离散数学习题
离散数学第3版习题答案
离散数学第3版习题答案离散数学是一门重要的数学学科,它研究的是离散对象和离散结构的数学理论。
离散数学的应用广泛,涉及到计算机科学、信息技术、通信工程等领域。
在学习离散数学的过程中,习题是不可或缺的一部分,通过解答习题可以加深对知识的理解和掌握。
本文将为大家提供《离散数学第3版》习题的答案,希望能对学习者有所帮助。
第一章:命题逻辑1.1 习题答案:1. (a) 真值表如下:p | q | p ∧ qT | T | TT | F | FF | T | FF | F | F(b) 命题“p ∧ q”的真值表如下:p | q | p ∧ qT | T | TT | F | FF | T | FF | F | F(c) 命题“p ∨ q”的真值表如下:p | q | p ∨ qT | T | TT | F | TF | T | TF | F | F(d) 命题“p → q”的真值表如下:p | q | p → qT | T | TT | F | FF | T | TF | F | T1.2 习题答案:1. (a) 命题“¬(p ∧ q)”等价于“¬p ∨ ¬q”。
(b) 命题“¬(p ∨ q)”等价于“¬p ∧ ¬q”。
(c) 命题“¬(p → q)”等价于“p ∧ ¬q”。
(d) 命题“¬(p ↔ q)”等价于“(p ∧ ¬q) ∨ (¬p ∧ q)”。
1.3 习题答案:1. (a) 命题“p → q”的否定是“p ∧ ¬q”。
(b) 命题“p ∧ q”的否定是“¬p ∨ ¬q”。
(c) 命题“p ↔ q”的否定是“(p ∧ ¬q) ∨ (¬p ∧ q)”。
(d) 命题“p ∨ q”的否定是“¬p ∧ ¬q”。
1.4 习题答案:1. (a) 命题“p → q”与命题“¬p ∨ q”等价。
离散数学期末复习习题
离散数学一、选择题1△O Y C3A^Q un ㊉iv1.设:P:张三可以作这件事,Q:李四可以作这件事,命题“张三或李四都可以做这件事”的符号化为()A、PVQB、PVi QC、P—QD、-P V -Q2.谓词公式V x(P(x)V m yR(y))fQ(x)中量词V x的作用域是()A. V x(P(x) V3yR(y))B.P(x)C. (P(x) V3yR(y)) D,P(x), Q(x)3.若个体域为整体域,下列公式中哪个值为真?()A. V x 3y(x+y=0)B. 3y V x(x+y=0)C. V x V y(x+y=0)D. n 3x 3y(x+y=0)4.空集①的幂集P (①)的基数是()A. 1B.2C.3D.45.设R、S是集合A上的任意关系,则下面命题是真命题的是()。
A.若R、S是自反的,则R・S是自反的B.若R、S是反自反的,则R・S是反自反的C.若R、S是对称的,则R・S是对称的D.若R、S是传递的,则R・S是传递的6.集合 A={1, 2,…,10}上的关系 R={(x, y)|x+y=10 且x, y£A},则 R 的性质为()A.自反的B.对称的C.传递的,对称的口.非自反的,传递的7.含有5个结点,3条边的不同构的简单图有()A.2个B.3个C.4个D.5个8.设G (n, m),且G中每个结点的度数不是K就是K+1,则G中度数为K的结点数()A.2/nB.n(n+1)C.nkD.n(k+1)-2m9.设谓词P(x) :x是奇数,Q(x):x是偶数,谓词公式m(x) (P(x) AQ(x))在下面哪个论域中是可满足的。
()A自然数集 B整数集 C实数集 D以上均不成立10.设C(x): x是运动员,G(x): x是强壮的。
命题“没有一个运动员不是强壮的”可符号化为()A. n V x(C(x) A n G(x))B. iV xOx) — G(x))C. _|m x(C(x)A_|G(x))D. im x(C(x) - 1 G(x))11.设集合 M={x|f (x) =0}, N={x|g (x) =0},则方程 f (x)・g (x) =0 的解集是()A.MANB.MUNC.M ㊉ ND.M-N12.设A=/"a}},下列选项错误的是()A. {a} e p(A)B. {a}U p(A)C. {{a}} e p(A)D. {{a}} e p(A)13.设A={1,2,3,4,5},p{<i,j>|i<j,i,j £ A}则 p 逆的性质是()A.对称的B.自反的C.反对称的D.反自反,反对称,传递的14.设R和S是集合A上的等级关系,则RUS的对称性()A. 一定成立B.一定不成立C.不一定成立D.不可能成立15. K4中含有3条边的不同构生成子图有()A.1个B.3个C.4个D.2个16.设G=<V,E>为无向图,u,v £V,若u,v连通,则()A.d(u,v)>0B.d(u,v)=0C.d(u,v)<0D.d(u,v)三0二、填空题1.命题公式I(P-Q)的主析取范式为(),主合取式的编码表示为().2.设Q(x): x是奇数,Z(x): x是整数,则语句“不是所有整数都是奇数”所对应的谓词公式为()。
《离散数学》练习题和参考答案
《离散数学》练习题和参考答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)⌝Q=>Q→P (2)⌝Q=>P→Q (3)P=>P→Q (4)⌝P∧(P∨Q)=>⌝P 答:(1),(4)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→⌝R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q) 答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ⌝(P→Q)=>P (6) ⌝P∧(P∨Q)=>⌝P 答:(2),(3),(4),(5),(6)4、公式∀x((A(x)→B(y,x))∧∃z C(y,z))→D(x)中,自由变元是( ),约束变元是( )。
答:x,y, x,z5、判断下列语句是不是命题。
若是,给出命题的真值。
( )北京是中华人民共和国的首都。
(2) 陕西师大是一座工厂。
(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。
(5) 前进! (6) 给我一杯水吧!答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。
答:所有人都不是大学生,有些人不会死7、设P:我生病,Q:我去学校,则下列命题可符号化为( )。
(1) 只有在生病时,我才不去学校 (2) 若我生病,则我不去学校(3) 当且仅当我生病时,我才不去学校(4) 若我不生病,则我一定去学校答:(1)PQ→⌝(2)QP⌝→(3)QP⌝↔(4)QP→⌝8、设个体域为整数集,则下列公式的意义是( )。
(1) ∀x∃y(x+y=0) (2) ∃y∀x(x+y=0)答:(1)对任一整数x存在整数 y满足x+y=0(2)存在整数y对任一整数x满足x+y=09、设全体域D是正整数集合,确定下列命题的真值:(1) ∀x∃y (xy=y) ( ) (2) ∃x∀y(x+y=y) ( )(3) ∃x∀y(x+y=x) ( ) (4) ∀x∃y(y=2x) ( )答:(1) F (2) F (3)F (4)T10、设谓词P(x):x是奇数,Q(x):x是偶数,谓词公式∃x(P(x)∨Q(x))在哪个个体域中为真?( )(1) 自然数(2) 实数 (3) 复数(4) (1)--(3)均成立答:(1)11、命题“2是偶数或-3是负数”的否定是()。
离散数学期末复习题(6套)
《离散数学》期末考试题(A)一、填空题(每小题3分,共15分)1.设}}{},,{{c b a A =,}}{},,{},{{c c b a B =,则)(=⋃B A ,)(=⋂B A ,)()(=A P .2.集合},,{c b a A =,其上可定义( )个封闭的1元运算,( )个封闭的2元运算,( )个封闭的3元运算.3.命题公式1)(↑∧q p 的对偶式为( ).4.所有6的因数组成的集合为( ).5.不同构的5阶根树有( )棵.二、单选题(每小题3分,共15分)1.设A , B 是集合,若A B A =-,则(A)B = ∅ (B) A = ∅ (C)=⋂B A ∅ (D)A B A =⋂2.谓词公式)())()((x R y yQ x P x ∧∃→∀中量词x ∀的辖域为(A))())()((x R y yQ x P x ∧∃→∀ (B))()(y yQ x P ∃→(C))())()((x R y yQ x P ∧∃→ (D))()(y yQ x P ∃→和)(x R3.任意6阶群的子群的阶一定不为(A)4 (B)6 (C)2 (D)34.设n 是正整数,则有限布尔代数的元素个数为(A)2n (B)4n (C)n 2 (D)2n5.对于下列序列,可构成简单无向图的度数序列为(A)3, 3, 4, 4, 5 (B)0, 1, 3, 3, 3 (C)1, 1, 2, 2, 3 (D)1, 1, 2, 2, 2三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1. 设N N N :⨯→f ,)1,()(+=x x x f ,则f 是满射. () 2. 5男5女圆桌交替就座的方式有2880种. () 3. 设),(≤L 是格,对于L z y x ∈,,,若z x y x ⋅=⋅且z x y x +=+,则z y =. () 4. 任何树都至少2片树叶. ()5. 无向图G 有生成树的充要条件是G 为连通图. ( )四、(10分)设C B A ,,和D 是集合,证明)()()()(D B C A D C B A ⨯-⨯⊆-⨯-,并举例说明上式中不能将⊆改为 = .五、(15分)设N 是自然数集合,定义N 上的关系R 如下:y x R y x +⇔∈),(是偶数,1.证明R 是N 上的等价关系.2.求出N 关于等价关系R 的所有等价类.3.试求出一个N 到N 的函数f ,使得)}()(,N ,|),{(y f x f y x y x R =∈=.六、(10分)在实数集合R 中证明下列推理的有效性:因为R 中存在自然数,而所有自然数是整数,所以R 中存在整数.七、(10分)设R 是实数集合,令}0,R ,|),{(≠∈=a b a b a G ,定义G 上的运算如下: 对于任意G d c b a ∈),(),,(,),(),(),(b ad ac d c b a +=⋅,证明),(⋅G 是非Abel 群.八、(10分)若简单平面图G 的节点数7=n 且边数15=m ,则G 是连通图,试证明之.《离散数学》期末考试题(B)一、填空题(每小题3分,共15分)1.设,,},,{{b a b a A =∅},则-A ∅ = ( ),-A {∅} = ( ),)(A P 中的元素个数=|)(|A P ( ).2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数.3.谓词公式))()(())()((y P y Q y x Q x P x ⌝∧∃∧→∀中量词x ∀的辖域为( ), 量词y ∃的辖域为( ).4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元.5.当n ( )时,n 阶完全无向图n K 是平面图,当n 为( )时,n K 是欧拉图.二、单选题(每小题3分,共15分)1.设R 是集合A 上的偏序关系,1-R 是R 的逆关系,则1-⋃R R 是A 上的(A)偏序关系 (B)等价关系 (C)相容关系 (D)以上结论都不成立2.由2个命题变元p 和q 组成的不等值的命题公式的个数有(A)2 (B)4 (C)8 (D)163.设p 是素数且n 是正整数,则任意有限域的元素个数为(A)n p + (B)pn (C)n p (D)pn4.设R 是实数集合,≤是其上的小于等于关系,则(R, ≤)是(A)有界格 (B)分配格 (C)有补格 (D)布尔格5.3阶完全无向图3K 的不同构的生成子图有(A)2 (B)3 (C)4 (D)5 三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1.若一个元素a 既存在左逆元l a ,又存在右逆元r a ,则r l a a =. ( )2.命题联结词→不满足结合律. ( )3.在Z 8 = {0,1,2,3,4,5,6,7}中,2关于“⋅8”的逆元为4. ( )4.整环不一定是域. ( )5.任何),(m n 平面图的面数2+-=n m r . ( )四、(10分)设B A f →:且C B g →:,若g f 是单射,证明f 是单射,并举例说明g 不一定是单射.五、(15分)设},,,{d c b a A =,A 上的关系)},(),,(),,(),,(),,(),,(),,(),,(),,{(c d b d a d c c b c a c c a b a a a R =,1.画出R 的关系图R G .2.判断R 所具有的性质.3.求出R 的关系矩阵R M .六、(10分)利用真值表求命题公式))(())((p q r r q p A →→↔→→=的主析取范式和主合取范式.七、(10分) 边数30<m 的简单平面图G ,必存在节点v 使得4)deg(≤v .八、(10分) 有六个数字,其中三个1,两个2,一个3,求能组成四位数的个数.《离散数学》期末考试题(C)一、填空题(每小题3分,共15分)1. 若n B m A ==||,||,则=⨯||B A ( ),A 到B 的2元关系共有( )个,A 上的2元关系共有( )个.2. 设A = {1, 2, 3}, f = {(1,1), (2,1), (3, 1)}, g = {(1, 1), (2, 3), (3, 2)}和h = {(1, 3), (2, 1), (3,1)},则( )是单射,( )是满射,( )是双射.3. 下列5个命题公式中,是永真式的有( )(选择正确答案的番号).(1)q q p p →→∧)(;(2))(q p p ∨→;(3))(q p p ∧→;(4)q q p p →∨∧⌝)(;(5)q q p →→)(.4. 设D 24是24的所有正因数组成的集合,“|”是其上的整除关系,则3的补元( ),4的补元( ),6的补元( ).5. 设G 是(7, 15)简单平面图,则G 一定是( )图,且其每个面恰由( )条边围成,G 的面数为( ).二、单选题(每小题3分,共15分)1. 设A , B , C 是集合,则下述论断正确的是( ).(A)若A ⊆ B , B ∈ C ,则A ∈ C . (B)若A ⊆ B , B ∈ C ,则A ⊆ C .(C)若A ∈ B , B ⊆ C ,则A ∈ C . (D)若A ∈ B , B ⊆ C ,则A ⊆ C .2. 设R ⊆ A ⨯ A ,S ⊆ A ⨯ A ,则下述结论正确的是( ).(A)若R 和S 是自反的,则R ⋂ S 是自反的.(B)若R 和S 是对称的,则S R 是对称的.(C)若R 和S 是反对称的,则S R 是反对称的.(D)若R 和S 是传递的,则R ⋃ S 是传递的.3.在谓词逻辑中,下列各式中不正确的是( ).(A))()())()((x xB x xA x B x A x ∀∨∀=∨∀(B))()())()((x xB x xA x B x A x ∀∧∀=∧∀(C))()())()((x xB x xA x B x A x ∃∨∃=∨∃(D)),(),(y x xA y y x yA x ∀∃=∃∀4. 域与整环的关系为( ).(A)整环是域 (B)域是整环 (C)整环不是域 (D) 域不是整环5.设G 是(n , m )图,且G 中每个节点的度数不是k 就是k + 1,则G 中度数为k 的节点个数为( ). (A)2n . (B)n (n + 1). (C)nk . (D)m k n 2)1(-+. 三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1.设f : Z → Z ,x x x f 2||)(-=,则f 是单射. ( )2.设ϕ是群G 1到群G 2的同态映射,若G 1是Abel 群,则G 2是Abel 群. ( )3.设),(≤L 是格,对于L z y x ∈,,,若z x y x ⋅=⋅且z x y x +=+,则z y =. ( )4.元素个数相同的有限布尔代数都是同构的. ( )5.设G 是n (n ≥ 11)阶简单图,则G 或G 是非平面图. ( )四、(15分)设A 和B 是集合,使下列各式(1)A B A =⋂; (2)A B B A -=-;(3)A A B B A =-⋃-)()(成立的充要条件是什么,并给出理由.五、(10分) 设S 是实数集合R 上的关系,其定义如下∈=y x y x S ,|),{(R 且是3y x -是整数}, 证明: S 是R 上的等价关系. 六、(10分) 求谓词公式)))()(()(()(x xD y yC y B x xA ∀→∃⌝→→∃的前束范式.七、(10分) 若n 个人,每个人恰有3个朋友,则n 必为偶数,试证明之.八、(10分) 利用生成函数求解递归关系⎩⎨⎧=-+=-2)1(211a n a a n n .《离散数学》期末考试题(D)一、填空题(每小题3分,共15分)1. 设|A | = 5, |B | = 2, 则可定义A 到B 的函数( )个,其中有( )单射,( )个满射.2. 令G (x ): x 是金子,F (x ): x 是闪光的,则命题“金子都是闪光的,但闪光的未必是金子”符号化为( ).3. 设X 是非空集合,则X 的幂集P (X )关于集合的⋃运算的单位元是( ),零元是( ),P (X )关于集合的⋂运算的单位元是( ).4. 不同构的5阶无向树有( )棵.5. 对于n 阶完全无向图K n , 当n 为( )时是Euler 图,当n ≥ ( )时是Hamilton 图,当n ( )时是平面图.二、单选题(每小题3分,共15分)1. 幂集P (P (P (∅))) 为( )(A){{∅}, {∅, {∅}}}. (B){∅, {∅, {∅}}, {∅}}.(C){ ∅, {∅, {∅}}, {{∅}}, {∅}} (D){ ∅, {∅, {∅}}}.2. 设R 是集合A 上的偏序关系,则1-⋃R R 是( ).(A)偏序关系 (B)等价关系 (C)相容关系 (D)以上答案都不对3. 下列( )组命题公式是不等值的.(A))(B A →⌝与B A ⌝∧. (B) )(B A ↔⌝与)()(B A B A ∧⌝∨⌝∧.(C))(C B A ∨→与C B A →⌝∧)(. (D))(C B A ∨→与)(C B A ∨∧⌝.4.下列代数结构(G , *)中,( )是群.(A)G = {0, 1, 3, 5}, “*”是模7加法. (B) G = Q , “*”是数的乘法.(C)G = Z , “*”是数的减法. (D) G = {1, 3, 4, 5, 9}, “*”是模11乘法.5.4阶完全无向图4K 中含3条边的不同构的生成子图有(A)3 (B)4 (C)5 (D)2三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1.函数的复合运算“ ”满足结合律. ( )2. {→⌝,}是最小功能完备联结词集合. ( )3. 实数集R 关于数的乘法运算“⋅”阿贝尔群. ( )4. 任意有限域的元素个数为2n . ( )5. 设G 是n (n 为奇数)简单图,则G 与G 中度数为奇数的节点个数相同. ( )四、(10分)设A 和B 是集合,使B B A =-成立的充要条件是什么,并给出理由.五、(10分) 设R 和S 是集合A 上的对称关系,证明S R 对称的充要条件是R S S R =.六、(15分)分别利用(1)等值演算法和(2)真值表求命题公式))(())((r q p p q r A ∨→→→∨⌝=的主析取范式和主合取范式.七、(10分) 设G 是(n , m )无向图,若n m ≥,证明G 中必存在圈.八、(10分) 在初始条件f (1) = c 下,求解递归关系bn n f n f +⎪⎭⎫ ⎝⎛=22)(,其中b ,c 为常数且kn 2=,k 为正整数.《离散数学》期末考试题(E)一、填空题(每小题3分,共15分)1.设A = {2, {3}, 4, a }, B = {1, 3, 4, {a }}, 则{3}( )A ,{a }( )B ,{{a }}( )B .2. 设A = {1, 2, 3, 4, 5}上的关系R = {(1, 2), (3, 4), (2, 2)}, S = {(4, 2), (2, 5), (3, 1), (1, 3)}, 则=S R { }, =R S { }, =R R { }.3. gcd(36, 48) = ( ),lcm(36, 48) = ( ).4.任意有限布尔代数)1,0,,,,(⋅+B 均与集合代数( )同构,其元素个数为( ).5. 不同构的5阶无向树有( )棵,不同构的5阶根树有( )棵.二、单选题(每小题3分,共15分)1. 在有理数集合Q 上定义运算“*”如下:对于任意x , y ∈ Q ,y x * = x + y – xy ,则Q 关于*的单位元是( ).(A)x . (B)y . (C)1. (D)0.2. 设A = {1, 2, 3}, 下图分别给出了A 上的两个关系R 和S ,则S R 是( )关系.(A)自反. (B)对称. (C)传递. (D)等价.3.令T (x ): x 是火车,B (x ): x 是汽车,F (x , y ): x 比y 快,则“某些汽车比所有的火车慢”符号化为( ).(A)()()),()()(y x H x T x y B y →∀∧∃.(B)()()),()()(y x H x T x y B y ∧∀→∃.(C)()()),()()(y x H x T y B y x ∧→∃∀.(D)()()),()()(y x H x T x y B y →∀→∃.4. 整数集合Z 关于数的加法“+”和数的乘法“⋅”构成的代数结构(Z, +, ⋅)是( ). 1 1 22 3 3G S G R(A)域(B)域和整环(C)整环(D) 有零因子环G≅,则称G为自补图. 5阶不同构的自补图5.设G是简单图,G是G的补图,若G个数为( ).(A)0. (B)1. (C)2. (D)3.三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1. { ∅, {∅}} ∉P(P({∅})). ( )2. 非空1元及2元联结词集合的个数为29-1. ( )3. 群可分为Abel群和非Abel群. ( )4. 元素个数相同的有限域都是同构的. ( )5. 设G是简单图,则G或G是连通图. ( )四、(15分)设C,:, 若gf 是单射,证明f是单射,并举例说明g→:f→gBBA不一定是单射.五、(10分)设A = {a, b, c, d}上的关系R = {(a, b), (b, d), (c, c), (a, c)}, 画出R的关系图,并求出R的自反闭包r(R)、对称闭包s(R)和传递闭包t(R).六、(10分)用CP规则证明下列推理.⌝∨→∨(.⇒),(⌝),→pqssrqrqp→七、(10分)求谓词公式))xyByAxA∀→∨∀∧⌝∃的前束范式.zC((x()))(z(()八、(10分)任意6个人中,一定有3个人彼此认识或有3个人彼此不认识.《离散数学》期末考试题(F)一、填空题(每小题3分,共15分)1. 设A = {1, 2, 3, {1, 2}, {3}}, B = {2, {2,3}, {1}} , 则A–B = { }, B–A = { }, A⊕B = { }.2. 实数集合R关于加法运算“+”的单位元为( ), 关于乘法运算“⋅”的单位元为( ), 关于乘法运算“⋅”的零元为( ).3. 令Z(x): x是整数,O(x): x是奇数,则“不是所有整数都是奇数”符号化为( ).4. 有限域的元素个数为( ), 其中( )且( ).5. 设G 是(7, 15)简单平面图,则G 一定 ( )连通图,其每个面恰由( )条边围成,G 的面数为( ).二、单选题(每小题3分,共15分)1. 函数的复合运算“ ”满足( )(A)交换律. (B)结合律. (C)幂等律. (D)消去律.2. 设集合A 中有4个元素,则A 上的等价关系共有( )个.(A)13 (B)14 (C)15 (D)163.下列代数结构(G , *)中,( )是群.(A)G = {0, 1, 3, 5}, “*”是模7加法. (B) G = Q , “*”是数的乘法.(C)G = Z , “*”是数的减法. (D) G = {1, 3, 4, 5, 9}, “*”是模11乘法.4. 下列偏序集,( )是格.5. 不同构的(5, 3)简单无向图有( )个.(A)4 (B)5 (C)3 (D)2三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1. 设A ,B ,C 是集合,若C A B A ⊕=⊕, 则B = C . ( )2. 逻辑联结词“→”满足结合律. ( )3. 设 (L , ≤)是偏序集,若L 的任意非空子集均存在上确界和下确界,则(L , ≤)是格.( )4. 在同构意义下,有限布尔代数只有,,,),((⋂⋃X P ∅, X ). ( )5. 设G 是简单图,则G 与G 中度数为奇数的节点个数相同. ( )四、(15分) 设C B g B A f →→:,:, 若g f 是满射,证明g 是满射,并举例说明f 不一定是满射.五、(10分) 在整数集合Z 上定义关系R 如下:对于任意∈y x , Z ,y y x x R y x +=+⇔∈22),(.判断R 是否具有自反性、反自反性、对称性、反对称性及传递性.六、(10分)利用真值表求命题公式)())(q p q p A ⌝→↔→⌝=的主析取范式和主合取范式.七、(10分)证明:在至少两个人的人群中,必有两个人有相同个数的朋友.八、(10分)将6阶完全无向图K 6的边随意地涂上红色或蓝色,证明:无论如何涂法,总存在红色的K 3或蓝色的K 3.(ps :答案见离散数学期末复习题(6套)答案文档)。
离散数学习题整合
CH01复习题§1.21. 命题判断〔每空1分,共4分〕 P32-A 小和小王是同班同学B 小猪不是鲜花C 3-2n<0D 假如2+2=4,如此太阳从西方升起。
上述语句中,是简单命题,不是命题,是符合命题且真值为假,是符合命题且真值为真。
〔参考答案:ACDB 〕2. 命题符号化〔每空2分,共4分〕习题1.5(7)(3) P32-p :天下大雨,q :他乘公共汽车去上班,命题“除非天下大雨,否如此他不乘公共汽车去上班〞可符号化为。
〔参考答案:q →p 必要条件为后件〕r :天很冷,s :老来了,命题“虽然天很冷,老还是来了〞 可符号化为。
〔参考答案r ∧s 〕3. 五个真值表〔每空2分,共4分〕习题1.6(2)(4) P32-设p 的真值为0,r 的真值为1,q 、s 都是命题,如此命题公式〔)()(s q r p ∨⌝∧↔的真值为,命题公式)()))(((s r p r q p ⌝∨→⌝∧→∨⌝的真值为。
〔参考答案:0,1〕4. 用符号p 、q 填空。
〔每空1分,共4分〕根本概念设p :x>0〔其中x 是整数〕 ,q :太阳从西方升起,如此是命题,是命题变项,是命题常项,不是命题。
〔参考答案:q ,p ,q ,p 〕5. 命题符号化,相容或与排斥或设r :现在小在图书馆,s :现在小在学生宿舍,如此“现在小在图书馆或学生宿舍〞可符号化为。
〔参考答案:B 〕A r ∨sB (r ∧¬s)∨(¬r∧s)C r ∧sD (r ∧¬s)或(¬r∧s)§1.2 命题公式与分类:A 是含三个命题变项的命题公式,且A(001)=0,A(100)=1,如此A 是。
〔D 〕A 矛盾是B 可满足式C 重言式D 非重言式的可满足式§1.3 等值演算用等值演算法证明等值式:(p ∧q)→rp →(q →r). (演算的每一步都要写依据)§1.4 式6. A(p,q)的真值表求A 的永主析取式、主合取式、成真赋值和成假赋值。
离散数学练习题(含答案)
离散数学练习题(含答案)题目1. 对于集合 $A={1,2,3,...,10}$ 和 $B={n|n是偶数,2<n<8}$,求 $A \cap B$ 的元素。
2. 存在三个可识别的状态A,B,C。
置换群 $S_3$ 作用在状态集上。
定义四个动作:$α: A → C, β: A → B, γ: C→ A, δ: B→ C$。
确定式子,描述 $\{α,β,γ,δ\}$ 的乘法表。
3. 证明 $\forall n \in \mathbb{N}$,合数的个数不小于$n$。
4. 给定一个无向带权图,图中每个节点编号分别是$1,2,...,n$,证明下列结论:a. 如果从节点$i$到$j$只有一条权值最小的路径,则这条路径的任意子路径都是最短路径。
b. 如果从节点$i$到$j$有两条或两条以上权值相等的路径,则从$i$到$j$的最短路径可能不唯一。
答案1. $A \cap B = \{2,4,6\}$。
2. 乘法表:3. 对于任意$n$,我们可以选择$n+1$个连续的自然数$k+1,k+2,...,k+n,k+n+1$中的$n$个数,其中$k \in \mathbb{Z}$。
这$n$个数构成的$n$个正整数均为合数,因为它们都至少有一个小于它自身的因子,所以不是质数。
所以合数的个数不小于任意$n$。
4.a. 根据题意,从$i$到$j$只有一条权值最小的路径,即这条最短路径已被确定。
如果从这条路径中任意取出一段子路径,假设这段子路径不是这个节点到$j$的最短路径,那么存在其他从$i$到$j$的路径比这段子路径更优,又因为这条路径是最短路径,所以这段子路径也一定不优于最短路径,矛盾。
所以从这条路径中任意取出的子路径都是最短路径。
b. 如果从节点$i$到$j$有多条权值相等的路径,则这些路径权值都是最短路径的权值。
因为所有最短路径的权值相等,所以这些路径的权值就是最短路径的权值。
所以从$i$到$j$的最短路径可能不唯一。
离散数学-习题集
离散数学-习题集《离散数学》习题集第⼀部分判断题⼀、第⼀章—集合1、()已知集合A的元素个数为10,则集合A的幂集的基=102。
2、()已知两个集合A、B,若A中的元素都是B中的元素,则记为A∈B。
2、()已知集合A的元素个数为n,则集合A的幂集P(A)的元素个数为n2。
3、( ) 已知两个集合A={Ф,{Ф}},B={Ф},则A∩B={Ф}。
4、()已知两个集合A={Ф,{Ф}},B={Ф},则A∩B=Ф。
5、()已知两个集合A、B,若A中的元素都是B中的元素,则记为A∈B。
6、()已知集合A的元素个数为n,则集合A的幂集P(A)的元素个数为n2。
7、()已知集合A的元素个数为n,则A×A的幂集的元素个数为n2。
8、()已知两个集合A、B,则A-B是由属于B但不属于A的元素构成的集合。
⼆、第⼆章—⼆元关系1、()若R是A上的⼆元关系,I A是A上的恒等关系,则当且仅当I A∈R时,R是A上的⾃反关系。
2、(√)若R是集合A上的⼆元关系,且当(a,b)∈R且(a,c)∈R时,就有(b,c)∈R,则R是A 上的可传递关系。
3、()设A是集合,A1、A2、...A n都是A的⾮空⼦集,令S={A1,A2,...,A n},则如果S是集合A的⼀个划分,那么S⼀定是集合A的⼀个完全覆盖;反之亦然。
5、()R是⾮空集合A上的等价⼆元关系,则A关于R的商集A/R是集合A的⼀个划分,但不是A的⼀个完全覆盖。
6、()已知集合A有4元素,易知集合A共有24个互不相同的⼦集合,所以在集合A上⼀共可定义24个互不相同的⼆元关系。
7、()若R1和R2都是集合A上的可传递⼆元关系,则R1∪R2也是A上的传递关系。
8、()设R是有限的⾮空集合A上的偏序关系,则A必有极⼤(⼩)元和最⼤(⼩)元。
9、()若R1和R2都是集合A上的相容关系,则R1∩R2也是A上的相容关系。
10、()若R1和R2都是集合A的可传递⼆元关系,则R1∩R2也是A上的传递关系。
《离散数学》练习题
第二部分:.集合1.若集合A 上的关系R 是对称的,则1R -也是对称的。
( )2.数集合上的不等关系()≠可确定A 的一个划分。
( )3.设A ,B ,C 为任意集合,若A B A C ⨯=⨯,则 B C =。
( )4.函数的复合运算“。
”满足结合律。
( )5.A ,B ,C 为任意集合,若 A B A C ⋃=⋃ 则B C =。
( )6.设R 是实数集,R 上的关系R (){},2,,x y x y x y R =-<∈,则R 是相容关系。
() 7.设,A ≤是偏序集,B A ⊆,则B 的极大元b B ∈且唯一。
( )8.设{}1,2A =,{}B a =,则()222A B A B ⋃⋃=。
(注 其中 2A 为()A ϕ) ( )9.设 {}0,1A =,{}1,2B =, 则{}20,1,1,0,1,2,1,0,1,1,0,2A B ⨯=。
( )10.集合A 上的恒等关系是一个双射函数。
( )11.设A ,B 为任意集合,不能A B ⊂ 且A B ∈。
( )12.设R 是集合A 上的关系,若12,R R 是对称的, 则 12R R 也是对称的。
( )1. 设A ={}∅,B =(())P P A ,下列各式中哪个是错的 ( )A. B ∅⊆B. {}B ∅⊆C. {{}}B ∅∈D. {,{}}()P A ∅∅⊆2. 设Z 为整数集,下面哪个序偶不构成偏序集 ( )A. Z,<〈〉 (<:小于关系)B. Z,〈≤〉 (≤:小于等于)C. Z,=〈〉 (=:等于关系)D. Z,|〈〉 (|:整除关系)3. 设集合{}4,3,2,1=A ,A 上的二元关系{},4,3,4,2,3,2,1,1=R则R 具有 ( )A.自反性B.对称性C.传递性D. 以上答案都不对4. 设{}d c b a A ,,,=,下面哪一个是A 的划分 ( )A.{}{}{}d c b a ,,,,ΦB. {}{}d c b a ,,,C. {}{}{}{}d a c b a ,,,,D. {}{}{}c b a ,,5. 设A =∅,B={∅,{∅}},则B A -是 ( )A. {{∅}}B. {∅}C. {∅,{∅}}D. ∅6. 下图描述的偏序集中,子集{b,e,f}的上界为 ( )A. b,cB. a,bC. bD. a,b,c7. 设集合{}{}ΦΦ=,A , 则A 的幂集为: ( )A. {}{}ΦΦ, B. {}{}{}{}{}{}ΦΦΦΦΦ,,,, C. {}{}{}{}ΦΦΦ,, D. {}{}{}{}{}{}{}ΦΦΦΦΦ,,,, 8. 若Q P Q P ⋃=⋂, 则P, Q 要满足的条件为 ( )A. Q P ⊆B. P Q ⊆C. Q 为空集D. P=Q``````````````````````````````9. 在0 ∅之间应填入的符号为 ( )A. =B. ⊂C. ∈D. ∉10. 设,A 〈≤〉是偏序集,B A ⊆,下面结论正确的是 ( )A. B 的极大元b B ∈且唯一B. B 的极大元b A ∈且不唯一C. B 的上界b B ∈且不唯一D. B 的上确界b A ∈且唯一11. 集合{}4,3,2,1=I , I 上的关系 R={4,43,44,1,3,3,3,2,23,1,1,1,则R 是 ( )A. 反对称的B. 传递的C.反自反的D. 自反的12. 设S A B ⊆⨯,下列各式中哪个是正确的 ( )A. domS B ⊆B. domS A ⊆C. ranS A ⊆D. domS ranS S ⋃=13. 设A ={1,2,3,4,5},下面哪个集合等于A ( )A. {1,2,3,4,5,6}B. {x |x 是整数且225x ≤}C. {x |x 是正整数且5x ≤}D. {x |x 是正有理数且5x ≤}14. 设A ={{1,2,3},{4,5},{6,7,8}},下列各式中哪个是错的 ( )A. A ∅⊆B. {6,7,8}A ∈C. {{4,5}}A ⊂D. {1,2,3}A ⊂15. 设集合X ≠∅,则空关系X ∅不具备的性质是 ( )A. 自反性B. 反自反性C. 对称性D. 传递性``````````````````````````````````````````````16. 集合A 的一个划分,确定A 的元素间的关系为 ( )A. 全序关系B. 等价关系C. 偏序关系D. 拟序关系17. 设{}d c b a A ,,,=,下面哪一个是A 的划分 ( )(A) {}{}{}d c b a ,,,,Φ (B){}{}d c b a ,,, (C) {}{}{}{}d a c b a ,,,, (D) {}{}{}c b a ,,18. 设集合A ={0, b }, B ={1, b , 3}, 则A ⋃B 上的恒等关系是 ( )(A) {<0, 0>, <1, 1>, <3, 3>} (B){<0, 0>, <1, 1>, <b , b >,<3, 3>}(C) {<1, 1>, <b , b >, <3, 3>} (D) {<0, 1>,<1, b > , <b , 3>, <3, 0>}19. 设A ={1,2},B ={a ,b ,c },C ={c ,d }, 则A ×(B ⋂C )= ( )(A) {<1,c >,<2,c >} (B) {<c ,1>,<2,c >}(C) {<c ,1><c ,2>,} (D) {<1,c >,<c ,2>}20. 设A , B , C 都是集合,如果A ⋂C =B ⋂C ,则有 ( )(A) A =B (B) A ≠B(C) 当A -C =B -C 时,有A =B (D) 当C =E 时, 有A ≠B21. 设集合A ={∅,a },则幂集P (A )= ( )(A){,{},{,}}a a ∅∅ (B){{},{},{,}}a a ∅∅(C){,{},{},{,{}}},}a a A ∅∅∅ (D){,{},{},{,}}a a ∅∅∅22. 集合A 上的等价关系R ,决定了A 的一个划分,该划分就是 ( )A. 并集A RB. 交集A RC. 差集A R -D. 商集/A R23. 设1R 和2R 是集合A 上的任意关系,则下列命题为真的是 ( )A. 若1R 和2R 是自反的,则12R R 也是自反的B. 若1R 和2R 是反自反的,则12R R 也是反自反的C. 若1R 和2R 是对称的,则12R R 也是对称的D. 若1R 和2R 是传递的,则12R R 真也是传递的24. 设A ={1,2},B ={a ,b ,c },C ={c ,d }, 则A ×(B ⋂C )= ( )(A) {<1,c >,<2,c >} (B) {<c ,1>,<2,c >}(C) {<c ,1><c ,2>,} (D) {<1,c >,<c ,2>}25. 设A , B , C 都是集合,如果A ⋂C =B ⋂C ,则有 ( )(A) A =B (B) A ≠B(C) 当A -C =B -C 时,有A =B (D) 当C =E 时, 有A ≠B26. 设集合A ={∅,a },则幂集P (A )= ( )(A){,{},{,}}a a ∅∅ (B){{},{},{,}}a a ∅∅(C){,{},{},{,{}}},}a a A ∅∅∅ (D){,{},{},{,}}a a ∅∅∅27. 集合A 上的关系R 是相容关系的必要条件是 ( )A. 自反的,反对称的B. 反自反的,对称的C. 传递的,自反的D. 自反的,对称的28. 集合{1,2,,10}A = 上的关系R={x,y |x+y=10 x,y }A ∈且则R 的性质为 ( )A. 自反的B. 对称的C. 传递的,对称的D. 反自反的,传递的29. 下面关于集合的表示中,正确的是 ( )A. 0φ=B. {}φφ∈C. φφ∈D. {,}a b φ∈30. 设{}c b a A ,,=,{}2,1=B ,则从A 到B 的所有函数集合中有 个函数。
离散数学练习题(含答案)
离散数学练习题(含答案)离散数学试题第一部分选择题1.下列命题变元p,q的小项是(C)。
A。
p∧┐p∧qB。
┐p∨qC。
┐p∧qD。
┐p∨p∨q2.命题“虽然今天下雪了,但是路不滑”可符号化为(D)。
A。
p→┐qB。
p∨┐qC。
p∧qD。
p∧┐q3.只有语句“1+1=10”是命题(A)。
A。
1+1=10B。
x+y=10___<0D。
x mod 3=24.下列等值式不正确的是(C)。
A。
┐(x)A(x)┐AB。
(x)(B→A(x))B→(x)A(x)C。
(x)(A(x)∧B(x))(x)A(x)∧(x)B(x)D。
(x)(y)(A(x)→B(y))(x)A(x)→(y)B(y) 5.量词x的辖域是“Q(x,z)→(x)(y)R(x,y,z)”(C)。
A。
(x)Q(x,z)→(x)(y)R(x,y,z))B。
Q(x,z)→(y)R(x,y,z)C。
Q(x,z)→(x)(y)R(x,y,z)D。
Q(x,z)6.设A={a,b,c,d},A上的等价关系R={。
}∪IA则对应于R的A的划分是(D)。
A。
{{a},{b,c},{d}}B。
{{a,b},{c},{d}}C。
{{a},{b},{c},{d}}D。
{{a,b},{c,d}}7.设A={Ø},B=P(P(A)),以下正确的式子是(A)。
A。
{Ø,{Ø}}∈BB。
{{Ø,Ø}}∈BC。
{{Ø},{{Ø}}}∈BD。
{Ø,{{Ø}}}∈B8.集合相对补运算中,不正确的等式是(A)。
A。
(X-Y)-Z=X-(Y∩Z)B。
(X-Y)-Z=(X-Z)-YC。
(X-Y)-Z=(X-Z)-(Y-Z)D。
(X-Y)-Z=X-(Y∪Z)9.在自然数集N上,不可结合的定义的运算是(D)。
A。
a*b=min(a,b)B。
a*b=a+bC。
a*b=GCD(a,b) (a,b的最大公约数)D。
离散数学练习题及答案
一、填空题1、集合的表示方法有两种: 法和 法。
请把“奇整数集合”表示出来{ }。
1、列举;描述;}12|{Z k k x x ∈+=,2、无向连通图G 含有欧拉回路的充分必要条件是不含有奇数度结点.2*、连通有向图D 含有欧拉回路的充分必要条件是D 中每个结点的入度=出度. 3、设R 是集合A 上的等价关系,则R 所具有的关系的三个特性是 、自反性、对称性、传递性.4、有限图G 是树的一个等价定义是:连通无回路(或任一等价定义).5、设N (x ):x 是自然数,Z (y );y 是整数,则命题“自然数都是整数,而有的整数不是自然数”符号化为∀x (N (x )→Z (x ))∧∃x (Z (x )∧⌝N (x ))6、在有向图的邻接矩阵中,第i 行元素之和,第j 列元素之和分别为 、结点v i 的出度和结点v j 的入度. 7、设A ,B 为任意命题公式,C 为重言式,若C B C A ∧⇔∧,那么命题B A ↔是重言式的真值是 1 .8、命题公式)(Q P →⌝的主析取范式为P ∧⌝Q .9、 设图G =<V ,E >和G '=<V ',E '>,若 ,则G '是G 的真子图,若V '=V ,E '⊆E ,则G '是G 的生成子图. E E V V E E V V ⊆'='⊂'⊂',;或 10、在平面图>=<E V G ,中,则∑=ri ir 1)deg(=2∣E ∣,其中r i(i =1,2,…,r )是G 的面.11、设}2,1{},,{==B b a A ,则从A 到B 的所有映射是11、σ1={(a ,1),(b ,1)};σ2={(a ,2),(b ,2)};σ3={(a ,1),(b ,2)};σ4={(a ,2),(b ,1)}12、表达式∀x ∃yL (x ,y )中谓词的定义域是{a ,b ,c },将其中的量词消除,写成与之等价的命题公式为 12、(L (a ,a )∨L (a ,b )∨L (a ,c ))∧(L (b ,a )∨L (b ,b )∨L (b ,c ))∧(L (c ,a )∨L (c ,b )∨L (c ,c )) 12*、设个体域D ={a ,b },公式)),()((y x yH x G x ∃→∀消去量词化为 (G (a )→(H (a ,a )∨H (a ,b )))∧ (G (b )→(H (b ,a )∨H (b ,b )))13、含有三个命题变项P ,Q ,R 的命题公式P ∧Q 的主析取范式是 14、设R ,S 都是集合A 上的等价关系,则对称闭包s (R ⋂S )= R ⋂S15、设G 是连通平面图,v ,e ,r 分别表示G 的结点数,边数和面数,则v ,e 和r 满足的关系式是2=-+e r v16、设G 是n 个结点的简单图,若G 中每对结点的度数之和≥n ,则G 一定是哈密顿图. 17、一个有向树T 称为根树,若 ,其中 ,称为树根,称为树叶. 若有向图T 恰有一个结点的入度为0,其余结点入度为1;入度为0的结点;出度为0的结点.18、图的通路中边的数目称为 . 结点不重复的通路是 通路. 边不重复的通路是 通路. 通路长度;初级;简单. 19、设A 和B 为有限集,|A|=m ,|B|=n ,则有 个从A 到B 的关系,有 个从A 到B 的函数,其中当m ≤n 时有 个入射,当m=n 时,有 个双射。
离散数学习题+答案
1. (单选题) 一棵无向树的顶点数n与边数m关系是。
( B)(本题2.0分)A、n =mB、m=n-1C、n =m -1D、不能确定2. (单选题) 设G是有n个结点m条边的连通平面图,且有k个面,则k等于。
( A)(本题2.0分)A、m-n+2B、n-m-2C、n+m-2D、m+n+2。
3. (单选题) 有n个结点的树,其结点度数之和是(A )。
(本题2.0分)A、2n-2B、n-2C、n-1D、2n。
4. (单选题) A={a,b},B={c},则A B=(D )。
(本题2.0分)A、{a}B、{b}C、{a,c}D、{a,b,c}。
5. (单选题) 设A={a, b},则P (A)= (D )。
(本题2.0分)A、{a}B、{{a},{b}}C、{{a},{b},{a,b}}D、{,{a},{b},{a,b}6. (单选题) 公式yP(y)∧x(R(x)→Q(x))中,y约束出现了次(B )。
(本题2.0分)B、 1.0C、 2.0D、3。
7. (单选题) 设A={a},B={0,1},求A×B=(A )。
(本题2.0分)A、{<a,0 style="box-sizing: border-box;">,<a,1 style="box-sizing:border-box;">}B、{<a,0 style="box-sizing: border-box;">}C、{,<a,1 style="box-sizing: border-box;">}D、{<0,a >,<1,a >}8. (单选题) 下图中结点V3的出度是(B )。
(本题2.0分)B、 1.0C、 2.0D、 3.09. (单选题) 下面给出的集合中,哪一个不是前缀码( C)。
离散数学习题答案精选全文完整版
可编辑修改精选全文完整版离散数学习题答案习题一:P121.判断下列句子哪些是命题?在是命题的句子中,哪些是简单命题?哪些是真命题?哪些命题的真值现在还不知道?(1)中国有四大发明。
(2)5是无理数。
(3)3是素数或4是素数。
(4)x2+3<5,其中x是任意实数。
(5)你去图书馆吗?(6)2与3都是偶数。
(7)刘红与魏新是同学。
(8)这朵玫瑰花多美丽呀!(9)吸烟请到吸烟室去!(10)圆的面积等于半径的平方乘π。
(11)只有6是偶数,3才能是2的倍数。
(12)8是偶数的充分必要条件是8能被3整除。
(13)2025年元旦下大雪。
1、2、3、6、7、10、11、12、13是命题。
在上面的命题中,1、2、7、10、13是简单命题;1、2、10是真命题;7的真值现在还不知道。
2.将上题中是简单命题的命题符号化。
(1)p:中国有四大发明。
(2)q:5是无理数。
(7)r:刘红与魏新是同学。
(10)s:圆的面积等于半径的平方乘π。
(1)t:2025年元旦下大雪。
3.写出下列各命题的否定式,并将原命题及其否定式都符号化,最后指出各否定式的真值。
“5是有理数”的否定式是“5不是有理数”。
解:原命题可符号化为:p:5是有理数。
其否定式为:非p。
非p的真值为1。
4.将下列命题符号化,并指出真值。
(1)2与5都是素数。
(2)不但π是无理数,而且自然对数的底e也是无理数。
(3)虽然2是最小的素数,但2不是最小的自然数。
(4)3是偶素数。
(5)4既不是素数,也不是偶数。
a:2是素数。
b:5是素数。
c:π是无理数。
d:e是无理数。
f:2是最小的素数。
g:2是最小的自然数。
h:3是偶数。
i:3是素数。
j:4是素数。
k:4是偶数。
解:(1)到(5)的符号化形式分别为a∧b,c∧d,f∧非g,h∧i,非j∧非k。
这五个复合命题的真值分别为1,1,1,0,0。
5.将下列命题符号化,并指出真值。
a:2是偶数。
b:3是偶数。
c:4是偶数。
(完整版)哈工大《离散数学》教科书习题答案
教材习题解答第一章 集合及其运算8P 习题3. 写出方程2210x x ++=的根所构成的集合。
解:2210x x ++=的根为1x =-,故所求集合为{1}- 4.下列命题中哪些是真的,哪些为假a)对每个集A ,A φ∈;b)对每个集A ,A φ⊆; c)对每个集A ,{}A A ∈;d)对每个集A ,A A ∈; e)对每个集A ,A A ⊆;f)对每个集A ,{}A A ⊆; g)对每个集A ,2A A ∈;h)对每个集A ,2A A ⊆; i)对每个集A ,{}2A A ⊆;j)对每个集A ,{}2A A ∈; k)对每个集A ,2A φ∈;l)对每个集A ,2A φ⊆; m)对每个集A ,{}A A =;n){}φφ=;o){}φ中没有任何元素;p)若A B ⊆,则22A B ⊆q)对任何集A ,{|}A x x A =∈;r)对任何集A ,{|}{|}x x A y y A ∈=∈; s)对任何集A ,{|}y A y x x A ∈⇔∈∈;t)对任何集A ,{|}{|}x x A A A A ∈≠∈; 答案:假真真假真假真假真假真真假假假真真真真真 5.设有n 个集合12,,,n A A A 且121n A A A A ⊆⊆⊆⊆,试证: 12n A A A ===证明:由1241n A A A A A ⊆⊆⊆⊆⊆,可得12A A ⊆且21A A ⊆,故12A A =。
同理可得:134n A A A A ====因此123n A A A A ====6.设{,{}}S φφ=,试求2S ?解:2{,{},{{}},{,{}}}S φφφφφ=7.设S 恰有n 个元素,证明2S 有2n 个元素。
证明:(1)当n =0时,0,2{},212S S S φφ====,命题成立。
(2)假设当(0,)n k k k N =≥∈时命题成立,即22S k =(S k =时)。
那么对于1S ∀(11S k =+),12S 中的元素可分为两类,一类为不包含1S 中某一元素x 的集合,另一类为包含x 的集合。
《离散数学》期末练习题考试卷和答案
a , b, c , d , e, f , g,那么 所对应的 19. 设集合 A a , b , c , d , e , f , g , A 上有一个划分
等价关系 R 应有( )个序偶。 )。
20. 在有理数集合 Q 上定义二元运算*: a * b a b ab ,则 Q , * 的幺元是(
等价关系 R 应有( )个序偶。 )。
25. 在有理数集合 Q 上定义二元运算*: a * b a b ab ,则 Q , * 的幺元是(
26. 一个(
)称为布尔代数。
27.P Q P Q 的主析取范式是
。(写出一般
5
表示形式即可) 28.设集合 A a , b , c , d , R 是 A 上的二元关系,且 R a , b , b , a , b , c , c , d , a , c , 则 R 的传递闭包 t R 。
C. x x是正整数, x 5
D. x x是有理数, x 5
。
6.下面有关集合之间的包含和属于关系的说法,正确的是 Ⅰ. Ⅲ.
Ⅱ. , ,
Ⅳ.
a, b a, b, a, b
B.Ⅰ和Ⅲ
a, b a, b, a, b, c
二、填空题 1.设 A 为非空集合,且 A n ,则 A 上不同的二元关系的个数为 为 。 时, P Q 的真值为 1。 , A 上不同的映射的个数
2.设 P 、 Q 为两个命题,当且仅当
3. 在运算表中的空白处填入适当符号,使 a , b , c, * 成为群。 *
a a
a b c
4. 当 n 为 数时, K n n 3 必为欧拉图。
离散数学课堂习题及答案
1.1 命题及其表示法1.下列陈述句中,()不是命题。
A.2013年国庆节是星期天。
B.火星上有生物。
C.月球距离地球近。
D.上海是大城市。
2.下列命题中,()是复合命题。
A.江山代有人才出。
B.我花开时百花杀。
C.春江水暖鸭先知。
D.万紫千红总是春。
3.下列命题中,()是原子命题。
A.燕子飞回南方,春天来了。
B.天才是炼成的,而不是天生的。
C.暮春三月,江南草长。
D.哥白尼指出地球绕太阳转。
4.下列命题中,()是原子命题。
A.王芳与王菲是姐妹。
B.王芳与王菲是三好学生。
C.王芳与王菲持有驾照。
D.王芳与王菲喜欢早睡早起。
5.下列命题中,()是原子命题。
A.数学是科学的皇后,而数论是数学的皇后。
B.数学使人精细,逻辑使人善辩。
C.较大的偶数都可表示为两个素数的和。
D.数学是一种语言,也是一种工具。
6.判断一个语句是否为命题,首先看它是否为陈述句,然后再看它是否具有唯一的真值。
1.C2.B3.D4.A5.C6.陈述句,真值1.2 命题联结词1.命题“如果我休假,我将去美丽的黄山旅游。
”的否定可表示为2.命题“每个学生都要考试。
”的否定可表示为3.命题“1既不是素数也不是合数。
”的否定可表示为4.命题“如果我是你,那么太阳从西边出。
”的真值为5.命题“如果时间倒流,那么我们将长生不老。
”的真值为6.命题“2是偶数或3是奇数。
”的否定可表示为()。
A.2不是偶数或3不是奇数。
B.2不是偶数且3不是奇数。
C.2不是偶数或3是奇数。
D.2不是偶数且3是奇数。
7.设P:中国地处亚洲。
Q:大熊猫产在中国。
R:太阳从西边升起。
求下列复合命题的真值。
(1)(P↔Q)→R(2)(R→(P∧Q))↔┐P(3)┐R→(┐P∨┐Q∨R)(4)(┐P↑Q)↓(Q↑┐R)8.命题“我善良、正直、勤奋、感恩、有责任、有尊严,所以我幸福。
”的否定可表述。
1.我休假且我不将去美丽的黄山旅游。
2.有的学生不要考试。
3.1是素数或合数。
离散数学习题汇总
14
集合论习题课
15
1. 判断下面命题的真值(真的话证明,假的话举反例)
a)如果A∈B,B C ,则 A∈ C
b)如果A∈B,B C,则 A C
c)如果A B,B∈C,则 A∈Cd)如果A B,B∈C,则 A C
2.集合计算
a) Φ∩{Φ}
b){Φ}∩{Φ}
c) {Φ,{Φ}} -Φ
d) {Φ,{Φ}}-{Φ} e) {Φ,{Φ}}-{{Φ}}
b) ρ(A) ∪ρ(B)
7.笛卡尔积
A={0,1} B={1,2} 求A2×B
ρ(A∪B)
17
二元关系习题课
18
一. 判断题
( )⒈ 设A、B、C和D是四个非空集合, 且A×C B×D,则A B且C D。
( )⒉ 设A、B、C和D是四个集合,则A×C=B×D,iff A=B且C=D。 ( ) 3. 传递关系的对称闭包仍是传递的。 ( ) 4. 非空集合上的关系不是对称的,则必是反对称的。 ( ) 5. 非空集合上的自反关系必不是反自反的。 ( ) 6. 若R和S是二个有完全相同的二元组的集合,则称它们是相等的二
① rst(R)是等价关系 ② R10=Φ ③ r(R)是偏序 ④ tr(R)是良序 ( )⒋ 设R和S分别是A到B和B到C的关系,且R·S=Φ,那么
① R是空关系 ② S是空关系 ③ R和S都是空关系
④ R和S中至少有一个是空关系 ⑤ 以上答案都不对
20
( )⒌ 若R和S是集合A上的等价关系,则下列关系中一定是等价 关系的有 ① R∪S ② R∩S ③ R-S ④ R⊕S
9
六. 逻辑推理熟练掌握三种推理方法。 (1)用P 三种推理方法证明: (A∨B) (C∧D), (D∨E) P A (2) 请根据下面事实,找出凶手: 1. 清洁工或者秘书谋害了经理。 2. 如果清洁工谋害了经理,则谋害不会发生在午夜前。 3.如果秘书的证词是正确的,则谋害发生在午夜前。 4.如果秘书的证词不正确,则午夜时屋里灯光未灭。 5. 如果清洁工富裕,则他不会谋害经理。 6.经理有钱且清洁工不富裕。 7.午夜时屋里灯灭了。 令A:清洁工谋害了经理。 B:秘书谋害了经理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散数学习题
集合论
1.A={?,1},B={{a}}求A的幂集、A×B、A∪B、A+B。
2.A={1,2,3,4,5},
R={(x,y)|x
3.A={a,b,c},R={(a,a),(b,a)},求
R-1,R2,R-I A,I A-R,r(R),s(R),t(R),st(R),ts(R)。
4.A={a,b,c},R= I A∪{(a,b),(b,a)},求a和b关于R的
等价类。
5.R是A上的等价关系,A/R={{1,2},{3}},求A,R。
6.请分别判断以下结论是否一定成立,如果一定成立请证明,否则请举出反例。
①如果A∪B?C,则A?C或者B?C。
②如果A×B=A×C且A≠?,则B=C。
7.如果R是A上的等价关系,R2,r(R)是否一定是A上的等价关系?证明或举例。
8.已知A∩C?B∩C,A-C?B-C,证明:A?B。
9.证明:A X(B∩C)=(A X B)∩(A X C)
10.证明:P(A)∪P(B)?P(A∪B)
11.证明:R[sym] iff R=R-1
12.证明:r(R)=R∪I A,S(R)=R∪R-1,t(R)=R∪R2∪...
13.证明:s(R∪S)=s(R)∪s(S)
14.R是A上的关系,证明:如果R是对称的,则r(R)也是对称的。
15.I是整数集,R={(x,y)|x-y是3的倍数},证明:R是I
上的等价关系。
16.如果R是A上的等价关系,则A/R一定是A的划分。
17.R是集合A上的自反关系,S是A上的自反和对称关系,证明t(R∪S)是A上的等价关系。
18.I是正整数集合,R是I×I上的二元关系,
R={<,>|xv=yu},证明:R是等价关系。
19.f:A→B,R是B上的等价关系,令S={|x∈A且y∈A
且∈R},证明:S是A上的等价关系。
20.R是集合A上的自反关系,S是A上的自反和对称关系,证明t(R∪S)是A上的等价关系。
21.P和Q都是集合A上的划分,请问P∪Q,P-Q是否是A 上的划分,
22.R?AXA,R[irref]且R[tra],证明:r(R)是A上的偏序关系。
23.画出{1,2,3,4,6}上整除关系的哈斯图,求{2,3,6}的4
种元素。
24.A={a,b,c,d,e,f,g},R={(a,c),(a,e),(b,d),(b,f),(d,
e),(d,f)},S=tr(R),画出S的哈斯图并求{b,c,d,f}的极
大元等8种元素。
25.f:A→B,g:B→C都是单(满)射,证明:复合映射gof
一定是单(满)射。
26.f:A→B,g:B→C,gof是单射,请问f和g是否一定是单射?请证明或举出反例。
27.R是实数集,f:R×R→R×R,f()=,请问f
是否为单射?是否为满射?分别证明或举反例。
28.已知B∩C=?,令f:P(B∪C)→P(B)×P(C),对X∈P(B∪
C),令f(X)=(B∩X,C∩X),证明:f是双射。
代数系统
1.是模8加群,Z8={0,1,2,3,4,5,6,7},+8是模8加
法,求出的单位元、每个元素的逆元、所有的生
成元和所有的子群。
2.求的单位元,零元,每个元素的逆元,每个元素
的阶,它是循环群吗?求出它所有的子群。
3.R是实数集,在R上定义运算*为x*y=x+y+xy,问:
是代数系统吗?有单位元吗?每个元素都有逆元吗?
4.R*是非零实数集合,是代数系统,对于R*中元素
x,y,令xoy=2x+2y-2。
请问中是否存在单位元、
零元、哪些元素有逆元?运算o是否满足交换律和结合
律。
分别说明理由。
5.R是实数集,R上的6运算定义如下:对R中元素x,y,
f1()=x+y;f2()=x-y;f3()=xy;
f4()=x/y;f5()=max{x,y};f6()=|x-y|。
问:哪些满足交换律、结合律、有单位元、有零元?说
明理由。
6.是一个群,证明:G是交换群当且仅当对任意G中
元素x,y,都有等式(xy)2=x2y2成立。
7.证明:如果群G中每个元素的逆元素都是它自已,则G
是交换群。
8.循环群一定是交换群。
9.证明:阶为素数的群一定是循环群。
10.是一个群,u∈G,定义运算*:x*y=xou-1oy, 证明:
是一个群。
11.整数集Z上定义运算*:对任意整数x和y,x*y=x+y-4,
其中+,-为普通加减法。
证明:是一个群。
12.证明:如果群G中至少有两个元素,则群中没有零元。
13.S是G的子群,证明:{x|x是S的左陪集}是G的一个划
分
14.是一个群,a∈G,n是a的阶(周期),证明:
<{a k|k=0,2,…,n-1},o>是的一个子群。
15.H,K都是群G的子群,请问H∩K,H∪K,H-K是否一定是
G的子群?
16.H,K是G的两个子群,a∈G, 试证:aH?aK当且仅当H?K。
17.G={1,3,4,5,9},*是模11的乘法(即x*y=xy mod 11),
请问(G,*)是否构成群?
18.是群,e是单位元,a∈G,a的阶为k,证明:a n=e当
且仅当 n是k的倍数。
19.S是G的子群,证明:{x|x是S的左陪集}是G的一个划
分
20.G是群,证明:S={a∈G|?x∈G(ax=xa)},则S是G的子群。
21.是偶数阶群,则G中必存在2阶元素。
22.证明:6个元素的群在同构意义下只有两个。
23.R为实数集,R+为正实数集,与是否同构?
24.是有限群,证明:G不可能表示成两个真子群的并。
25.
图论
1.如何判断二部图?完全图、完全二部图的边数。
2.如何求E回路?
3.Petersen图是否为E图或H图。
4.哪些完全图是H图?哪些完全图是E图?
5.n为何值时轮图为H图?
6.如何求最小生成树。
7.证明:奇数个顶点的二部图(两步图)不是哈密尔顿图。
8.证明:如果G是欧拉图,则其边图L(G)也是欧拉图。
9.证明:奇数个顶点的二部图(两步图)不是哈密尔顿图。
10.G是平面图,G有m条边,n个顶点,证明:m≤3n-6。
并由此证明K5不是平面图。
11.证明:有6个顶点的简单无向图G和它的补图中至少有一
个三角形。
12.证明:在至少有两个顶点的无向树中,至少有2个一度顶点。
13.G是无向简单连通图,G有n个顶点,则G最少有几条边,最多有几条边?
14.证明:简单无向图G和它的补图中至少有一个是连通图。
15.证明:无向图中奇度点(度数为奇数的点)有偶数个。
16.证明:n个顶点的无向连通图至少有n-1条边。
17.G是H图,V是G的顶点集,证明:对任意顶点集S,?≠S?V,
都有ω(G-S)≤|S|。
其中ω(G-S)表示G-S的分图数目。
18.一棵无向树有3个3次点,1个顶点次数为2,其余顶点次
数为1,问它有几个次数为1的顶点?写出求解过程。
19.证明:每个简单平面图都包含一个次至多为5的顶点。
20.连通平面图G有n个顶点,m条边和f个面,证明:n-m+f=2。
21.如果图G的最大顶点次数≤ρ,证明:G是ρ+1可点着色
的。
22.G是无向简单连通图,G有n个顶点,则G最少有几条边,
最多有几条边?
23.如果一个简单图G和它的补图同构,则称G是自补图,求
所有4个顶点自补图。
24.G是平面图,G有m条边,n个顶点,证明:m≤3n-6。
如果
G中无三角形,则m≤2n-4。
数理逻辑
1.如果今天是星期一,则要进行英语或数理逻辑考试。
没有不犯错误的人。
整数都是有理数。
有的有理数不是整数。
不存在最大的整数。
有且只有一个偶数是素数。
2.求真值表及范式:P→(┓Q→R)、(┓Q→R)→(P?R)
3.推理:
p→(q→r),┓s∨p,q ├ s→r
p→r,q→s,p∨q ├ r∨s
p∨q,p→┓r,s→t,┓s→r,┓t ├ q
p→(┓(r∧s)→┓q),p,┓s ├┓q
4.如果小王是理科学生,他一定会学好数学。
如果小王不是
文科学生,他一定是理科学生。
小王没学好数学。
所以小王是文科学生。
5.判断各公式在给定解释时的真假值,并且改变论域使该公
式在新的解释下取值相反。
论域:D={-2,3,6}, F(x):x≤3, G(x):x>5, R(x,y):x+y<4
①?x(F(x)∨G(x))
②?y?yR(x,y)。