine, palmatine and jatrorrhizine are well separated from other sample matrix compo-nents which absorb at that wave-length. Detection at 200 nm illus-trates the complexity of the sam-ple matrix. These three alkaloidscan be automatically detected and identified by spectral librarysearch using a library constructed from standards (figure 4). Detection of berberine, palmatine and jatrorrhizine was linear over the ranges 3.4–109 mg/ml,1.4– 44 mg/ml and 1.1–37 mg/nl respectively with r 2better than 0.999 in all cases.CE conditions Capillary:50 µm id × 48.5 cm (40 cm effect.)Buffer:50 mM phosphate, 50 mM boratecontaining 50 % methanol with apparant pH adjusted to pH 8Detection:200/10 nm and 265/20 nm Injection:500 mbar · s Voltage:30 kV Temperature:20 °CFigure 3Analysis of Mahonia stem by CE with detec-tion at 200 nm and 265 nm897.677Figure 4Library search from separation of alkaloids in Mahonia stemFangchinoline and tetrandine are two alkaloids which are present in Radix Stephaniae tetradrae S.Moore . These compounds have pain-relieving activities, canreduce blood pressure, have anti-neoplastic and antibiotic activity and are therefore of pharmaceuti-cal interest. The plant is used in various Chinese herbal prepara-tions. Here we describe applica-tion of a CE method to quantita-tive analysis of these alkaloids in some traditional Chinese medi-cines.Sample extraction2 g of each pulverized herbal drug were extracted with 7 ml 50 %ethanol by stirring for 30 minutes followed by centrifugation (4000rpm, 10 minutes). The extraction was repeated a further two times and the combined extracts were filtered through 0.45-µm pore. For electrokinetic injection, a volume of 200 mM NaCl solution equiva-lent to one fifth of the sample vol-ume was added to the sample to equalize the sample conductivity.ResultsThe medicines were separated using a MEKC system with Tween-20 as the surfactant 2. This resulted in a very clean electropherogram where two peaks could easily be seen (figure 5). Due to their similar structure tetrandrine and fang-chi-noline (figure 6) have very similar spectra and therefore were identi-fied by spiking experiments with pure standards. After identification the two alkaloids were quantified in a number of traditional Chinese medicines. Linearity was deter-mined for both compounds over the range of 5 to 250 µg /ml. Linear-ity was greater than 0.9999 for both analytes. Reproducibility of migra-tion times was very good (< 0.4 %).For quantitation, the reproducibili-ty of peak areas was acceptable (<4 %) but depended on the medicine and therefore the sample matrix (table 1).3. Quantitative analysis of tetrandrine and fangchinolinefangchinolinetetrandrineareatime areatime Fang ji guan jie wan 28.41 2.440.320.4117.03 3.450.360.25Qu feng gu tong lu 6.96 1.890.080.07 3.88 2.150.070.04Ling long gan mao jiao nang 16.52 1.080.230.179.79 1.160.220.10Xi xian feng shi wan 7.47 5.580.280.07 3.54 2.110.290.04Feng shi ton gao 7.140.050.150.08 3.93 1.160.150.04Shen jin dan jiao nang 10.94 3.330.210.12 5.81 3.970.250.07Radix Stephaniae tetrandrae 233.26 1.090.215.52185.04 1.060.224.38Figure 5Analysis of tetrandrine and fangchinoline in Radix Stephaniae tetradrae S.MooreTable 1Migration time and peak area reproducibility (n=3) and quantitation of tetrandrine and fangchinoline in various traditional Chinese medicinesFigure 6Structure of terandrine and fangchinolineCE conditions Capillary:64,5 cm (56 cm) × 50 µm Buffer:60 mM phosphoric acid\TAE,50 mM Tween20, 20 % methanol, pH 2,5,Detection:214/10 nm Injection: 4 kV · 23 s Voltage:20.2 kV Temperature:19 °CChlorogenic acid (CA) (figure 7),is an ester of caffeic acid andquinic acid. All three of these sub-stances naturally occur in many plants. For example, CA which is present in the surface skin of peaches, inhibits the cutin-digest-ing enzyme of the brown rot fun-gus, Monilinia fructicola demon-strating its antifungal activity. It has also been demonstrated to have antioxidant activity. CA is an active consituent of Flor. Lonicer-ae and CZE has been used for its analysis in the plant and in some traditional medicines which con-tain this plant as a constituent 3.Here we describe how CA can be identified and quantified in some Chinese traditional medicines using capillary electrophoresis.Sample ExtractionWeighed amounts of pulverized samples were soaked with 7 ml 50 % ethanol/water overnight and extracted by stirring for 30 mintes.After centrifugation (4000 rpm, 10 minutes) the extraction was repeated two more times. The combined extraction volume was made up to 25 ml and filtered through 0,45 µm. Liquid samples were simply diluted and filtered before measurement.4. Identification and quantification of chlorogenic acidchlorgenic acidCE conditions Capillary:64.5 cm × 50 µm (56 cm effect.)Buffer:40 mM phosphate, 80 mM boricacid containing 5 % ethanol with apparant pH adjusted to 7.0Detection:254 nm Injection:500 mbar · s Voltage:20 kV Temperature:20 °CFigure 7Structure of chlorogenic acidFigure 8Analysis of an extract of the traditional Chinese medicine Zhi zi jin wanResultsThe analysis of extracts using the above method gives a complex electropherogram (figure 8). Iden-tification of CA is made more problematic because when inject-ed individually as a standard it migrates in an area occupied in the sample injection by three peaks, all of which have similarspectra. By spiking samples with pure CA it can be unequivocally identified in the prepared TCM extract (figure 9). Table 2 shows the calculated amounts of CA in Flor Lonicerae , some TCMs and in a coffee extract.[min][min]1020Shung huang lian could be separated in chlorogenic acid and two similar phenolic acids Shung huang lian sample was spiked with 5 times the amount of chlorogenic acidFigure 9Identification of cholorogenic acid in a traditional Chinese medicine by spiking with a pure standardChlorogenic acid Powder weight (g)Content (mg/g)(mg/L)or (mg/L)Flor Lonicerae 6700.94617.83Zhi I jin hua wan 61.18 3.340.49Vc yin qiao pain 104.1 2.830.85Yin qiao jie du pain542.9 2.9 3.5Xiao er qing re jie du kou fu ye 31.14liquid 0.39Shung huang lian187.8liquid 2.1Caf é (hot water extract)197.23liquid0.2Table 2Calculated amounts of CA in Flor Lonicerae , some TCMs and in a coffee extractAlthough CE can provide good resolution of these compounds in complex matrices (see section 3) one of its main limitations, when used with UV detection, is its rela-tively low sensitivity due to the short optical path length which is the capillary bore. These two alka-loids have extremely similar UV absorption spectra making their unequivocal identification via UV-spectral library search alone prob-lematic. The on-line coupling of CE with mass spectrometry (MS) is a promising combination. While CE provides high separation effi-ciency, MS affords high sensitivity and selectivity, as well as molecu-lar structural information. MS detection can provide unequivocal identification of the analytes by their masses.Successful coupling of CE to MS is dependent upon the efficiency of ions’ transfer from the aqueous to the gaseous phase. This, in turn, depends upon the volatility of the running buffer and therefore places some restrictions on the types and /or concentrations of buffer which can be used forCE/MS.The previous separation of tetran-drine and fangchinoline was only obtained using MEKC conditions, with a buffer solution of 60 mM triethylamine-phosphate contain-ing 50 mM Tween-20 and 20% methanol, where the analytes were separated according to dif-ferences in their hydrophobicity. However, such a running buffer is not suitable for ESI- CE/MS because its non-volatile compo-nents can hinder the electrospray process by reducing the spray effi-ciency and can cause intense background signals resulting in a decreased sensitivity in the TIC4. Further, these buffer components can contaminate the ESI interfaceand the MS ion optics, especiallywhere the spray is "in-line" withthe MS entrance capillary,although the orthogonal arrange-ment of the sprayer used in thisstudy can help to mitigate thiseffect5.In this application a method wasdeveloped for the CE/MS analysisof tetrandrine and fangchinoline inChinese herbal medicines, andtheir concentrations in some Chi-nese herbal medicines were deter-mined.ExperimentalThe preparations analyzed were:1) Fang ji guan jie wan:Radix Stepahniae tetrandrae(1.80 g), Poria (Poria cocos(Schw.) Wolf) (1.80 g), Rhizomaatractylodis macrocepahalae(Atractylodes macrocephalaKoidz) (1.2 g), Radix Aconiti (0.60g), Radix Glycyrrhizae (Gly-cyrrhiza uralensis Fisch.) (0.60g), Radix Codonopsis pilosulae(Codonopsis pilosula (Franch.)Nannf.) (0.6 g).2) Qu feng gu tong lu:Caulis Piperis futokadsurae(Piper fotokadsura Sinb. et Zucc.)(3.4 g), Radix Clematis (2.8 g)Caulis spatholobi (Spatholobussuberectus Dunn) (2.8 g),lignumsapan (Caesalpinia sappan L.)(2.0 g), Radix Stepahniae tetran-drae(2.0 g), Cortex periplocaeradicis (Periploca sepium Bge.)(2.0 g), Herba Siegesbeckiae(2.0 g), Radix Aconiti kusnezoffi(aconitum kusnezoffii Rchb.)(1.4 g).3) Shen jin dan jiao nang:Lumbricus (Pheretimaaspergillum Perrier) (8.3 g), FlosCarthami (Carthamus tinctoriusL.) (5.83 g), Olibanum (Boswelliacarterii Bierdw.) (2.5 g), Myrrha(Commiphora myrha Engl.)(2.5 g), Radix Stephaniae teran-drae(2.5 g), Cortex periplocaeradicis (2.5 g) Rhizoma drynari-ae (Drynaria fortunei(Kunz) J.Sm.) (2.5 g).Sample preparationDifferent concentrations of tetran-drine and fangchinoline rangingfrom 0.2 µg/m to 200 µg/ml wereprepared by dissolving the stan-dard in 50 % aqueous ethanol solu-tion. Other samples were preparedas previously described.ResultsThe run buffer was chosen for itscompatibility with electrosprayionization. The separationachieved was not optimal howeverusing the second dimension of MSdetection ensured that the ana-lytes could be selectively detectedand identified.Linearity and detection limitsLinearity and limits of detectionwere determined for tetrandrineand fangchinoline. The low detec-tion limit and linear range of CE-MS indicate the possibility oftrace-level identification and quan-titative determination of tetran-drine and fangchinoline in Chineseherbal medicine. Detection waslinear over the range 0.2 to 200µg/ml for tetrandrine and fangchi-noline with r2values of 0.9991 and0.9986 respectively. The limits ofdetection were 3 µg/ml in TIC and0.05 µg/ml in SIM.RepeatabilityThe % relative standard deviationwas caculated for peak areas forfive replicate injections of stan-dard solution of 50 µg/ml. Repro-ducibility for fangchinoline was6.1 % while that for tetrandrine5. Analysis of tetrandrine and fangchinoline by CE/MSwas 5.9 %. The relatively poor repeatability of peak area by SIM compared to the results of the UV detection, which showed % RSD of ca. 3.1, was most probably due to variation in the efficiency of the ionization process. The crude drug of Radix Stephaniae tetrandrae and three Chinese herbal prepara-tions which contain Radix Stepha-niae tetrandrae were analyzed.Figure 10 shows that the presence of fangchinoline and tetrandrine in the herbal medicine “Qu feng gu tong lu” extract is unclear using CE-UV where the electrophero-gram contains a number of large and very small peaks. A number of other peaks are present in the area from two to four minutes in the UV trace, where the alkaloids’peaks are expected. However,using the SIM mode of MS the two alkaloids could be detected unam-biguously. The repeatability (% RSD, n=5) of peak area of fanchinoline and tetrandrine in “Qu feng gu tong lu” were 3.5 %and 4.3 % respectively. Results from quantitation tetrandrine and fangchinoline in Radix Stephaniae tetrandrae and three other Chi-nese herbal preparations areshown in table 3.Figure 10Analysis of Tetrandrine and fangchinoline in Qu feng gu tong lu by CE with UV and MS detectionRadix Stephaniae tetrandrae 5.747.19Fang ji guan jie wan 0.736 1.26Qu feng gu tong lu 0.2520.513Shen jin dan jiao nang0.4700.833Table 3Determined values (mg/g) of fanchinoline and tetrandrine in Chinese herbal medicines by CE/MSCE conditions Capillary:80 cm (22 cm UV) × 50 µm id Buffer:100 mM formic acid pH 2.5 Detection:210 nm/16 nm Injection:200 mbar · s Voltage:27 kV Temperature:20 °CMS conditionsSheath liquid: 5 mM ammonium formate in50 % methanolFlow rate: 5 µl/min Nebulizationgas pressure: 10 psi Electrospray voltage: -4.0 kV (positive ion mode)Drying gastemperature:250 °C MS Scan: m/z 300–m/z 650 at the rate of0.85 s/cycleMS SIM:m/z=305.2 and m/z=312.1The pharmaceutically relevant compounds in Mahonia species are alkaloids, including berberine,palmatine, jatrorrhizhine, colum-bamine, isotetrandrine,berbamine, oxyacanthine, and magnoflorine amongst others. ExperimentalTwo species of Mahonia: M. for-tunei and M. japonica were col-lected in China and identified by Beijing University of Chinese Med-icine.Sample preparationA 2.0 g sample of pulverised dried stem was extracted with 10 mL methanol by ultrasonication for 30min. Extraction was repeated a further twice with 5 mL methanol for 20 min. All methanol extracts were combined and centrifuged at 4000 rpm for 15 min, then filtered through a 0.45 µm filter.ResultsThe electropherograms of the extracts are shown in figure 11.The total ion electropherogram (TIE) is shown in the lower part and the UV signal in the upper part of the figures. The main peaks 1, 2, and 5 in the electro-pherogram could be identified as berberine, palmatine and jatror-rhizine. Peak assignment was per-formed by comparison of migra-tion time, UV spectrum and m/z with those of standards. Com-pound 4 showed a dominant signal at m/z 338 and was tentatively assigned as columbamine, which has been reported to exist in the genus of Mahonia. Compound 9showed a major signal at m/z 312and a minor one at m/z 623 indi-cating that it is an alkaloid with two nitrogens which exists both as a single protonated ion (m/z 623) and a double protonated ion (m/z 312). Therefore, it was tenta-tively assigned as isotetrandrine,which has also been reported to exist in the genus of Mahonia.Peaks 3, 6, 7 and 8 gave m/z values of 314, 305, 305 and 312 respec-tively. Since both berbamine and oxyacanthine have m/z of 305 and have been reported as present in Mahonia, peaks 6 and 7 could be assigned either as berbamine or oxyacanthine. Peak 3 and 8 could not be identified but due to their almost ubiquitous presence in a number of the species they were also monitored . Peaks 3, 6, 7, and 8 could not be unequivocally iden-tified but they could be specifical-ly characterized by their m/z and migration times.SIM mode was employed to detect all the putative alkaloid peaks which appeared in the TIC of the eight species of Manohia. Figure 12 shows the SIM signals obtained from analysis of these two Maho-6. CE/MS for alkaloid fingerprinting of Mahonia speciesFigure 11CE/MS of two Mahonia speciesCE conditions Capillary:70 cm (22 cm UV) × 50 µm id Buffer:50 mM amonium acetate pH 9.0,40 % methanolDetection:200 nm/16 nm Injection:250 mbar · s Voltage:25 kV Temperature:20 °CMS conditionsSheath liquid 0.5 % formic acid in 50 %methanolFlow rate: 5 µl/min Nebulizationgas pressure:10 psi Electrospray voltage:-4.0 kV (Positive ion mode)Drying gasTemperature: 200°C MS scan: m/z 300–m/z 650 at the rate of0.85 s/cyclenia species. Since CE/MS is a two-dimensional separation technique,compounds with different µecould be resolved by electrophore-sis, while compounds with similar µe but different m/z could be selectively detected by using SIM mode. Therefore, although com-pounds 4 and 5, 6 and 7, and 8 and 9 have the same m/z, they could be separated based on differences in their various electrophoretic mobilities prior to SIM detection. Fingerprints of the two species of Mahonia were constructed by cal-culating the area of each alkaloid peak as a percentage of the total area of all nine peaks detected in SIM mode (figure 13). The profile of these nine peaks is quite differ-ent in these two species. Clearly the alkaloids berberine, palmatine and jatrorrhizine (peaks 1,2 and 5)are the most predominant, howev-er their proportions are quite dif-ferent and levels of the other ana-lytes help to further differentiatethese two species.Figure 12SIM traces from CE/MS of two species of MahoniaFigure 13Fingerprint of components of Mahonia species detected by CE/MS. Blocks represent the peakCopyright © 2000 Agilent TechnologiesAll Rights Reserved. Reproduction, adaptation or translation without prior written permission is prohibited, except as allowed under the copyright laws.Printed 09/2000Publication Number 5980-2081EConclusionCE has been shown to be useful for the separation of traditional Chinese medicines. In combina-tion with DAD UV or MS detec-tion, components of these sample types can be clearly identified using a variety of techniques,spectral analysis, spiking with known standards, m/z determina-tion. The open tubular arrange-ment of CE makes it very suitable to the complex matrices which are encountered in the analysis of natural products. Coupling of CE with MS adds a second dimension of separation where analyteswhich have similar mobilities may be separated by the MS while iso-baric analytes require separation prior to their detection in the MS.References1.Li, Y., Ji, X., Liu, H., Yan, Y., Li, J. Chromatographia . 51 (2000)357–3612.Yang, J, Long, H, Liu H and Sun, Y.J. Chromatogr A . 811 (1998)274–2793.Long H, Yang, J-J, Liu H-W, Wang,T-S. Huang, A-J and Sun Y-L. J.Chinese Medicine (2000) (in press)4.Serwe, M and Ross G.G., LC-GC 18 (1), (2000), 46–555.Development of a new orthogonal geometry atmospheric pressure ionization interface for LC/MS.Agilent application note , 5968-4465E (1999)Gordon Ross and Carsten Bul-mann are application chemists based at Agilent Technologies,Waldbronn, Germany.Yi Li is student at Peking Uni-versity, Beijing, PRCFor more information on our products and ser-vices, visit our website at:/chem。

MSDOS的版本历史 -电脑资料

MSDOS的版本历史 -电脑资料

MSDOS的版本历史概述Microsoft Disk Operating System,简称MSDOS,是美国微软公司出品的一种微型操作系统。

它是一种非常早期的操作系统,从1981年推出第一份版本,一直到2001年才被微软正式停止支持。

在20多年的时间里,MSDOS经历了多个版本的更新和升级,本文将对它的版本历史进行梳理和介绍。

MSDOS 1.0MSDOS 1.0是于1981年推出的第一个版本,被默认绑定在IBM PC机器上。

它只提供基本的文件系统功能和一些简单的命令行操作,没有图形用户界面(GUI),也没有多任务处理能力。

在这个版本中,用户可以使用命令行来浏览目录、创建、复制、删除文件以及格式化和分区磁盘等操作。

MSDOS 2.0MSDOS2.0于1983年推出,增加了许多新特性和功能,特别是在文件和目录操作方面有了一些重大改进。

它支持更大的文件和更多的文件名字符,引入了环境变量和扩展命令等功能。

这个版本中也已经有了一些简单的GUI应用程序,比如硬盘检测、磁盘分区与格式化程序等。

MSDOS 3.0MSDOS 3.0于1984年推出,进一步加强了文件管理和磁盘操作的功能。

它引入了Directory Tree概念,可以更高效地管理和检索文件目录。

同时,这个版本也加入了一些新的命令和驱动,比如backup、diskcomp和power等。

此外,MSDOS 3.0还提供了更好的批处理支持,使得用户可以更便捷地进行重复操作。

MSDOS 3.3MSDOS 3.3于1987年推出,是MSDOS3.x系列的最后一个版本。

它加入了对高容量软盘和硬盘的支持,提供了新的分区和格式化方式,使存储容量得以进一步扩大。

同时,这个版本还加入了新的驱动程序和CMD指令,比如fdisk、mbrfix等等。

此外,MSDOS 3.3还带来了一些调试和诊断工具,比如debug、batch、edit 等,更适用于大型计算机的管理和控制。

MSD.元件烘烤资料

MSD.元件烘烤资料

文件编号文件名称版本页码生效日期YX-QI-MFG-39 MSD元件、FPC、PCB烘烤作业指导书A 1 of 13 2011.7.16部门工程部制定邓尚府审查核准相关部门会签总经理管代表经营项目部制造部品保部物流部管理部日期版本修定者变更内容2011.7.16 A 邓尚府新版本发行。

范围适用于仓储、生产、维修中所有涉及的潮湿敏感元器件、P C B板、P C B A板。

文件编号文件名称版本页码生效日期YX-QI-MFG-39 MSD元件、FPC、PCB烘烤作业指导书A 2 of 13 2011.7.16一、概述:为规范、指引潮湿敏感元器件、PCB、PCBA在储存、使用、加工过程中的储存、烘烤行为,特制定本操作指导书。

二、术语定义SMD:表面贴装器件,主要指通过SMT生产的PSMD(Plastic Surface Mount Devices),也即塑封表面贴(封装)器件,如下表1项目描述的器件。

项目描述说明SOP ××塑封小外形封装元件(含表面贴装变压器等)SOIC(SO)××塑封小外形封装IC(集成电路)SOJ ××J 引脚小外形封装ICMSOP××微型小外形封装ICSSOP××缩小型小外形封装ICTSOP××薄型小外形封装ICTSSOP××薄型细间距小外形封装ICTVSOP××薄型超细间距小外形封装ICPQFP××塑封四面引出扁平封装IC(P)BGA ××球栅阵列封装ICPLCC××塑封芯片载体封装IC封装名称缩写潮湿敏感器件:指易于吸收湿气,受热(回流焊或波峰焊)后湿气膨胀,导致内部损坏或分层的器件,基本上都是SMD。

一般器件:指除潮湿敏感器件以外,组装时需要焊接的所有元器件。

导轨油MSDS资料表

导轨油MSDS资料表
1^一、稳定性
稳定性
稳定
禁配物
酸、碱、强氧化剂
十二、毒理学资料
致癌性

刺激性

十三、废弃处理
废弃注意事项
用后空罐勿投入火中
废弃处理方法
按相关法律法规ห้องสมุดไป่ตู้理
十四、运输信息
SOP-MM-003
包装类别
小开口钢桶、提携式钢桶、塑料瓶等。
运输注意事顶
运输前应先检查包装容器是否完整、密封、运输过程 中要确保容器不泄漏、不倒塌、不坠落、不损坏。严 禁与氧化剂、食用化学品等混装混运,运输车船配装 位置应远离卧室、厨房,并与机舱,电源、火源等部 位隔离。公路运输时要按规定路线行驶•
生效日期20110915sopmm003msds手册页数13附件22导轨油msd资料表一?物品与厂商资料物品名称导轨油制造商或供应商名称正飞五金配件经营部制造商或供应商地址东莞市长安宵边工业区制造商或供应商电话紧急联络人电话产品成份资料三危险性概述危险性类别侵入途径吸入食入健康危害吸食会导致乏力头晕呕吐严重者会危及生命对皮肤无明显刺燃爆危险本品易燃
十五、法规信息
法规信息
<<常用危险化学品的分类及标志>>(GB13690-92),不包含该产品
十六、其它要求 无
92
添加剂
8
产品主要成分及 百分比
三、危险性概述
危险性类别
2级
侵入途径
吸入,食入
健康危害
吸食会导致乏力、头晕、呕吐、严重者会危及生命,对皮肤无 明显刺激。
环境危害

燃爆危险
本品易燃。
五、急救措施
皮肤接触
用大量清水冲洗
眼睛接触
立即提起眼睑,用流动清水冲洗,严重者就医。

MSDauditJSTDA(学习资料)

MSDauditJSTDA(学习资料)

MSD Audit ChecklistRevised Sept.2002General- Is there a general procedure in place covering all key elements of Moisture Sensitive Device (MSD) control. Has this procedure been updated to reflect the latest revision the joint IPC/JEDEC standard J-STD-033A released in July 2002.- Is there a site coordinator responsible to update and manage all elements of the MSD control programTraining- Is there a formal training program in place for all employees which covers the key elements of moisture sensitivity : physical phenomena, classification, standard, key elements of internal procedures.- Is there a training in place for the technical staff on the subject of moisture sensitivity, including the following additional elements of information : recognize the symptoms of moisture sensitive defects, understand the potential failuresmodes, process yield and reliability field failures- Compare the training effort on the subject of MSD relative to ESD Factory environmental conditions- Is there a procedure in place to verify and log the temperature and RH level on the production floor during the whole year.- Verify if the maximum RH level ever exceed 60% RH. Is there a procedure in place to take action if this limit is exceeded.- Does this action plan take into account the derating factor specified by IPC/JEDEC to reduce the maximum floor life accordingly (Ref. J-STD-033A, table 7.1)- Does the procedure/system take into account the de-rating factor to extend the floor life and minimize baking when the ambient conditions are below 60% RH Incoming Inspection- Is there a central database of all part numbers that are moisture sensitive, including their sensitivity level.- Is it used at incoming inspection to identify when MSDs are received not properly packaged and identified. Is it accessible on the production floor to verifycomponents that are not properly identified.- Does the incoming inspection procedure take into account all requirements of the IPC/JEDEC standard : quality of seal, seal date, status of indicator (Ref. J-STD-033A, section 5.1). This verification must also be performed on the production line if this is where the bags will be opened.- Are the dry bags sometimes opened for inspection ? Is there proper equipment, materials and trained employees to re-seal bags within one hour from openingMSD Component identification and tracking- Is there a method in place to identify individual trays and reels containing MSDs once they are removed from their dry bags. Does it include all relevantinformation, including sensitivity level and expiration date/time.- If the information is not directly attached to the lowest level container (i.e. tray or reel), verify if all information can be associated with the proper material in areliable manner.- Note : Placing labels or pieces of paper directly in contact with matrix trays represent a risk for ESD damage and does not comply with industry standards- Is there a method in place to keep track and update remaining floor life for each tray and reel from the time they are removed from their dry bag, until all the components have been through final reflow. This includes kitting,programming, tape and reel, placement, dry storage, double-side reflow,rework, etc.- Is there a method in place to provide visibility on all the MSDs and the associated remaining floor life while they are loaded on feeders and placement machinesduring production.- Is there a method in place to return all partial trays and reels into dry storage after they are removed from the placement machine.Dry storage- If dry cabinets cannot maintain <5% RH, make sure that the procedure does NOT assume that dry components can be safely stored with unlimited shelf life (Ref: J-STD-033A, section 5.3 and table 7.1)- Make sure that the procedure does NOT assume that the clock of exposure time can be paused/stopped during dry storage for previously exposedcomponents MSL 4 and higher (Ref : J-STD-033A, section 4.1)- How are components identified inside dry cabinets, and re-sealed dry bags : This information must contain : PN, sensitivity level, maximum floor life, priorexposure time and cumulative time spent in dry storage- Is there a method in place to take into account the time spent in dry storage and to update the remaining floor life accordingly, based on the MS Level and RH level : o Stop/Pause clock for MSL 2-3 @ <10%RHo Reset clock when :o MSL 2-4 : 12 hours exposure followed by 5X the duration @ <10%RHo MSL 5-5a : 8 hours exposure followed by 10X the duration @ <5%RH- Is there a procedure or system in place to insure that the RH level is maintained at less than 5%RH or 10%RH in the dry cabinets.- Verify the materials for re-sealing dry bags. The Moisture Barrier Bags (MBB) must have a rated Water Vapor Transmission Rate (WVTR) of <= 0.002 gm/100 in.2 in 24 hours at 40C after flex testing per condition E of ASTM F 392-93.- Make sure that the proper size desiccant packs, in a dry condition, and humidity indicators are placed inside every re-sealed dry bag.Bake- What is the default bake condition ? It should NOT be less than 48 hours at 125C or 10 days at 90C or 79 days at 40C. (Ref : J-STD-033A, table 4.1).- Is there a method in place to minimize the duration of bake and the resulting degradation of components, by using the above table and the specific MSL, body thickness and saturation level of each component.- Is there a procedure in place to prevent operators from loading low temperature carriers in a high temperature bake cycle and otherwise prevent excessive bakecycles.- Is there a method to control how long the parts have been in the bake oven and to make sure that components are not removed before the cycle is complete.- Is there a method in place to identify which components have exceeded the maximum cumulative bake duration at 125C (Ref : J-STD-033A, section4.2.7.1).Double side reflow- Are there products with MSDs using double-side reflow process ?- Is there a process in place to insure that the side with MSDs is run last- If there are MSDs on both sides, is there a method in place to account for the time spent between the first and second side reflow process (Ref : J-STD-033A, section 5.4.4).Rework and Repair- Is there a method to identify which components are moisture sensitive on a finished PCB- Is there a procedure in place to bake PCBs before removing MSDs using hot air rework tools.- Is there a procedure in place to make sure that only dry components are replaced with hot air rework tools.For additional information on the subject of moisture sensitivity consult the MSD knowledge base at 。

MSD-丙烯酸

MSD-丙烯酸

丙烯酸安全一标识中文名丙烯酸英文名 acrylk acld;propenoic acid分子式 C3H4O2相对分子质量 72.06危险性类别第8.1类酸性腐蚀品化学类别丙烯酰基化合物二主要组成与性状主要成分含量≥99.0%。

外观与性状无色液体,有刺激性气味。

主要用途用于树脂制造。

三健康危害侵入途径吸入、食入、经皮吸收。

健康危害本晶对皮肤、眼睛和呼吸道有强烈刺激作用。

四急救措施皮肤接触立即脱去被污染的衣着,用大量流动清水冲洗,至少15分钟。

就医。

眼睛接触立即提起眼险,用大量流动清水或生理盐水彻底冲洗至少15分钟。

就医。

吸入迅速脱离现场至空气新鲜处。

保持呼吸道通畅。

如呼吸困难,给输氧。

如呼吸停止,立即进行人工呼吸。

就医。

食入误服者用水漱口,给饮牛奶或蛋清。

就医。

五燃爆特性与消防燃烧性易燃闪点(℃) 50焊炸下限(%) 2.4 引燃温度(℃) 438焊炸上限(%) 8.0最小点火能(mJ) 无资料最大蠕炸压力(MPa) 无资料危险特性易燃,其蒸气与空气可形成爆炸性混合物。

遇明火、高热能引起燃烧爆炸。

与氧化剂能发生强烈反应。

若遇高热,可发生聚合反应,放出大量热量而引起容器破裂和爆炸事故。

遇热、光、水分、过氧化物及铁质易自聚而引起爆炸。

灭火方法消防人员须戴好防毒面具,在安全距离以外,在上风向灭火。

用雾状水保持火场容器冷却,用水喷射逸出液体,使其稀释成不燃性混合物,并用雾状水保护消防人员。

灭火剂:雾状水、抗溶性泡沫、干粉、二氧化碳。

六泄漏应急处理迅速撤离泄漏污染区人员至安全区,井进行隔离,严格限制出入。

切断火源。

建议应急处理人员戴自给正压式呼吸器,穿防酸碱工作服。

不要直接接触泄漏物。

尽可能切断泄漏源,防止进入下水道、排洪沟等限制性空间。

小量泄漏:用砂土或其它不燃材料吸附或吸收。

大量泄漏:构筑围堤或挖坑收容;用泡沫覆盖,降低蒸气灾害。

喷雾状水冷却和稀释蒸气保护现场人员、把泄漏物稀释成不燃物。

用防爆泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。

MSDM-7中文资料

MSDM-7中文资料

15801 Chemical Lane, Huntington Beach, CA 92649-1595Phone: (714) 898-0960 • FAX: (714) 896-0971 • email: sales@RhombusIndustries Inc.For other values & Custom Designs, contact factory.Specifications subject to change without notice.MSDM 9901MSDM Series FAST / TTL Buffered T riple Independent DelaysP/N Description MSDM - XXX XBuffered Triple Delays:14-pin Com'l: MSDM 14-pin MIL: MSDM3Total Delay in nanoseconds (ns)Temp. Range Blank = CommercialM = Mil-Grade Examples:MSDM-25 =25ns (25ns per Line)74F, 14-Pin Thru-holeMSDM3-50M =50ns (50ns per Line)74F, 14-Pin, Mil-GradeOPERATING SPECIFICATIONSV CC Supply Voltage ................................... 5.00 ± 0.25 VDC I CC Supply Current.......................... 45 mA typ, 95 mA max.Logic “1” Input:V IH ....................... 2.00 V min., 5.50 V max.I IH ............................... 20 µA max. @ 2.70VLogic “0” Input:V IL ........................................... 0.80 V max.I IL ............................................ -0.6 mA mAV OH Logic “1” Voltage Out ..................................2.40 V min.V OL Logic “0” Voltage Out................................ 0.50 V max.P WI Input Pulse Width........................... 100% of Delay min.Operating Temperature Range ........................... 0O to 70O C Storage Temperature Range ..................... -65O to +150O CTEST CONDITIONS -- FAST / TTLV CC Supply Voltage ................................................ 5.00VDCInput Pulse Voltage ................................................... 3.20V Input Pulse Rise Time....................................... 3.0 ns max.Input Pulse Width / Period .......................... 1000 / 2000 ns 1. Measurements made at 25O C2. Delay Times measured at 1.50V level of leading edge.3. Rise Times measured from 0.75V to 2.40V.4. 10pf probe and fixture load on output under test.Electrical Specifications at 25O CDimensions in Inches (mm)Commercial Grade 14-Pin Package with Unused Leads Removed as per Schematic. (For Mil-Grade MSDM3 the Height is 0.335")MAX..245(6.22) TYP. .810(20.57) .275(6.99) MAX..200(5.08) TYP. .050(1.27) TYP. .020(0.51) TYP..120(3.05) MIN..300(7.62) .400(10.16) MAX..010(0.25) -GRADE: MSDM3 Military Grade delay lines use inte-grated circuits screened to MIL-STD-883B with an operating temperature range of -55 to +125O C. These devices have a package height of .335"Auto-Insertable DIP and Surface Mount Versions:Refer to FAI3D Series, same 14-pin footprint.For space saving, refer to FAM3D 8-pin SeriesDelay Tolerance(ns)14 Pin DIL TTL BufferedTriple Independent Delays Commercial Part Number MIL-Grade Part Number 5 ± 1.00MSDM-5MSDM3-5M 6 ± 1.00MSDM-6MSDM3-6M 7 ± 1.00MSDM-7MSDM3-7M 8 ± 1.00MSDM-8MSDM3-8M 9 ± 1.00MSDM-9MSDM3-9M 10 ± 1.50MSDM-10MSDM3-10M 15 ± 2.00MSDM-15MSDM3-15M 20 ± 2.00MSDM-20MSDM3-20M 25 ± 2.00MSDM-25MSDM3-25M 30 ± 2.00MSDM-30MSDM3-30M 35 ± 2.00MSDM-35MSDM3-35M 40 ± 2.00MSDM-40MSDM3-40M 45 ± 2.25MSDM-45MSDM3-45M 50 ± 2.50MSDM-50MSDM3-50M 60 ± 3.00MSDM-60MSDM3-60M 70 ± 3.50MSDM-70MSDM3-70M 75 ± 3.75MSDM-75MSDM3-75M 80 ± 4.00MSDM-80MSDM3-80M 90 ± 4.50MSDM-90MSDM3-90M 100 ± 5.0MSDM-100MSDM3-100M 14-Pin Package Commercial and Mil-Grade Versions FAST/TTL Logic Buffered3 Independent Equal Delay Lines*** Unique Delays Per Line are Available ***Operating Temperature Ranges 0O C to +70O C, or -55O C to +125O C 8-pin DIP/SMD Versions: FAM3D Series 14-pin DIP/SMD Versions: FAI3D SeriesMSDM 14-Pin Schematic13781012Vcc 14IN 1IN 2IN 3GND5OUT 1OUT 2OUT 3元器件交易网。

湿敏元器件管控规范

湿敏元器件管控规范

1目的明确所有湿度敏感元件〈MSD〉的管控2适用范围适用于科盟(福州)电子科技有限公司3参考文件无4定义湿敏元件(MSD):指供应商来料时,使用防潮包装,且包装袋上有如下图1标记或有特别注明为湿敏元器件。

元件的湿度敏感等级(MSL):IPC将其分为1、2、2a、3、4、5、5a、6共8个等级,其湿度敏感级别逐级递增.防潮包装袋(MBB):一种为了阻止水蒸气进入而设计用来包装湿敏元件的袋子。

干燥剂(Desiccant):一种能够维持较低的相对湿度的吸附性材料。

湿度指示卡(HIC):一张印有对湿度敏感的化学材料的卡片,当环境湿度发生变化时,印在卡片上的化学材料的颜色也相应的改变〔一般由蓝色(干燥时)变为粉红色(潮湿时)〕,用于对湿度监控。

暴露时间(Floor Life): 元件从拆除真空包装到焊接之前的时间,元件须暴露在不超过30°C和60% RH的环境中。

保存限期(Shelf Life): 湿敏元件在真空且未开封的防潮包装袋的环境中可维持的有效时间。

5职责5.1研发部负责制定或项目部负责接收和跟催相关单位(供应商、研发部)提供湿敏元件清单.5.2IQC验收供应商来料和对仓库储存的湿敏元件进行检验,确保状态良好。

5.3IPQC对生产线的湿敏元件的使用、贮存、烘烤进行实时稽查。

5.4仓库负责湿敏元件的接收,贮存和发放的控制。

5.5生产线人员在生产过程中对湿敏元件实施管控。

5.6工程部负责对湿敏元件清单的审核和转化为内部格式发行,负责对湿敏元件的管控提供技术支持。

6内容6.1湿敏元件识别:6.1.1 检查元件外包装的标签, 如果在外包装标签上有如图1的雨滴状标识,可认定为湿敏元件。

6.1.2 湿度指示卡的识别与说明6.1.2.1第一种湿度指示卡上有一“三角形箭头”(如下图2),其对应所指向的圆圈里化学物质若改变为粉红色则表示元件已受潮,需要烘烤。

6.1.2.2第二种湿度指示卡只有三个湿度等级的圆圈组成(如下图3),其使用说明如下表6.1.3湿敏元件标志湿敏元件的等级保存期限6.2 湿敏元件等级的分级6.2.1 湿敏元件共分为8个等级:1、2、2a 、3、4、5、5a 、6,其湿度敏感级别逐级递增。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MSD---湿度敏感元件控制培训什么是MSD?MSD: Moisture Sensitive Device 潮湿敏感元件.相关标准有关术语和定义MSD等级和允许暴露时间HIC:湿度记录卡MSD 警示标签和证明标签如何判断湿敏元件是否受潮?烘烤MSD一旦受潮,在使用前必须烘烤,确保流入生产的湿敏元件一定是烘烤时间烘烤注意事项如果湿敏元件暴露时间大于半小时,小于8小时或12小时,可以按照short duration exposure rule 使湿敏元件的floor life 恢复到0。

存放发料顺序如何将湿敏元器件在空气中的暴露时间降到最低?1.0 适用 范围本WI 适用于维修服务中心内所有湿度敏感元件的控制.2.0 湿敏元件标志2.1所有湿敏元件都应封装在防潮的包装袋中, 在包装袋上有湿敏警示标志(图2-1)和 防潮等级标志(图2-2),或贴有这两种标签.2.2 从湿敏警示标志上,可以得到以下信息:a. Floor life 时间(Mounted/used within 时间),即在温度不高于30°C ,湿度不高于60%的环境下,从打开封装到焊接之间的最大可以有效使用的时间。

b. 湿敏等级(Moisture Sensitive Level)图2-1 湿敏警示标志图2-2 防潮等级标志2.3 所有等级2级,或2级以上的湿敏元件在拆开原包装和再次开封均需要用湿敏元件控制专用标签MSD 追踪标签(如下图3)进行跟踪纪录。

但如果在原包装在开封后半小时内再次复原封好,则不需要进行追踪,或认为它开封暴露时间为0.3.0 湿敏元件控制过程3.1 进料检验3.1.1 检查原包装是否完好,没有裂缝和开孔,同时密封时间是否小于SHELF LIFE 。

若不符合应进入MRB 区域,由相关人员判定是否RTV,或者烘烤。

若需要烘烤,参见xxxx3.1.2 如果发现有开孔,而且HIC显示超过10%,对该器件按照xxx烘烤。

3.1.3 IQA 如需打开MBB ,应在靠近封装顶端初剪开。

必须在30分钟以内重新封装, 并贴上MSD 追踪标签(图3)进行填写。

3.1.4 打开封装后应在23 ± 5°C 的条件下读取HIC 。

如果达到10%,应进行烘烤,达到5%,应换干燥剂和HIC 。

3.1.5 如果从包装看不到封装日期等信息,应进行烘烤。

3.1.6 真空封装方法详见“外抽式真空封口包装机操作维护手册”。

3.2 仓库控制3.2.1 仓库储存湿敏元件时,应保证其密封完好。

仓库应确保存储环境在《=30°C/60% RH 。

注意:当存储环境不在规定范围内时,需参照表1(附件)对湿敏元件的最大暴露时间做相应调整。

3.2.2 仓库应将湿敏元件与普通元件区别存放,并定期检查存放时间是否超过SHELF LIFE 。

3.3 发料与生产线控制3.3.1 发料时,湿敏元件应按照实际生产量分发到生产线,对于剩下的元件需在30分钟以内重新封装,同时放入有效的干燥剂和湿度指示卡(若30分钟内封装,原有的仍然有效,可以继续使用)。

并贴上和填写MSD追踪标签(图3)。

P/N:元器件代码LEVEL:湿敏等级Mounted/used within:Hours:最大使用时间即Floor LifeMaximum Baking Number:最多烘烤次数Time Out:指湿敏元件从保干箱/密封袋中取出的时间。

图3Time In:指湿敏元件放进保干箱/密封袋中的时间。

Remaining h ours:剩余暴露时间注意:填写时间需具体到年,月,日,时,分。

3.3.2 干燥剂的使用:密封包装袋面积小于等于500cm 2,要求使用重量1Unit (28克)的干燥剂密封包装袋面积大于500cm 2 , 而小于等于1000cm 2.要求使用重量2Units (56克)的干燥剂密封包装袋面积大于1000cm 2,要求使用重量4Units (112克)的干燥剂3.3.3 生产操作员根据生产情况领取相应的元件数量,若当天多领取未用完,应记录暴露时间并退还仓库。

退回仓库时,在30分钟内干燥密封,密封前须放入所需的干燥剂和HIC 。

3.3.4 多次取出放入时,应一一填写。

如有两次以上30分钟内开封,应以暴露统计,累加到全部时间中。

3.3.5 当暴露时间接近floor life 时,应进行烘烤。

在追踪卡上记录烘烤时间和次数。

3.5 烘烤3.5.1 高温烘烤应确保包装材料经得起125°C 的高温。

3.5.2 低温40+5℃烘烤时,一般有以下几种封装形式:卷带封装和管状封装。

3.5.3 元件放入烘箱时,将追踪标签贴在元件封装材料上 并在标签上记录必要的信息。

Moisture Sensitive Components Control Work InstructionTotal Baking Time:烘烤时间Baking Number:烘烤次数 Level2A:3, Level3-5:2, Level5A:1注意:1.烘烤次数小于最大烘烤次数;2.烘烤时间应该从烘箱达到设定温度后开始记录。

3.5.4 烘烤时参数设定参照CAMS Bake Oven Work Instruction xxxx3.5.5 冷却时间为:低温烘烤,冷却时间: 0.5hrs高温烘烤,冷却时间:2hrs3.5.6 冷却后若在0.5hrs内不立即使用,则真空封装,并放入所需的干燥剂和HIC,返回仓库。

3.6 干燥箱的控制(如有)3.6.1确认干燥箱内的温度低于30℃,湿度小于5%。

3.6.2 检查湿敏元件外包装是否有追踪标签, 若无, 请贴上并记录。

3.7 干燥剂的控制3.7.1 如果干燥剂在低于30°C/60% RH条件下暴露总时间小于30分钟,则可以重新放入MBB下使用。

3.7.2 如果干燥剂在不能确定或超出3.7.1所提条件,标明可以重新活化的干燥剂可以通过烘烤进行重新活化。

活化条件遵循干燥剂化条件遵循干燥剂包装上指示,一般在 125°C下烘烤16小时。

4.MSD list每个项目的Product Engineer应生成一份MSD list,以instruction的形式发送到WH和生产线上。

5. 附件表1 不同温湿度条件下的等效暴露时间:1.0适用 范 围本WI 适用于本公司内所有湿度敏感元件的控制.2.0 湿敏元件标志及纪录2.1所有湿敏元件都应封装在防潮的包装袋中, 在包装袋上会有湿敏警示标志和 防潮等级标志,或贴有这两种标签.2.2 从湿敏警示标志上,可以得到以下信息:a. Floor life 时间(Mounted/used within 时间),即在温度不高于30°C ,湿度不高于60%的环境下,从打开封装到焊接之间的最大可以有效使用的时间。

b. 湿敏等级(Moisture Sensitive Level)2.3 所有等级2级,或2级以上的湿敏元件在拆开原包装和再次开封均需要用湿敏元件控制专用标签"ExposureTracking Label"进行标签(如下图)进行跟踪纪录。

但如果在原包装在开封后半小时内再次复原封好,则不需要进行追踪,或认为它开封暴露时间为0.3.0 湿敏元件控制过程3.1 进料检验3.1.1 检查原包装是否完好,没有裂缝和开孔,同时密封时间是否小于12个月。

若不符合应进入MRB 区域,由相关人员判定是否RTV,或者烘烤。

若需要烘烤,参见(CELQ-036-OEM-33)3.1.2如果发现有开孔,而且HIC显示超过10%,对该器件按照CELQ-036-OEM-33烘烤。

3.1.3 IQA 如需打开MBB ,应在靠近封装顶端初剪开。

3.1.4 打开封装后应在23 ± 5°C 的条件下读取HIC 。

如果达到10%,应进行烘烤,达到5%,应换干燥剂和HIC 。

3.1.5 如果从包装看不到封装日期等信息,应进行烘烤。

3.1.6 在IQA, 不建议打开湿敏元件的包装袋. 如果有需要打开包装袋, 则必须在30分钟以内重新封装, 并贴上湿敏元件控制专用追踪标签进行填写。

追踪标签见下图。

3.2 仓库控制3.2.1 仓库储存湿敏元件时,应保证其密封完好。

仓库应确保存储环境在≤30°C/60% RH 。

3.2.2 仓库应将湿敏元件与普通元件区别存放,并定期检查存放时间是否超过12个月。

3.3 Kitting 与生产线控制3.3.1 Kitting 发料时,湿敏元件应按照实际生产量分几次发到生产线,对于剩下的元件需在30分钟以内重新封装,同时放入有效的干燥剂和湿度指示卡(若30分钟内封装,原有的仍然有效,可以继续使用)。

并填写和贴上追踪标签。

注意:干燥剂要求回收,放入干燥箱中保存,用于再封装使用。

干燥剂的回收利用,依据以下标准:1。

密封包装袋面积小于等于500cm 2,要求使用重量1Unit (28克)的干燥剂2。

密封包装袋面积大于500cm 2 , 而小于等于1000cm 2.要求使用重量2Units (56克)的干燥剂3。

密封包装袋面积大于1000cm 2,要求使用重量4Units (112克)的干燥剂3.3.3 SMT操作员根据生产情况领取相应的元件数量。

原包装元件检查是否包装良好,非原包装元件检查HIC状态,以及累计暴露时间。

如果累计时间接近失效时间应拒收。

Moisture Sensitive Components Control湿敏警示标志3.3.4 SMT操作员每打开一个封装,检查HIC 是否超过10%,如超过应退回kitting 。

如没有超过,尽快投入生产。

同时必须记录打开封装时间。

3.3.5 生产中超过两个小时用不到的湿敏元件应马上送进保干箱,同时记录送进时间。

计算暴露时间,写到追踪标签上。

注意:填写时间需具体到 月,日,时,分。

3.3.6 多次取出放入时,应一一填写。

如有两次以上30分钟内开封,应以暴露统计,累加到全部时间中。

3.3.7 当暴露时间接近floor life 时,应进行烘烤。

在追踪标签上记录烘烤时间和次数。

具体参见Baking Oven Operating InstructionMaxtor 产品的所有湿敏元件Floor Life 统一为1天,即暴露时间不能超过24小时.3.3.8 如果该元件不能封装,则放入保干器中。

3.3.9 退回仓库时,烘烤后重新密封,密封前须放入所需的干燥剂和HIC 。

3.3.10双面SMT 的PCBA 的第二面回流焊应该在第一次的回流焊完成后24小时内进行。

如果超出时间则需要烘烤,条件参 考Baking Oven Operating Instruction如果在24小时内无法完成,需要将元件,半成品,干燥剂和HIC 一起放入密封袋中密封。

相关文档
最新文档