2012年北京市中考数学试题(解析版)

合集下载

2012年北京市中考数学试题及答案

2012年北京市中考数学试题及答案

2012年北京市中考数学试卷及答案讲解一.选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的1、-9的相反数是()A、- 19B、19C、-9D、9【解析】正数的相反数为负数,负数的相反数为正数,两数互为相反数,两数之和为零. 【考点】相反数。

【难度】容易【点评】本题考查相反数的基本概念,这种题型的题目在北京近年中考一般会考,该题目在初三强化提高班专题讲座第一章数与式第01讲实数部分做了专题讲解,中考原题与讲义中给出的题目只是数字不同,考查的知识点及解题方法完全相同。

【解析】正数的相反数为负数,负数的相反数为正数,两数互为相反数,两数之和为零.故本题答案选D.2、首届中国(北京)国际服务贸易交易会(京交会)于2012年6月1日闭幕,本届京交会期间签订的项目成交金额达60 110 000 000美元.将60.110 000.000 用科学记数法表示应为()A、6.011×109 B、60.11×109 C、6.011×1010 D、0.6011×1011【考点】科学记数法与有效数字。

【难度】容易【点评】此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.该题目在初三强化提高班专题讲座第一章数与式第02讲科学计数法部分做了专题讲解,中考原题与讲义中给出的题目只是数字不同,考查知识点完全相同。

【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于60 110 000 000有11位,所以可以确定n=11﹣1=10.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.60 110 000 000≈6.011×1010.故本题答案选C.3、正十边形的每个外角等于()A、18°B、36°C、45°D、60°【考点】正多边形的内外角度数。

2012年北京市中考数学试卷-答案

2012年北京市中考数学试卷-答案

北京市2012年北京中考数学试题数学答案解析一、选择题 1.【答案】D【解析】9-的相反数是9.【提示】根据只有符号不同的两个数互为相反数解答. 【考点】相反数. 2.【答案】C【解析】1060110000000 6.01110=⨯.【提示】科学记数法的表示形式为10n A ⨯的形式,其中1||10A ≤≤,n 为整数.确定n 的值时,要看把原数变成A 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数. 【考点】科学记数法——表示较大的数 3.【答案】B【解析】3601036︒÷=︒,所以,正十边形的每个外角等于36︒.【提示】根据正多边形的每一个外角等于多边形的外角和除以边数,计算即可得解. 【考点】多边形内角与外角 4.【答案】D【解析】根据主视图和左视图为矩形判断出是锥体,根据俯视图是三角形可判断出这个几何体应该是三棱锥.【提示】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状. 【考点】由三视图判断几何体. 5.【答案】B【解析】从中随机抽取一份奖品,恰好取到科普读物的概率是2163=. 【提示】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率即可求出答案. 【考点】概率公式 6.【答案】C【解析】∵76BOD ∠=︒,∴76AOC BOD ∠=∠=︒,∵射线OM 平分AOC ∠,∴11763822AOM AOC ∠=∠=⨯︒=︒,∴180********BOM AOC ∠=︒-∠=︒-︒=︒. 【提示】根据对顶角相等求出AOC ∠的度数,再根据角平分线的定义求出AOM ∠的度数,然后根据平角等于180︒列式计算即可得解.【考点】对顶角,邻补角,角平分线的定义 7.【答案】A【解析】在这一组数据中180是出现次数最多的,故众数是180;将这组数据从小到大的顺序排列后,处于中间位置的两个数是160,160,那么由中位数的定义可知,这组数据的中位数是(160160)2160+÷=. 【提示】根据众数和中位数的定义就可以解决 【考点】众数,中位数 8.【答案】D【解析】A .假设这个位置在点M ,则从A 至B 这段时间,y 不随时间的变化改变,与函数图像不符,故本选项错误;B .假设这个位置在点N ,则从A 至B 这段时间,y 不随时间的变化改变,与函数图像不符,故本选项错误;C .假设这个位置在点P ,则由函数图像可得,从A 到C 的过程中,会有一个时刻,教练到小翔的距离等于经过30秒时教练到小翔的距离,而点P 不符合这个条件,故本选项错误;D .经判断点Q 符合函数图像,故本选项正确;【提示】分别假设这个位置在点M 、N 、P 、Q ,然后结合函数图像进行判断,利用排除法即可得出答案 【考点】动点问题的函数图像 二、填空题 9.【答案】2(3)m n + 【解析】269mn mn m ++2(69)m n n =++2(3)m n =+【提示】先提取公因式m ,再对余下的多项式利用完全平方公式继续分解. 【考点】提公因式法与公式法的综合运用 10.【答案】1m =-【解析】∵关于x 的方程220x x m --=有两个相等的实数根,∴0∆=,∴2(2)41()0m --⨯⨯-=, 解得1m =-.【提示】根据方程有两个相等的实数根,判断出根的判别式为0,据此求出m 的值即可.【提示】利用直角三角形DEF 和直角三角形BCD 相似求得BC 的长后加上小明同学的身高即可求得树高AB .【考点】相似三角形的应用 12.【答案】34或63m n =-【解析】如图:当点B 在(3,0)点或(4,0)点时,AOB △内部(不包括边界)的整点为(1,1),(1,1),(1,2),(2,1),共三个点,所以当3m =时,点B 的横坐标的所有可能值是34或;因为AOB △内部(不包括边界)的整点个数[(B 1)()13A ]2=-⨯--÷点的横坐标点的纵坐标,所以当点B 的横坐标为4n (n 为正整数)时,[()]241(413)36n m n -⨯-÷=-=-;【提示】根据题意画出图形,再找出点B 的横坐标与AOB △内部(不包括边界)的整点m 之间的关系即可求出答案. 【考点】点的坐标 三、解答题13.【答案】7-+【提示】分别根据零指数幂、二次根式的化简、负整数指数幂的运算,得出各部分的最简值,继而合并可得出答案.【考点】实数的运算,零指数幂,负整数指数幂,特殊角的三角函数值 14.【答案】x >5【解析】解:4341x x x x ->⎧⎨+<-⎩2①②,∵解不等式①得:1x >,解不等式②得:x >5,∴不等式组的解集为:x >5.【提示】根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可. 【考点】解一元一次不等式组,不等式的性质,解一元一次不等式15.【答案】1 2(2)ba b - (2))a b -【提示】将所求式子第一个因式的分母利用平方差公式分解因式,约分后得到最简结果,然后由已知的等式用b 表示出a ,将表示出的a 代入化简后的式子中计算,即可得到所求式子的值. 【考点】分式的化简求值 16.【答案】见解析【解析】证明:∵AB CD ∥,∴BAC ECD ∠=∠,在BAC △和ECD △中AB EC BAC ECD AC CD =⎧⎪∠=∠⎨⎪=⎩,∴()BAC ECD SAS △≌△,∴CB ED =.【提示】首先由AB CD ∥,根据平行线的性质可得BAC ECD ∠=∠,再有条件AB CE =,AC CD =可证出BAC △和ECD △全等,再根据全等三角形对应边相等证出CB ED =. 【考点】全等三角形的判定与性质. 17.【答案】(1)22y x =- (2)P 点坐标为(3,0),(1,0)-【考点】反比例函数与一次函数的交点问题【提示】首先设一片国槐树叶一年的平均滞尘量为x 毫克,则一片银杏树叶一年的平均滞尘量为(24)x -毫克,根据关键语句“若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同”,可得方程100055024x x=-,解方程即可得到答案,注意最后一定要检验. 222【提示】利用等腰直角三角形的性质得出1EH DH ==,进而得出再利用直角三角形中30︒所对边等于斜边的一半得出DC的长,求出CA,AB的长即可得出四边形ABCD的面积. 得BE与O相切.AB PB18FB13利用相似三角形的性质得出比例式即可解出FB的长.【考点】切线的判定与性质,相似三角形的判定与性质,解直角三角形.21.【答案】(1)228(2)1000(3)82.75+=,如图所示:【解析】(1)根据表格所给数据即可得出:2009年运营路程为:20028228(2)根据扇形图得出:截止2010年已开通运营总路程占计划的百分比,进而得出÷=(千米);预计2020年北京市轨道交通运营总里程将达到:33633.6%1000⨯=(千米);(3)根据截止2015年新增运营路程为:100036.7367-÷=.则从2011到2015年这4年中,平均每年需新增运营里程(36736)482.75+求出即可;【提示】(1)根据表格所给数据即可得出:2009年运营路程为:2008年运营总路程28(2)根据扇形图得出:截止2010年已开通运营总路程占计划的百分比,进而得出答案;⨯=(千米);进而得出从2011到2015年这4年中,(3)根据截止2015年新增运营路程为:100036.736702a n +=2y =,解得抛物线有两个公共点,设两个临界的交点为(1,0),(3,0)n n ---,代入直线的解析式,求出n 的值,即可得出答案.【考点】二次函数综合题,解一元一次方程,根的判别式,一次函数图像上点的坐标特征,平移的性质. 24.【答案】(1)30CDB ∠=︒作图:见图1 (2)90CDB α∠=︒-,证明见解析 (3)4560α︒<<︒【解析】(1)∵60BA BC BAC =∠=︒,,M 是AC 的中点,∴BM AC AM MC ⊥=,,∵将线段PA绕点P 顺时针旋转2α得到线段PQ ,∴120AM MQ AMQ =∠=︒,,∴60CM MQ CMQ =∠=︒,,∴CMQ △是等边三角形,∴60ACQ ∠=︒,∴30CDB ∠=︒;(2)连接PC AD ,,∵AB BC =,M 是AC 的中点,∴BM AC ⊥,∴AD CD =,AP PC PD PD ==,,在APD △与CPD △中,∵AD CDPD PD PA PC =⎧⎪=⎨⎪=⎩,∴APD CPD △≌△,∴AP PC ADB CDB PAD PCD =∠=∠∠=∠,,,又∵PQ PA =, ∴2PQ PC ADC CDB PQC PCD PAD =∠=∠∠=∠=∠,,,∴180PAD PQD PQC PQD ∠+∠=∠+∠=︒,∴360()180APQ ADC PAD PQD ∠+∠=︒-∠+∠=︒, ∴1801802ADC APQ α∠=︒-∠=︒-,∴21802CDB α∠=︒-,∴90CDB α∠=︒-;(3)∵90CDB α∠=︒-,且PQ QD =,∴21802PAD PCQ PQC CDB α∠=∠=∠=∠=︒-,∵点P 不与点B ,M 重合,∴BAD PAD MAD ∠>∠>∠,∴21802ααα>︒->,∴4560α︒<<︒.【提示】(1)利用图形旋转的性质以及等边三角形的判定得出CMQ △是等边三角形,即可得出答案; (2)首先利用已知得出APD CPD △≌△,进而得出180PAD PQD PQC PQD ∠+∠=∠+∠=︒,即可求出;(3)由(2)得出90CDB α∠=︒﹣,且PQ Q D =,进而得出21802PAD PCQ PQC CDB α∠=∠=∠=∠=︒-,得出α的取值范围即可. 【考点】旋转的性质,全等三角形的判定与性质,等腰三角形的性质,等边三角形的性质.25.【答案】(1)①(0,2)或(0,2)-(2)①点C 与点D 的“非常距离”的最小值为:87,此时815,77C ⎛⎫- ⎪⎝⎭ ②点C 的坐标为89,55⎛⎫- ⎪⎝⎭,最小值为1。

2012年北京市中考数学及答案解析

2012年北京市中考数学及答案解析

2012年北京市高级中等学校招生考试数学1A(满分:120分时间:120分钟)第Ⅰ卷(选择题,共32分)一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的.1.-9的相反数是()A.-19B.19C.-9D.92.首届中国(北京)国际服务贸易交易会(京交会)于2012年6月1日闭幕,本届京交会期间签订的项目成交总金额达60110000000美元.将60110000000用科学记数法表示应为()A.6.011×109B.60.11×109C.6.011×1010D.0.6011×10113.正十边形的每个外角等于()A.18°B.36°C.45°D.60°4.如图是某个几何体的三视图,该几何体是()A.长方体B.正方体C.圆柱D.三棱柱5.班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小英等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物,1份是科技馆通票.小英同学从中随机取一份奖品,恰好取到科普读物的概率是()A.16B.13C.12D.236.如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠BOD=76°,则∠BOM等于()A.38°B.104°C.142°D.144°7.某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如下表所示:用电量(度)120140160180200户数23672则这20户家庭该月用电量的众数和中位数分别是()A.180,160B.160,180C.160,160D.180,1808.小翔在如图1所示的场地上匀速跑步,他从点A出发,沿箭头所示方向经过点B跑到点C,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t(单位:秒),他与教练的距离为y(单位:米),表示y与t的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的()A.点MB.点NC.点PD.点Q第Ⅱ卷(非选择题,共88分)二、填空题(本题共16分,每小题4分)9.分解因式:mn2+6mn+9m=.10.若关于x 的方程x 2-2x-m=0有两个相等的实数根,则m 的值是 .11.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上.已知纸板的两条直角边DE=40 cm,EF=20 cm,测得边DF 离地面的高度AC=1.5 m,CD=8 m,则树高AB= m.12.在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点叫做整点.已知点A(0,4),点B 是x 轴正半轴上的整点,记△AOB 内部(不包括边界)的整点个数为m.当m=3时,点B 的横坐标的所有可能值是 ;当点B 的横坐标为4n(n 为正整数)时,m= (用含n 的代数式表示).三、解答题(本大题共13小题,共72分)13.(5分)计算:(π-3)0+√18-2sin 45°-(18)-1.14.(5分)解不等式组:{4x -3>x,x +4<2x -1.15.(5分)已知a 2=b3≠0,求代数式5a -2ba 2-4b 2·(a-2b)的值.16.(5分)已知:如图,点E,A,C 在同一直线上,AB ∥CD,AB=CE,AC=CD. 求证:BC=ED.(x>0)的图象与一次函数y=kx-k的图象的交17.(5分)如图,在平面直角坐标系xOy中,函数y=4x点为A(m,2).(1)求一次函数的解析式;(2)设一次函数y=kx-k的图象与y轴交于点B,若P是x轴上一点,且满足△PAB的面积是4,直接写出点P的坐标.18.(5分)列方程或方程组解应用题:据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.19.(5分)如图,在四边形ABCD中,对角线AC,BD交于点E,∠BAC=90°,∠CED=45°,∠DCE=30°,DE=√2,BE=2√2.求CD的长和四边形ABCD的面积.20.(5分)已知:如图,AB是☉O的直径,C是☉O上一点,OD⊥BC于点D,过点C作☉O的切线,交OD的延长线于点E,连结BE.(1)求证:BE与☉O相切;,求BF的长.(2)连结AD并延长交BE于点F,若OB=9,sin∠ABC=231B21.(5分)近年来,北京市大力发展轨道交通,轨道运营里程大幅增加,2011年北京市又调整修订了2010至2020年轨道交通线网的发展规划.以下是根据北京市轨道交通指挥中心发布的有关数据制作的统计图表的一部分.北京市2007至2011年轨道交通运营总里程统计图截至2020年北京市轨道交通运营总里程分阶段规划统计图(2011年规划方案)北京市轨道交通已开通线路相关数据统计表(截至2010年底)开通时间开通线路运营里程(千米) 19711号线31 19842号线23200313号线41八通线19 20075号线2820088号线5 10号线25机场线2820094号线282010房山线22大兴线22亦庄线23昌平线2115号线20请根据以上信息解答下列问题:(1)补全条形统计图并在图中标明相应数据;(2)按照2011年规划方案,预计2020年北京市轨道交通运营总里程将达到多少千米?(3)要按时完成截至2015年的轨道交通规划任务,从2011到2015年这4年中,平均每年需新增运营里程多少千米?22.(5分)操作与探究:(1)对数轴上的点P进行如下操作:先把点P表示的数乘以1,再把所得数对应的点向右平移13个单位,得到点P的对应点P'.点A,B在数轴上,对线段AB上的每个点进行上述操作后得到线段A'B',其中点A,B的对应点分别为A',B'.如图1,若点A表示的数是-3,则点A'表示的数是;若点B'表示的数是2,则点B表示的数是;已知线段AB上的点E经过上述操作后得到的对应点E'与点E 重合,则点E表示的数是;图1(2)如图2,在平面直角坐标系xOy中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数a,将得到的点先向右平移m个单位,再向上平移n个单位(m>0,n>0),得到正方形A'B'C'D'及其内部的点,其中点A,B的对应点分别为A',B'.已知正方形ABCD内部的一个点F经过上述操作后得到的对应点F'与点F重合,求点F的坐标.图2在x=0和x=2时的函数值相等.23.(7分)已知二次函数y=(t+1)x2+2(t+2)x+32(1)求二次函数的解析式;(2)若一次函数y=kx+6的图象与二次函数的图象都经过点A(-3,m),求m和k的值;(3)设二次函数的图象与x轴交于点B,C(点B在点C的左侧),将二次函数的图象在点B,C间的部分(含点B和点C)向左平移n(n>0)个单位后得到的图象记为G,同时将(2)中得到的直线y=kx+6向上平移n个单位.请结合图象回答:当平移后的直线与图象G有公共点时,n的取值范围.24.(7分)在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA 绕点P顺时针旋转2α得到线段PQ.(1)若α=60°且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,请补全图形,并写出∠CDB的度数;(2)在图2中,点P不与点B,M重合,线段CQ的延长线与射线BM交于点D,猜想∠CDB的大小(用含α的代数式表示),并加以证明;(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B,M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=QD,请直接写出α的范围.25.(8分)在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:若|x1-x2|≥|y1-y2|,则点P1与点P2的“非常距离”为|x1-x2|;若|x1-x2|<|y1-y2|,则点P1与点P2的“非常距离”为|y1-y2|.例如:点P1(1,2),点P2(3,5),因为|1-3|<|2-5|,所以点P1与点P2的“非常距离”为|2-5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q的交点).(1)已知点A(-12,0),B为y轴上的一个动点,①若点A与点B的“非常距离”为2,写出一个满足条件的点B的坐标;②直接写出点A与点B的“非常距离”的最小值;(2)已知C是直线y=34x+3上的一个动点,①如图2,点D的坐标是(0,1),求点C与点D的“非常距离”的最小值及相应的点C的坐标;②如图3,E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E的“非常距离”的最小值及相应的点E和点C的坐标.2012年北京市高级中等学校招生考试一、选择题1.D-9的相反数是9.2.C60110000000用科学记数法表示为6.011×1010.3.B多边形的外角和为360°,正十边形有十个相等的外角,每个外角为360°10=36°.4.D主视图和左视图均为长方形,且俯视图为三角形的几何体是三棱柱.5.B6份奖品中科普读物占2份,故恰好取到科普读物的概率是26=1 3 .6.C∠AOM=12∠AOC=12∠BOD=12×76°=38°,∠BOM=180°-∠AOM=180°-38°=142°.7.A在20户家庭该月的用电量中,数据180出现次数最多(7次),故众数为180.将20个用电量数据从小到大排列,第10个和第11个数据的平均数为这组数据的中位数,故中位数为160.8.D若教练在点M(半圆AB的圆心),小翔从A跑到B的过程中与点M距离相等,此部分函数图象应平行于t轴,与题中图2不符,排除选项A.若教练在点N,由于半圆AB的对称轴PM 和线段BC的对称轴相交于点N,函数图象应由各自成轴对称的两部分组成,与题中图2不符,排除选项B.若教练在点P,函数图象应由成轴对称的一部分和y随t增大而减小的一部分组成,与题中图2不符,排除选项C.题中图2与教练在点Q时y随t的变化趋势相符,故选D.评析解决本题的关键是根据问题情境分析函数随自变量变化的趋势,定性分析,确定答案.属中档题.二、填空题9.答案 m(n+3)2解析 mn 2+6mn+9m=m(n 2+6n+9)=m(n+3)2. 10.答案 -1解析 方程有两个相等的实数根,故Δ=4+4m=0,故m=-1. 11.答案 5.5解析 由已知得△DEF ∽△DCB,∴EF BC =ED CD ,∵DE=40 cm=0.4 m,EF=20 cm=0.2 m,∴0.2BC =0.48, ∴BC=4 m,∴AB=4+1.5=5.5 m. 12.答案 3,4;6n-3解析 如图,当B 点的横坐标分别是3、4时,△AOB 内部(不包括边界)的整点个数均为3;分别取n 等于1、2、3、4、…,则4n 等于4、8、12、16、…,画图可得m 分别等于3、9、15、21、…,故m=6n-3.评析 读懂题意、根据题意画图是解决本题的关键.本题属中档题.三、解答题13.解析 (π-3)0+√18-2sin 45°-(18)-1=1+3√2-2×√22-8 =2√2-7.14.解析{4x -3>x, ①x +4<2x -1.②解不等式①,得x>1. 解不等式②,得x>5.∴不等式组的解集为x>5. 15.解析5a -2b a 2-4b2·(a-2b)=5a -2b(a+2b)(a -2b)·(a-2b) =5a -2b a+2b. ∵a 2=b3≠0, ∴3a=2b.∴原式=5a -3a a+3a =2a 4a =12. 16.证明 ∵AB ∥CD,∴∠BAC=∠ECD.在△ABC 和△CED 中,{AB =CE,∠BAC =∠ECD,AC =CD,∴△ABC ≌△CED.∴BC=ED.17.解析 (1)∵点A(m,2)在函数y=4x (x>0)的图象上, ∴2m=4.解得m=2.∴点A 的坐标为(2,2).∵点A(2,2)在一次函数y=kx-k 的图象上,∴2k-k=2.解得k=2.∴一次函数的解析式为y=2x-2.(2)点P 的坐标为(3,0)或(-1,0).18.解析 设一片国槐树叶一年的平均滞尘量为x 毫克.由题意,得1 0002x -4=550x. 解得x=22.经检验,x=22是原方程的解,且符合题意.答:一片国槐树叶一年的平均滞尘量是22毫克.19.解析 过点D 作DF ⊥AC 于点F.在Rt △DEF 中,∠DFE=90°,∠DEF=45°,DE=√2,∴DF=EF=1.在Rt △CFD 中,∠CFD=90°,∠DCF=30°,∴CD=2DF=2.∴FC=√3.在Rt △ABE 中,∠BAE=90°,∠AEB=∠CED=45°,BE=2√2,∴AB=AE=2.∴AC=AE+EF+FC=3+√3.∴S 四边形ABCD =S △ACD +S △ABC=1 2AC·DF+12AC·AB=1 2×(3+√3)×1+12×(3+√3)×2=9 2+32√3.∴四边形ABCD的面积是92+32√3.20.解析(1)证明:连结OC.∵EC与☉O相切,C为切点,∴∠ECO=90°.∵OB=OC,∴∠OCB=∠OBC.∵OD⊥BC,∴DB=DC.∴直线OE是线段BC的垂直平分线.∴EB=EC.∴∠ECB=∠EBC.∴∠ECO=∠EBO.∴∠EBO=90°.∵AB是☉O的直径,∴BE与☉O相切.(2)过点D作DM⊥AB于点M,则DM∥FB.在Rt△ODB中,∵∠ODB=90°,OB=9,sin∠ABC=23,∴OD=OB·sin∠ABC=6.由勾股定理得BD=√OB2-OD2=3√5.在Rt△DMB中,同理得DM=BD·sin∠ABC=2√5.BM=√BD2-DM2=5.∵O是AB的中点,∴AB=18.∴AM=AB-BM=13.∵DM∥FB,∴△AMD∽△ABF.∴MDBF =AM AB.∴BF=MD·ABAM =36√513.21.解析(1)补全统计图如图,所补数据为228.北京市2007至2011年轨道交通运营总里程统计图(2)预计2020年运营总里程将达到336÷33.6%=1 000(千米).(3)2010到2015年新增运营里程为1 000×36.7%=367(千米),其中2010到2011年新增运营里程为372-336=36(千米),2011到2015年平均每年新增运营里程为367-364=82.75(千米). 评析 本题阅读量大,三个图表中信息交错,较往年的统计题难度有所增加.22.解析 (1)点A'表示的数是 0 ;点B 表示的数是 3 ;点E 表示的数是 32. (2)∵点A(-3,0),B(3,0)的对应点分别为A'(-1,2),B'(2,2),∴{-3a +m =-1,3a +m =2.解得{a =12,m =12. 由题意可得n=2.设点F 的坐标为(x,y).∴{12x +12=x,12y +2=y.解得{x =1,y =4. ∴点F 的坐标为(1,4).23.解析 (1)由题意得(t+1)·22+2(t+2)·2+32=32. 解得t=-32. ∴二次函数的解析式为y=-12x 2+x+32. (2)∵点A(-3,m)在二次函数y=-12x 2+x+32的图象上, ∴m=-12×(-3)2+(-3)+32=-6. ∴点A 的坐标为(-3,-6).∵点A 在一次函数y=kx+6的图象上,∴k=4.(3)由题意,可得点B,C 的坐标分别为(-1,0),(3,0).平移后,点B,C 的对应点分别为B'(-1-n,0),C'(3-n,0).将直线y=4x+6平移后得到直线y=4x+6+n.如图1,当直线y=4x+6+n 经过点B'(-1-n,0)时,图象G(点B'除外)在该直线右侧,可得n=23.图1如图2,当直线y=4x+6+n经过点C'(3-n,0)时,图象G(点C'除外)在该直线左侧,可得n=6.∴由图象可知,符合题意的n的取值范围是23≤n≤6.图2评析本题图象G(部分抛物线)向左平移n个单位,直线向上平移n个单位(相当于向左平移14n个单位),求它们有公共点时n的取值范围,具有一定难度.24.解析(1)补全图形,如图1;∠CDB=30°.图1(2)猜想:∠CDB=90°-α.证明:如图2,连结AD,PC.∵BA=BC,M是AC的中点,∴BM⊥AC.图2∵点D,P在直线BM上,∴PA=PC,DA=DC.又∵DP为公共边,∴△ADP≌△CDP.∴∠DAP=∠DCP,∠ADP=∠CDP.又∵PA=PQ,∴PQ=PC.∴∠DCP=∠PQC.∴∠DAP=∠PQC.∵∠PQC+∠DQP=180°,∴∠DAP+∠DQP=180°.∴在四边形APQD中,∠ADQ+∠APQ=180°.∵∠APQ=2α,∴∠ADQ=180°-2α.∴∠CDB=12∠ADQ=90°-α.(3)α的范围是45°<α<60°.25.解析(1)①点B的坐标是(0,2)或(0,-2).(写出一个答案即可)②点A 与点B 的“非常距离”的最小值是12. (2)①过点C 作x 轴的垂线,过点D 作y 轴的垂线,两条垂线交于点M,连结CD.如图1,当点C 在点D 的左上方且使△CMD 是等腰直角三角形时,点C 与点D 的“非常距离”最小.理由如下:记此时点C 所在位置的坐标为(x 0,34x 0+3). 当点C 的横坐标大于x 0时,线段CM 的长度变大,由于点C 与点D 的“非常距离”是线段CM 与线段MD 长度的较大值,所以点C 与点D 的“非常距离”变大;当点C 的横坐标小于x 0时,线段MD 的长度变大,点C 与点D 的“非常距离”变大.所以当点C 的横坐标等于x 0时,点C 与点D 的“非常距离”最小.图1∵CM=34x 0+3-1,MD=-x 0,CM=MD,∴34x 0+3-1=-x 0. 解得x 0=-87. ∴点C 的坐标是(-87,157). ∴CM=MD=87. ∴当点C 的坐标是(-87,157)时,点C 与点D 的“非常距离”最小,最小值是87. ②如图2,对于☉O 上的每一个给定的点E,过点E 作y 轴的垂线,过点C 作x 轴的垂线,两条垂线交于点N,连结CE.由①可知,当点C 运动到点E 的左上方且使△CNE 是等腰直角三角形时,点C 与点E 的“非常距离”最小.当点E 在☉O 上运动时,求这些最小“非常距离”中的最小值,只需使CE 的长度最小.因此,将直线y=34x+3沿图中所示由点C 到点E 的方向平移到第一次与☉O 有公共点,即与☉O 在第二象限内相切的位置时,切点即为所求点E.作EP ⊥x 轴于点P.设直线y=34x+3与x 轴,y 轴分别交于点H,G. 可求得HO=4,GO=3,GH=5.可证△OEP ∽△GHO.∴OP GO =EP HO =OE GH. ∴OP 3=EP 4=15. ∴OP=35,EP=45. ∴点E 的坐标是(-35,45).设点C的坐标为(x C,34x C+3).∵CN=34x C+3-45,NE=-35-x C,∴34x C+3-45=-35-x C.解得x C=-85.∴点C的坐标是(-85,9 5 ).∴CN=NE=1.∴当点C的坐标是(-85,95),点E的坐标是(-35,45)时,点C与点E的“非常距离”最小,最小值是1.图2评析本题定义了平面内两点之间的“非常距离”(两点水平距离与竖直距离之中较大者),求定点A与动点B之间“非常距离”的最小值,进而利用获得最小“非常距离”的方法,求圆上的动点E与直线上的动点C之间“非常距离”最小时相应点的坐标.全面考查学生的综合能力,难度较大.。

华北地区2012年中考数学

华北地区2012年中考数学

华北地区2012年中考数学试题(8套)分类解析汇编(6专题)专题1:代数问题锦元数学工作室 编辑一、选择题1. (2012北京市4分) 9-的相反数是【 】A .19-B .19C .9-D .9【答案】D 。

【考点】相反数。

【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0。

因此-9的相反数是9。

故选D 。

2.(2012北京市4分)首届中国(北京)国际服务贸易交易会(京交会)于2012年6月1日闭幕,本届京交会期间签订的项目成交总金额达60 110 000 000美元,将60 110 000 000用科学记数法表示应为【 】A .96.01110⨯B .960.1110⨯C .106.01110⨯D .110.601110⨯【答案】C 。

【考点】科学记数法。

【分析】根据科学记数法的定义,科学记数法的表示形式为a×10n ,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值。

在确定n 的值时,看该数是大于或等于1还是小于1。

当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0)。

60 110 000 000一共11位,从而60 110 000 000=6.011×1010。

故选C 。

3. (2012天津市3分)据某域名统计机构公布的数据显示,截至2012年5月21日,我国“.NET”域名注册量约为560 000个,居全球第三位.将560 000用科学记数法表示应为【 】 (A )560×103(B )56×104 (C )5.6×105 (D )0.56×106【答案】C 。

【考点】科学记数法。

【分析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值。

2012北京中考数学试题及答案

2012北京中考数学试题及答案

2012北京中考数学试题及答案2012年北京市中考数学试题及答案一、选择题(每题3分,共30分)1. 下列说法正确的是()A. 一个数的绝对值等于它的相反数,则这个数是负数或0B. 一个数的绝对值等于它的相反数,则这个数是正数或0C. 一个数的绝对值等于它的相反数,则这个数是负数D. 一个数的绝对值等于它的相反数,则这个数是正数答案:A2. 已知a<0,b>0,c<0,下列式子正确的是()A. a+b>0B. ab>0C. ac>0答案:C3. 已知a,b,c是△ABC的三边,下列式子正确的是()A. a+b>cB. a+c>bC. a-b<cD. a-b>c答案:A4. 已知a,b,c是△ABC的三边,下列式子正确的是()A. a+b>cB. a+c>bC. a-b<cD. a-b>c5. 已知a,b,c是△ABC的三边,下列式子正确的是()A. a+b>cB. a+c>bC. a-b<cD. a-b>c答案:A6. 已知a,b,c是△ABC的三边,下列式子正确的是()A. a+b>cB. a+c>bC. a-b<cD. a-b>c答案:A7. 已知a,b,c是△ABC的三边,下列式子正确的是()A. a+b>cB. a+c>bC. a-b<cD. a-b>c答案:A8. 已知a,b,c是△ABC的三边,下列式子正确的是()A. a+b>cB. a+c>bC. a-b<cD. a-b>c答案:A9. 已知a,b,c是△ABC的三边,下列式子正确的是()A. a+b>cB. a+c>bC. a-b<cD. a-b>c答案:A10. 已知a,b,c是△ABC的三边,下列式子正确的是()A. a+b>cB. a+c>bC. a-b<cD. a-b>c答案:A二、填空题(每题3分,共30分)11. 已知a,b,c是△ABC的三边,且a+b>c,a+c>b,b+c>a,则△ABC是____。

答案:三角形12. 已知a,b,c是△ABC的三边,且a+b>c,a+c>b,b+c>a,则△ABC是____。

2012年北京市中考数学模拟试卷(六)

2012年北京市中考数学模拟试卷(六)

2012年北京市中考数学模拟试卷(六)2012年北京市中考数学模拟试卷(六)一、单项选择题(每小题4分,共20分,请将所选选项的字母写在题目后的括号内)2.(4分)(2013•桂林模拟)函数的自变量x的取值范围是()3.(4分)为了了解某校300名初三学生的睡眠时间,从中抽取30名学生进行调查,在这个问题中,下列说法正确4.(4分)(2009•吴江市模拟)如图,△ABC和△GAF是两个全等的等腰直角三角形,图中相似三角形(不包括全等)共有()5.(4分)(2012•藤县一模)一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是一个圆,那么这二、填空题(每小题4分,共20分,请把下列各题的正确答案填写在横线上)6.(4分)计算:﹣2﹣1+(π﹣3.142)0+2cos230°=_________.7.(4分)若x2﹣4x﹣1=(x+a)2﹣b,则|a﹣b|=_________.8.(4分)若相交两圆的半径长分别是方程x2﹣3x+2=0的两个根,则它们的圆心距d的取值范围是_________9.(4分)(2009•太原)有两把不同的锁和三把钥匙,其中两把钥匙分别能打开其中一把锁,第三把钥匙不能打开这两把锁,任意取出一把钥匙去开任意的一把锁,一次打开锁的概率为_________.10.(4分)(2001•绍兴)如图,菱形ABCD中,对角线AC、BD交于O点,分别以A、C为圆心,AO、CO为半径画圆弧,交菱形各边于点E、F、G、H,若AC=,BD=2,则图中阴影部分的面积是_________.三、解答下列各题(每小题6分,共30分)11.(6分)解不等式组(要求利用数轴求出解集):.12.(6分)(2006•自贡)已知x=+1,求的值.13.(6分)观察下面的几个算式:13×17=221可写成100×1×(1+1)+21;23×27=621可写成100×2×(2+1)+21;33×37=1221可写成100×3×(3+1)+21;43×47=2021可写成100×4×(4+1)+21;…根据上面规律填空:(1)83×87可写成_________.(2)(10n+3)(10n+7)可写成_________.(3)计算:1993×1997=_________.14.(6分)如图,方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的△ABC就是格点三角形.在建立平面直角坐标系后,点B为(﹣1,﹣1).(1)把△ABC向左平移8格后得到△A1B1C1,则点B1的坐标为_________;(2)把△ABC绕点C按顺时针方向旋转90°后得到△A2B2C,则点B2的坐标为_________;(3)把△ABC以点A为位似中心放大,使放大前后对应边长的比为1:2,则B3的坐标为_________.15.(6分)如图,△ABC中,AB=AC,D、E分别是BC、AC上的点,∠BAD与∠CDE满足什么条件时AD=AE?写出你的推理过程.四、解答下列各题(每小题9分,共28分)16.(9分)初三年级一位学生对本班同学的上学方式进行了一次调查统计,图①和图②是他通过采集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息,解答以下问题:(1)该班共有多少名学生?(2)在图①中将表示“骑车”的部分补充完整;(3)在扇形统计图中,“步行”部分对应的圆心角的度数是多少?(4)如果全年级共有300名学生,请你估算全年级骑车上学的学生人数.17.(7分)(2001•苏州)已知如图,一次函数y=kx+b的图象与反比例函数的图象相交于A、B两点.(1)利用图中条件,求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.18.(7分)某班同学到离校24千米的农场参观,一部分骑自行车的同学先走,1小时后,没有自行车的同学乘汽车出发,结果他们同时到达农场,已知汽车速度是自行车速度的3倍,求两种车的速度.19.(7分)一条船在海面上自西向东沿直线航行,在A处测得航标C在北偏东60°方向上,前进100米到达B处,又测得航标C在北偏东45°方向上.(1)请根据以上描述,画出图形.(2)已知以航标C为圆心,120米为半径的圆形区域内有浅滩,若这条船继续前进,是否有被浅滩阻碍的危险?为什么?五、解答下列各题(每小题12分,共27分)20.(12分)如图,已知AB、AC分别为⊙O的直径和弦,D为弧BC的中点,DE⊥AC于E,DE=6,AC=16.(1)求证:DE是⊙O的切线;(2)求直径AB的长.21.(12分)(2006•兰州)如图所示,有一座抛物线形拱桥,桥下面在正常水位AB时,宽20m,水位上升3m就达到警戒线CD,这时水面宽度为10m.(1)在如图的坐标系中求抛物线的解析式;(2)若洪水到来时,水位以每小时0.2m的速度上升,从警戒线开始,再持续多少小时才能到达拱桥顶?22.(12分)如图所示,△OAB是边长为的等边三角形,其中O是坐标原点,顶点A在x轴的正方向上,将△OAB折叠,使点B落在边OA上,记为B′,折痕为EF.(1)设OB′的长为x,△OB′E的周长为c,求c关于x的函数关系式;(2)当B′E∥y轴时,求点B′和点E的坐标;(3)当B′在OA上运动但不与O、A重合时,能否使△EB′F成为直角三角形?若能,请求出点B′的坐标;若不能,请说明理由.2012年北京市中考数学模拟试卷(六)参考答案与试题解析一、单项选择题(每小题4分,共20分,请将所选选项的字母写在题目后的括号内)2.(4分)(2013•桂林模拟)函数的自变量x的取值范围是()3.(4分)为了了解某校300名初三学生的睡眠时间,从中抽取30名学生进行调查,在这个问题中,下列说法正确4.(4分)(2009•吴江市模拟)如图,△ABC和△GAF是两个全等的等腰直角三角形,图中相似三角形(不包括全等)共有()5.(4分)(2012•藤县一模)一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是一个圆,那么这二、填空题(每小题4分,共20分,请把下列各题的正确答案填写在横线上)6.(4分)计算:﹣2﹣1+(π﹣3.142)0+2cos230°=2.+1+2(7.(4分)若x2﹣4x﹣1=(x+a)2﹣b,则|a﹣b|=7.8.(4分)若相交两圆的半径长分别是方程x2﹣3x+2=0的两个根,则它们的圆心距d的取值范围是1<d<39.(4分)(2009•太原)有两把不同的锁和三把钥匙,其中两把钥匙分别能打开其中一把锁,第三把钥匙不能打开这两把锁,任意取出一把钥匙去开任意的一把锁,一次打开锁的概率为..=10.(4分)(2001•绍兴)如图,菱形ABCD中,对角线AC、BD交于O点,分别以A、C为圆心,AO、CO为半径画圆弧,交菱形各边于点E、F、G、H,若AC=,BD=2,则图中阴影部分的面积是.××AC=×==,×=2三、解答下列各题(每小题6分,共30分)11.(6分)解不等式组(要求利用数轴求出解集):.12.(6分)(2006•自贡)已知x=+1,求的值.+1=.13.(6分)观察下面的几个算式:13×17=221可写成100×1×(1+1)+21;23×27=621可写成100×2×(2+1)+21;33×37=1221可写成100×3×(3+1)+21;43×47=2021可写成100×4×(4+1)+21;…根据上面规律填空:(1)83×87可写成100×8×(8+1)+21.(2)(10n+3)(10n+7)可写成100n(n+1)+21.(3)计算:1993×1997=3980021.14.(6分)如图,方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的△ABC就是格点三角形.在建立平面直角坐标系后,点B为(﹣1,﹣1).(1)把△ABC向左平移8格后得到△A1B1C1,则点B1的坐标为(﹣9,﹣1);(2)把△ABC绕点C按顺时针方向旋转90°后得到△A2B2C,则点B2的坐标为(5,5);(3)把△ABC以点A为位似中心放大,使放大前后对应边长的比为1:2,则B3的坐标为(﹣5,﹣5)或(7,7).15.(6分)如图,△ABC中,AB=AC,D、E分别是BC、AC上的点,∠BAD与∠CDE满足什么条件时AD=AE?写出你的推理过程.四、解答下列各题(每小题9分,共28分)16.(9分)初三年级一位学生对本班同学的上学方式进行了一次调查统计,图①和图②是他通过采集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息,解答以下问题:(1)该班共有多少名学生?(2)在图①中将表示“骑车”的部分补充完整;(3)在扇形统计图中,“步行”部分对应的圆心角的度数是多少?(4)如果全年级共有300名学生,请你估算全年级骑车上学的学生人数.17.(7分)(2001•苏州)已知如图,一次函数y=kx+b的图象与反比例函数的图象相交于A、B两点.(1)利用图中条件,求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.)据题意,反比例函数﹣,,18.(7分)某班同学到离校24千米的农场参观,一部分骑自行车的同学先走,1小时后,没有自行车的同学乘汽车出发,结果他们同时到达农场,已知汽车速度是自行车速度的3倍,求两种车的速度.依题意得19.(7分)一条船在海面上自西向东沿直线航行,在A处测得航标C在北偏东60°方向上,前进100米到达B处,又测得航标C在北偏东45°方向上.(1)请根据以上描述,画出图形.(2)已知以航标C为圆心,120米为半径的圆形区域内有浅滩,若这条船继续前进,是否有被浅滩阻碍的危险?为什么?CAD=,五、解答下列各题(每小题12分,共27分)20.(12分)如图,已知AB、AC分别为⊙O的直径和弦,D为弧BC的中点,DE⊥AC于E,DE=6,AC=16.(1)求证:DE是⊙O的切线;(2)求直径AB的长.21.(12分)(2006•兰州)如图所示,有一座抛物线形拱桥,桥下面在正常水位AB时,宽20m,水位上升3m就达到警戒线CD,这时水面宽度为10m.(1)在如图的坐标系中求抛物线的解析式;(2)若洪水到来时,水位以每小时0.2m的速度上升,从警戒线开始,再持续多少小时才能到达拱桥顶?22.(12分)如图所示,△OAB是边长为的等边三角形,其中O是坐标原点,顶点A在x轴的正方向上,将△OAB折叠,使点B落在边OA上,记为B′,折痕为EF.(1)设OB′的长为x,△OB′E的周长为c,求c关于x的函数关系式;(2)当B′E∥y轴时,求点B′和点E的坐标;(3)当B′在OA上运动但不与O、A重合时,能否使△EB′F成为直角三角形?若能,请求出点B′的坐标;若不能,请说明理由.,而我们还可以通过∠+BE+OE=x+OB==,;E+OE=BE+OE=2+,参与本试卷答题和审题的老师有:feng;心若在;lf2-9;lanchong;sd2011;gbl210;csiya;ln_86;kuaile;zcx;hnaylzhyk;zzz;zhehe;CJX;Joyce;wdxwzk;lanyan;bjf;MMCH;Liuzhx;wdxwwzy;蓝月梦;星期八;zxw;zhjh;自由人(排名不分先后)菁优网2014年2月27日。

北京中考数学试题(含答案及解析版)

北京中考数学试题(含答案及解析版)

2018年北京市高级中等学校招生考试数学试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有..一个。

1. 下列几何体中,是圆柱的为2. 实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是(A )>4a (B )>0b c - (C )>0ac (D )>0c a +3. 方程式⎩⎨⎧=-=-14833y x y x 的解为(A )⎩⎨⎧=-=21y x (B )⎩⎨⎧-==21y x (C )⎩⎨⎧=-=12y x (D )⎩⎨⎧-==12y x4. 被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST 的反射面总面积相当于35个标准足球场的总面积。

已知每个标准足球场的面积为7140m 2,则FAST 的反射面总面积约为 (A )231014.7m ⨯ (B )241014.7m ⨯ (C )25105.2m ⨯ (D )26105.2m ⨯ 5. 若正多边形的一个外角是o 60,则该正多边形的内角和为(A )o 360 (B )o 540 (C )o 720 (D )o 9006. 如果32=-b a ,那么代数式b a ab a b a -⋅⎪⎪⎭⎫ ⎝⎛-+222的值为(A )3 (B )32 (C )33 (D )34 7. 跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系()02≠=+=a c bx ax y 。

下图记录了某运动员起跳后的x 与y 的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为(A )10m (B )15m (C )20m (D )22.5m8. 上图是老北京城一些地点的分布示意图。

在图中,分别以正东、正北方向为x 轴、y 轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为()0,0,表示广安门的点的坐标为()3,6--时,表示左安门的点的坐标为()6,5-;②当表示天安门的点的坐标为()0,0,表示广安门的点的坐标为()6,12--时,表示左安门的点的坐标为()12,10-;③当表示天安门的点的坐标为()1,1,表示广安门的点的坐标为()5,11--时,表示左安门的点的坐标为()11,11-;④当表示天安门的点的坐标为()5.1,5.1,表示广安门的点的坐标为()5.7,5.16--时,表示左安门的点的坐标为(),5.16,5.16-。

2024年北京市中考数学试题+答案详解

2024年北京市中考数学试题+答案详解

2024年北京市中考数学试题+答案详解(试题部分)考生须知:1.本试卷共6页,共两部分.三道大题,28道小题。

满分100分。

考试时间120分钟。

2.在试卷和草稿纸上准确填写姓名、准考证号、考场号和座位号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.在答题卡上.选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束,将本试卷、答题卡和草稿纸一并交回。

第一部分 选择题一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个1. 下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D. 2. 如图,直线AB 和CD 相交于点O ,OE OC ⊥,若58AOC ∠=︒,则EOB ∠的大小为( )A. 29︒B. 32︒C. 45︒D. 58︒3. 实数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A. 1b >−B. 2b >C. 0a b +>D. 0ab > 4. 若关于x 的一元二次方程240x x c −+=有两个相等的实数根,则实数c 的值为( )A. 16−B. 4−C. 4D. 165. 不透明的袋子中装有一个红色小球和一个白色小球,除颜色外两个小球无其他差别.从中随机取出一个小球后,放回并摇匀,再从中随机取出一个小球,则两次都取到白色小球的概率为( ) A. 34 B. 12 C. 13 D. 146. 为助力数字经济发展,北京积极推进多个公共算力中心的建设.北京数字经济算力中心日前已部署上架和调试的设备的算力为17410⨯Flops (Flops 是计算机系统算力的一种度量单位),整体投产后,累计实现的算力将是日前已部署上架和调试的设备的算力的5倍,达到m Flops ,则m 的值为( )A. 16810⨯B. 17210⨯C. 17510⨯D. 18210⨯7. 下面是“作一个角使其等于AOB ∠”的尺规作图方法.上述方法通过判定C O D COD '''△≌△得到A O B AOB '''∠=∠,其中判定C O D COD '''△≌△的依据是( )A. 三边分别相等的两个三角形全等B. 两边及其夹角分别相等的两个三角形全等C. 两角及其夹边分别相等的两个三角形全等D. 两角分别相等且其中一组等角的对边相等的两个三角形全等8. 如图,在菱形ABCD 中,60BAD ∠=︒,O 为对角线的交点.将菱形ABCD 绕点O 逆时针旋转90︒得到菱形A B C D '''',两个菱形的公共点为E ,F ,G ,H .对八边形BFB GDHD E ''给出下面四个结论: ①该八边形各边长都相等;②该八边形各内角都相等;③点O 到该八边形各顶点的距离都相等;④点O 到该八边形各边所在直线的距离都相等。

北京市2012年中考数学试题(解析版)

北京市2012年中考数学试题(解析版)

2012年北京市高级中等学校招生考试数学试卷1. 9-的相反数是A .19-B .19C .9-D .9【解析】 D 【点评】 本题考核的是相反数,难度较小,属送分题,本题考点:相反数.难度系数为0.95.2. 首届中国(北京)国际服务贸易交易会(京交会)于2012年6月1日闭幕,本届京交会期间签订的项目成交总金额达60 110 000 000美元,将60 110 000 000用科学记数法表示应为A .96.01110⨯B .960.1110⨯C .106.01110⨯D .110.601110⨯【解析】 C 【点评】 本题是以时政为背景的一道题,考核了科学记数法的同时让学生了解我国经贸发展的影响力及相关情况,进行爱国主义教育。

此类与时事政治相关的考题是全国各地的总体命题趋势. 本题考点:科学记数法. 难度系数为:0.93. 正十边形的每个外角等于A .18︒B .36︒C .45︒D .60︒【解析】 B 【点评】 本题考核了多边形的外角和及利用外角和列方程解决相关问题.多边形的外角和是初一下的内容,可能时间久了部分学生会忘记,但是这并不是重点,如果我们在学习这个知识的时候能真正理解,在考试时即使忘记了,推导一下也不会花多少时间,所以,学习数学,理解比记忆更重要. 本题考点:多边形的外角和(或多边形内角和公式),及利用公式列方程解应用题 难度系数:0.754. 右图是某个几何体的三视图,该几何体是A .长方体B .正方体C .圆柱D .三棱柱【解析】 D 【点评】 本题考核了基本几何体的三视图,判断简单物体的三视图,根据三视图描述实物原型.本题考点:立体图形的三视图 难度系数:0.85. 班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小英等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物,1份是科技馆通票.小英同学从中随机取一份奖品,恰好取到科普读物的概率是 A .16B .13C .12D .23【解析】 B 【点评】 本题是以班级优秀评比奖励为背景,考核了学生对概率求解的相关知识.,同时也进行了学生关爱集体教育,是一道很不错的题目本题考点:求概率.难度系数:0.96. 如图,直线AB ,CD 交于点O ,射线OM 平分AOC ∠,若76BOD ∠=︒,则BOM ∠等于A .38︒B .104︒C .142︒D .144︒【解析】 C 【点评】 本题对对顶角、角平分线的概念进行考核,用角平分线的性质解决简单问题,并结合图形分析角与角之间的关系 本题考点:角与角平分线. 难度系数:0.857. 某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如下表所示:用电量(度)120140160 180 200 户数 2 3672则这20户家庭该月用电量的众数和中位数分别是 A .180,160B .160,180C .160,160D .180,180【解析】 A 【点评】 本题以调查家庭单月用电量为背景,在向学生渗透参与社会活动、关心生活的基础上考核了数理统计的相关知识。

2012年中考数学分类解析(159套63专题)专题26_数据的分析与整理

2012年中考数学分类解析(159套63专题)专题26_数据的分析与整理

2012年全国中考数学试题分类解析汇编(159套63专题)专题26:数据的分析与整理祝您中考顺利!一、选择题1. (2012北京市4分)某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如下表所示:用电量(度)120 140 160 180 200 户数 2 3 6 7 2 则这20户家庭该月用电量的众数和中位数分别是【】A.180,160 B.160,180 C.160,160 D.180,180【答案】A。

【考点】众数,中位数。

【分析】众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是180,故这组数据的众数为180。

中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)。

由此将这组数据重新排序为120,120,140,140,140,160,160,160,160,160,160,180,180,180,180,180,180,180,200,200,∴中位数是第10和11个平均数,它们都是160,故这组数据的中位数为160。

故选A。

2. (2012天津市3分)为调查某校2000名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图.根据统计图提供的信息,可估算出该校喜爱体育节目的学生共有【】(A)300名(B)400名(C)500名(D)600名【答案】B。

【考点】扇形统计图,用样本估计总体。

【分析】根据扇形图可以得出该校喜爱体育节目的学生所占比例:1-5%-35%-30%-10%=20%,从而根据用样本估计总体得出该校喜爱体育节目的学生数目:2000×20%=400。

故选B。

3. (2012上海市4分)数据5,7,5,8,6,13,5的中位数是【】A. 5 B. 6 C. 7 D. 8【答案】B。

【考点】中位数。

【分析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)。

2012年中考数学分类解析(159套63专题)专题35_平面几何基础

2012年中考数学分类解析(159套63专题)专题35_平面几何基础

2012年全国中考数学试题分类解析汇编(159套63专题)专题35:平面几何基础今升数学工作室编辑一、选择题1. (2012北京市4分)如图,直线AB,CD交于点O,射线OM平分∠AOD,若∠BOD=760,则∠BOM 等于【】A.38︒B.104︒C.142︒D.144︒【答案】C。

【考点】角平分线定义,对顶角的性质,补角的定义。

【分析】由∠BOD=760,根据对顶角相等的性质,得∠AOC=760,根据补角的定义,得∠BOC=1040。

由射线OM平分∠AOD,根据角平分线定义,∠COM=380。

∴∠BOM=∠COM+∠BOC=1420。

故选C。

2. (2012重庆市4分)已知:如图,BD平分∠ABC,点E在BC上,EF∥AB.若∠CEF=100°,则∠ABD 的度数为【】A.60°B.50°C.40°D.30°【答案】B。

【考点】平行线的性质,角平分线的定义。

【分析】∵EF∥AB,∠CEF=100°,∴∠ABC=∠CEF=100°。

∵BD平分∠ABC,∴∠ABD=12∠ABC=12×100°=50°。

故选B。

3. (2012山西省2分)如图,直线AB∥CD,AF交CD于点E,∠CEF=140°,则∠A等于【】A . 35°B . 40°C . 45°D . 50°【答案】B 。

【考点】平行线的性质,平角定义。

【分析】∵∠CEF=140°,∴∠FED=180°﹣∠CEF=180°﹣140°=40°。

∵直线AB ∥CD ,∴∠A=∠FED=40°。

故选B 。

4. (2012海南省3分)一个三角形的两边长分别为3cm 和7cm ,则此三角形的第三边的长可能是【 】 A .3cm B .4cm C .7cm D .11cm 【答案】C 。

2012年北京中考数学试卷及答案解析

2012年北京中考数学试卷及答案解析

2012年北京市高级中等学校招生考试数 学 试 卷(答案)学校 姓名 准考证号一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的. 1. 9-的相反数是A .19-B .19C .9-D .92. 首届中国(北京)国际服务贸易交易会(京交会)于2012年6月1日闭幕,本届京交会期间签订的项目成交总金额达60 110 000 000美元,将60 110 000 000用科学记数法表示应为 A .96.01110⨯B .960.1110⨯C .106.01110⨯D .110.601110⨯3. 正十边形的每个外角等于A .18︒B .36︒C .45︒D .60︒4. 右图是某个几何体的三视图,该几何体是A .长方体B .正方体C .圆柱D .三棱柱5. 班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小英等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物,1份是科技馆通票.小英同学从中随机取一份奖品,恰好取到科普读物的概率是 A .16B .13C .12D .236. 如图,直线AB ,C D 交于点O ,射线O M 平分A O C ∠,若76BO D ∠=︒,则BO M ∠等于 A .38︒ B .104︒C .142︒D .144︒7. 某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如下表所示:A .180,160B .160,180C .160,160D .180,1808. 小翔在如图1所示的场地上匀速跑步,他从点A 出发,沿箭头所示方向经过点B 跑到点C ,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t (单位:秒),他与教练的距离为y (单位:米),表示y 与t 的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的 A .点MB .点NC .点PD .点Q二、填空题(本题共16分,每小题4分) 9. 分解因式:269mn mn m ++= .10.若关于x 的方程220x x m --=有两个相等的实数根,则m 的值是 . 11.如图,小明同学用自制的直角三角形纸板D EF 测量树的高度AB ,他调整自己的位置,设法使斜边D F 保持水平,并且边D E与点B 在同一直线上.已知纸板的两条直角边40c m D E =,20cm EF =,测得边D F 离地面的高度1.5mAC =,8m C D =,则树高AB = m .12.在平面直角坐标系xOy 中,我们把横 、纵坐标都是整数的点叫做整点.已知点()04A ,,点B 是x 轴正半轴上的整点,记AO B △内部(不包括边界)的整点个数为m .当3m =时,点B 的横坐标的所有可能值是 ;当点B 的横坐标为4n (n 为正整数)时,m = (用含n 的代数式表示.)三、解答题(本题共30分,每小题5分)13.计算:()11π32sin 458-⎛⎫-+︒- ⎪⎝⎭.14.解不等式组:4342 1.x x x x ->⎧⎨+<-⎩,15.已知023a b =≠,求代数式()225224a b a b a b-⋅--的值.16.已知:如图,点E A C ,,在同一条直线上,AB C D ∥,AB CE AC CD ==,.求证:B C E D =.17.如图,在平面直角坐标系xOy 中,函数()40y x x=>的图象与一次函数y kx k =-的图象的交点为()2A m ,.(1)求一次函数的解析式;(2)设一次函数y kx k =-的图象与y 轴交于点B ,若P 是x 轴上一点,且满足P A B △的面积是4,直接写出点P 的坐标.18.列方程或方程组解应用题:据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.四、解答题(本题共20分,每小题5分)19.如图,在四边形ABC D 中,对角线AC BD ,交于点E ,904530BAC CED D CE D E ∠=︒∠=︒∠=︒=,,,BE =.求C D 的长和四边形ABC D 的面积.20.已知:如图,AB 是O ⊙的直径,C 是O ⊙上一点,O D BC ⊥于点D ,过点C 作O ⊙的切线,交O D 的延长线于点E ,连结BE . (1)求证:BE 与O ⊙相切;(2)连结AD 并延长交BE 于点F ,若9OB =,2s i n 3ABC ∠=,求BF的长.21.近年来,北京市大力发展轨道交通,轨道运营里程大幅增加,2011年北京市又调整修订了2010至2020年轨道交通线网的发展规划.以下是根据北京市轨道交通指挥中心发布的有关数据制作的统计图表的一部分.请根据以上信息解答下列问题:(1)补全条形统计图并在图中标明相应数据;(2)按照2011年规划方案,预计2020年北京市轨道交通运营里程将达到多少千米?(3)要按时完成截至2015年的轨道交通规划任务,从2011到2015这4年中,平均每年需新增运营里程多少千米?22.操作与探究:(1)对数轴上的点P 进行如下操作:先把点P 表示的数乘以13,再把所得数对应的点向右平移1个单位,得到点P 的对应点P '.点A B ,在数轴上,对线段AB 上的每个点进行上述操作后得到线段A B '',其中点A B ,的对应点分别为A B '',.如图1,若点A 表示的数是3-,则点A '表示的数是 ;若点B '表示的数是2,则点B 表示的数是 ;已知线段AB 上的点E 经过上述操作后得到的对应点E '与点E 重合,则点E 表示的数是 ;北京市轨道交通已开通线路相关数据统计表(截至2010年底)(2)如图2,在平面直角坐标系xOy 中,对正方形ABC D 及其内部的每个点进行如下操作:把每 个点的横、纵坐标都乘以同一种实数a ,将得到的点先向右平移m 个单位,再向上平移n 个单位(00m n >>,),得到正方形A B C D ''''及其内部的点,其中点A B ,的对应点分别为A B '',。

2012年北京市中考数学试题(含答案)

2012年北京市中考数学试题(含答案)

一、选择题(共32分,每题4分)1.-9的相反数是()A.19-B.19C.-9D.92.首届中国(北京)国际服务贸易交易会(京交会)于2012年6月1日闭幕,本届京交会期间签订的项目成交总金额达60110000000美元,将60110000000用科学记数法表示应为()A.96.01110⨯B.960.1110⨯C.106.01110⨯D.110.601110⨯3.正十边形的每个外角等于()A.18°B.36°C.45° D.60°4.右图是某个几何体的三视图,该几何体是()A.长方体B.正方体C.圆柱D.三棱柱5.班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小英等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物,1份是科技馆通票.小英同学从中随机取一份奖品,恰好取到科普读物的概率是()A.16B.13C.12D.236.如图,直线AB,CD交于点O.射线OM平分∠AOC,若∠BOD=76°,则∠BOM等于()A.38°B.104°C.142°D.144°7.某课外小组的同学们实践活动中调查了20户家庭某月用电量,如下表所示:则这20户家庭用电量的众数和中位数分别是()A.180,160B.160,180C.160,160 D.180,1808.小翔在如图1所示的场地上匀速跑步,他从点A出发,沿箭头所示的方向经过B跑到点C,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t(单位:秒),他与教练距离为y(单位:米),表示y与t的函数关系的图象大致如图2,则这个固定位置可能是图1的()2012年北京市中考数学试题(满分120分,考试时间120分钟)A .点MB .点NC .点PD .点Q二、填空题(共16分,每题4分)9. 分解因式:mn 2+6mn +9m =_______________.10. 若关于x 的方程x 2-2x -m =0有两个相等的实数根,则m 的值是______.11. 如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边AC 与点B 在同一直线上,已知纸板的两条直角边DE =40cm ,EF =20cm ,测得边DF 离地面的高度AC =1.5m ,CD =8m ,则树高AB =_____m .第11题图第12题图12. 在平面直角坐标系xOy 中,我们把横纵坐标都是整数的点叫做整点.已知点A (0,4),点B 是x 正半轴上的整点,记△AOB 内部(不包括边界)的整数点个数为m ,当m =3时,点B 的横坐标的所有可能值是_______;当点B 的横坐标为4n (n 为正整数)时,m =____________.(用含n 的代数式表示).三、解答题(共30分,每小题5分)13. 计算:011()+182sin 45()8-π-︒-3.14. 解不等式组:43+421x xx x -⎧⎨-⎩><.15. 已知=023a b ≠,求代数式2252(2)4a ba b a b -⋅--的值.16.已知:如图,点E,A,C在同一直线上,AB∥CD,AB=CE,AC=CD.求证:BC=ED.17.如图,在平面直角坐标系xOy中,函数4(0)=>的图象与一次函数y=kx-k的图y xx象交点为A(m,2).(1)求一次函数的解析式;(2)设一次函数y=kx-k的图象与y轴交于点B,若P是x轴上一点,且满足△PAB 的面积是4,直接写出点P的坐标.18.列方程或方程组解应用题:据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.四、解答题(共20分,每小题5分)19.如图,在四边形ABCD中,对角线AC,BD交于点E,∠BAC=90°,∠CED=45°,∠DCE=30°,DE=2,BE=22.求CD的长和四边形ABCD的面积.20.已知:如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.(1)求证:BE与⊙O相切;(2)连接AD并延长交BE于点F,若OB=9,sin∠ABC=23,求BF的长.21.近年来,北京市大力发展轨道交通,轨道运营里程大幅增加,2011年北京市又调整修订了2010至2020年轨道交通线网的发展规划.以下是根据北京市轨道交通指挥中心发布的有关数据制作的统计图的一部分.请根据以上信息解答下列部问题:(1)补全条形图并在图中标明相应数据;(2)按照2011年规划方案,预计2020年北京市轨道交通运营总里程将达到多少千米;(3)要按时完成截至2015年的轨道交通规划任务,从2011到2015年这4年中,平均每年需新增运营里程多少千米?22.(1)对数轴上的点P进行如下操作:先把点P表示的数乘以1,再把所得数对应3的点向右平移1个单位,得到点P的对应点P'.点A,B在数轴上,对线段AB上的每个点进行上述操作后得到线段A'B',其中点A,B的对应点分别为A',B'.如图1,若点A表示的数是-3,则点A'表示的数是_______;若点B'表示的数是2,则点B表示的数是______;已知线段AB上的点E经过上述操作后得到的对应点E'与点E重合,则点E表示的数是______.(2)如图2,在平面直角坐标系中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标乘以同一个实数a,将得到的点先向右平移m个单位,再向上平移n个单位(m>0,n>0),得到正方形A'B'C'D'及其内部的点,其中点A,B的对应点分别为A',B'.已知正方形ABCD内部的一点F经过上述操作后得到的对应点F'与点F重合,求点F的坐标.五、解答题(共22分)23. (7分)已知二次函数23(1)2(2)2y t x t x =++++在x =0与x =2的函数值相等.(1)求二次函数的解析式;(2)若一次函数y =kx +6的图象与二次函数的图象都经过点A (-3,m ),求m 与k 的值;(3)设二次函数的图象与x 轴交于点B ,C (点B 在点C 的左侧),将二次函数的图象B ,C 间的部分(含点B 和点C )向左平移n (n >0)个单位后得到的图象记为G ,同时将(2)中得到的直线y =kx +6向上平移n 个单位.请结合图象回答:平移后的直线与图象G 有公共点时, n 的取值范围.24. (7分)在△ABC 中,BA =BC ,∠BAC =α,M 是AC 的中点,P 是线段BM 上的动点,将线段PA 绕点P 顺时针旋转2α得到线段PQ .(1)若α=60°且点P 与点M 重合(如图1),线段CQ 的延长线交射线BM 于点D ,请补全图形,并写出∠CDB 的度数; (2)在图2中,点P 不与点B ,M 重合,线段CQ 的延长线与射线BM 交于点D ,猜想∠CDB 的大小(用含α的代数式表示),并加以证明;(3)对于适当大小的α,当点P 在线段BM 上运动到某一位置(不与点B ,M 重合)时,能使得线段CQ 的延长线与射线BM 交于点D ,且PQ =QD ,请直接写出α的范围.25. (8分)在平面直角坐标系xOy 中,对于任意两点P 1(x 1,y 1)与P 2(x 2,y 2)的“非常距离”,给出如下定义:若1212x x y y -≥-,则点P 1(x 1,y 1)与点P 2(x 2,y 2)的非常距离为12x x -; 若12x x -<12y y -,则点P 1(x 1,y 1)与P 2(x 2,y 2)的非常距离为12y y -; 因为1325--<,所以点例如:点P 1(1,2),点P 2(3,5),25=3-,也就是图1中线P 1与点P 2的“非常距离”为段P 1Q 与线段P 2Q 长度的较大值(点Q 为垂直于y 轴的直线P 1Q与垂直于x 轴的直线P 2Q 的交点).(1)已知点A (12-,0),B 为y 轴上的一个动点,①若点A与点B的“非常距离”为2,写出一个满足条件的点B的坐标;②直接写出点A与点B的“非常距离”的最小值.(2)已知C是直线3+34y x上的一个动点,①如图2,点D的坐标是(0,1),求点C与点D的“非常距离”的最小值及相应的点C的坐标;②如图3,E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E的“非常距离”的最小值及相应点E和点C的坐标.2012年北京市中考数学参考答案一、选择题(共32分,每题4分)二、填空题()三、解答题()13.14.x >515.1216.证明略(提示:证明△ABC ≌△CED )17.(1)y =2x -2;(2)P (3,0)或(-1,0) 18.22毫克四、解答题(共20分,每小题5分)19.CD =2;四边形ABCD20.(1)证明略;(2)BF 21.(1)228,图略;(2)1000千米;(3)82.75千米22.(1)0;3;32;(2)F (1,4)五、解答题(共22分)23.(1)21322y x x =-++;(2)m =-6;k =4;(3)263n ≤≤24.(1)∠CDB =30°;(2)∠CDB =90°-α;(3)45°<α<60°25.(1)①B (0,2)或(0,-2);②12;(2)①87;C (87-,157);②1;C (85-,95);E (35-,45)。

华北地区2012年中考数学试题分类解析 专题1:代数问题

华北地区2012年中考数学试题分类解析 专题1:代数问题

华北地区2012年中考数学试题(8套)分类解析汇编(6专题)专题1:代数问题锦元数学工作室 编辑一、选择题1. (2012北京市4分) 9-的相反数是【 】A .19-B .19C .9-D .9【答案】D 。

【考点】相反数。

【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0。

因此-9的相反数是9。

故选D 。

2.(2012北京市4分)首届中国(北京)国际服务贸易交易会(京交会)于2012年6月1日闭幕,本届京交会期间签订的项目成交总金额达60 110 000 000美元,将60 110 000 000用科学记 数法表示应为【 】A .96.01110⨯B .960.1110⨯C .106.01110⨯D .110.601110⨯【答案】C 。

【考点】科学记数法。

【分析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值。

在确定n 的值时,看该数是大于或等于1还是小于1。

当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0)。

60 110 000 000一共11位,从而60 110 000 000=6.011×1010。

故选C 。

3. (2012天津市3分)据某域名统计机构公布的数据显示,截至2012年5月21日,我国“.NET”域名注册量约为560 000个,居全球第三位.将560 000用科学记数法表示应为【 】 (A )560×103(B )56×104 (C )5.6×105 (D )0.56×106【答案】C 。

【考点】科学记数法。

【分析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值。

北京市历年中考数学试题及答案(word版)

北京市历年中考数学试题及答案(word版)

2013年北京市高级中等学校招生考试数学试卷满分120分,考试时间120分钟一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的。

1. 在《关于促进城市南部地区加快发展第二阶段行动计划(2013—2015)》中,北京市提出了总计约3 960亿元的投资计划。

将3 960用科学计数法表示应为A。

39。

6×102B。

3。

96×103 C. 3.96×104D。

3。

96×104 2。

的倒数是A. B. C. D。

3. 在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为A。

B. C。

D。

4. 如图,直线,被直线所截,∥,∠1=∠2,若∠3=40°,则∠4等于A。

40°B。

50°C。

70° D. 80°5。

如图,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB ⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上。

若测得BE=20m,EC=10m,CD=20m,则河的宽度AB等于A. 60mB. 40mC。

30m D. 20m6. 下列图形中,是中心对称图形但不是轴对称图形的是7。

某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:则这50名学生这一周在校的平均体育锻炼时间是A. 6。

2小时B。

6.4小时 C. 6。

5小时 D. 7小时8。

如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=2,设弦AP的长为,△APO的面积为,则下列图象中,能表示与的函数关系的图象大致是二、填空题(本题共16分,每小题4分)9。

分解因式:=_________________10。

请写出一个开口向上,并且与y轴交于点(0,1)的抛物线的解析式__________10 11。

全国各地2012年中考数学分类解析(159套)专题29:投影与视图

全国各地2012年中考数学分类解析(159套)专题29:投影与视图

2012年全国中考数学试题分类解析汇编(159套63专题)专题29:投影与视图一、选择题1. (2012北京市4分)下图是某个几何体的三视图,该几何体是【】A.长方体 B.正方体 C.圆柱 D.三棱柱【答案】D。

【考点】由三视图判断几何体。

【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,由于主视图和左视图为矩形,可得为柱体,俯视图为三角形可得为三棱柱。

故选D。

2. (2012天津市3分)右图是一个由4个相同的正方体组成的立体图形,它的三视图是【】【答案】A。

【考点】简单组合体的三视图。

【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形。

从正面看可得从左往右2列正方形的个数依次为1,2;从左面看可得到从左往右2列正方形的个数依次为2,1;从上面看可得从上到下2行正方形的个数依次为1,2。

故选A。

3. (2012安徽省4分)下面的几何体中,主(正)视图为三角形的是【】A. B. C.D.【答案】C。

【考点】判断立体图形的三视图。

【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形。

因此,根据这几个常见几何题的视图可知:圆柱的主视图是矩形,正方体的主视图是正方形,圆锥的主视图是三角形,三棱柱的主视图是宽相等两个相连的矩形。

故选C。

4. (2012山西省2分)如图所示的工件的主视图是【】A. B. C. D.【答案】B。

【考点】简单组合体的三视图。

【分析】从物体正面看,看到的是一个横放的矩形,且一条斜线将其分成一个直角梯形和一个直角三角形。

故选B。

5. (2012海南省3分)如图竖直放置的圆柱体的俯视图是【】A.长方体 B.正方体 C.圆 D.等腰梯形【答案】C。

【考点】简单组合体的三视图。

【分析】找到从上面看所得到的图形即可:从上面看易得是圆。

故选C。

6. (2012陕西省3分)如图,是由三个相同的小正方体组成的几何体,该几何体的左视图是【】A. B. C. D.【答案】C。

华北地区2012年中考数学试题分类解析专题6:押轴题

华北地区2012年中考数学试题分类解析专题6:押轴题

华北地区2012年中考数学试题(8套)分类解析汇编(6专题)专题6:押轴题一、选择题1. (2012北京市4分)小翔在如图1所示的场地上匀速跑步,他从点A出发,沿箭头所示方向经过点B跑到点C,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t(单位:秒),他与教练的距离为y(单位:米),表示y与t的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的【】A.点M B.点N C.点P D.点Q【答案】D。

【考点】动点问题的函数图象.【分析】分别在点M、N、P、Q的位置,结合函数图象进行判断,利用排除法即可得出答案:A、在点M位置,则从A至B这段时间内,弧 AB上每一点与点M的距离相等,即y不随时间的变化改变,与函数图象不符,故本选项错误;B、在点N位置,则根据矩形的性质和勾股定理,NA=NB=NC,且最大,与函数图象不符,故本选项错误;C、在点P位置,则PC最短,与函数图象不符,故本选项错误;D、在点P位置,如图所示,①以Q为圆心,QA为半径画圆交 AB于点E,其中y最大的点是AE的中垂线与弧 AB的交点H;②在弧 AB上,从点E到点C上,y逐渐减小;③QB=QC,即y=y,且BC的中垂线QN与BC的交点F是y的最小值点。

经判断点QB C符合函数图象,故本选项正确。

故选D。

2. (2012天津市3分)若关于x 的一元二次方程(x -2)(x -3)=m 有实数根x 1,x 2,且x 1≠x 2,有下列结论: ①x 1=2,x 2=3;②1m 4>-;③二次函数y =(x -x 1)(x -x 2)+m 的图象与x 轴交点的坐标为(2,0)和(3,0). 其中,正确结论的个数是【 】 (A )0 (B )1 (C )2 (D )3【答案】C 。

【考点】抛物线与x 轴的交点,一元二次方程的解,一元二次方程根的判别式和根与系数的关系。

【分析】①∵一元二次方程实数根分别为x 1、x 2,∴x 1=2,x 2=3,只有在m =0时才能成立,故结论①错误。

2012年北京中考数学试卷含答案.docx

2012年北京中考数学试卷含答案.docx

2012 年中考真題2012 年中考数学卷精析版——北京卷(本试卷满分120 分,考试时间120 分钟)一、选择题(本题共32 分,每小题 4 分)下面各题均有四个选项,其中只有一个是符合题意的.3.(2012北京市 4 分)正十边形的每个外角等于【】A . 18B . 36C. 45D. 60【答案】B。

【考点】多边形外角性质。

【分析】根据外角和等于3600的性质,得正十边形的每个外角等于3600÷10=360。

故选B。

4.(2012北京市 4 分)下图是某个几何体的三视图,该几何体是【】A .长方体B .正方体C.圆柱D.三棱柱【答案】 D。

【考点】由三视图判断几何体。

【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,由于主视图和左视图为矩形,可得为柱体,俯视图为三角形可得为三棱柱。

故选5.(2012北京市4分)班主任王老师将 6 份奖品分别放在D。

6 个完全相同的不透明礼盒中,准备将它们奖给小英等 6 位获“爱集体标兵”称号的同学.这些奖品中3 份是学习文具, 2 份是科普读物, 1 份是科技馆通票.小英同学从中随机取一份奖品,恰好取到科普读物的概率是【】A .1B .1C.1D.2 6323【答案】 B。

【考点】概率。

【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率。

本题全部等可能情况的总数6,取到科普读物的情况是2。

∴取到科普读物的概率是21。

故选 B。

6 36.(2012北京市4分)如图,直线AB ,CD 交于点 O,射线 OM 平分∠ AOD ,若∠ BOD=76 0,则∠ BOM 等于【】A . 38B . 104C.142D.144【答案】 C。

【考点】角平分线定义,对顶角的性质,补角的定义。

【分析】由∠ BOD=76 0,根据对顶角相等的性质,得∠AOC=76 0,根据补角的定义,得∠BOC=104 0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年北京市高级中等学校招生考试数学试卷1. 9-的相反数是A .19-B .19C .9-D .9【解析】 D 【点评】 本题考核的是相反数,难度较小,属送分题,本题考点:相反数.难度系数为0.95.2. 首届中国(北京)国际服务贸易交易会(京交会)于2012年6月1日闭幕,本届京交会期间签订的项目成交总金额达60 110 000 000美元,将60 110 000 000用科学记数法表示应为A .96.01110⨯B .960.1110⨯C .106.01110⨯D .110.601110⨯【解析】 C 【点评】 本题是以时政为背景的一道题,考核了科学记数法的同时让学生了解我国经贸发展的影响力及相关情况,进行爱国主义教育。

此类与时事政治相关的考题是全国各地的总体命题趋势. 本题考点:科学记数法.难度系数为:0.93. 正十边形的每个外角等于A .18︒B .36︒C .45︒D .60︒【解析】 B 【点评】 本题考核了多边形的外角和及利用外角和列方程解决相关问题.多边形的外角和是初一下的内容,可能时间久了部分学生会忘记,但是这并不是重点,如果我们在学习这个知识的时候能真正理解,在考试时即使忘记了,推导一下也不会花多少时间,所以,学习数学,理解比记忆更重要.本题考点:多边形的外角和(或多边形内角和公式),及利用公式列方程解应用题 难度系数:0.754. 右图是某个几何体的三视图,该几何体是A .长方体B .正方体C .圆柱D .三棱柱【解析】 D 【点评】 本题考核了基本几何体的三视图,判断简单物体的三视图,根据三视图描述实物原型.本题考点:立体图形的三视图 难度系数:0.85. 班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小英等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物,1份是科技馆通票.小英同学从中随机取一份奖品,恰好取到科普读物的概率是A.16B.13C.12D.23【解析】B【点评】本题是以班级优秀评比奖励为背景,考核了学生对概率求解的相关知识.,同时也进行了学生关爱集体教育,是一道很不错的题目本题考点:求概率.难度系数:0.96.如图,直线AB,C D交于点O,射线O M平分A O C∠,若76BO D∠=︒,则B O M∠等于A.38︒B.104︒C.142︒D.144︒【解析】C【点评】本题对对顶角、角平分线的概念进行考核,用角平分线的性质解决简单问题,并结合图形分析角与角之间的关系本题考点:角与角平分线.难度系数:0.857.某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如下表所示:用电量(度)120 140 160 180 200 户数 2 3 6 7 2则这20户家庭该月用电量的众数和中位数分别是A.180,160 B.160,180 C.160,160 D.180,180 【解析】A【点评】本题以调查家庭单月用电量为背景,在向学生渗透参与社会活动、关心生活的基础上考核了数理统计的相关知识。

本题考点:众数、中位数.难度系数:0.858.小翔在如图1所示的场地上匀速跑步,他从点A出发,沿箭头所示方向经过点B跑到点C,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t(单位:秒),他与教练的距离为y(单位:米),表示y与t的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的A.点M B.点N C.点P D.点Q【解析】D【点评】本题考核的立意相对较新,考核了学生的空间想象能力,结合图形理解两点之间距离的概念,认识两点间距离变化产生的数量关系。

采取验证法和排除法求解较为简单。

本题考点:两点间距离、线段.难度系数:0.49.分解因式:269++=.mn mn m【解析】2(3)m n+【点评】本题是一道典型的中考题型的因式分解:先提取公因式,然后再应用一次公式.本题考点:因式分解(提取公因式法、应用公式法)难度系数:0.8510.若关于x的方程220--=有两个相等的实数根,则m的值是.x x m【解析】1-【点评】本题作为一元二次方程根的判别式的常见题型,利用一元二次方程根的情况确定方程中待定系数的取值,依据等实根产生判别式等于零,建立方程求解。

本题考点:一元二次方程跟的判别式.难度系数:0.811.如图,小明同学用自制的直角三角形纸板D EF测量树的高度AB,他调整自己的位置,设法使斜边D F保持水平,并且边D E与点B在同一直线上.已知纸板的两条直角边AC=,8mC D=,则树高AB=EF=,测得边D F离地面的高度 1.5m40cmD E=,20cmm.5.5【点评】本题尽管是填空题的倒数第二道题,但难度较小,很多学生在读完题后就能马上得出是相似三角形的问题,但关键是找准对应边,分析成比例线段,注意统一单位(不过找对对应边后与单位无关).本题考点:相似三角形难度系数:0.7512.在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点叫做整点.已知点()A,,点B是x轴正半轴上的整点,04记AO Bm=时,△内部(不包括边界)的整点个数为m.当3点B的横坐标的所有可能值是;当点B的横坐标为4n(n为正整数)时,m=(用含n的代数式表示.)【解析】3或4;63n-【点评】本题是一道图形操作型规律探究性问题,考察观察能力和作图能力,对于此类题目首先应找出那些部分发生了变化,是按照什么规律变化的。

对于本题而言难点就是,B点的运动位置及运动特点的分析,然后采用图形操作及验证法判断符合要求的整点个数。

学生很容易发现部分整点个数变化规律,但是如何用一个统一的式子表示出变化规律是难点.本题考点:找规律、平面直角坐标系.难度系数:0.413.计算:()11π3182sin 458-⎛⎫-+-︒- ⎪⎝⎭【解析】 722-+【点评】 本题综合考核了初中数学代数部分的相关计算题,尽管题目综合的知识点很多,但是都不难,只要掌握了每一个知识点,解决本题应该不在话下.本题是北京市中考计算题中的常见题型.本题考点:二次根式的化简、特殊角的三角函数值、零次幂运算、负指数幂运算. 难度系数:0.814.解不等式组:4342 1.x x x x ->⎧⎨+<-⎩,【解析】 5x > 【点评】 解不等式(组)也是北京市中考题中计算题部分的常考题型.本题易错点是:不等式基本性质三的应用,不等式组解集的确定 本题考点:解不等式(组).难度系数:0.7515.已知23a b =≠,求代数式()225224a b a b a b-⋅--的值.【解析】 12【点评】 本题考核了分式的化简求值。

解决本题的关键是分式的正确化简、将已知条件的适当变形代入消元。

本题考点:分式的化简求值。

难度系数:0.6516.已知:如图,点E A C ,,在同一条直线上, AB C D ∥,AB CE AC CD ==,.求证:B C E D =.【解析】 证ΔABC ≌ΔCED (SAS ) ∴BC =ED 【点评】 本题是一道很简单的全等证明,纵观近几年北京市中考数学试卷,每一年都有一道比较简单的几何证明题:只需证一次全等,无需添加辅助线,且全等的条件都很明显。

本题是解答题中几何的第1道题,难度较小是为了让所有的考生在进入解答题后都有一个顺利的开端,避免产生畏惧心理,这样考试才有信心做后面较难的题目。

本题考点:全等三角形的判定(SAS )和性质. 难度系数:0.917.如图,在平面直角坐标系xOy 中,函数()40y x x=>的图象与一次函数y kx k =-的图象的交点为()2A m ,.(1)求一次函数的解析式;(2)设一次函数y kx k =-的图象与y 轴交于点B ,若P 是x轴上一点, 且满足P A B △的面积是4,直接写出点P 的坐标.【解析】 22y x =-;1(1,0)P -,2(3,0)P【点评】 本题是建立在反比例函数基础上的一次函数解析式确定及与一次函数图象有关的图形面积分析和点坐标的确定本题考点:一次函数解析式的确定、一次函数图像与坐标轴上点的确定.难度系数:0.718.列方程或方程组解应用题:据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.【解析】 设一片国槐树叶一年的滞尘量为毫克,则一片银杏树叶一年的滞尘量为毫克,由题意可得: 解得检验:将带入中,不等于零,则是方程的根答:一片国槐树叶一年的平均滞尘量22毫克 【点评】 本题也是一道与环保紧密相关的数学题,在考核学生数学知识的同时让学生了解环境保护的知识,本题着重考核了学生应用适当的数学模型解决实际问题的能力。

本题考点:列分式方程解应用题 难度系数:0.5519.如图,在四边形ABC D 中,对角线AC BD ,交于点E ,9045302BAC CED D CE D E ∠=︒∠=︒∠=︒=,,,,22BE =.求C D 的长和四边形ABC D 的面积.【解析】 证明:过D 作DF ⊥AC 与F如图∵∠CED =45°∴△ABE 、△DEF 均为等腰直角三角形∵DE = ∴EF =DF =1 ∴CD =2DF =2 CF =【点评】 直线型几何计算,去年和今年都是以一般四边形为背景,结合特殊角三角函数、等腰直角三角形、勾股定理、图形面积求解(去年求周长)本题考点:等腰直角三角形的性质、特殊角三角函数、勾股定理.难度系数:0.55.20.已知:如图,AB 是O ⊙的直径,C 是O ⊙上一点,O D BC ⊥于点D ,过点C 作O ⊙的切线,交O D 的延长线于点E ,连结BE . (1)求证:BE 与O ⊙相切;(2)连结AD 并延长交BE 于点F ,若9OB =,2sin 3ABC ∠=,求BF 的长.【解析】(1)连接OC ,则OC ⊥CE ,90DCO DCE ︒∠+∠=,由于BOC ∆为等腰三角形,则D C O D B O ∠=∠, 由垂径定理,得:CD =BD ,90CDE BDE ︒∠=∠=DE =DE∴C D E B D E ∆≅∆ 则D C E D B E ∠=∠∴90DBO DBE ︒∠+∠=即BE 与O 相切;(2)过D 作DG ⊥AB 于G 则 A D G A B F ∆∆OB =9,2sin 3ABC ∠=,∴OD =OB ·sin ABC ∠=6,OG =OD ·sin O D G ∠=4, 由勾股定理,得:DG =25, AG =9+4=13, A D G A B F ∆∆ BF AB DGAG=181325BF =∴BF =36513【点评】 本题是一道与圆相关的综合题,第⑴问是常规的切线证明,第⑵问则是可以综合相似、三角函数、勾股定理等知识解决,是考核学生综合能力的一道好题。

相关文档
最新文档