导数构造函数13种题型(解析版)
专题01 函数与导数之构造函数(解析版)
专题01 构造函数一、考情分析函数与导数是高考必考的知识点,考试形式有选择题也有填空题,并且都以压轴题为主。
题目难度都偏大,对学生的思维能力考查都要求比较高。
构造函数,是我们高中数学处理和研究函数与导数的一种有效方法,通过分离变量和参数,构造新的函数去研究其新函数的单调性,极值点,从而使问题得到解决。
二、经验分享(常见函数构造类型)(1).常见函数的变形1. 对于不等式()k x f >'()0≠k ,构造函数()()b kx x f x g +-=.2. 对于不等式()()0'>+x f x xf ,构造函数()()x xf x g =3. 对于不等式()()0'>-x f x xf ,构造函数()()xx f x g =()0≠x 4. 对于不等式()()0'>+x nf x xf ,构造函数())(x f x x g n=5. 对于不等式()()0'>-x nf x xf ,构造函数()n x x f x g )(=6. 对于不等式()()0'>-x f x f ,构造函数()x e)(x f x g =7. 对于不等式()()0'>+x f x f ,构造函数())(x f e x g x=8. 对于不等式()()0'>+x kf x f ,构造函数())(x f e x g kx = (2).双变量函数的变形1.形如()b a f f ab ⎛⎫⎪⎝⎭或的函数,构造函数,令b a t t a b ==或者,求(t)f ; 2.对于(x)f ,形如1212(x )(x )f f x x --的函数,要结合图像构造函数的切线方程,求斜率;3.形如(x)g(x)f >或(x)g(x)f <的函数不等式,(1).可以构造函数)(-)(x g x f x F =)(,然后求)(x F 的最大值和最小值;(2).如果(x)0g >,我们也可以构造函数()(x)(x)f G xg =,求()G x 的最值 .三、题型分析(一) 与圆锥曲线(双参数)有关的构造函数例1.【四川省成都市2019届高三第一次诊断性考试,理科,12】设椭圆()012222>>=+b a by a x C :的左右顶点为A,B.P 是椭圆上不同于A,B 的一点,设直线AP,BP 的斜率分别为m,n ,则当()||ln ||ln 32323n m mnmn b a +++⎪⎭⎫ ⎝⎛-取得最小值时,椭圆C 的离心率为( ) A.51 B.22 C.54D.23【答案】D【解析】设()()(),,,0,,0,00y x P a B a A -,点P 在双曲线上,得()01220220>>=+b a bya x C :,220222)(a x a b y -=,所以a x y m +=00,a x y m -=00,化简,22a b mn -= 原式⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+-+⎪⎪⎪⎪⎭⎫⎝⎛--=b a b a b a b a a b a b a b b a ln 63232ln 62323232222 所以设1>=b a t ,构造函数t t t t t f ln 63232)(23++-=,求导可以得到: 2t = 时,函数取得最小值=)2(f ,2=ba,23=e 。
高考数学导数中构造函数比大小问题题型总结(解析版)
导数中构造函数比大小问题题型总结【典型例题】题型一:构造f x =ln xx比较大小此函数定义域为0,+∞,求导f x =1−ln xx2,当x∈0,e时,f x >0,故f x 为增函数,当x∈e,+∞时,f x <0,故f x 为减函数,当x=e时,f x 取得极大值为f e =1e,且f4 =ln44=2ln2 4=ln22=f2 ,此结论经常用来把函数转化到同一边进行比较【例1】(2022·广东·佛山市南海区九江中学高二阶段练习)若a=1e,b=ln22,c=ln33,则a,b,c的大小关系为( )A.a>c>bB.b>c>aC.c>b>aD.a>b>c 【答案】A【解析】通过对三个数的变形及观察,可以构造出函数f x =ln xx,通过求导分析其单调性即可得到答案【详解】解:a=1e=ln ee,b=ln22=ln44,c=ln33,设f x =ln xx,f x =1-ln xx2,则x>e时,fx <0,故f x 在e,+∞上单调递减,则f e >f3 >f4 ,即ln ee>ln33>ln44,所以a>c>b.故选:A.【例2】(2023·全国·高三专题练习)设a=4-ln4e2,b=ln22,c=1e,则( )A.a<c<bB.a<b<cC.b<a<cD.b<c<a 【答案】C【解析】结合已知要比较函数值的结构特点,可考虑构造函数f x =ln xx,然后结合导数与单调性关系分析出x=e时,函数取得最大值f e =1e,可得c最大,然后结合函数单调性即可比较大小.【详解】设f x =ln xx,则f x =1-ln xx2,当x>e时,f x <0,函数单调递减,当0<x<e时,f x >0,函数单调递增,故当x=e时,函数取得最大值f e =1 e,因为a=22-ln2e2=ln e22e22=f e22,b=ln22=ln44=f4 ,c=1e=f e ,∵e<e22<4,当x>e时,f x <0,函数单调递减,可得f4 <fe22<f e ,即b<a<c.故选:C【例3】(2022·吉林·高二期末)下列命题为真命题的个数是( )①ln3<3ln2;②lnπ<πe;③215<15;④3e ln2>42.A.1B.2C.3D.4【答案】B【解析】本题首先可以构造函数f x =ln xx,然后通过导数计算出函数f x =ln xx的单调性以及最值,然后通过对①②③④四组数字进行适当的变形,通过函数f x =ln xx的单调性即可比较出大小.【详解】解:构造函数f x =ln xx,则f x =1-ln xx2,当0<x<e时,f x >0,x>e时,f x <0,所以函数f x =ln xx在0,e上递增,在e,+∞上递减,所以当x=e时f x 取得最大值1 e,ln3<3ln2⇔2ln3<3ln2⇔ln33<ln22,由3<2<e可得f3<f2 ,故①正确;lnπ<πe⇔lnππ<ln ee,由e<π<e,可得f e<fπ,故②错误;215<15⇔15ln2<ln15⇔ln22<ln1515⇔ln44<ln1515,因为函数f x =ln xx在e,+∞上递减,所以f4 <f15,故③正确;因为22>e,所以f22<f e ,即ln2222<ln e e,即3ln222<1e,则3e ln2<22,即3e ln2<42,故④错误,综上所述,有2个正确.故选:B.【点睛】本题考查如何比较数的大小,当两个数无法直接通过运算进行大小比较时,如果两个数都可以转化为某个函数上的两个函数值,那么可以构造函数,然后通过函数的单调性来判断两个数的大小,考查函数思想,是难题.【例4】(2021·陕西汉中·高二期末(理))已知a,b,c均为区间0,e内的实数,且a ln5=5ln a,b ln6= 6ln b,c ln7=7ln c,则a,b,c的大小关系为( )A.a>c>bB.a>b>cC.c>a>bD.c>b>a【答案】B【解析】构造函数f x =ln xx,由导数判断函数单调性,进而利用单调性即可求解.【详解】解:令f x =ln xx,则f x =1-ln xx2,当0<x<e时,f x >0,函数F(x)在0,e上单调递增,当x>e时,f x <0,函数f x 在e,+∞上单调递减,因为7>6>5>e,所以f7 <f6 <f5 ,因为a,b,c均为区间0,e内的实数,且ln55=ln aa,ln66=ln bb,ln77=ln cc,所以f a >f b >f c ,所以a>b>c,故选:B.【例5】(2022·江西·高三阶段练习(理))设a=ln28,b=1e2,c=ln612,则( )A.a<c<bB.a<b<cC.b<a<cD.c<a<b 【答案】B【解析】根据a、b、c算式特征构建函数f x =ln xx2,通过求导确定函数单调性即可比较a、b、c的大小关系.【详解】令f x =ln xx2,则fx =x-2x ln xx4=0⇒x=e,因此f x =ln xx2在[e,+∞)上单调递减,又因为a=ln28=ln416=f(4),b=1e2=ln ee2=f(e),c=ln612=ln66=f(6),因为4>e>6>e,所以a<b<c.故选:B.【题型专练】1.(2022·四川省资阳中学高二期末(理))若a=ln22,b=1e,c=2ln39,则( )A.b>a>cB.b>c>aC.a>b>cD.a>c>b【答案】A【解析】令f x =ln xx,利用导数说明函数的单调性,即可得到函数的最大值,再利用作差法判断a、c,即可得解;【详解】解:令f x =ln xx,则f x =1-ln xx2,所以当0<x<e时fx >0,当x>e时f x <0,所以f x 在0,e上单调递增,在e,+∞上单调递减,所以f x max=f e =ln ee=1e,所以1e>ln22又ln22-2ln39=9ln2-4ln318=ln29-ln3418=ln512-ln9118>0所以ln22>2ln39,即b>a>c.故选:A2.(2022·浙江台州·高二期末)设a=4-ln4e2,b=ln22,c=ln33,则( )A.a<b<cB.b<a<cC.a<c<bD.b<c<a 【答案】B【解析】由题设a=ln e22e22,b=ln44,c=ln33,构造f(x)=ln xx并利用导数研究单调性,进而比较它们的大小.由题设,a =4-ln4e 2=ln e22e22,b =ln22=ln44,c =ln 33=ln33,令f (x )=ln x x 且x >0,可得f (x )=1-ln xx 2,所以f (x )>0有0<x <e ,则(0,e )上f (x )递增;f (x )<0有x >e ,则(e ,+∞)上f (x )递减;又4>e 22>3>e ,故c >a >b .故选:B3.(2022·四川广安·模拟预测(理))在给出的(1)e ⋅ln3>3(2)e 43ln3<4(3)e π>πe .三个不等式中,正确的个数为( )A.0个 B.1个C.2个D.3个【答案】C 【解析】根据题目特点,构造函数f x =ln x x ,则可根据函数f x =ln xx的单调性解决问题.【详解】首先,我们来考察一下函数f x =ln xx,则f x =1-ln xx 2,令f x >0,解得0<x <e ,令f x <0,解得x >e ,故f x =ln xx在区间0,e 上单调递增,在区间e ,+∞ 单调递减,所以,(1)f e <f 3 ,即ln e e <ln 33,即e ⋅ln3>3,则正确;(2)f e 43<f 3 ,即ln e43e 43<ln33,即e 43⋅ln3>4,则错误;(3)f e >f π ,即ln e e >lnππ⇒πln e >e lnπ⇒ln e π>lnπe ,所以,e π>πe ,则正确故选:C .4.(2022·四川资阳·高二期末(文))若a =ln33,b =1e ,c =3ln28,则( )A.b >a >cB.b >c >aC.c >b >aD.c >a >b【解析】设函数f(x)=ln xx,(x>0),求出其导数,判断函数的单调性,由此可判断出答案.【详解】设f(x)=ln xx,(x>0),则f (x)=1-ln xx2,当0<x<e时,f (x)>0,f(x)递增,当x>e时,f (x)<0,f(x)递减,当x=e时,函数取得最小值,由于e<3<8 ,故ln ee>ln33>ln88,即b>a>c,故选:A5.(2022·山东日照·高二期末)π是圆周率,e是自然对数的底数,在3e,e3,33,e e,eπ,π3,3π,πe八个数中,最小的数是___________,最大的数是___________.【答案】 e e 3π【解析】分别利用指数函数的单调性,判断出底数同为3,e以及π的数的大小关系,再由幂函数的单调性,找出最小的数,最后利用函数f x =ln xx的单调性,判断出最大的数.【详解】显然八个数中最小的数是e e.∵函数y=3x是增函数,且e<3<π,∴3e<33<3π;函数y=e x是增函数,且e<3<π,e e<e3<eπ;函数y=πx是增函数,且e<3<π,πe<π3;函数y=x e在0,+∞是增函数,且e<3<π,e e<3e<πe,则八个数中最小的数是e e 函数y=xπ在0,+∞是增函数,且e<3,eπ<3π,八个数中最大的数为π3或3π,构造函数f x =ln x x,求导得f x =1-ln xx2,当x∈e,+∞时f x <0,函数f x 在e,+∞是减函数,f3 >fπ ,即ln33>lnππ,即πln3>3lnπ,即ln3π>lnπ3,∴3π>π3,则八个数中最大的数是3π.故答案为:e e;3π.6.(2022·安徽省宣城中学高二期末)设a=4-ln4e2,b=1e,c=ln2,则a,b,c的大小关系为( )A.a<b<cB.b<a<cC.a<c<bD.c<a<b【答案】D设f(x)=ln xx(x>0),利用导数求得f(x)的单调性和最值,化简可得a=fe22,b=f(e),c=f(2),根据函数解析式,可得f(4)=ln44=f(2)且e<e22<4,根据函数的单调性,分析比较,即可得答案.【详解】设f(x)=ln xx(x>0),则f (x)=1x⋅x-ln xx2=1-ln xx2,当x∈(0,e)时,f (x)>0,则f(x)为单调递增函数,当x∈(e,+∞)时,f (x)<0,则f(x)为单调递减函数,所以f(x)max=f(e)=1 e,又a=4-ln4e2=2(ln e2-ln2)e2=ln e22e22=f e22,b=1e=f(e),c=ln2=12ln2=f(2),又f(4)=ln44=ln224=ln22=f(2),e<e22<4,且f(x)在(e,+∞)上单调递减,所以f(2)=f(4)<fe22 ,所以b>a>c.故选:D7.(2022·黑龙江·大庆实验中学高二期末)已知实数a,b,c满足ln ae a=ln b b=-ln c c<0,则a,b,c的大小关系为( )A.b<c<aB.c<b<aC.a<b<cD.b<a<c【答案】C【解析】判断出0<a<1,0<b<1,c>1,构造函数f(x)=ln xx,(x>0),判断0<x<1时的单调性,利用其单调性即可比较出a,b的大小,即可得答案.【详解】由ln ae a=ln b b=-ln c c<0,得0<a<1,0<b<1,c>1 ,设f(x)=ln xx,(x>0) ,则f (x)=1-ln xx2,当0<x<1时,f (x)>0,f(x)单调递增,因为0<a<1,所以e a>1>a,所以ln a e a >ln a a ,故ln a ea =lnb b >ln aa ,∴fb >f a ,则b >a ,即有0<a <b <1<c ,故a <b <c .故选:C .题型二:利用常见不等式关系比较大小1.常见的指数放缩:e x ≥x +1(x =0);e x ≥ex (x =1)证明:设f x =e x −x −1,所以f x =e x −1,所以当x ∈−∞,0 时,f x <0,所以f x 为减函数,当当x ∈0,+∞ 时,f x >0,所以f x 为增函数,所以当x =0时,f x 取得最小值为f 0 =0,所以f x ≥0,即e x ≥x +1 2.常见的对数放缩:1−1x ≤ln x ≤x −1(x =1);ln x ≤xe(x =e )3.常见三角函数的放缩:x ∈0,π2,sin x <x <tan x 【例1】(2022·湖北武汉·高二期末)设a =4104,b =ln1.04,c =e 0.04-1,则下列关系正确的是( )A.a >b >c B.b >a >cC.c >a >bD.c >b >a【答案】D 【解析】分别令f x =e x -1-x x >0 、g x =ln 1+x -x x >0 、h x =ln 1+x -x1+xx >0 ,利用导数可求得f x >0,g x <0,h x >0,由此可得大小关系.【详解】令f x =e x -1-x x >0 ,则f x =e x -1>0,∴f x 在0,+∞ 上单调递增,∴f x >f 0 =0,即e x -1>x ,则e 0.04-1>0.04;令g x =ln 1+x -x x >0 ,则g x =11+x -1=-x1+x<0,∴g x 在0,+∞ 上单调递减,∴g x <g 0 =0,即ln 1+x <x ,则ln1.04<0.04;∴e 0.04-1>ln1.04,即c >b ;令h x =ln 1+x -x 1+x x >0 ,则h x =11+x -11+x 2=x 1+x2>0,∴h x 在0,+∞ 上的单调递增,∴h x >h 0 =0,即ln 1+x >x1+x,则ln1.04>0.041.04=4104,即b >a ;综上所述:c >b >a .故选:D .【点睛】关键点点睛:本题解题关键是能够通过构造函数的方式,将问题转化为函数值的大小关系的比较问题,通过导数求得函数的单调性后,即可得到函数值的大小.【例2】(2022·山东菏泽·高二期末)已知a=910,b=e-19,c=1+ln1011,则a,b,c的大小关系为( )A.a<b<cB.b<a<cC.c<b<aD.c<a<b 【答案】B【解析】首先设f x =e x-x-1,利用导数得到e x>x+1x≠0,从而得到1b>1a,设g x =ln x-x+1,利用导数得到ln x<x-1x≠1,从而得到ln 1110<110和c>a,即可得到答案.【详解】解:设f x =e x-x-1,f x =e x-1,令f x =0,解得x=0. x∈-∞,0,f x <0,f x 单调递减,x∈0,+∞,f x >0,f x 单调递增.所以f x ≥f0 =0,即e x-x-1≥0,当且仅当x=0时取等号.所以e x>x+1x≠0.又1b=e19>19+1=109=1a,a>0,b>0,故1b>1a,所以b<a;设g x =ln x-x+1,g x =1x-1=1-xx,令g x =0,解得x=1.x∈0,1,g x >0,g x 单调递增,x∈1,+∞,g x <0,g x 单调递减.所以g x ≤g1 =0,即ln x-x+1≤0,当且仅当x=1时取等号.所以ln x<x-1x≠1,故ln 1110<1110-1=110,又c-a=ln 1011+110>ln1011+ln1110=ln1=0,所以c>a,故b<a<c.故选:B.【例3】(2022·四川凉山·高二期末(文))已知a=e0.01,b=1.01,c=1-ln 100101,则( ).A.c>a>bB.a>c>bC.a>b>cD.b>a>c 【答案】C【解析】构造函数f(x)=e x-1-x,由导数确定单调性,进而即得.【详解】设f(x)=e x-1-x,则f (x)=e x-1>0,在x>0时恒成立,所以f(x)在(0,+∞)上是增函数,所以e x-1-x>f(0)=0,即e x>1+x,x>0,∴e0.01>1.01,又ln1.01>0,∴e ln1.01>1+ln1.01,即1.01>1-ln100101,所以a>b>c.故选:C.【例4】(2022·四川绵阳·高二期末(理))若a=ln 87,b=18,c=ln76,则( )A.a<c<bB.c<a<bC.c<b<aD.b<a<c 【答案】D【解析】构造函数f x =ln x+1x-1,其中x>1,利用导数分析函数f x 的单调性,可比较得出a、b的大小关系,利用对数函数的单调性可得出c、a的大小关系,即可得出结论.【详解】构造函数f x =ln x+1x-1,其中x>1,则f x =1x-1x2=x-1x2>0,所以,函数f x 在1,+∞上为增函数,故f x >f1 =0,则f 87 =ln87+78-1=ln87-18>0,即a>b,∵ln76>ln87,因此,b<a<c.故选:D.【例5】(2022·全国·高考真题(理))已知a=3132,b=cos14,c=4sin14,则( )A.c>b>aB.b>a>cC.a>b>cD.a>c>b 【答案】A【解析】由cb=4tan14结合三角函数的性质可得c>b;构造函数f(x)=cos x+12x2-1,x∈(0,+∞),利用导数可得b>a,即可得解.【详解】因为cb=4tan14,因为当x∈0,π2,sin x<x<tan x所以tan 14>14,即cb>1,所以c>b;设f(x)=cos x+12x2-1,x∈(0,+∞),f (x)=-sin x+x>0,所以f(x)在(0,+∞)单调递增,则f 14 >f(0)=0,所以cos14-3132>0,所以b>a,所以c>b>a,故选:A【题型专练】1.(2022·福建·莆田一中高二期末)设a=ln1.01,b=1.0130e,c=1101,则( )A.a<b<cB.a<c<bC.c<b<aD.c<a<b【答案】D【解析】构造函数f x =ln x-x+1(x>0),证明ln x≤x-1,令x=1.01,排除选项A,B,再比较a,b大小,即得解.【详解】解:构造函数f x =ln x-x+1(x>0),f1 =0,f x =1x-1=1-xx,所以f x 在0,1上f x >0,f x 单调递增,f x 在1,+∞上f x <0,f x 单调递减,所以f (x)max=f(1)=0,∴ln x-x+1≤0,∴ln x≤x-1,令x=1.01,则 a=ln x,b=x30e,c=1-1x,考虑到ln x≤x-1,可得ln1x≤1x-1,-ln x≥1-1x等号当且仅当 x=1时取到,故x=1.01时a>c,排除选项A,B.下面比较a,b大小,由ln x≤x-1得ln1.01<1.01<1.0130e,故b>a,所以c<a<b.故选:D.2.(2022·吉林·长春市第二中学高二期末)已知a=cos15,b=4950,c=5sin15,则( )A.b>a>cB.c>b>aC.b>c>aD.c>a>b 【答案】D【解析】构造函数f(x)=cos x+12x2-1,利用导数求解函数f(x)的单调性,利用单调性进行求解.【详解】解:设f(x)=cos x+12x2-1,(0<x<1),则f (x)=x-sin x,设g(x)=x-sin x,(0<x<1),则g (x)=1-cos x>0,故g(x)在区间(0,1)上单调递增,即g(x)>g(0)=0,即f (x)>0,故f(x)在区间(0,1)上单调递增,所以f 15 >f(0)=0,可得cos15>4950,故a>b,利用三角函数线可得x∈0,π2时,tan x>x,所以tan 15>15,即sin15cos15>15,所以5sin 15>cos15,故c>a综上,c>a>b故选:D.3.(2022·湖北武汉·高二期末)设a=4104,b=ln1.04,c=e0.04-1,则下列关系正确的是( )A.a>b>cB.b>a>cC.c>a>bD.c>b>a【答案】D【解析】分别令f x =e x-1-x x>0、g x =ln1+x-x x>0、h x =ln1+x-x1+x x>0,利用导数可求得f x >0,g x <0,h x >0,由此可得大小关系.【详解】令f x =e x-1-x x>0,则f x =e x-1>0,∴f x 在0,+∞上单调递增,∴f x >f0 =0,即e x-1>x,则e0.04-1>0.04;令g x =ln1+x-x x>0,则g x =11+x-1=-x1+x<0,∴g x 在0,+∞上单调递减,∴g x <g0 =0,即ln1+x<x,则ln1.04<0.04;∴e0.04-1>ln1.04,即c>b;令h x =ln1+x-x1+x x>0,则h x =11+x-11+x2=x1+x2>0,∴h x 在0,+∞上的单调递增,∴h x >h0 =0,即ln1+x>x1+x,则ln1.04>0.041.04=4104,即b>a;综上所述:c>b>a.故选:D.题型三:构造其它函数比大小(研究给出数据结构,合理构造函数)【例1】(2022·河南河南·高二期末(理))已知a-12=ln2a,b-13=ln3b,c-e=lnce,其中a≠12,b≠13,c≠e,则a,b,c的大小关系为( ).A.c<a<bB.c<b<aC.a<b<cD.a<c<b【答案】A 【解析】构造函数f x =x -ln x x >0 ,并求f x ,利用函数f x 的图象去比较a 、b 、c 三者之间的大小顺序即可解决.【详解】将题目中等式整理,得a -ln a =12-ln 12,b -ln b =13-ln 13,c -ln c =e -ln e ,构造函数f x =x -ln x x >0 ,f x =1-1x =x -1x,令f x =0,得x =1,所以f x 在0,1 上单调递减,在1,+∞ 上单调递增,函数f x 的大致图象如图所示.因为f a =f 12,f b =f 13 ,f c =f e ,且a ≠12,b ≠13,c ≠e ,则由图可知b >a >1,0<c <1,所以c <a <b .故选:A .【例2】(2022·重庆市万州第二高级中学高二阶段练习)设a =e 1.01,b =3e,c =ln3,其中e 为自然对数的底数,则a ,b ,c 的大小关系是( )A.b >a >c B.c >a >bC.a >c >bD.a >b >c【答案】D 【解析】可判断a =e 1.01>2,b =3e <2,c =ln3<2,再令f (x )=ln x -x e ,x ∈[e ,+∞),求导判断函数的单调性,从而比较大小.【详解】解:a =e 1.01>2,b =3e<2,c =ln3<2,令f (x )=ln x -x e,x ∈[e ,+∞),f (x )=1x -1e =e -xex <0,故f (x )在[e ,+∞)上是减函数,故f 3 <f e ,即ln3-3e <0,故ln3<3e <e 1.01,即c <b <a ,故选:D .【例3】(2022·全国·高三专题练习)已知a=ln32,b=1e-1,c=ln43,则a,b,c的大小关系是( )A.b>a>cB.b>c>aC.c>a>bD.c>b>a 【答案】A【解析】根据给定条件构造函数f(x)=ln xx-1(x≥e),再探讨其单调性并借助单调性判断作答.【详解】令函数f(x)=ln xx-1(x≥e),求导得f (x)=1-ln x-1xx-12,令g x =1-ln x-1x,则g x =1-xx2<0,(x≥e),故g x =1-ln x-1x,(x≥e)单调递减,又g1 =1-ln1-11=0,故g x <0,(x≥e),即f (x)<0,(x≥e),而e<3<4,则f(e)>f(3)>f(4),即1e-1>ln32>ln43,所以b>a>c,故选:A【例4】(山东省淄博市2021-2022学年高二下学期期末数学试题)设a=110,b=ln1.1,c=e-910,则( )A.a<b<cB.c<a<bC.b<c<aD.b<a<c【答案】D【解析】利用指数函数的性质可比较a,c的大小,再构造函数f(x)=x-ln(1+x),利用导数判断函数的单调性,再利用其单调性可比较出a,b,从而可比较出三个数的大小【详解】因为y=e x在R上为增函数,且-1<-9 10,所以e-1<e-910,因为110<e-1,所以110<e-910,即a<c,令f(x)=x-ln(1+x)(x>0),得f (x)=1-11+x=x1+x>0,所以f(x)在(0,+∞)上递增,所以f(x)>f(0)=0,所以x>ln(1+x),令x=0.1,则0.1>ln1.1,即110>ln1.1,即a>b,所以b<a<c,故选:D【例5】(2022·四川南充·高二期末(理))设a=0.01e0.01,b=199,c=-ln0.99,则( )A.c<a<bB.c<b<aC.a<b<cD.a<c<b 【答案】A【解析】根据给定数的特征,构造对应的函数,借助导数探讨单调性比较函数值大小作答.【详解】令函数y=xe x,t=x1-x,u=-ln(1-x),x∈(0,2-1),显然y>0,t>0,则ln y-ln t=ln x+x-[ln x-ln(1-x)]=x+ln(1-x),令f(x)=x+ln(1-x),x∈(0,2-1),求导得f (x)=1+1x-1=xx-1<0,即f(x)在(0,2-1)上单调递减,∀x∈(0,2-1),f(x)<f(0)=0,即ln y<ln t⇔y<t,因此当x∈(0,2-1)时,xe x<x1-x,取x=0.01,则有a=0.01e0.01<0.011-0.01=199=b,令g(x)=y-u=xe x+ln(1-x),x∈(0,2-1),g (x)=(x+1)e x+1x-1=(x2-1)e x+1x-1,令h(x)=(x2-1)e x+1,x∈(0,2-1),h (x)=(x2+2x-1)e x<0,h(x)在(0,2-1)上单调递减,∀x∈(0,2-1),h(x)<h(0)=0,有g (x)>0,则g(x)在(0,2-1)上单调递增,∀x∈(0,2-1),g(x)>g(0)=0,因此当x∈(0,2-1)时,xe x>-ln(1-x),取x=0.01,则有a=0.01e0.01>-ln(1-0.01)=-ln0.99=c,所以c<a<b.故选:A【点睛】思路点睛:涉及某些数或式大小比较,探求它们的共同特性,构造符合条件的函数,利用函数的单调性求解即可.【例6】(2022·全国·高三专题练习)已知a=0.3π,b=0.9π2,c=sin0.1,则a,b,c的大小关系正确的是( )A.a>b>cB.c>a>bC.a>c>bD.b>a>c 【答案】B【解析】作差法比较出a>b,构造函数,利用函数单调性比较出c>a,从而得出c>a>b.【详解】a-b=0.3π-0.9π2=0.3π-0.9π2>0.3×3-0.9π2=0,所以a-b>0,故a>b,又f x =πsin x-3x,则f x =πcos x-3在x∈0,π6上单调递减,又f 0 =π-3>0,f π6 =3π2-3<0,所以存在x0∈0,π6,使得f x0 =0,且在x∈0,x0时,f x >0,在x∈x0,π6时,f x <0,即f x =πsin x-3x在x∈0,x0上单调递增,在x∈x0,π6单调递减,且f π12 =6+24π-3>0,所以x0>π12,又因为f0 =0,所以当x∈0,x0时,f x =πsin x-3x>0,其中因为110<π12,所以110∈0,x0,所以f110=πsin0.1-0.3>0,故sin0.1>0.3π,即c>a>b.故选:B【例7】(2022·河南洛阳·三模(理))已知a=810,b=99,c=108,则a,b,c的大小关系为( )A.b>c>aB.b>a>cC.a>c>bD.a>b>c【答案】D【解析】构造函数f x =18-xln x,x≥8,求其单调性,从而判断a,b,c的大小关系.【详解】构造f x =18-xln x,x≥8,f x =-ln x+18x-1,f x =-ln x+18x-1在8,+∞时为减函数,且f 8 =-ln8+94-1=54-ln8<54-ln e2=54-2<0,所以f x =-ln x+18x-1<0在8,+∞恒成立,故f x =18-xln x在8,+∞上单调递减,所以f8 >f9 >f10,即10ln8>9ln9>8ln10,所以810>99>108,即a>b>c.故选:D【点睛】对于指数式,对数式比较大小问题,通常方法是结合函数单调性及中间值比较大小,稍复杂的可能需要构造函数进行比较大小,要结合题目特征,构造合适的函数,通过导函数研究其单调性,比较出大小.【例8】(2022·河南·模拟预测(理))若a=e0.2,b= 1.2,c=ln3.2,则a,b,c的大小关系为( )A.a>b>cB.a>c>bC.b>a>cD.c>b>a【答案】B【解析】构造函数f x =e x-x-1x>0,利用导数可得a=e0.2>1.2>b,进而可得e1.2>3.2,可得a>c,再利用函数g x =ln x-2x-1x+1,可得ln3.2>1.1,即得.【详解】令f x =e x-x-1x>0,则f x =e x-1>0,∴f x 在0,+∞上单调递增,∴a=e0.2>0.2+1=1.2> 1.2=b,a=e0.2>1.2=ln e1.2,c=ln3.2,∵e1.25=e6> 2.76≈387.4,3.25≈335.5,∴e1.2>3.2,故a>c,设g x =ln x-2x-1x+1,则g x =1x-2x+1-2xx+12=x-12x x+12≥0,所以函数在0,+∞上单调递增,由g1 =0,所以x>1时,g x >0,即ln x>2x-1x+1,∴ln3.2=ln2+ln1.6>22-12+1+21.6-11.6+1=1539>1550=1.1,又1<1.2<1.21,1<b= 1.2<1.1,∴c>1.1>b,故a>c>b.故选:B.【点睛】本题解题关键是构造了两个不等式e x>x+1x>0与ln x>2x-1x+1(x>1)进行放缩,需要学生对一些重要不等式的积累.【题型专练】1.(2022·山东烟台·高二期末)设a=0.9,b=0.9,c=ln910e,则a,b,c的大小关系为( )A.b>c>aB.b>a>cC.c>b>aD.c>a>b【答案】B【解析】构造函数f(x)=x-ln x-1,g(x)=x-x,利用导数研究其单调性,再由单调性可比较大小.【详解】令f(x)=x-ln x-1,因为f (x)=1-1x=x-1x所以,当0<x<1时,f (x)<0,f(x)单调递减,所以f (0.9)=0.9-ln0.9-1>f (1)=0,即0.9>ln0.9+1=ln 910e,a >c ;令g (x )=x -x ,因为g (x )=1-12x=2x -12x所以,当14<x <1时,g (x )>0,g (x )单调递增,所以g (0.9)<g (1),即0.9-0.9<0,0.9<0.9,即a <b .综上,c <a <b .故选:B2.(2022·山东青岛·高二期末)已知a =ln π3,b =2π3-2,c =sin0.04-12π3-1,则a ,b ,c 的大小关系是( )A.c >b >a B.a >b >cC.b >a >cD.a >c >b【答案】C 【解析】构造函数得出a ,b 大小,又c <0即得出结论.【详解】构造函数f x =2ln x -2x -1 =2ln x -x +1 ,则a -b =f π3,f x =21x-1<0在1,+∞ 上恒成立,则y =f x 在1,+∞ 上单调递减,故a -b =f π3<f 1 =0,则b >a >0,π3=1+x x >0 ,则1+x -1=π-33>0.123=0.04,由对于函数g x =sin x -x 0<x <π2 ,g x =cos x -1<0,0<x <π2恒成立,所以, g x =sin x -x <g 0 =0即sin x <x 在0,π2上恒成立.所以,sin0.04-121+x -1<sin x -121+x -1=sin x -12x <x -12x =x x -12 <0(注:0.04<x <0.09,0.2<x <0.3<0.5)所以,b >a >c 故选:C3.(2022·湖北襄阳·高二期末)设a =34e 25,b =25e 34,c =35,则( )A.b <c <a B.a <b <cC.c <b <aD.c <a <b【答案】C 【解析】根据式子结构,构造函数f x =e x x ,0<x <1 ,利用导数判断单调性,得到f 25 >f 34,即可判断出a>b.记g x =e x-2x,0<x<1,推理判断出b>c.【详解】a b=34e2525e34=e2525e3434.记f x =e xx,0<x<1,则f x =e x x-1x2<0,所以f x =e x x在0,1上单调递减.所以f 25 >f34 ,所以a>b.b-c=25e34-35=25e34-2×34.记g x =e x-2x,0<x<1,则g x =e x-2.所以在x∈0,ln2上,g x <0,则g x 单调递减;在x∈ln2,1上,g x >0,则g x 单调递增;所以g x min=g ln2=e ln2-2×ln2=21-ln2>0,所以g 34 >g x min>0,即b-c=25e34-2×34>0.所以b>c.综上所述:c<b<a.故选:C4.(2022·福建宁德·高二期末)已知a,b∈R,且2a>2b>1,则( )A.e a-e b<ln a-ln bB.b ln a<a ln bC.b a>e a-bD.sin a-sin ba-b<1【答案】D【解析】由题设有a>b>0,分别构造y=e x-ln x、y=ln xx、y=xe x、y=x-sin x,利用导数研究在x∈(0,+∞)上的单调性,进而判断各项的正误.【详解】由2a>2b>1,即a>b>0,A:若y=e x-ln x且x∈(0,+∞),则y =e x-1x,故yx=12=e-2<0,yx=1=e-1>0,即y 在12,1上存在零点且y 在(0,+∞)上递增,所以y在(0,+∞)上不单调,则e a-ln a<e b-ln b不一定成立,排除;B:若y=ln x x且x∈(0,+∞),则y =1-ln xx2,所以(0,e)上y >0,y递增;(e,+∞)上y <0,y递减;故y在(0,+∞)上不单调,则ln aa<ln bb不一定成立,排除;C:若y=xe x且x∈(0,+∞),则y =e x(x+1)>0,即y在(0,+∞)上递增,所以ae a>be b,即ba<e a-b,排除;D:若y=x-sin x且x∈(0,+∞),则y =1-cos x≥0,即y在(0,+∞)上递增,所以a-sin a>b-sin b,即sin a-sin ba-b<1,正确.故选:D5.(2022·贵州贵阳·高二期末(理))设a=e1.01,b=3e,c=ln3,则a,b,c的大小关系是( )A.b>a>cB.c>a>bC.a>c>bD.a>b>c【答案】D【解析】分析可得a>2,b∈(1,2),c∈(1,2),令f(x)=ln x-xe,x∈[e,+∞),利用导数可得f(x)的单调性,根据函数单调性,可比较ln3和3e的大小,即可得答案.【详解】由题意得a=e1.01>e1>2,b=3e∈(1,2),c=ln3∈(1,2),令f(x)=ln x-xe,x∈[e,+∞),则f (x)=1x-1e=e-xxe≤0,所以f(x)在[e,+∞)为减函数,所以f(3)<f(e),即ln3-3e<ln e-ee=0,所以ln3<3e,则e1.01>3e>ln3,即a>b>c.故选:D6.(2022·重庆南开中学高二期末)已知a=65ln1.2,b=0.2e0.2,c=13,则( )A.a<b<cB.c<b<aC.c<a<bD.a<c<b【答案】A【解析】b=0.2e0.2=e0.2ln e0.2,令f x =x ln x,利用导数求出函数f x 的单调区间,令g x =e x-x-1,利用导数求出函数g x 的单调区间,从而可得出e0.2和1.2的大小,从而可得出a,b的大小关系,将b,c两边同时取对数,然后作差,从而可得出b,c的大小关系,即可得出结论.【详解】解:b=0.2e0.2=e0.2ln e0.2,a=65ln1.2=1.2ln1.2,令f x =x ln x,则f x =ln x+1,当0<x<1e时,f x <0,当x>1e时,f x >0,所以函数f x 在0,1 e上递减,在1e,+∞上递增,令g x =e x-x-1,则g x =e x-1,当x<0时,g x <0,当x>0时,g x >0,所以函数g x 在-∞,0上递减,在0,+∞上递增,所以g0.2>g0 =0,即e0.2>1+0.2=1.2>1 e,所以f e0.2>f1.2,即e0.2ln e0.2>1.2ln1.2,所以b>a,由b=0.2e0.2,得ln b=ln0.2e0.2=15+ln15,由c=13,得ln c=ln13,ln c-ln b=ln13-ln15-15=ln53-15,因为535=625×5243>10>e,所以53>e15,所以ln53>15,所以ln c-ln b>0,即ln c>ln b,所以c>b,综上所述a<b<c.故选:A.【点睛】本题考查了比较大小的问题,考查了同构的思想,考查了利用导数求函数的单调区间,解决本题的关键在于构造函数,有一定的难度.7.(2022·湖北恩施·高二期末多选)已知a2-14=2ln2a>0,b2-1e2-2=2ln b>0,c2-13=ln3c2> 0,则( )A.c<bB.b<aC.c<aD.b<c【答案】AC【解析】根据题意可将式子变形为a2-ln a2=14-ln14,b2-ln b2=1e2-ln1e2,c2-ln c2=13-ln13,构造函数f x =x-ln x,利用导数求解函数f x 的单调性,即可求解.【详解】解:由题意知,a>12,b>1,c2>13,对三个式子变形可得a2-ln a2=14-ln14,b2-ln b2=1e2-ln1e2,c2-ln c2=13-ln13,设函数f x =x-ln x,则f x =1-1x=x-1x.由f x >0,得x>1;由f x <0,得0<x<1,则f x 在0,1上单调递减,在1,+∞上单调递增,因为0<1e2<14<13<1,所以b2>a2>c2,所以c<a<b.故选:AC.8.(2022·安徽·歙县教研室高二期末)已知x、y、z∈(0,1),且满足e2x=2e x,e3y=3e y,e4z=4e z,则( )A.x<y<zB.x<z<yC.z<y<xD.z<x<y【答案】C【解析】先对已知条件取对数后得到ln x-x=ln2-2,ln y-y=ln3-3,ln z-z=ln4-4.根据式子结构,构造函数m x =ln x-x,利用导数判断单调性,比较大小.【详解】由e2x=2e x得2+ln x=ln2+x,即ln x-x=ln2-2.同理得:ln y-y=ln3-3,ln z-z=ln4-4.令m x =ln x-x,则m x =1x-1=1-xx.故m x 在0,1上单调递增,(1,+∞)上单调递减.所以z<y<x.故选:C.。
专题18构造函数法解决导数问题(解析版)
专题18 构造函数法解决导数问题1.以抽象函数为背景、题设条件或所求结论中具有“f (x )±g (x ),f (x )g (x ),f (x )g (x )”等特征式、旨在考查导数运算法则的逆向、变形应用能力的客观题,是高考试卷中的一位“常客”,常以压轴题的形式出现,解答这类问题的有效策略是将前述式子的外形结构特征与导数运算法则结合起来,合理构造出相关的可导函数,然后利用该函数的性质解决问题.2.(1)当题设条件中存在或通过变形出现特征式“f ′(x )±g ′(x )”时,不妨联想、逆用“f ′(x )±g ′(x )=[f (x )±g (x )]′”.构造可导函数y =f (x )±g (x ),然后利用该函数的性质巧妙地解决问题. (2)当题设条件中存在或通过变形出现特征式“f ′(x )g (x )+f (x )g ′(x )”时,可联想、逆用“f ′(x )g (x )+f (x )g ′(x )=[f (x )g (x )]′”,构造可导函数y =f (x )g (x ),然后利用该函数的性质巧妙地解决问题.(3)当题设条件中存在或通过变形出现特征式“f ′(x )g (x )-f (x )g ′(x )”时,可联想、逆用“f ′(x )g (x )-f (x )g ′(x )[g (x )]2=⎣⎡⎦⎤f (x )g (x )′”,构造可导函数y =f (x )g (x ),再利用该函数的性质巧妙地解决问题. 3.构造函数解决导数问题常用模型(1)条件:f ′(x )>a (a ≠0):构造函数:h (x )=f (x )-ax . (2)条件:f ′(x )±g ′(x )>0:构造函数:h (x )=f (x )±g (x ). (3)条件:f ′(x )+f (x )>0:构造函数:h (x )=e x f (x ). (4)条件:f ′(x )-f (x )>0:构造函数:h (x )=f (x )e x .(5)条件:xf ′(x )+f (x )>0:构造函数:h (x )=xf (x ). (6)条件:xf ′(x )-f (x )>0:构造函数:h (x )=f (x )x.题型一 构造y =f (x )±g (x )型可导函数1.设奇函数f (x )是R 上的可导函数,当x >0时有f ′(x )+cos x <0,则当x ≤0时,有()A .f (x )+sin x ≥f (0)B .f (x )+sin x ≤f (0)C .f (x )-sin x ≥f (0)D .f (x )-sin x ≤f (0)解析:观察条件中“f ′(x )+cos x ”与选项中的式子“f (x )+sin x ”,发现二者之间是导函数与原函数之间的关系,于是不妨令F (x )=f (x )+sin x ,因为当x >0时,f ′(x )+cos x <0,即F ′(x )<0,所以F (x )在(0,+∞)上单调递减,又F (-x )=f (-x )+sin(-x )=-[f (x )+sin x ]=-F (x ),所以F (x )是R 上的奇函数,且F (x )在(-∞,0)上单调递减,F (0)=0,并且当x ≤0时有F (x )≥F (0),即f (x )+sin x ≥f (0)+sin 0=f (0),故选A.2.设定义在R 上的函数f (x )满足f (0)=-1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论一定错误的是()A .f ⎝⎛⎭⎫1k <1kB .f ⎝⎛⎭⎫1k >1k -1C .f ⎝⎛⎭⎫1k -1<1k -1D .f ⎝⎛⎭⎫1k -1>1k -1解析:根据条件式f ′(x )>k 得f ′(x )-k >0,可以构造F (x )=f (x )-kx ,因为F ′(x )=f ′(x )-k >0,所以F (x )在R 上单调递增.又因为k >1,所以1k -1>0,从而F ⎝⎛⎭⎫1k -1>F (0),即f ⎝⎛⎭⎫1k -1-kk -1>-1, 移项、整理得f ⎝⎛⎭⎫1k -1>1k -1,因此选项C 是错误的,故选C.3.已知定义域为R 的函数f (x )的图象经过点(1,1),且对于任意x ∈R ,都有f ′(x )+2>0, 则不等式f (log 2|3x -1|)<3-log2|3x-1|的解集为()A .(-∞,0)∪(0,1)B .(0,+∞)C .(-1,0)∪(0,3)D .(-∞,1)解析:根据条件中“f ′(x )+2”的特征,可以构造F (x )=f (x )+2x ,则F ′(x )=f ′(x )+2>0, 故F (x )在定义域内单调递增,由f (1)=1,得F (1)=f (1)+2=3,因为由f (log 2|3x -1|)<3-log2|3x-1|可化为f (log 2|3x -1|)+2log 2|3x -1|<3,令t =log 2|3x -1|,则f (t )+2t <3.即F (t )<F (1),所以t <1.即log 2|3x -1|<1, 从而0<|3x -1|<2,解得x <1且x ≠0,故选A.4.设定义在R 上的函数f (x )满足f (1)=2,f ′(x )<1,则不等式f (x 2)>x 2+1的解集为________. 解析:由条件式f ′(x )<1得f ′(x )-1<0,待解不等式f (x 2)>x 2+1可化为f (x 2)-x 2-1>0, 可以构造F (x )=f (x )-x -1,由于F ′(x )=f ′(x )-1<0,所以F (x )在R 上单调递减. 又因为F (x 2)=f (x 2)-x 2-1>0=2-12-1=f (12)-12-1=F (12),所以x 2<12,解得-1<x <1, 故不等式f (x 2)>x 2+1的解集为{x |-1<x <1}.5.定义在R 上的函数f (x ),满足f (1)=1,且对任意x ∈R 都有f ′(x )<12,则不等式f (lg x )>lg x +12的解集为__________.解析:由题意构造函数g (x )=f (x )-12x ,则g ′(x )=f ′(x )-12<0,所以g (x )在定义域内是减函数.因为f (1)=1,所以g (1)=f (1)-12=12,由f (lg x )>lg x +12,得f (lg x )-12lg x >12.即g (lg x )=f (lg x )-12lg x >12=g (1),所以lg x <1,解得0<x <10. 所以原不等式的解集为(0,10).题型二 构造f (x )·g (x )型可导函数1.设函数f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (3)=0,则不等式f (x )g (x )>0的解集是()A .(-3,0)∪(3,+∞)B .(-3,0)∪(0,3)C .(-∞,-3)∪(3,+∞)D .(-∞,-3)∪(0,3)解析:利用构造条件中“f ′(x )g (x )+f (x )g ′(x )”与待解不等式中“f (x )g (x )”两个代数式之间的关系, 可构造函数F (x )=f (x )g (x ),由题意可知,当x <0时,F ′(x )>0,所以F (x )在(-∞,0)上单调递增. 又因为f (x ),g (x )分别是定义在R 上的奇函数和偶函数,所以F (x )是定义在R 上的奇函数, 从而F (x )在(0,+∞)上单调递增,而F (3)=f (3)g (3)=0,所以F (-3)=-F (3), 结合图象可知不等式f (x )g (x )>0⇔F (x )>0的解集为(-3,0)∪(3,+∞),故选A.2.设y =f (x )是(0,+∞)上的可导函数,f (1)=2,(x -1)[2f (x )+xf ′(x )]>0(x ≠1)恒成立.若曲线f (x )在点(1,2)处的切线为y =g (x ),且g (a )=2 018,则a 等于()A .-501B .-502C .-503D .-504解析:由“2f (x )+xf ′(x )”联想到“2xf (x )+x 2f ′(x )”,可构造F (x )=x 2f (x )(x >0).由(x -1)[2f (x )+xf ′(x )]>0(x ≠1)可知,当x >1时,2f (x )+xf ′(x )>0,则F ′(x )=2xf (x )+x 2f ′(x )>0, 故F (x )在(1,+∞)上单调递增;当0<x <1时,2f (x )+xf ′(x )<0,则F ′(x )=2xf (x )+x 2f ′(x )<0, 故F (x )在(0,1)上单调递减,所以x =1为极值点,则F ′(1)=2×1×f (1)+12f ′(1)=2f (1)+f ′(1)=0. 由f (1)=2可得f ′(1)=-4,曲线f (x )在点(1,2)处的切线为y -2=-4(x -1),即y =6-4x , 故g (x )=6-4x ,g (a )=6-4a =2 018,解得a =-503,故选C.3.设定义在R 上的函数f (x )满足f ′(x )+f (x )=3x 2e -x ,且f (0)=0,则下列结论正确的是()A .f (x )在R 上单调递减B .f (x )在R 上单调递增C .f (x )在R 上有最大值D .f (x )在R 上有最小值解析:根据条件中“f ′(x )+f (x )”的特征,可以构造F (x )=e x f (x ),则有F ′(x )=e x [f ′(x )+f (x )]=e x ·3x 2e -x =3x 2,故F (x )=x 3+c (c为常数),所以f (x )=x 3+c e x ,又f (0)=0,所以c =0,f (x )=x 3e x .因为f ′(x )=3x 2-x 3e x,易知f (x )在区间(-∞,3]上单调递增,在[3,+∞)上单调递减,f (x )max =f (3)=27e 3,无最小值,故选C.4.已知f (x )是定义在R 上的增函数,其导函数为f ′(x ),且满足f (x )f ′(x )+x <1,则下列结论正确的是()A .对于任意x ∈R ,f (x )<0B .对于任意x ∈R ,f (x )>0C .当且仅当x ∈(-∞,1)时,f (x )<0D .当且仅当x ∈(1,+∞)时,f (x )>0解析:因为函数f (x )在R 上单调递增,所以f ′(x )≥0,又因为f (x )f ′(x )+x <1,则f ′(x )≠0,综合可知f ′(x )>0.又因为f (x )f ′(x )+x <1,则f (x )+xf ′(x )<f ′(x ),即f (x )+(x -1)f ′(x )<0,根据“f (x )+(x -1)f ′(x )”的特征,构造函数F (x )=(x -1)f (x ),则F ′(x )<0,故函数F (x )在R 上单调递减,又F (1)=(1-1)f (1)=0,所以当x >1时,x -1>0,F (x )<0,故f (x )<0.又因为f (x )是定义在R 上的增函数, 所以当x ≤1时,f (x )<0,因此对于任意x ∈R ,f (x )<0,故选A.5.若定义在R 上的函数f (x )满足f ′(x )+f (x )>2,f (0)=5,则不等式f (x )<3e x +2的解集为________.解析:因为f ′(x )+f (x )>2,所以f ′(x )+f (x )-2>0,不妨构造函数F (x )=e x f (x )-2e x .因为F ′(x )=e x [f ′(x )+f (x )-2]>0,所以F (x )在R 上单调递增.因为f (x )<3e x +2,所以e xf (x )-2e x <3,即F (x )<3,又因为F (0)=e 0f (0)-2e 0=3,所以F (x )<F (0),则x <0, 故不等式f (x )<3ex +2的解集为(-∞,0).6.设函数f (x )在R 上的导函数为f ′(x ),且2f (x )+xf ′(x )>x 2,则下列不等式在R 上恒成立的是()A .f (x )>0B .f (x )<0C .f (x )>xD .f (x )<x解析:令g (x )=x 2f (x )-14x 4,则g ′(x )=2xf (x )+x 2f ′(x )-x 3=x [2f (x )+xf ′(x )-x 2].当x >0时,g ′(x )>0,∴g (x )>g (0),即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x <0时,g ′(x )<0,∴g (x )>g (0),即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x =0时,由题意可得2f (0)>0,∴f (0)>0.综上可知,f (x )>0.7.已知定义在R 上的函数f (x )满足f (x )+2f ′(x )>0恒成立,且f (2)=1e (e 为自然对数的底数),则不等式e x f (x )-e 2x >0的解集为________.解析:由f (x )+2f ′(x )>0得2⎣⎡⎦⎤12f (x )+f ′(x )>0,可构造函数h (x )=e 2xf (x ), 则h ′(x )=12e 2x [f (x )+2f ′(x )]>0,所以函数h (x )=e 2xf (x )在R 上单调递增,且h (2)=e f (2)=1.不等式e xf (x )-e 2x >0等价于e 2x f (x )>1,即h (x )>h (2)⇒x >2, 所以不等式e x f (x )-e 2x >0的解集为(2,+∞).题型三 构造f (x )g (x )型可导函数 1.设f ′(x )是奇函数f (x )(x ∈R)的导函数,f (-1)=0, 当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是()A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(-1,0)D .(0,1)∪(1,+∞)解析:令g (x )=f (x )x ,则g ′(x )=xf ′(x )-f (x )x 2.由题意知,当x >0时,g ′(x )<0,∴g (x )在(0,+∞)上是减函数.∵f (x )是奇函数,f (-1)=0,∴f (1)=-f (-1)=0,∴g (1)=f (1)=0, ∴当x ∈(0,1)时,g (x )>0,从而f (x )>0;当x ∈(1,+∞)时,g (x )<0,从而f (x )<0. 又∵f (x )是奇函数,∴当x ∈(-∞,-1)时,f (x )>0;当x ∈(-1,0)时,f (x )<0. 综上,所求x 的取值范围是(-∞,-1)∪(0,1).2.已知f (x )为定义在(0,+∞)上的可导函数,且f (x )>xf ′(x ),则不等式x 2f ⎝⎛⎭⎫1x -f (x )<0的解集为________. 解析:因为f (x )>xf ′(x ),所以xf ′(x )-f (x )<0,根据“xf ′(x )-f (x )”的特征,可以构造函数F (x )=f (x )x ,则F ′(x )=xf ′(x )-f (x )x 2<0,故F (x )在(0,+∞)上单调递减.又因为x >0,所以x 2f ⎝⎛⎭⎫1x -f (x )<0可化为xf ⎝⎛⎭⎫1x -f (x )x <0,即f ⎝⎛⎭⎫1x 1x -f (x )x <0,即f⎝⎛⎭⎫1x 1x <f (x )x,即F ⎝⎛⎭⎫1x <F (x ), 所以⎩⎪⎨⎪⎧x >0,1x >x ,解得0<x <1,故不等式x 2f ⎝⎛⎭⎫1x -f (x )<0的解集为(0,1). 3.已知f (x )为R 上的可导函数,且∀x ∈R ,均有f (x )>f ′(x ),则有()A .e 2 019f (-2 019)<f (0),f (2 019)>e 2 019f (0)B .e 2 019f (-2 019)<f (0),f (2 019)<e 2 019f (0)C .e 2 019f (-2 019)>f (0),f (2 019)>e 2 019f (0)D .e 2 019f (-2 019)>f (0),f (2 019)<e 2 019f (0)解析:构造函数h (x )=f (x )e x ,则h ′(x )=f ′(x )-f (x )e x <0,即h (x )在R 上单调递减,故h (-2 019)>h (0),即f (-2 019)e-2 019>f (0)e 0⇒e 2 019f (-2 019)>f (0);同理,h (2 019)<h (0),即f (2 019)<e 2 019f (0),故选D. 4.已知定义在R 上函数f (x ),g (x )满足:对任意x ∈R ,都有f (x )>0,g (x )>0,且f ′(x )g (x )-f (x )g ′(x )<0. 若a ,b ∈R +且a ≠b ,则有() A .f ⎝⎛⎭⎫a +b 2g ⎝⎛⎭⎫a +b 2>f (ab )g (ab )B .f ⎝⎛⎭⎫a +b 2g ⎝⎛⎭⎫a +b 2<f (ab )g (ab )C .f ⎝⎛⎭⎫a +b 2g (ab )>g ⎝⎛⎭⎫a +b 2f (ab )D .f ⎝⎛⎭⎫a +b 2g (ab )<g ⎝⎛⎭⎫a +b 2f (ab )解析:根据条件中“f ′(x )g (x )-f (x )g ′(x )”的特征,可以构造函数F (x )=f (x )g (x ),因为f ′(x )g (x )-f (x )g ′(x )<0,所以F ′(x )=f ′(x )g (x )-f (x )g ′(x )[g (x )]2<0,F (x )在R 上单调递减.又因为a +b 2>ab ,所以F ⎝⎛⎭⎫a +b 2<F (ab ),即f ⎝⎛⎭⎫a +b 2g⎝⎛⎭⎫a +b 2<f (ab )g (ab ),所以f ⎝⎛⎭⎫a +b 2g (ab )<g ⎝⎛⎭⎫a +b 2·f (ab ),故选D.5.设f ′(x )是函数f (x )(x ∈R)的导函数,且满足xf ′(x )-2f (x )>0,若在△ABC 中,角C 为钝角,则()A .f (sin A )·sin 2B >f (sin B )·sin 2A B .f (sin A )·sin 2B <f (sin B )·sin 2AC .f (cos A )·sin 2B >f (sin B )·cos 2AD .f (cos A )·sin 2B <f (sin B )·cos 2A 解析:根据“xf ′(x )-2f (x )”的特征,可以构造函数F (x )=f (x )x2,则有F ′(x )=x 2f ′(x )-2xf (x )x 4=x [xf ′(x )-2f (x )]x 4,所以当x >0时,F ′(x )>0,F (x )在(0,+∞)上单调递增.因为π2<C <π,所以0<A +B <π2,0<A <π2-B ,则有1>cos A >cos ⎝⎛⎭⎫π2-B =sin B >0,所以F (cos A )>F (sin B ),即f (cos A )cos 2A >f (sin B )sin 2B,f (cos A )·sin 2B >f (sin B )·cos 2A ,故选C.6.定义在R 上的函数f (x )满足:f ′(x )>f (x )恒成立,若x 1<x 2,则e x 1f (x 2)与e x2f (x 1)的大小关系为()A .e x 11f (x 2)>e x 2f (x 1)B .e x 1f (x 2)<e x2f (x 1)C .e x 1f (x 2)=e x 2f (x 1)D .e x 1f (x 2)与e x2f (x 1)的大小关系不确定解析:设g (x )=f (x )e x ,则g ′(x )=f ′(x )e x -f (x )e x (e x )2=f ′(x )-f (x )e x ,由题意知g ′(x )>0,所以g (x )单调递增,当x 1<x 2时,g (x 1)<g (x 2),即f (x 1)e x 1<f (x 2)e x 2,所以e x 1f (x 2)>e x2f (x 1).专项突破练构造函数法解决导数问题一、单选题1.已知()f x 是定义在R 上的偶函数,()f x '是()f x 的导函数,当0x ≥时,()20f x x '->,且()13f =,则()22f x x >+的解集是()A .()()1,01,-⋃+∞B .()(),11,-∞-⋃+∞C .()()1,00,1-D .()(),10,1-∞-⋃【解析】令()()2g x f x x =-,因为()f x 是定义在R 上的偶函数,所以()()f x f x -=,则()()()()2g x f x g x x ---==-,所以函数()g x 也是偶函数,()()2g x f x x ''=-,因为当0x ≥时,()20f x x '->,所以当0x ≥时,()()20g x f x x '-=≥',所以函数()g x 在()0,∞+上递增,不等式()22f x x >+即为不等式()2g x >,由()13f =,得()12g =,所以()()1g x g >,所以1x >,解得1x >或1x <-,所以()22f x x >+的解集是()(),11,-∞-⋃+∞.故选:B.2.定义在R 上的函数()f x 的图象是连续不断的一条曲线,且()()2f x f x x -+=,当0x <时,()f x x '<,则不等式()()112f x f x x +≥-+的解集为() A .1,12⎡⎫-⎪⎢⎣⎭B .1,2⎡⎫+∞⎪⎢⎣⎭C .12,2⎛⎫- ⎪⎝⎭D .1,2⎛⎤-∞ ⎥⎝⎦【解析】设()()212g x f x x =-,根据题意,()()()()221122g x f x x x f x g x -=--=-=-,所以()g x 为R 上的奇函数,当0x <时,()()0g x f x x ''=-<,因为()g x 在R 上的图象连续不断,所以()g x 为R 上的减函数,()()112f x f x x +≥-+可化为()()()2211111222g x x g x x x ++≥-+-+, 即()()1g x g x ≥-,所以1x x ≤-,故不等式的解集为1,2⎛⎤-∞ ⎥⎝⎦.故选:D.3.()f x 是定义在R 上的函数,()f x '是()f x 的导函数,已知()()f x f x '>,且()32e f =,()1e f =,则不等式()2121e0x f x --->的解集为() A .(),1-∞-B .3,2⎛⎫-∞- ⎪⎝⎭C .()1,+∞D .3,2⎛⎫+∞ ⎪⎝⎭【解析】令函数()()x f x g x =e ,则()()()e xf x f xg x '-'=.因为()()f x f x '>,所以()0g x '>, ()g x 在R 上单调递增.又()()111ef g ==,而()2121e0x f x --->等价于()21211e x f x -->,即()()211g x g ->,所以211x ->,解得1x >.故选:C.4.已知函数()f x 是定义在R 上的奇函数,()20f =,当0x >时,有()()0xf x f x '->成立,则不等式()0xf x >的解集是()A .()()22-∞-⋃+∞,, B .()()202-⋃+∞,, C .()()202-∞-⋃,, D .()2+∞,【解析】()()0xf x f x '->成立设()()f xg x x=, 则()()()()20f x f x x f x g x x x ''⎡⎤-'==>⎢⎥⎣⎦,即0x >时()g x 是增函数, 当2x >时,()()20g x g >=,此时()0f x >;02x <<时,()()20g x g <=,此时()0f x <. 又()f x 是奇函数,所以20x -<<时,()()0f x f x =-->;2x <-时()()0f x f x =-->则不等式()0x f x ⋅>等价为()00f x x >⎧⎨>⎩或()00f x x <⎧⎨<⎩,可得2x >或2x <-,则不等式()0xf x >的解集是()()22-∞-⋃+∞,,,故选:A . 5.已知函数()1y f x =-的图像关于直线1x =对称,且当(),0x ∈-∞,()()0f x xf x '+<成立,若()1.5 1.522a f =,()()ln3ln3b f =,112211log log 44c f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则() A .a b c >>B .b a c >>C .c a b >>D .b c a >>【解析】函数()1y f x =-的图像关于直线1x =对称,可知函数()y f x =的图像关于直线0x =对称, 即()y f x =为偶函数,构造()()g x xf x =,当(),0x ∈-∞,()()()0g x f x xf x =+'<', 故()y g x =在(),0∞-上单调递减,且易知()g x 为奇函数,故()y g x =在()0,∞+上单调递减,由 1.512122log ln 304>=>>,所以()()1.51212log ln34g g g ⎛⎫<< ⎪⎝⎭.故选:D. 6.已知函数()f x 的定义域为()0,+∞,且满足()()0f x xf x '+>(f x 是()f x 的导函数),则不等式()()()2111x f x f x --<+的解集为()A .(),2-∞B .()1,+∞C .1,2D .1,2【解析】令()()g x xf x =,则()()()0g x f x xf x ''=+>,即()g x 在()0,+∞上递增,又10x +>,则()()()2111x f x f x --<+等价于22(1)(1)(1)(1)x f x x f x --<++,即2(1)(1)g x g x -<+,所以22101011x x x x ⎧->⎪+>⎨⎪-<+⎩,解得12x <<,原不等式解集为1,2.故选:C7.已知f (x )为定义在R 上的可导函数,()f x '为其导函数,且()()f x f x '<恒成立,其中e 是自然对数的底数,则() A .()()20222023f ef < B .()()20222023ef f < C .()()20222023ef f = D .()()20222023ef f >【解析】设函数()()x f x g x e =,可得()()()xf x f xg x e '-'=, 因为()()f x f x '<,可得()()0f x f x '->,所以()0g x '>,可得()g x 单调递增, 则()()2022202320222023f f e e <,即()()20222023ef f <.故选:B. 8.已知函数()f x 的定义域为()0,∞+,其导函数为()f x ',若()()2xf x f x '>,则下列式子一定成立的是() A .()()422f f >B .()()442f f >C .()()24e 2>f fD .()()44e 2f f >【解析】令2()()(0)f x g x x x =>,则3()2(())xf x x x f x g '-=',又不等式()()2xf x f x '>恒成立,所以()()20xf x f x '->,即()0g x '>,所以()g x 在(0,)+∞单调递增, 故()()24g g <,即()()224242f f >,所以()()442f f >,故选:B . 9.已知函数()f x 为R 上的可导函数,其导函数为()f x ',且满足()()1f x f x '+<恒成立,()02022f =,则不等式()2021e 1xf x -<+的解集为()A .()e,+∞B .(),e -∞C .(),0∞-D .()0,∞+【解析】构造函数()e [()1]x g x f x =-,(0)(0)12021g f =-=,则()e [()()1]0x g x f x f x '=+'-<,故()e [()1]x g x f x =-为R 上的单调减函数,不等式()2021e 1-<+xf x ,即[()1e 2021}x f x -<,即()(0)g x g <,0x ∴>,故选:D10.已知定义在R 上的函数()f x ,()f x '为其导函数,满足①()()2f x f x x =--,②当0x ≥时,()210f x x '++≥.若不等式()()221331f x x x f x +++>+有实数解,则其解集为()A .2,3⎛⎫-∞- ⎪⎝⎭B .()2,0,3∞∞⎛⎫-⋃+ ⎪⎝⎭C .()0,∞+D .()2,0,3⎛⎫-∞-⋃+∞ ⎪⎝⎭【解析】构造函数()()2F x f x x x =++,当0x ≥时,()()()''210,F x f x x F x =++≥递增,由于()()2f x f x x =--,所以()()()()22f x x x f x x x ++=-+-+-,即()()F x F x -=,所以()F x 是偶函数,所以当0x <时,()F x 递减.不等式()()221331f x x x f x +++>+等价于:()()()()()()22212121111f x x x f x x x +++++>+++++,即()()211F x F x +>+,所以211x x +>+,两边平方并化简得()320x x +>,解得23x <-或0x >,所以不等式()()221331f x x x f x +++>+的解集为()2,0,3⎛⎫-∞-⋃+∞ ⎪⎝⎭.故选:D11.已知定义域为(0,)+∞的函数()f x 满足2()1()f x f x x x'+=,且2(e)e f =,e 为自然对数的底数,若关于x的不等式()20f x ax x x--+≤恒成立,则实数a 的取值范围为() A .[1,)+∞B .[2,)+∞C .2,e e +⎡⎫+∞⎪⎢⎣⎭D .322,e e e ⎡⎫-+++∞⎪⎢⎣⎭【解析】由2()1()f x f x x x'+=,得1()()xf x f x x '+=,设()()g x xf x =,1()()()g x xf x f x x ''=+=,则()ln g x x c =+,从而有ln ()x cf x x+=. 又因为12(e)e ec f +==,所以1c =,ln 1()x f x x +=,2ln ()x f x x -'=,所以()f x 在(0,1)上单调递增,在(1,)+∞上单调递减,所以max ()(1)1f x f ==. 因为不等式()20f x ax x x--+≤恒成立,所以2()20f x x x a -+-≤, 即2()(1)1f x x a --+≤,又因为2()(1)12f x x --+≤,所以2a ≥.故选:B.12.已知函数()1f x +为定义域在R 上的偶函数,且当1≥x 时,函数()f x 满足()()2ln 2xxf x f x x '+=,14ef=,则()4e 1f x <的解集是()A .(),2-∞⋃+∞B .(2C .()(),2e e,-∞-⋃+∞D .()2e,e -【解析】由题可知,当1≥x 时,()2ln x x f x x '⎡⎤=⎣⎦.令()()2g x x f x =,则()()2g x f x x=, ()()()()2432ln 2x g x xg x x g x f x x x'--'==,令()()ln 2h x x g x =-,()()112ln 2x h x g x x x -''=-=,令()0h x '=,解得x =()h x 在)+∞上单调递减﹐在(上单调递增.又20hg==,所以()0h x ≤,()0f x '≤,所以函数()f x 在[)1,+∞上单调递减,()4e 1f x <,可化为()14ef x f <=,又函数()f x 关于1x =对称,故11,11x x --<11x ->,所以不等式的解集为(),2-∞⋃+∞.故选:A13.已知函数()y f x =,若()0f x >且()()0f x xf x '+>,则有()A .()f x 可能是奇函数,也可能是偶函数B .()()11f f ->C .42x ππ<<时,cos22s (os )(in c )x f e f x x <D .(0)(1)f <【解析】若()f x 是奇函数,则()()f x f x -=-,又因为()0f x >,与()()f x f x -=-矛盾, 所有函数()y f x =不可能时奇函数,故A 错误; 令()()22ex g x f x =,则()()()()()()222222eeex x x g x x f x f x xf x f x '''=+=+,因为22e 0x >,()()0f x xf x '+>,所以()0g x '>,所以函数()g x 为增函数, 所以()()11g g -<,即()()1122e 1e 1f f -<,所以()()11f f -<,故B 错误;因为42x ππ<<,所以0cos x <<sin 1x <<,所以sin cos x x >, 故()()sin cos g x g x >,即()()22sin cos 22e sin ecos x xf x f x >,所以()()()22cos sin cos222sin ecos ecos x xx f x f x f x ->=,故C 错误;有()()01g g <,即()()01f ,故D 正确. 故选:D.14.定义在R 上的函数()f x 满足()()1f x f x '>-,且()06f =,()f x '是()f x 的导函数,则不等式()5x x e f x e ⋅>+(其中e 为自然对数的底数)的解集为()A .()(),01,-∞⋃+∞B .()(),03,-∞+∞C .()0,∞+D .()3,+∞【解析】设()()()x xg x e f x e x R =⋅-∈,可得()()()()()1x x x xg x e f x e f x e e f x f x '''=⋅+⋅-=+-⎡⎤⎣⎦.因为()()1f x f x '>-,所以()()10f x f x -'+>,所以()0g x '>,所以()y g x =在定义域上单调递增,又因为()5x xe f x e ⋅>+,即()5g x >,又由()()0000615g e f e =⋅-=-=,所以()()0g x g >,所以0x >,所以不等式的解集为()0,∞+.故选:C .15.设函数()f x '是定义在()0π,上的函数()f x 的导函数,有()cos ()sin 0f x x f x x '->,若1023a b f π⎛⎫==⎪⎝⎭,,34c f π⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系是() A .a b c >> B .b c a >> C .c a b >>D .c b a >>【解析】设()()cos g x f x x =,则()()cos ()sin g x f x x f x x ''=-,又因为()cos ()sin 0f x x f x x '->,所以()0g x '>,所以()g x 在(0,)π上单调递增,又0cos ()22a f ππ==,1()cos ()2333b f f πππ==,333()cos ()444c f f πππ==, 因为3324πππ<<,所以33cos ()cos ()cos ()332244f f f ππππππ<<,所以c a b >>.故选:C . 16.已知定义在R 上的函数()f x 满足:()()0xf x f x '+>,且()12f =,则()2e e x xf >的解集为() A .()0,+∞B .()ln2,+∞C .()1,+∞D .0,1【解析】设()()g x xf x =,则()()()0g x xf x f x ''=+>,故()g x 为R 上的增函数,而()2e exx f >可化为()()e e 211x x f f >=⨯即()()g e 1x g >, 故e 1x >即0x >,所以不等式()2e e xxf >的解集为()0,+∞,故选:A. 二、多选题17.设()f x ,()g x 是定义在R 上的恒大于零的可导函数,且满足()()()()0f x g x f x g x ''->,则当a x b <<时,有()A .()()()()f x g x f b g b >B .()()()()f x g a f a g x >C .()()()()f x g b f b g x <D .()()()()f x g x f a g a >【解析】令()()()f x h x g x =,则()()()()()()2f xg x f x g xh x g x ''-'=⎡⎤⎣⎦. 由()()()()0f x g x f x g x ''->,得()0h x '>,所以函数()h x 在R 上单调递增.当a x b <<时,有()()()()()()f a f x f bg a g x g b <<,又()f x ,()g x 是定义在R 上的恒大于零的可导函数, 所以()()()()f x g a f a g x >,()()()()f x g b f b g x <.故选:BC18.已知定义在R 上的函数()f x 图像连续,满足()()6sin 2f x f x x x --=-,且0x >时,()3cos 1f x x '<-恒成立,则不等式()()3sin()333f x f x x πππ≥--++中的x 可以是()A .6π-B .0C .6πD .3π 【解析】由()()6sin 2f x f x x x --=-整理得()3sin ()()3sin()f x x x f x x x +-=-+---, 设()()3sin g x f x x x =+-,则有()()g x g x =-,所以()g x 是偶函数,因为0x >时,()3cos 1f x x '<-,所以()()13cos 0g x f x x ''=+-<,所以()g x 在(0,)+∞单调递减,又()g x 是偶函数,所以()g x 在(,0)-∞单调递增,又不等式()()3sin()333f x f x x πππ≥--++等价于()3sin f x x x +-()()33f x x ππ≥-+-3sin()3x π--,即()()3g x g x π≥-,根据()g x 的单调性和奇偶性可得3x x π≤-,解得6x π≤,故选:ABC19.定义在[0,)+∞上的函数()f x 的导函数为()f x ',且()()2()0f x x x f x '++<恒成立,则必有()A .3(3)2(1)f f <B .4(2)5(5)f f <C .3(1)5(5)f f >D .2(3)3(7)f f >【解析】设函数()()1xf x g x x =+,0x ≥,因为()()2()0f x x x f x '++< 则()()()222()()(1)()()0(1)(1)f x x x f x f x xf x x xf x g x x x ''++++-⎡⎤⎣⎦'==<++, 所以()g x 在[0,)+∞上单调递减,从而()()()()()12357g g g g g >>>>, 即(1)2(2)3(3)5(5)7(7)23468f f f f f >>>>, 则必有()()3321f f <,4(2)5(5)f f >,3(1)5(5)f f >,6(3)7(7)f f >. 又()g x 在[0,)+∞上单调递减,所以x >0时,()()00g x g <=, 所以x >0时,()0f x <,又6(3)7(7)f f >,所以72(3)(7)3(7)3f f f >>.故选:ACD. 20.已知()f x 是R 上的可导函数,且()()f x f x '<对于任意x ∈R 恒成立,则下列不等关系正确的是()A .()()1e 0f f <,()()20202020e 0f f <B .()()1e 0f f >,()()211f e f >-C .()()1e 0f f <,()()211f e f <- D .()()1e 0f f >,()()20202020e 0f f >【解析】设()()x f x g x =e ,所以()()()e xf x f xg x '-'=,因为()()f x f x '<,所以()0g x '<,所以()g x 在R 上是减函数, 所以()()10g g <,()()20200<g g ,()()11-<g g ,即()()1e 0f f <,()20002020e f <,()()()201e 1f f f <-,故选:AC.三、填空题21.已知()f x 是R 上的奇函数,()g x 是在R 上无零点的偶函数,()20f =,当0x >时,()()()()0f x g x f x g x ''-<,则使得()()lg 0lg f x g x <的解集是________【解析】令()()()f x h x g x =,则()()()()[]2()()f x g x f x g x h x g x ''-'=,当0x >时,()0h x '<, 故()h x 在()0,∞+上单调递减,又()f x 是奇函数,()g x 是偶函数,故()h x 是奇函数,()h x 在(),0∞-上单调递减,又()20,(0)0f f ==,可得(2)0,(2)0,(0)0h h h =-==, 故()h x 在()2,0,(2,)-+∞上小于0,由()()lg (lg )0lg f x h x g x =<,得2lg 0-<<x 或lg 2x >,解得11100<<x 或100x >.故答案为:11(100,)100⎛⎫⋃+∞ ⎪⎝⎭,. 22.已知函数()f x 是R 上的奇函数,()20f =,对()0,x ∀∈+∞,()()0f x xf x '+>成立,则()()10x f x -≥的解集为_________.【解析】设()()F x xf x =,则对()0,x ∀∈+∞,()()()0F x f x xf x ''=+>,则()F x 在()0,+∞上为单调递增函数,∵函数()f x 是R 上的奇函数,∴()()f x f x -=-, ∴()()()()()F x x f x xf x F x -=--==,∴()F x 为偶函数,∴()F x 在(),0-∞上为单调递减函数, 又∵()20f =,∴()()220F F -==,由已知得()00F =,所以当2x <-时,()()0,0F x f x ><;当20x -<<时,()()0,0F x f x <>; 当02x <<时,()()0,0F x f x <<;当2x >时,()()0,0F x f x >>; 若()()10x f x -=,则0,1,2,2x =-;若()()10x f x ->,则()100x f x ->⎧⎨>⎩或()100x f x -<⎧⎨<⎩,解得2x >或2x <-或01x <<;则()()10x f x -≥的解集为(][][),20,12,-∞-+∞.23.已知函数()f x 的导函数为()f x ',且对任意x ∈R ,()()0f x f x '-<,若()22e f =,()e tf t <,则t 的取值范围是___________. 【解析】构造函数()()x f x g x =e ,则()()()0xf x f xg x e '-'=<,故函数()g x 在R 上单调递减, 由已知可得()()2221e f g ==,由()e tf t <可得()()()12e tf tg t g =<=,可得2t >. 故答案为:()2,+∞.24.定义在R 上的函数满足()11f =,且对任意R x ∈都有()'102f x -<,则不等式()122x f x ->的解集为__________.【解析】构造函数()()()()111,1102222x F x f x F f =--=--=,()()''102F x f x =-<,所以()F x 在R 上递减,由()122x f x ->,得()1022x f x -->, 即()()1F x F >,所以1x <,即等式()122x f x ->的解集为(),1-∞. 25.若()f x 为定义在R 上的连续不断的函数,满足2()()4f x f x x +-=,且当(,0)x ∈-∞时,1()42f x x '+<.若3(1)()32f m f m m +≤-++,则m 的取值范围___________. 【解析】2()()4f x f x x +-=,22()2()20f x x f x x ∴-+--=,设21()()22g x f x x x =-+,则()()0g x g x +-=,()g x ∴为奇函数, 又1()()402g x f x x '='-+<,()g x ∴在(,0)-∞上是减函数,从而在R 上是减函数, 又3(1)()32f m f m m +≤-++,等价于22(1)2(1)()2()f m m f m m +-+≤---,即(1)()g m g m +≤-, 1m m ∴+≥-,解得12m ≥-,故答案为:1,2⎡⎫-+∞⎪⎢⎣⎭.26.已知函数()f x 是定义在()()00,-∞+∞,的奇函数,当()0x ∈+∞,时,()()xf x f x '<,则不等式()()()21120f x x f -+-<的解集为___________. 【解析】函数()f x 是定义在()()00,-∞+∞,的奇函数,构造函数()()()0f x F x x x =≠,()()()()f x f x F x F x x x--===-, 所以()F x 为偶函数,当0x >时,()()()''20xf x f x F x x-=<,()F x 递减,当0x <时,()F x 递增. ()()()21120f x x f -+-<,()()()2112f x x f -<-,当10x ->,即1x <时,()()1212f x f x -<-,()()12F x F -<,121x x ->⇒<-. 当10x -<,即1x >时,()()()()()12,12212f x f F x F F x->->=--,21013x x -<-<⇒<<.综上所述,不等式()()()21120f x x f -+-<的解集为()(),11,3-∞-.故答案为:()(),11,3-∞-27.已知定义在()0,∞+的函数()f x 满足()()0xf x f x '-<,则不等式()210x f f x x ⎛⎫-< ⎪⎝⎭的解集为___________. 【解析】令()()f xg x x =,则()()()20xf x f x g x x '-'=<, 所以函数()g x 在()0,∞+上单调递减,又由()210x f f x x ⎛⎫-< ⎪⎝⎭得()11f f x xx x⎛⎫⎪⎝⎭<,即()1g g x x ⎛⎫< ⎪⎝⎭,10x x ∴>>,解得01x <<,故答案为:()0,1.28.若定义在R 上的函数()f x 满足()()30f x f x '->,13f e ⎛⎫= ⎪⎝⎭,则不等式()3xf x e >的解集为________________.【解析】构造()3()x f x F e x =,则()3363()3()()3()x x x x e f x e f x F f x f x e x e ''-=-=',函数()f x 满足()()30f x f x '->,则()0F x '>,故()F x 在R 上单调递增.又∵13f e ⎛⎫= ⎪⎝⎭,则113F ⎛⎫= ⎪⎝⎭,则不等式3()xf x e >⇔3()1x f x e >,即1()3F x F ⎛⎫> ⎪⎝⎭,根据()F x 在R 上单调递增,可知1,3x ⎛⎫∈+∞ ⎪⎝⎭.29.已知定义在R 上的函数()f x 的导函数为()f x ',且满足()()0f x f x '->﹐2021(2021)e f =,则不等式1(ln )3f x <的解集为___________.【解析】令()()x f x g x =e ,所以()()()0e xf x f xg x '-'=>,所以()g x 在R 上单调递增, 且()()20212021e 20211e f g ==,因为1ln 3f x ⎛⎫< ⎪⎝⎭(f <(f f g==,所以(1g <,所以(()2021gg <,所以02021x >⎧⎪⎨⎪⎩,所以60630e x <<,所以解集为()60630,e. 30.已知函数()f x 在R 上可导,对任意x 都有()()2sin f x f x x --=,当0x ≤时,()1f x '<-,若π2π()33f t f t t ⎛⎫⎛⎫≤-- ⎪ ⎪⎝⎭⎝⎭,则实数t 的取值范围为_________【解析】由()()2sin f x f x x --=得()sin ()sin()f x x f x x -=---,令()()sin g x f x x =-, 则()()g x g x =-,()g x 是偶函数,0x ≤时,()1f x '<-,则()()cos 0g x f x x ''=-<,()g x 是减函数,因此0x ≥时,()gx 是增函数,π2ππ2π2π()cos cos sin sin 33333f t f t t f t t t ⎛⎫⎛⎫⎛⎫⎫≤--=-+ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎭π3sin 32f t t t ⎛⎫=-+ ⎪⎝⎭, 所以()π1ππsin sin sin 3233f t t f t t t f t t ⎛⎫⎛⎫⎛⎫-≤-+=--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 即π()3g t g t ⎛⎫≤- ⎪⎝⎭,()π3g t g t ⎛⎫≤- ⎪⎝⎭,所以π3t t ≤-,22π3t t ⎛⎫≤- ⎪⎝⎭,π6t ≤.故答案为:π6∞⎛⎤- ⎥⎝⎦,.31.已知函数()2ln f x a x x=-. (1)若1a =,求()f x 的图象在1x =处的切线方程; (2)若对于任意的()12,1,3x x ∈,当12x x >时,都有()()12212f x f x a x x ->-,求实数a 的取值范围.【解析】(1)因为1a =,所以()()2212ln ,f x x f x x x x '=-=+,所以()()12,13f f =-'=,所以()f x 的图象在1x =处的切线方程为()()231y x --=-,即35y x =-;(2)因为12x x >,所以()()12212f x f x a x x ->-等价于()()()21212f x f x a x x ->-,即()()221122f x a x f x a x ->-,令函数()22ln g x a x a x x=--,由题可知()g x 在()1,3上单调递增,所以()()()22222221220ax ax a a x ax g x a x x x x -+--=+-=-=-'在()1,3上恒成立, 若0a =,则()220g x x ='>恒成立,显然()g x 在()1,3上单调递增,符合题意; 若0a >,则210ax x+-<,则20ax -在()1,3上恒成立,即320a -,解得203a <; 若0a <,则220ax x-->,则10ax +在()1,3上恒成立,即310a +,解得103a -<. 综上,实数a 的取值范围为12,33⎡⎤-⎢⎥⎣⎦.32.已知曲线()()()ln f x x a x a =+∈R 在点()()1,1f 处的切线平行于直线230x y -+=. (1)求a 的值;(2)若对[)1,x ∀∈+∞,都有()()21f x m x ≤-恒成立,求实数m 的取值范围.【解析】(1)由题意得:()ln x af x x x+'=+,所以()112f a '+==,即1a = (2)由()()21ln 1x x m x +≤-恒成立,可得()ln 10x m x --≤在[)1,x ∀∈+∞上恒成立设()()ln 1h x x m x =--,()11mx h x m x x'-=-= ①当m 1≥时,()0h x '<恒成立,即()h x 在[)1,x ∞∈+上为单调减函数 所以()()10h x h ≤=符合题意; ②当1m <时,由()0h x '>得11x m<< 由()0h x '<得1x m>即()h x 在11,x m ⎡⎫∈⎪⎢⎣⎭上为单调增函数,在1,x m ⎛⎫∈+∞ ⎪⎝⎭上为单调减函数又()10h =,所以存在011,x m ⎛⎫∈ ⎪⎝⎭,使得()00h x >,不符合题意综上:m 1≥33.设函数()ln ()af x x a R x =+∈.(1)求函数()f x 的单调区间;(2)若()f x 有两个零点1x ,2x ,求a 的取值范围,并证明:121x x +<.。
构造函数导数小题(专业版)
3.(-1,0)∪(0,1) 4.(-1,0)∪(0,1) 5.C 6.B
三、f(x)与 f’(x)型:f(x)与指数函数 enx 乘除类:
g(x) = enxf (x), g'(x) = nen xf (x) + enxf '(x) = enx [f '(x) + nf (x)] ⇒ 含f '(x) + nf (x)加法结构
2.R 上的函数 f(x)满足 f(1)=1,且 f’(x)<1/2,则不等式 f(log2x)>(log2x+1)/2 的解集是
;
3(. 0,+∞)上的 f(x)满足 x2f′(x)+1>0,f(2)= 9/2,则不等式f (lg x) < 1 + 4 的解集为
;
lg x
4.f(x)的导函数 f’(x)满足 f’(x)>2x, f(1/2)=e,则不等式 f(lnx)<x2 的解集为
二、f(x)与 f’(x)型:f(x)与幂函数 xn 乘除类:
g(x) = x nf (x), g'(x) = nx f n-1 (x) + x nf (x) = x n-1[nf (x) + f '(x)] ⇒
f (x) g(x) = xn ,
g'(x)
=
f '(x)x n - nx n f-1 (x) x 2n
;
4、f(x)是 R 上的奇函数,在(-∞,0)上有 2xf’(2x)+f(2x)<0,且 f(-2)=0,不等式 xf(2x)<0 的解集为
;
5、(-∞,0)上函数 f(x)满足:xf’(x)>x2+2f(x),则不等式 4f(x+2014)-(x+2014)2f(-2)>0 的解集为( )
导数中的构造函数(最全精编)
导数中的构造函数(最全精编)导数小题中构造函数的技巧函数与方程思想、转化与化归思想是高中数学思想中比较重要的两大思想。
在导数题型中,构造函数的解题思路恰好是这两种思想的良好体现。
下面我将分享导数小题中构造函数的技巧。
一)利用 $f(x)$ 进行抽象函数构造1、利用 $f(x)$ 与 $x$ 构造;常用构造形式有 $xf(x)$ 和$\frac{f(x)}{x}$。
在数导数计算的推广及应用中,我们对 $u\cdot v$ 的导函数观察可得,$u\cdot v$ 型导函数中体现的是“加法”,$\frac{u}{v}$ 型导函数中体现的是“除法”。
由此,我们可以猜测,当导函数形式出现的是“加法”形式时,优先考虑构造$u\cdot v$ 型;当导函数形式出现的是“除法”形式时,优先考虑构造 $\frac{u}{v}$ 型。
我们根据得出的“优先”原则,看一看例1和例2.例1】$f(x)$ 是定义在 $\mathbb{R}$ 上的偶函数,当$x0$ 的解集为?思路点拨:出现“加法”形式,优先构造 $F(x)=xf(x)$,然后利用函数的单调性、奇偶性和数形结合求解即可。
解析】构造 $F(x)=xf(x)$,则 $F'(x)=f(x)+xf'(x)$。
当$x0$ 的解集为 $(-\infty,-4)\cup(0,4)$。
例2】设 $f(x)$ 是定义在 $\mathbb{R}$ 上的偶函数,且$f(1)=2$。
当 $x0$ 恒成立。
则不等式 $f(x)>0$ 的解集为?思路点拨:出现“除法”形式,优先构造$F(x)=\frac{f(x)}{x-f(x)}$,然后利用函数的单调性、奇偶性和数形结合求解即可。
解析】构造 $F(x)=\frac{f(x)}{x-f(x)}$,则$F'(x)=\frac{xf'(x)-2f(x)}{(x-f(x))^2}$。
因为 $xf'(x)-f(x)>0$,所以 $F'(x)>0$,$F(x)$ 在 $(-\infty,0)$ 上单调递增。
导数中的构造函数-玩转压轴题(解析版)
近几年高考数学压轴题,多以导数为工具来证明不等式或求参数的范围,这类试题具有结构独特、技巧性高、综合性强等特点,而构造函数是解导数问题的最基本方法,一下问题为例,对在处理导数问题时构造函数的方法进行归类和总结.【方法综述】以抽象函数为背景、题设条件或所求结论中具有“()()f x g x ±、()()f x g x 、()()f xg x ”等特征式、解答这类问题的有效策略是将前述式子的外形结构特征与导数运算法则结合起来,合理构造出相关的可导函数,然后利用该函数的性质解决问题.方法总结: 和与积联系:()()f x xf x '+,构造()xf x ; 22()()xf x x f x '+,构造2()x f x ;3()()f x xf x '+,构造3()x f x ;…………………()()nf x xf x '+,构造()n x f x ;()()f x f x '+,构造e ()x f x .等等.减法与商联系:如()()0xf x f x ->',构造()()f x F x x=; ()2()0xf x f x ->',构造2()()f x F x x =;………………… ()()0xf x nf x ->',构造()()nf x F x x =. ()()f x f x '-,构造()()e x f x F x =,()2()f x f x '-,构造2()()e x f x F x =,……………… ()()f x nf x '-,构造()()e nxf x F x =, 奇偶性结论:奇乘除奇为偶;奇乘偶为奇。
(可通过定义得到)构造函数有时候不唯一,合理构造函数是关键。
给出导函数,构造原函数,本质上离不开积分知识。
【解答策略】类型一、巧设“()()y f x g x =±”型可导函数【例1】已知不相等的两个正实数x ,y 满足()2244log log x y y x -=-,则下列不等式中不可能成立的是专题6.1 导数中的构造函数( ) A .1x y <<B .1y x <<C .1x y <<D .1y x <<【来源】广东省佛山市2021届高三下学期二模数学试题 【答案】B【解析】由已知()2244log log x y y x -=-,因为2log 4x =log 2x ,所以原式可变形222log 4g 2lo x x y y =++令()222log f x x x =+,()24log g x x x =+,函数()f x 与()g x 均为()0,∞+上的增函数,且()()f x g y =,且()()11f g =, 当1x >时,由()1f x >,则()1g y >,可得1y >, 当1x <时,由()1f x <,则()1g y <,可得1y <,要比较x 与y 的大小,只需比较()g x 与()g y 的大小,()()()()222224log 2log 2log g x g y g x f x x x x x x x x -=-=+--=-+设()()222log 0h x x x x x =-+>,则()212ln 2h x x x '=-+()2220ln 2h x x ''=--<,故()h x '在()0+∞,上单调递减, 又()2110ln 2h '=-+>,()1230ln 2h '=-+<, 则存在()01,2x ∈使得()0h x '=,所以当()00,x x ∈时,()0h x '>,当()0,x x ∈+∞时,()0h x '<, 又因为()()()()010,10,412480h h x h h =>==-+=-<, 所以当1x <时,()0h x <,当1x >时,()h x 正负不确定,故当1,1x y <<时,()0h x <,所以()()()1g x g y g <<,故1x y <<, 当1,1x y >>时,()h x 正负不定,所以()g x 与()g y 的正负不定,所以,,111x y x y y x ><<>>>均有可能,即选项A ,C ,D 均有可能,选项B 不可能. 故选:B .【点睛】本题考查了不等关系的判断,主要考查了对数的运算性质以及对数函数性质的运用,解答本题的关键是要比较x 与y 的大小,只需比较()g x 与()g y 的大小,()()()()222log g x g y g x f x x x x -=-=-+,设()()222log 0h x x x x x =-+>,求导得出其单调性,从而得出,x y 的大小可能性. 【举一反三】1.若实数a ,b 满足()221ln 2ln 1a b a b-+-≥,则a b +=( )A .2B C .2D .【来源】浙江省宁波市镇海中学2021届高三下学期5月模拟数学试题 【答案】C 【解析】()ln 1g x x x =--,1()1g x x'=-, ()0g x '>(1,)x ⇒∈+∞,()0g x '<⇒(0,1)x ∈, ∴()g x 在(0,1)x ∈单调递减,在(1,)x ∈+∞单调递增,∴()(1)1ln110g x g =--=,∴1ln 0x x x -≥>,恒成立,1x =时取等号,2211a b +-2221a b -21a b =-, 221ln ln(2)ln a a a bb b-=-, ()221ln 2ln 1a b a b-+-≥,∴2211ln(2)ln a a b b+-=-,又21ab =(不等式取等条件),解得:a b ==,2a b ∴+=, 故选:C.2.(2020·河北高考模拟(理))设奇函数()f x 在R 上存在导函数'()f x ,且在(0,)+∞上2'()f x x <,若(1)()f m f m --331[(1)]3m m ≥--,则实数m 的取值范围为( )A .11[,]22-B .11(,][,)22-∞-⋃+∞C .1(,]2-∞- D .1[,)2+∞【答案】D【解析】由()()1f m f m -- ()33113m m ⎡⎤≥--⎣⎦得:3311(1)(1)()33f m m f m m ---≥-,构造函数31()()3g x f x x =-,2()()0g x f x x '=-<'故g (x )在()0,+∞单调递减,由函数()f x 为奇函数可得g(x)为奇函数,故g(x)在R 上单调递减,故112m m m -≤⇒≥选D点睛:本题解题关键为函数的构造,由()2'f x x <要想到此条件给我们的作用,通常情况下是提示我们需要构造函数得到新函数的单调性,从而得不等式求解;3.(2020·山西高考模拟(理))定义在()0,∞+上的函数()f x 满足()()251,22x f x f ='>,则关于x 的不等式()13xxf e e <-的解集为( )A .()20,eB .()2,e +∞C .()0,ln 2D .(),2ln -∞【答案】D 【解析】【分析】构造函数()()1F x f x x=+,利用已知条件求得()'0F x >,即函数()F x 为增函数,而()23F =,由此求得e 2x <,进而求得不等式的解集.【详解】构造函数()()1F x f x x =+,依题意可知()()()222110x f x F x f x x x-=-=''>',即函数在()0,∞+上单调递增.所求不等式可化为()()1e e 3e x x x F f =+<,而()()12232F f =+=,所以e 2x <,解得ln 2x <,故不等式的解集为(),ln 2-∞.【点睛】本小题主要考查利用导数解不等式,考查构造函数法,考查导数的运算以及指数不等式的解法,属于中档题.题目的关键突破口在于条件()21x f x '>的应用.通过观察分析所求不等式,转化为()1e 3e x x f +<,可发现对于()()1F x f x x=+,它的导数恰好可以应用上已知条件()21x f x '>.从而可以得到解题的思路.4.(2020·河北衡水中学高考模拟(理))定义在R 上的可导函数()f x 满足()11f =,且()2'1f x >,当3,22x ππ⎡⎤∈-⎢⎥⎣⎦时,不等式23(2cos )2sin 22x f x +>的解集为( )A .4,33ππ⎛⎫⎪⎝⎭B .4,33ππ⎛⎫-⎪⎝⎭C .0,3π⎛⎫⎪⎝⎭D .,33ππ⎛⎫-⎪⎝⎭ 【答案】D【解析】令11()()22g x f x x =--,则1()'()0'2g x f x =->, ()g x ∴在定义域R 上是增函数,且11(1)(1)022g f =--=,1(2cos )(2cos )cos 2g x f x x ∴=--23=(2cos )2sin 22x f x +-,∴23(2cos )2sin 022x f x +->可转化成()(2cos )1g x g >,得到2cos 1x >,又3,22x ππ⎡⎤∈-⎢⎥⎣⎦,可以得到,33x ππ⎛⎫∴∈- ⎪⎝⎭,故选D5.定义在()0+,∞上的函数()f x 满足()10xf x '-<,且(1)1f =,则不等式()()21ln 211f x x ->-+的解集是__________. 【答案】()112,【解析】()()ln F x f x x =-,则()11()()xf x F x f x xx-=-=''',而()10xf x '-<,且0x >,∴()0F x '<,即()F x 在()0+,∞上单调递减,不等式()()21ln 211f x x ->-+可化为()()21ln 2111ln1f x x --->=-,即()()211F x F ->,故210211x x ->-<⎧⎨⎩,解得:112x <<,故解集为:()112,. 类型二 巧设“()()f x g x ”型可导函数【例】已知定义在R 上的图象连续的函数()f x 的导数是fx ,()()20f x f x +--=,当1x <-时,()()()()110x f x x f x '+++<⎡⎤⎣⎦,则不等式()()10xf x f ->的解集为( )A .(1,1)-B .(),1-∞-C .1,D .()(),11,-∞-⋃+∞【来源】2021年浙江省高考最后一卷数学(第七模拟) 【答案】A【解析】当1x <-时,()()()()110x f x x f x '+++<⎡⎤⎣⎦,即有()()()10f x x f x '++>.令()()()1F x x f x =+,则当1x <-时,()()()()10F x f x x f x ''=++>,故()F x 在(),1-∞-上单调递增.∵()()()()()()22121F x x f x x f x F x --=--+--=---=⎡⎤⎣⎦, ∴()F x 关于直线1x =-对称,故()F x 在()1,-+∞上单调递减,由()()10xf x f ->等价于()()()102F x F F ->=-,则210x -<-<,得11x -<<. ∴()()10xf x f ->的解集为(1,1)-. 故选:A. 【举一反三】1.(2020锦州模拟)已知函数()f x 是定义在R 上的偶函数,当0x <时,()()0f x xf x '+<,若(2)0f =,则不等式()0xf x >的解集为()A .{20 x x -<<或}02x <<B .{ 2 x x <-或}2x >C .{20 x x -<<或}2x >D .{ 2 x x <-或}02x <<【答案】D .【解析】令()()F x xf x =,则()F x 为奇函数,且当0x <时,()()()0F x f x xf x '+'=<恒成立,即函数()F x 在()0-,∞,()0+,∞上单调递减,又(2)0f =,则(2)(2)0F F -==,则()0xf x >可化为()(2)F x F >-或()(2)F x F >,则2x <-或02x <<.故选D .2.(2020·陕西高考模拟)已知定义在R 上的函数()f x 的导函数为'()f x ,对任意x ∈R 满足'()()0f x f x +<,则下列结论正确的是( )A .23(2)(3)e f e f >B .23(2)(3)e f e f <C .23(2)(3)e f e f ≥D .23(2)(3)e f e f ≤【答案】A【解析】令()()xg x e f x = ,则()(()())0xg x e f x f x '+'=<, 所以(2)(3),g g > 即()()2323e f e f >,选A.点睛:利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行:如()()f x f x <'构造()()xf xg x e=,()()0f x f x '+<构造()()xg x e f x =,()()xf x f x '<构造()()f x g x x=,()()0xf x f x '+<构造()()g x xf x =等 3.(2020·海南高考模拟)已知函数()f x 的导函数'()f x 满足()(1)'()0f x x f x ++>对x ∈R 恒成立,则下列判断一定正确的是( ) A .(0)02(1)f f << B .0(0)2(1)f f << C .02(1)(0)f f << D .2(1)0(0)f f <<【答案】B【解析】由题意设()()()1g x x f x =+,则()()()()'1'0g x f x x f x =++>,所以函数()g x 在R 上单调递增,所以()()()101g g g -<<,即()()0021f f <<.故选B . 4.(2020·青海高考模拟(理))已知定义在上的函数满足函数的图象关于直线对称,且当 成立(是函数的导数),若,则的大小关系是( )A .B .C .D .【答案】A 【解析】令,则当,因为函数的图象关于直线对称,所以函数的图象关于直线对称,即为偶函数,为奇函数,因此当,即为上单调递减函数,因为,而,所以,选A.5.(2020南充质检)()f x 是定义在R 上的奇函数,当0x >时,()21()2()0x f x xf x '++<,且(2)0f =,则不等式()0f x <的解集是()A .()()22--+,,∞∞ B .()()2002-,,C .()()202-+,,∞D .()()202--,,∞【答案】C .【解析】构造函数()2()1()g x x f x =+,则()2()1()g x x f x ''=+.又()f x 是定义在R 上的奇函数,所以()2()1()g x x f x =+为奇函数,且当0x >时,()2()1()2()0g x x f x xf x ''=++<,()g x 在()0+,∞上函数单减, ()0()0f x g x <⇒<.又(2)0g =,所以有()0f x <的解集()()202-+,,∞.故选C . 点睛:本题主要考察抽象函数的单调性以及函数的求导法则及构造函数解不等式,属于难题.求解这类问题一定要耐心读题、读懂题,通过对问题的条件和结论进行类比、联想、抽象、概括,准确构造出符合题意的函数是解题的关键;解这类不等式的关键点也是难点就是构造合适的函数,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”以构造恰当的函数;②若是选择题,可根据选项的共性归纳构造合适的函数.6.(2020荆州模拟)设函数()f x '是奇函数()f x (x ∈R )的导函数,当0x >时,1ln ()()x f x f x x '<-,则使得()21()0x f x ->成立的x 的取值范围是()A .()()1001-,,B .()()11--+,,∞∞C .()()101-+,,∞D .()()101--,,∞ 【答案】D.【解析】设()ln ()g x x f x =,当0x >时,1()()ln ()0g x f x xf x x'=+<',()g x 在()0+,∞上为减函数,且(1)0g =,当()01x ∈,时,()0g x >,ln 0x <∵,()0f x <∴,2(1)()0x f x ->; 当()1x ∈+,∞时,()0g x <,ln 0x >∵,()0f x <∴,()21()0x f x -<, ∵()f x 为奇函数,∴当()10x ∈-,时,()0f x >,()21()0x f x -<;当()1x ∈--,∞时,()0f x >,()21()0x f x ->. 综上所述:使得()21()0x f x -<成立的x 的取值范围是()()101--,,∞ 【点睛】构造函数,借助导数研究函数单调性,利用函数图像解不等式问题,是近年高考热点,怎样构造函数,主要看题目所提供的导数关系,常见的有x 与()f x 的积或商,2x 与()f x 的积或商,e x 与()f x 的积或商,ln x 与()f x 的积或商等,主要看题目给的已知条件,借助导数关系说明导数的正负,进而判断函数的单调性,再借助函数的奇偶性和特殊点,模拟函数图象,解不等式.7.(2020·河北高考模拟)已知()f x 是定义在R 上的可导函数,且满足(1)()'()0x f x xf x ++>,则( ) A .()0f x > B .()0f x < C .()f x 为减函数 D .()f x 为增函数【答案】A【解析】令()e [()]x g x xf x =,则由题意,得()e [(1)()()]0xg x x f x xf x '+'=+>,所以函数()g x 在(,)-∞+∞上单调递增,又因为(0)0g =,所以当0x >时,()0>g x ,则()0f x >,当0x <时,()0<g x ,则()0f x >,而()()()1'0x f x xf x ++>恒成立,则(0)0f >;所以()0f x >;故选A.点睛:本题的难点在于如何利用()()()1'0x f x xf x ++>构造函数()e [()]xg x xf x =。
微专题:运用导数运算法则构造函数(解析版)
微专题:运用导数运算法则构造函数一、知识梳理导数运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x );(2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );特别的 [cf (x )]′=cf ′(x ); (3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.常见函数的变形1、对)()(x g x f '>',构造)()()(x g x f x h -=;对()k x f >'()0≠k ,构造()()b kx x f x g +-=.2、对于形如'fxkf x ,构造函数())(x f e x g kx =;特别的,对'f xf x ,构造())(x f e x g x =3、对形如'fxf x ,构造函数()xe )(x f x g =4、对形如'xf xnf x ,构造函数())(x f x x g n =,特别的'xf xf x ,构造()()x xf x g =5、对形如'xfxnf x ,构造函数()nxx f x g )(=;特别的'xf x f x ,构造()()xx f x g =()0≠x 6、对形如()()ln f x f x x x'+,构造()()ln h x f x x =. 7、对于()()tan (()()tan )f x f x x f x f x x ''><或,即()cos ()sin 0(0)f x x f x x '-><, 构造()()cos h x f x x =.对于()cos ()sin 0(0)f x x f x x '+><,构造()()cos f x h x x=. 二、常见题型剖析题型一、根据导数运算公式构造函数【例1】设(),()f x g x 是R 上的可导函数,(),()f x g x 分别是(),()f x g x 的导函数,且满足()()()()0f x g x f x g x ,则当a x b <<时,有( ).()()()()A f a g b f b g a > .()()()()B f a g a f a g b > .()()()()C f a g a f b g b > .()()()()D f a g a f b g a >【答案】 【解析】因为''()()()g ()0f x g x f x x +<不等式左边的原函数为()()f x g x ,令()()()h x f x g x =,可知'()0h x <,则函数()h x 是单调递减函数,因此当a x b <<,有()()h a h b >即C【变式1】设(),()f x g x 分别是定义在R 上的奇函数和偶函数,当x <0时()()()()0f x g x f x g x ,且(3)0f ,则不等式()()0f x g x 的解集是( )A .()()303-,,+ B .()()3003-,,C .()()33-,-,+ D .())303(-,-,【答案】D【解析】构造函数()()()f x h xg x ,易知()h x 为奇函数且(3)0h .2()()()()()()f xg x f x g xh x g x .故当0x时,()0h x ,()h x 单调递增.所以()h x 在(−∞,0)上为增函数,且ℎ(−3)=0, 当R ∈(−∞,−3)时,()0h x ,此时()()0f x g x ,因为函数()h x 为奇函数,当R ∈(0,3)时,()0h x ,此时()()0f x g x ,综上,不等式()()0f x g x 的解集是())303(-,-,(-∞,-3)∪(0,3). 故选:D题型二、根据()()f x g x ''±构造函数()()f x g x c ±+【例2】函数的定义域为,对任意则的解集为( ) A . B .C .D .【答案】B【解析】令,则,因为对任意 所以对任意恒成立;因此,函数在上单调递增;()f x R (1)7,f =,x R ∈()3,f x '>()34f x x >+(1,1)-(1,+)∞(,1)-∞-(,+)-∞∞()()3g x f x x =-()()3g x f x ''=-,x R ∈()3,f x '>()()30g x f x ''=->x R ∈()()3g x f x x =-R又所以,因此不等式可化为,所以.故选B【变式2】已知定义在R 上的函数()f x 满足()11f =,且()f x 的导函数()f x '在R 上恒有()12f x '<,则不等式()122x f x <+的解集为( ) A .()1,+∞ B .(),1-∞ C .()1,1- D .()(),11,-∞+∞【答案】A【解析】因为()122x f x <+可化为()1022x f x --<,令()()122x g x f x =--,则()()12g x f x ''=-, 因为()12f x '<,所以()0g x '<,所以()g x 在R 上单调递减,因为()11f =,所以()()1111022=--=g f ,所以()()1g x g <,所以1x >,即不等式()122x f x <+的解集为()1,+∞.故选:A . 题型三、根据()()xf x nf x '+(或()()xf x nf x '-)构造函数【例3】已知定义在(0,)上的函数f (x )满足22()()0xf x x f x ,3(2)4f ,则关于x 的不等式23()f x x的解集为( ) A .(0,4) B .(2,) C .(4,) D .(0,2)【答案】D 【详解】令2()()h x x f x ,则2()2()()0h x xf x x f x ,所以ℎ(x )在(0,)单调递减, 不等式23()f x x以转化为()(2)h x h ,所以02x故选:D.【变式3】定义域为R 的奇函数()f x ,当(),0x ∈-∞时,()()0f x xf x '+<恒成立,若()()33,1a f b f ==,()22c f =--,则( )A .a b c >>B .c b a >>C .c a b >>D .a c b >>(1)7,f =(1)(1)34g f =-=()34f x x >+()(1)g x g >1x >【答案】D【解析】构造函数()()g x xf x =,因为()f x 是奇函数,所以()()g x xf x =为偶函数 当(),0x ∈-∞时,()()0f x xf x '+<恒成立,即()'0g x <,所以()()g x xf x =在(),0x ∈-∞时为单调递减函数 ()()g x xf x =在()0,x ∈+∞时为单调递增函数根据偶函数的对称性可知()()33,1a f b f ==,()22c f =--所以a c b >>,所以选D题型四、根据()()f x nf x '+(或()()f x nf x '-)构造函数【例4】已知奇函数f (x )的定义域为R ,当0x 时,02()()f x f x ,且(2)0f 则不等式()0f x 的解集为___________.【答案】()()202-,,+【解析】构造函数2()()=xg x e f x ,则当0x时,2()()())0=(2x g x e f x f x 所以当0x时()g x 单调递增.因为(2)0f ,所以4(2)(2)0g e f ,所以当x >2时()0g x ,从而()0f x .当0<x <2时,()0g x ,从而()0f x .又奇函数f (x )的图像关于原点中心对称,所以()0f x 的解集为()()202-,,+故答案为:()()202-,,+ .【变式4】已知定义在R 上的函数()f x 满足2()()0f x f x '-<,且(ln 2)2f =,则(ln )20f x x >的解集是( )A .(0,2)B .2)C .(0,)eD .)e【答案】A【解析】令ln ,x t t R =∈,构造函数'22''222()(2)()()22()()(2()())242t t tt tf t e e f x f tg t g t f t f t e e --=⇒==-, 由已知可知:'2()()0f t f t -<,所以'()0()g t g t <⇒是R 上的减函数, 当ln 2t <时,ln 21ln 222(ln 2)2()(ln 2)122()f g t g ee >===,22()()1()22t t f t g t f t e e=>⇒>,所以当ln ln 2x <时,ln 2(ln )22(ln )20x f x ex f x x >=⇒>成立,也就是当02x <<时,ln 2(ln )22(ln )20x f x ex f x x >=⇒->成立,故本题选A.题型五、根据()()tan f x f x x '+(或()()tan f x f x x '-)构造函数【例5】已知定义在(0,)2π上的函数f(x),f’(x)是它的导函数,且对任意的(0,)2x π∈,都有()'()tan f x f x x <恒成立,则( )A 3()2()43ππ>B 2()()64f ππ>C 3()()63f ππ>D .(1)2()sin16f f π>【答案】D【解析】由题得()cos '()sin f x x f x x <,即()cos '()sin 0f x x f x x -<,令()()sin f x g x x=(0,)2x π∈,导函数2'()sin ()cos '()0sin f x x f x xg x x-=>,因此g(x)在定义域上为增函数.则有()()(1)()643g g g g πππ<<<,代入函数得(1)2()2()()64sin133f f f πππ<<<,由该不等式可得(1)2()sin16f f π>,故选D.【变式5】已知定义在R 上函数()f x 的导函数为()f x ',()0,πx ∀∈,有()()sin cos f x x f x x '<,且()()0f x f x +-=.设π24a ⎛⎫= ⎪⎝⎭,23π33b f ⎛⎫=-- ⎪⎝⎭,π2c f ⎛⎫= ⎪⎝⎭,则( ).A .a b c <<B .b c a <<C .a c b <<D .c b a <<【解析】设()()sin f x g x x=,()()()()()()sin sin sin f x f x f x g x g x x x x ---====--,即()()g x g x -=,所以函数()g x 是偶函数,并且()()()2sin cos 0sin f x x f x xg x x'-'=<,所以函数()g x 在()0,π单调递减, 4244sin 4f a g ππππ⎛⎫ ⎪⎛⎫⎛⎫⎝⎭=== ⎪ ⎪⎝⎭⎝⎭,333333sin 3f b f g g πππππ⎛⎫- ⎪⎛⎫⎛⎫⎛⎫⎝⎭=--==-= ⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭- ⎪⎝⎭, 222sin 2f c fg ππππ⎛⎫ ⎪⎛⎫⎛⎫⎝⎭=== ⎪ ⎪⎝⎭⎝⎭,因为0432ππππ<<<<,所以432g g g πππ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即a b c >>.故选:D题型六、根据()()ln f x x xf x '±构造函数【例6】 已知()f x 是定义在(,0)(0,)-∞+∞上的奇函数,()f x '是()f x 的导函数,(1)0,f ≠且满足:()()ln 0,f x f x x x⋅+<'则不等式(1)()0x f x -⋅<的解集为( ) A .(1,)+∞ B .(,1)(0,1)-∞- C .(),1-∞ D .()(,01),-∞⋃+∞【答案】 D【解析】 令()()ln g x f x x =,0x >,则()()()ln 0f x g x f x x x''=+<,()g x 在(0,)+∞上单调递减,而(1)0g =,因此,由()0g x >得01x <<,而ln 0x <,则()0f x <,由()0g x <得1x >,而ln 0x >,则()0f x <,又(1)0f <,于是得在(0,)+∞上,()0f x <,而()f x 是(,0)(0,)-∞+∞上的奇函数,则在(,0)-∞上,()0f x >,由(1)()0x f x -⋅<得:10()0x f x ->⎧⎨<⎩或10()0x f x -<⎧⎨>⎩,即10x x >⎧⎨>⎩或10x x <⎧⎨<⎩,解得0x <或1x >,所以不等式(1)()0x f x -⋅<的解集为(,0)(1,)-∞⋃+∞.故选:D【变式6】设定义在[)0,∞+上的函数()0f x ≠恒成立,其导函数为()f x ',若()()()()1ln 10f x x f x x '-++<,则( )A .()()2130f f >>B .()()2130f f <<C .()()2310f f >>D .()()2310f f <<【答案】B【解析】由题意,在[)0,∞+上的函数()0f x ≠恒成立,构造函数ln(1)()()x g x f x +=,则()()2()ln(1)1()f x f x x x g x f x '-++'=,∵[)0,∞+上()()()()()1ln ()ln(1)0111f x x f x x f x f x x x x -+'-+'+=<++,即()0g x '<, ∴()g x 在[)0,∞+上单调递减,而(0)0g =,故0(1)(3)g g >> ∴ln 2ln 42ln 20(1)(3)(3)f f f >>=,可得2(1)(3)0f f <<.题型七、根据()()()f x f x g x ±-=构造函数【例7】设函数()f x 在R 上存在导函数'()f x ,x R ∀∈,有3()()f x f x x --=,在(0,)+∞上有22'()30f x x ->,若2(2)()364f m f m m m --≥-+-,则实数m 的取值范围为( )A .[1,1]-B .(,1]-∞C .[1,)+∞D .(,1][1,)-∞-+∞【答案】B【解析】因为()()3f x f x x --=,所以33()()()22x x f x f x --=--令3()()()()2x g x f x g x g x =-∴=-即函数()g x 为偶函数,因为()0,∞+上有()22'30f x x ->,所以23()()02x g x f x ''=->即函数()g x 在(0,)+∞单调递增;又因为()()22364f m f m m m --≥-+-所以33(2)(2)()(2)()22m m g m g m f m f m ---=---+2(2)()3640f m f m m m =--+-+≥即(2)()g m g m -≥,所以2m m -≥,解得1m ≤ ,故选B.【变式7】设函数f (x )在R 上存在导数)(x f ',R x ∈∀,有2)()(x x f x f =+-,在),0(+∞上,x x f <')(,若0618)()6(≥+---m m f m f ,则实数m 的取值范围为( ) A .),2[+∞ B .),3[+∞ C .[-3,3] D .),2[]2,(+∞--∞ 【答案】B【解析】令221)()(x x f x g -=,∵021)(21)()()(22=-+--=+-x x f x x f x g x g ,∴函数g (x )为奇函数,∵),0(+∞∈x 时,0)()(<-'='x x f x g ,函数g (x )在),0(+∞∈x 上为减函数, 又由题可知,f (0)=0,g (0)=0,所以函数g (x )在R 上为减函数,061821)()6(21)6(618)()6(22≥+----+-=+---m m m g m m g m m f m f ,即0)()6(≥--m g m g ,∴)()6(m g m g ≥-,∴m m ≤-6,∴3≥m。
导数大题10种主要题型导学案含详解
导数大题10种主要题型(一)预习案题型一:构造函数1.1 “比较法”构造函数例1.已知函数f(x)=e x﹣ax(e为自然对数的底数,a为常数)的图象在点(0,1)处的切线斜率为﹣1.(1)求a的值及函数f(x)的极值;(2)求证:当x>0时,x2<e x.1.2 “拆分法”构造函数例2.设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处的切线为y=e(x﹣1)+2.(Ⅰ)求a,b;(Ⅱ)证明:f(x)>1.1.3 “换元法”构造函数例3.已知函数f(x)=ax2+xlnx(a∈R)的图象在点(1,f(1))处的切线与直线x+3y=0垂直.(Ⅰ)求实数a的值;(Ⅱ)求证:当n>m>0时,lnn﹣lnm>﹣;(Ⅲ)若存在k∈Z,使得f(x)>k恒成立,求实数k的最大值.1.4 “二次(甚至多次)”构造函数例4.已知函数f(x)=e x+m﹣x3,g(x)=ln(x+1)+2.(1)若曲线y=f(x)在点(0,f(0))处的切线斜率为1,求实数m的值;(2)当m≥1时,证明:f(x)>g(x)﹣x3.题型二:隐零点问题例1.已知函数f(x)=e x﹣ln(x+m).(Ⅰ)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(Ⅱ)当m≤2时,证明f(x)>0.例2.(Ⅰ)讨论函数f(x)=e x的单调性,并证明当x>0时,(x﹣2)e x+x+2>0;(Ⅱ)证明:当a∈[0,1)时,函数g(x)=(x>0)有最小值.设g(x)的最小值为h(a),求函数h(a)的值域.导数大题10种主要题型(一)预习案答案例1. 解:(1)f ′(x )=e x ﹣a ,∵f ′(0)=﹣1=1﹣a ,∴a =2.∴f (x )=e x ﹣2x ,f ′(x )=e x ﹣2.令f ′(x )=0,解得x =ln 2.当x <ln 2时,f ′(x )<0,函数f (x )单调递减;当x >ln 2时,f ′(x )>0,函数f (x )单调递增.∴当x =ln 2时,函数f (x )取得极小值,为f (ln 2)=2﹣2ln 2,无极大值.(2)证明:方法一(作差法)令g (x )=e x ﹣x 2,则g ′(x )=e x ﹣2x ,由(1)可得:g ′(x )=f (x )≥f (ln 2)>0,∴g (x )在R 上单调递增,因此:x >0时,g (x )>g (0)=1>0,∴x 2<e x .方法二(作商法):即可只需证1)(,2)(<=x h e x x h x例2. 解:(Ⅰ) 函数f (x )的定义域为(0,+∞),, 由题意可得f (1)=2,f '(1)=e ,故a =1,b =2.(Ⅱ)证明:方法一(凹凸反转法)由(Ⅰ)知,,从而f (x )>1等价于,设函数g (x )=xlnx ,则g '(x )=1+lnx ,所以当时,g '(x )<0, 当时,g '(x )>0,故g (x )在单调递减,在单调递增,从而g (x )在(0,+∞)的最小值为.设函数,则h '(x )=e ﹣x (1﹣x ),所以当x ∈(0,1)时,h '(x )>0,当x ∈(1,+∞)时,h '(x )<0,故h (x )在(0,1)单调递增,在(1,+∞)单调递减,从而h (x )在(0,+∞)的最大值为.综上:当x >0时,g (x )>h (x ),即f (x )>1.方法二(放缩法)例3. 解:(Ⅰ)∵f (x )=ax 2+xlnx ,∴f ′(x )=2ax +lnx +1,∵切线与直线x +3y =0垂直,∴切线的斜率为3,∴f ′(1)=3,即2a +1=3,故a =1; (Ⅱ)由(Ⅰ)知f (x )=x 2+xlnx ,x ∈(0,+∞),f ′(x )=2x +lnx +1,x ∈(0,+∞), ∵f ′(x )在(0,+∞)上单调递增,∴当x >1时,有f ′(x )>f ′(1)=3>0,∴函数f (x )在区间(1,+∞)上单调递增,∵n >m >0,∴,∴f ()>f (1)=1即,∴lnn ﹣lnm >; (Ⅲ)由(Ⅰ)知f (x )=x 2+xlnx ,x ∈(0,+∞),f ′(x )=2x +lnx +1,x ∈(0,+∞), 令g (x )=2x +lnx +1,x ∈(0,+∞),则,x ∈(0,+∞),由g ′(x )>0对x ∈(0,+∞),恒成立,故g (x )在(0,+∞)上单调递增, 又∵011121)1(222<-=+-=e e e g ,而>0, ∴存在x 0∈,使g (x 0)=0 ∵g (x )在(0,+∞)上单调递增,∴当x ∈(0,x 0)时,g (x )=f ′(x )<0,f (x )在(0,x 0)上单调递减;当x ∈(x 0,+∞)时,g (x )=f ′(x )>0,f (x )在(x 0,+∞)上单调递增;∴f (x )在x =x 0处取得最小值f (x 0)∵f (x )>k 恒成立,所以k <f (x 0)由g (x 0)=0得,2x 0+lnx 0+1=0,所以lnx 0=﹣1﹣2x 0,∴f (x 0)===﹣=﹣,又,∴f (x 0)∈, ∵k ∈Z ,∴k 的最大值为﹣1.例4. 解:(1)函数f (x )=e x +m ﹣x 3的导数为f ′(x )=e x +m ﹣3x 2,在点(0,f (0))处的切线斜率为k =e m =1,解得m =0;(2)证明:f (x )>g (x )﹣x 3即为e x +m >ln (x +1)+2.由y =e x ﹣x ﹣1的导数为y ′=e x ﹣1,当x >0时,y ′>0,函数递增;当x <0时,y ′<0,函数递减.即有x =0处取得极小值,也为最小值0.即有e x ≥x +1,则e x +m ≥x +m +1,由h(x)=x+m+1﹣ln(x+1)﹣2=x+m﹣ln(x+1)﹣1,h′(x)=1﹣,当x>0时,h′(x)>0,h(x)递增;﹣1<x<0时,h′(x)<0,h(x)递减.即有x=0处取得最小值,且为m﹣1,当m≥1时,即有h(x)≥m﹣1≥0,即x+m+1≥ln(x+1)+2,则有f(x)>g(x)﹣x3成立.例5.(Ⅰ)解:∵,x=0是f(x)的极值点,∴,解得m=1.所以函数f(x)=e x﹣ln(x+1),其定义域为(﹣1,+∞).∵.设g(x)=e x(x+1)﹣1,则g′(x)=e x(x+1)+e x>0,所以g(x)在(﹣1,+∞)上为增函数,又∵g(0)=0,所以当x>0时,g(x)>0,即f′(x)>0;当﹣1<x<0时,g(x)<0,f′(x)<0.所以f(x)在(﹣1,0)上为减函数;在(0,+∞)上为增函数;(Ⅱ)证明:当m≤2,x∈(﹣m,+∞)时,ln(x+m)≤ln(x+2),故只需证明当m=2时f(x)>0.当m=2时,函数在(﹣2,+∞)上为增函数,且f′(﹣1)<0,f′(0)>0.故f′(x)=0在(﹣2,+∞)上有唯一实数根x0,且x0∈(﹣1,0).当x∈(﹣2,x0)时,f′(x)<0,当x∈(x0,+∞)时,f′(x)>0,从而当x=x0时,f(x)取得最小值.由f′(x0)=0,得,ln(x0+2)=﹣x0.故f(x)≥=>0.综上,当m≤2时,f(x)>0.例6.解:(1)证明:f(x)=f'(x)=e x()=∵当x∈(﹣∞,﹣2)∪(﹣2,+∞)时,f'(x)≥0∴f(x)在(﹣∞,﹣2)和(﹣2,+∞)上单调递增∴x>0时,>f(0)=﹣1即(x﹣2)e x+x+2>0(2)g'(x)====,a∈[0,1),由(1)知,f(x)+a单调递增,对任意的a∈[0,1),f(0)+a=a﹣1<0,f(2)+a=a≥0,因此存在唯一的t∈(0,2],使得f(t)+a=0,当x∈(0,t)时,g'(x)<0,g(x)单调减;当x∈(t,+∞),g'(x)>0,g(x)单调增;h(t)===记k(t)=,在t∈(0,2]时,k'(t)=>0,故k(t)单调递增,所以h(a)=k(t)∈(,].导数大题10种主要题型(二)预习案题型三:恒成立、存在性问题3.1 单变量恒成立、存在性问题例1.已知函数f (x )=xlnx ,g (x )=﹣x 2+ax ﹣3.(1)求函数f (x )在[t ,t +2](t >0)上的最小值;(2)若存在x 0∈[,e ](e 是自然对数的底数,e =2.71828…),使不等式2f (x 0)≥g (x 0)成立,求实数a 的取值范围.3.2 双变量恒成立、存在性问题极值点偏移问题:由于函数左右增减速率不同导致函数图像失去对称性。
导数中构造函数的常见题型与方法归纳
导数中构造函数的常见题型与方法归纳高考中有一难点,即不给出具体的函数解析式,而是给出函数f(x)及其导数满足的条件,需要据此条件构造抽象函数,再根据条件得出构造函数的单调性,应用单调性解决问题的题目,该类题目具有一定的难度,下面总结其基本类型及其处理方法.题型一f′(x)g(x)±f(x)g′(x)型【例1】设f′(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf′(x)-f(x)<0,则使得f(x)>0成立的x的取值范围是() A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(-1,0) D.(0,1)∪(1,+∞)【解析】令g(x)=f(x)x,则g′(x)=xf′(x)-f(x)x2,由题意知,当x>0时,g′(x)<0 ,∴g(x)在(0,+∞)上是减函数.∵f(x)是奇函数,f(-1)=0,∴f(1)=-f(-1)=0,∴g(1)=f(1)1=0,∴当x∈(0,1)时,g(x)>0,从而f(x)>0;当x∈(1,+∞)时,g(x)<0,从而f(x)<0.又∵f(x)是奇函数,∴当x∈(-∞,-1)时,f(x)>0;当x∈(-1,0)时,f(x)<0.综上,所求x的取值范围是(-∞,-1)∪(0,1).【例2】设f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(-3)=0,则不等式f(x)g(x)<0的解集是________________.【解析】借助导数的运算法则,f′(x)g(x)+f(x)g′(x)>0⇔[f(x)g(x)]′>0,所以函数y=f(x)g(x)在(-∞,0)上单调递增.又由分析知函数y=f(x)g(x)为奇函数,所以其图象关于原点对称,且过点(-3,0),(0,0),(3,0).数形结合可求得不等式f(x)g(x)<0的解集是(-∞,-3)∪(0,3).【小结】(1)对于不等式f′(x)+g′(x)>0(或<0),构造函数F(x)=f(x)+g(x);(2)对于不等式f′(x)-g′(x)>0(或<0),构造函数F(x)=f(x)-g(x);特别地,对于不等式f′(x)>k(或<k)(k≠0),构造函数F(x)=f(x)-kx.(3)对于不等式f′(x)g(x)+f(x)g′(x)>0(或<0),构造函数F(x)=f(x)g(x);(4)对于不等式f′(x)g(x)-f(x)g′(x)>0(或<0),构造函数F(x)=f(x)g(x)(g(x)≠0);(5)对于不等式xf′(x)+f(x)>0(或<0),构造函数F(x)=xf(x);(6)对于不等式xf′(x)-f(x)>0(或<0),构造函数F(x)=f(x)x(x≠0).题型二xf′(x)±nf(x)型【例3】设函数f(x)在R上的导函数为f′(x),且2f(x)+xf′(x)>x2,则下列不等式在R上恒成立的是()A.f(x)>0B.f(x)<0C.f(x)>x D.f(x)<x【解析】法一:令g(x)=x2f(x)-14x4,则g′(x)=2xf(x)+x2f′(x)-x3=x[2f(x)+xf′(x)-x2],当x>0时,g′(x)>0,∴g(x)>g(0),即x2f(x)-14x4>0,从而f(x)>14x2>0;当x<0时,g′(x)<0,∴g(x)>g(0),即x2f(x)-14x4>0,从而f(x)>14x2>0;当x=0时,由题意可得2f(0)>0,∴f(0)>0.综上可知,f(x)>0.法二:∵2f(x)+xf′(x)>x2,∴令x=0,则f(0)>0,故可排除B、D,不妨令f(x)=x2+0.1,则已知条件2f(x)+xf′(x)>x2成立,但f(x)>x 不一定成立,故C也是错误的,故选A.【例4】已知定义域为{x|x≠0}的偶函数f(x),其导函数为f′(x),对任意正实数x满足xf′(x)>-2f(x),若g(x)=x2f(x),则不等式g(x)<g(1)的解集是()A.(-∞,1) B.(-1,1)C.(-∞,0)∪(0,1) D.(-1,0)∪(0,1)【解析】∵f(x)是定义域为{x|x≠0}的偶函数,∴f(-x)=f(x).对任意正实数x满足xf′(x)>-2f(x),∴xf′(x)+2f(x)>0.∵g(x)=x2f(x),∴g(x)也是偶函数,当x∈(0,+∞)时,g′(x)=2xf(x)+x2f′(x)>0.∵g(x)在(0,+∞)上单调递增,∴g (x )在(-∞,0)递减.若g (x )<g (1),则|x |<1(x ≠0),解得0<x <1或-1<x <0.故g (x )<g (1)的解集是(-1,0)∪(0,1).【小结】(1)对于xf ′(x )+nf (x )>0型,构造F (x )=x n f (x ),则F ′(x )=x n -1[xf ′(x )+nf (x )](注意对x n -1的符号进行讨论), 特别地,当n =1时,xf ′(x )+f (x )>0,构造F (x )=xf (x ), 则F ′(x )=xf ′(x )+f (x )>0;(2)对于xf ′(x )-nf (x )>0(x ≠0)型,构造F (x )=f (x )x n ,则F ′(x )=xf ′(x )-nf (x )x n +1(注意对x n +1的符号进行讨论), 特别地,当n =1时,xf ′(x )-f (x )>0,构造F (x )=f (x )x ,则F ′(x )=xf ′(x )-f (x )x 2>0. 题型三 λf (x )±f ′(x )(λ为常数)型【例5】已知f (x )为R 上的可导函数,且∀x ∈R ,均有f (x )>f ′(x ),则有( )A .e 2 019f (-2 019)<f (0),f (2 019)>e 2 019f (0)B .e 2 019f (-2 019)<f (0),f (2 019)<e 2 019f (0)C .e 2 019f (-2 019)>f (0),f (2 019)>e 2 019f (0)D .e 2 019f (-2 019)>f (0),f (2 019)<e 2 019f (0)【解析】构造函数h (x )=f (x )e x ,则h ′(x )=f ′(x )-f (x )e x<0,即h (x )在R 上单调递减,故h (-2 019)>h (0),即f (-2 019)e-2 019>f (0)e 0⇒e 2 019f (-2019)>f(0);同理,h(2 019)<h(0),即f(2 019)<e2 019·f(0),故选D.【小结】(1)对于不等式f′(x)+f(x)>0(或<0),构造函数F(x)=e x f(x);(2)对于不等式f′(x)-f(x)>0(或<0),构造函数F(x)=f(x) e x.。
专题3-3 压轴小题导数技巧:构造函数-2023年高考数学一轮复习热点题型(全国通用)(解析版)
f f
1 4
1 e3
,即
f 1
1
f 4 的范围为 e6
,
1 e3
.
故选:B.
【提分秘籍】
基本规律 1. 对于f (x)+f (x) 0 ( 0),构造g(x)=ex f(x), 2. 对于f (x)+kf (x) 0 ( 0),构造g(x)=ekx f(x)
3. 对于f (x)-f (x) 0
f (2) e2
f
(1) e1
,得出答案即可.
【详解】构造函数 g(x)
f (x) ex
,因为当
x
1
时,
f x
f
x ,所以 g (x)
f (x) ex
f (x)
0
可得在 x 1 时, g(x)
是单调递增的;因为
f
2 x
f
x e22x ,化简得
f
(2 x) e2x
f (x) ex
即 g(2 x) g(x)
【典例分析】
(2021·吉林·高三阶段练习(文))已知定义在 (0, ) 上的函数 f (x) 的导函数为 f (x) ,满足 f (x) 0 .当 x 0 时,f (x) 2 f (x) .当 x 2 时,f (x) f (x) ,且 f (3 x) f (1 x)e22x ,其中 e 是自然对数的底数.则 f (1)
g 4 ,对其变形可得
f f
1 4
1 e3
,同理分析 h x 的单调
性可得
f f
1 4
1 e6
,综合即可得答案.
【详解】根据题意,设 g x
f
x
ex
,(
x
导数难题秒杀技巧:构造函数【解析版】
高中数学专题突破:抽象函数的导函数构造类型一:)]'()([)(')()()('x g x f x g x f x g x f =+与'2)()()()(')()()('⎥⎦⎤⎢⎣⎡=-x g x f x g x g x f x g x f定理1:0)]'([0)()('>⇔>+x xf x f x xf ;0)(0)()(''>⎥⎦⎤⎢⎣⎡⇔>-x x f x f x xf 证明:)]'([)()('x xf x f x xf =+ ;'2)()()('⎥⎦⎤⎢⎣⎡=-x x f x x f x xf 0)()('>+∴x f x xf ,则函数)(x xf y =单调递增;0)()('>-x f x xf ,则x x f y )(=单调递减.定理2:当0>x 时,0)]'([0)()('>⇔>+x f x x nf x xf n;0)(0)()(''>⎥⎦⎤⎢⎣⎡⇔>-n x x f x nf x xf证明:)]'([)()('1x f x x f nxx f x nn n =+- ;'21)()()('⎥⎦⎤⎢⎣⎡=--n nn n x x f x x f nx x f x 0)()('>+∴x nf x xf ,则函数)(x f x y n =单调递增;0)()('>-x nf x xf ,则nx x f y )(=单调递减【例1】(2015•新课标II )设函数)('x f 是奇函数)(x f (R x ∈)的导函数,0)1(=-f ,当0>x 时,0)()('<-x f x xf ,则使得0)(>x f 成立的x 的取值范围是( )A .)1,0()1,( --∞B .),1()0,1(+∞-C .)0,1()1,(---∞D .),1()1,0(+∞【解析】由于当x >0时,()2()()0xf x f x f x x x ''-⎡⎤=<⎢⎥⎣⎦,则()f x x 为减函数;又()01=-f ,()x f 为奇函数,则()01=f ,当x >1时,()0<x f ,当0<x <1时,()0>x f ,根据奇函数的图像可得()0>x f 成立的x 的取值范围是)1,0()1,( --∞,故选A .【例2】(2018•东莞市期末)已知奇函数()f x 的导函数为()f x ',且(1)0f -=,当0x >时()()0f x xf x '+>恒成立,则使得()0f x >成立的x 的取值范围为( ) A .)1,0()0,1( -B .)1,0()1,( --∞C .),1()0,1(+∞-D .),1()1,(+∞--∞【解析】由题意可设()()g x xf x =,则()()()g x xf x f x '='+,当0x >时,有()()0xf x f x '+>,∴则当0x >时,()0g x '>,∴函数()()g x xf x =在(0,)+∞上为增函数,函数()f x 是奇函数,()()()()[()]()()g x x f x x f x xf x g x ∴-=--=--==,∴函数()g x 为定义域上的偶函数,由(1)0f -=得,(1)0g -=,函数()g x 的图象大致如图:由函数的图象得,10x -<<或1x >,∴使得()0f x >成立的x 的取值范围是:(1-,0)(1⋃,)+∞,故选C .【例3】(2018•福建期末)设函数()y f x =,(0,)x ∈+∞的导函数为()f x ',且满足()3()xf x f x '<,则( ) A .201820198(2)(2)f f < B .201820198(2)(2)f f >C .201820198(2)(2)f f =D .不能确定20188(2)f 与2019(2)f 的大小【解析】令3()()f x g x x=,则3264()3()()3()()f x x x f x xf x f x g x x x '-'-'==,()3()xf x f x '<,即()3()0xf x f x '-<, ()0g x ∴'<在(0,)+∞恒成立,故()g x 在(0,)+∞递减,即201820192018320193(2)(2)(2)(2)f f >,故201820198(2)(2)f f >,故选B .【例4】(2018•辽宁期末)函数()f x 是定义在区间(0,)+∞上可导函数,其导函数为()f x '且满足()2()0xf x f x '+>,则不等式(2019)(2019)5(5)52019x f x f x ++<+的解集为( ) A .{|2014}x x >- B .{|20192014}x x -<<- C .{|02014}x x <<D .{|2014}x x <-【解析】根据题意,设2()()g x x f x =,()[2()()]g x x f x xf x '=+';当0x >时,2()()0f x xf x +'>,则有()0g x '>,即()g x 在(0,)+∞上单调递增,2(2019)(2019)5(5)(2019)(2019)2552019x f x f x f x f x ++<⇒++<+(5)(2019)g x g ⇒+<(5),又由()g x 在(0,)+∞上单调递增,则有020195x <+<,解得:20192014x -<<-,故B .()f x e ⎡⎣)()>+x f :由于f 【例5】(2018•咸阳期末)已知()f x 是可导函数,且()()f x f x '<对于x R ∈恒成立,则( )A .2018(1)(2018)(0),(0)f f f f e e<> B .(1)(0)f f e >,2018(2018)(0)f f e >C .(1)(0)f f e >,2018(2018)(0)f f e < D .(1)(0)f f e <,2018(2018)(0)f f e < 【解析】由()()f x f x '<,得()()0f x f x '-<,令()()x f x g x e=, 则2()()()()()0x x x xe f x e f x f x f x g x e e'-'-'==<.()g x ∴在R 上单调递减, 即)0()1(g g <,(2018)(0)g g <∴(1)(0)f f e<,20180(2018)(0)(0)f f f e e <=.故选:D .【例6】(2018•长沙期末)已知函数()f x 在R 上可导,其导函数为()f x ',若()f x 满足:当1x ≠时,(1)[()()]0x f x f x -'+>,22()(2)x f x e f x -=-,则下列判断一定正确的是( )A .)0()1(f f <B .)0()4(4f f e <C .)0()2(f ef >D .)0()3(3f f e > 【解析】令()()x g x e f x =,则()(()())x g x e f x f x '=+',()f x 满足:(1)[()()]0x f x f x -'+>,∴当1x <时,()()0f x f x '<<.()0g x ∴'<,此时函数()g x 单调递减.(1)(0)g g ∴->.即1(1)(0)f f e->.xe xf 22)(-= )2(x f -⋅,f ∴(3)4(1)(0)f e ef -=->,3e f ∴(3)(0)f >,故选D .【例7】(2018•南昌期末)已知函数()f x 是定义在R 上的增函数,()2()f x f x '+>,(0)1f =,则不等式[()2]3ln f x ln x +>+的解集为( )A .(,0)-∞B .(0,)+∞C .(,1)-∞D .(1,)+∞ 【解析】令()2()xf xg x e+=,()()2()x f x f x g x e '--'=,又()2()f x f x +>',则有()0g x '<,则函数()g x ↓,(0)1f =,则0(0)2(0)3f g e +==,函数()f x ↑,()2()0f x f x +>'>⇒()20f x +>在R 上恒成立;[()2]3ln f x ln x +>+()2()233x f x f x lnx e ++⇒>⇒>⇒()23xf x e +>()(0)g x g ⇒>,故()g x 为减函数,则有0x <,故选A .【例8】定义在R 上的函数)(x f 满足:1)(>x f 且1)(')(>+x f x f ,5)0(=f ,其中)('x f 是)(x f 的导函数,则不等式x x f ->-4ln ]1)(ln[的解集为( )A .),0(+∞B .),3()0,(+∞-∞C .),0()0,(+∞-∞D .)0,(-∞【解析】()()()+()11xf x f x e f x '⎡⎤'>⇒-↑⎣⎦,()()ln 4ln 1ln 1ln 4f x xe f x x e e -⎡⎤⎣⎦->-⇒>⎡⎤⎣⎦,又14f ()()()()014011014x x e f x f e f x e f ⇒->=-⇒->-=⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦,故0x >,故选A .【例9】(2018•玉林期末)已知()f x '为函数()y f x =的导函数,当((0,))2x x π∈是斜率为k 的直线的倾斜角时,若不等式()()0f x f x k -'<恒成立,则( )A()3()4f f ππ>B .(1)2()sin16f f π> C()()064f ππ->D()()063f ππ->【解析】tan k x =,()()0f x f x k -'<,(0,))2x π∈cos ()sin ()0x f x x f x ∴-'<,典型的正弦同号模型,设()()sin f x g x x =,2sin ()cos ()()x f x x f x g x sin x'-∴'=,不等式()()0f x f x k -'<恒成立,()0g x ∴>恒成立,()g x ∴在(0,)2π↑)6()4()1()3(πππg g g g >>>∴,∴()()()(1)364sin1sinsin sin 346ff f f ππππππ>>>,∴()()34ππ>,(1)2()sin16f f π>,()()46f ππ>,()()36f ππ>A ∴,C ,D 错误,B 正确,故选B .【例10】(2016•河南模拟)已知函数()y f x =对任意的(2x π∈-,)2π满足()cos ()sin 0f x xf x x '+>(其中()f x '是函数()f x 的导函数),则下列不等式成立的是( ) A ()()34f ππ-<- B ()()34f ππ< C .(0)2()3f f π> D .(0)()4f π>【解析】典型的余弦反号模型,构造函数()()cos f x g x x =,+=-=x x f xx x x f x x f x g cos )('(cos 1cos )')(cos (cos )(')('22)sin )(x x f ,对任意的(2x π∈-,)2π满足()cos ()sin 0f x x f x x '+>,()0g x ∴'>,即函数()g x 在(2x π∈-,)2π单调递增,则()()34g g ππ-<-,即()()34cos()cos()34f f ππππ--<--,∴()()3122f f ππ--<()()34f ππ-<-,故A 正确.()()34g g ππ>()()34f ππ>,B 错误;(0)()3g g π<,即()(0)3cos 0cos 3f f ππ<,(0)2()3f f π∴<,C 错误,4(0)()g g π<,即()(0)4cos 0cos 4f f ππ<,(0)2()4f f π∴<,D 错误,故选A .【例11】(2018•武汉月考)定义在(0,)+∞上的函数()f x 的导函数为()f x ',且对(0,)x ∀∈+∞都有1()()lnxf x lnx f x x-'<,则( ) A .)(2)()(4243e f e e f e e f ⋅>⋅> B .)(4)(2)(243e f e f e e f e >⋅>⋅ C .)(2)(4)(243e f e e f e f e ⋅>>⋅ D .)()(2)(4432e f e e f e e f ⋅>⋅>【解析】1()()lnx f x lnx f x x -'<,∴2()()(1)xf x f x lnx lnx ln x '-<,∴2()(1)()0xf x lnx f x lnx ln x '-+<,[()]0xf x lnx ∴'<设()()xg x f x lnx=⋅,()g x ∴'在(,)e +∞为减函数,42()()g e g e g ∴<<(e ),424242()()e e f e f e f lne lne ∴<<(e )e lne ,∴43211()()42f e e f e e f <<(e ),432()2()4f e e f e e f ∴<<(e ),故选D .【例12】(2019•九江一模)定义在(0,)+∞上的函数()f x 的导函数为()f x ',且对(0,)x ∀∈+∞都有1()()lnxf x lnx f x x+'>,则( ) A .)8()4(3)2(12f f f >> B .)8()2(12)4(3f f f >>C .)2(12)4(3)8(f f f >> D .)4(3)2(12)8(f f f >> 【解析】由1()()lnx f x lnx f x x +'>得,()(1)()f x xlnx lnx f x '>+,即()(1)()0f x xlnx lnx f x '-+>,令()()f x g x xlnx=, 则2()(1)()()()f x xlnx lnx f x g x xlnx '-+'=,由()(1)()0f x xlnx lnx f x '-+>,(0,1)x ∴∈,(1,)+∞时,()0g x '>,()g x ∴在区间(0.1)和(1,)+∞上单调递增,g ∴(2)g <(4)g <(8),即f (8)3f >(4)12f >(2), 故选:C .类型五:非对称的构造定理7:平移模型:()()()()()()()+()0+()0;+()00+f x x a f x f x x a f x x a f x f x x a '⎡⎤'''+>⇔>->⇔>⎡⎤⎢⎥⎣⎦⎢⎥⎣⎦倍数模型:f '(x)+nf(x)>0↔[f(x)]'>0;:f '(x)-nf(x)>0↔[]'类型四:xlnx 与f(x)定理6:()[]()()ln ()0ln ()0;ln ()00ln f x f x x x f x xf x f x x x f x x '⎡⎤'''⋅+>⇔>⋅->⇔>⎢⎥⎣⎦()()[]()()()ln 1ln ()0ln ()0;ln 1ln ()00ln f x f x x x x f x x x f x f x x x x f x x x '⎡⎤'''⋅++>⇔⋅>⋅-+>⇔>⎢⎥⎣⎦()()()()ln ()ln 1ln ()0()0;ln 1ln ()00ln x xf x f x x x x f x f x f x x x x f x x x ''⎡⎤⎡⎤''⋅+->⇔⋅>⋅-->⇔>⎢⎥⎢⎥⎣⎦⎣⎦.奇偶模型:f(x)+f(-x)=g(x);h(x)=f(x)- 为奇函数;f(x)-f(-x)=g(x);h(x)=f(x)-为偶函数g x 为奇函数【例13】(2018•广州期末)定义在R 上的可导函数)(x f ,当),1(+∞∈x 时,)(')(')(x xf x f x f <+恒成立,)2(f a =,)(21x f b =,)2()12(f c +=,则a ,b ,c 的大小关系为( ) A .b a c <<B .a c b <<C .a c a <<D .a b c <<【解析】()()()()1()01f x x f x f x x '-->⇒-在区间()↑+∞,,1,故()()()(2)(2)(3)213121f f f <<---,即b a c <<,故选A .【例14】(2018•广东模拟)若定义在R 上的函数f x 满足f '(x)- 2f(x)>0,f(0)=1,则不等式2x f x e 的解集为 . 【解析】f '(x)- 2f(x)>0↔[]'>0↔单调递增,故22001x xf x f f xe ee,故答案为0x .【例15】(2018•成都期末)已知定义在R 上的可导函数()f x ,对于任意实数x 都有2()()f x f x x -+=成立,且当(0x ∈,)+∞时,都有()f x x '>成立,若12(1)()f a f a a -≥+-,则实数a 的取值范围为( )A .12,⎛⎤-∞ ⎥⎦⎝B .12,⎫⎡+∞⎪⎢⎣⎭C .](,2-∞D .[)+∞,2【解析】法一:令212F xf xx ,故F xF x ,又因为()f x x '>,则F '(x)=f '(x)-x>0,即F x在R 上单调递增,当f(1-a) -≧f(a) - ,即f(1-a)≧f(a)-a+恒成立时,一定有1-a ≧a ↔a ≦;法二:令212f xx x ,f(1-a)≧f(a)-a+↔,+(1-a)≧+a-a+↔a ≦故选A .【例16】(2018•太原期末)已知定义在R 上的可导函数()f x ,对于任意实数x 都有()()2f x f x x -=-成立,且当]0,(-∞∈x 时,都有()21f x x '<+成立,若(2)(1)3(1)f m f m m m <-++,则实数m 的取值范围为( )A .)31,1(-B .(1,0)-C .(,1)-∞-D .),31(+∞-【思路分析】构造g xf xx ,发现g x 为偶函数,但由于()21f x x '<+,故构造2g x f x x x【解析】法一:令2()()g x f x x x =--,则22()()()()0g x g x f x x x f x x x --=--+-++=,()()g x g x ∴-=,∴函数()g x 为R 上的偶函数.当(x ∈-∞,0]时,都有()21f x x '<+成立,()()210g x f x x '∴'=--<,∴函数()g x 在(x ∈-∞,0]上单调递减,在[0,)+∞上单调递增.即22(2)42(1)(1)(1)f m m m f m m m --<-----,(2)(1)g m g m ∴<- (2)(1)3(1)f m f m m m ⇒<-++,因此(|2|)(|1|)g m g m <-,|2||1|m m ∴<-,解得113m -<<. 故选A .法二:根据(x ∈-∞,0]时,都有()21f x x '<+成立,则构造f '(x)=4x+1,易知22f xx x 时,满足条件()()2,f x f x x -=-()()()22(2)(1)3(1)8221131,f m f m m m m m m m m m <-++⇔+<-+-++解得113m -<<.类型六:积分型F '(x)>g(x)↔f(x)>dx ↔[f(x)-dx]'为单增函数定理8:f '(x)+f(x)>a ↔[f(x)]'>(a )'↔[f(x)-a]单调递增 f '(x)-f(x)>a ↔[]'>(- )'↔[]单调递增nf '(x)+nf(x)>ax ↔[f(x)]'>a ↔f(x)>a dx=↔[f(x)-]单调递增nf '(x)-nf(x)>ax ↔[]'> ↔>dx=↔[-]单调递增在R 上恒成立的是( ) A .()0f x >B .()0f x <C .()3xf x >D .()3x f x <【思路分析】()()()3322222()()33x x f x xf x x x f x x x f x dx x f x ⎡⎤'⎡⎤+'>⇔>⇔>⇔-↑⎢⎥⎣⎦⎣⎦⎰【解析】构造函数231()()3g x x f x x =-,则22()2()()[2()()]g x xf x x f x x x f x xf x x '=+'-=+'-,2()()f x xf x x +'>则()0g x '>,231()()3g x x f x x ∴=-为实数集上的增函数,当0x >时,()(0)0g x g >=,∴当0x >时,2321()[()]033x x f x x x f x -=->,则()3xf x >.故选C .【例18】(2018•咸阳模拟)已知()f x '是函数()f x 的导函数,且对任意的实数x 都有)()22()('x f x e x f x +-=(e 是自然对数的底数),(0)1f =,则( ) A .()(1)x f x e x =+ B .()(1)x f x e x =-C .2()(1)x f x e x =+D .2()(1)x f x e x =-【思路分析】令()()x f x g x e=,可得()()()xf x f xg x e '-'=,()22g x x '=-,可得()2()22(1)g x x dx x c =-=-+⎰,利用(0)1f =,解得c 即可得出.【解析】令()()x f x g x e=,则()()()x f x f x g x e '-'=,对任意的实数x 都有()(22)()x f x e x f x '=-+,()22g x x ∴'=-,可得2()()(1)x f x g x x c e=-+=,(0)1f =,11c ∴+=,解得0c =.2()(1)x f x e x ∴=-.故选D .【例19】(2018•重庆期中)已知定义在R 上的函数()f x 的导函数为()f x ',f (1)2=,且对任意x R ∈,2()()2f x f x +'>恒成立,若2()1()ef lna a>+,则实数a 的取值范围是( )A .(,)e +∞B .),(2+∞eC .(0,)eD .2(0,)e【思路分析】根据2()()f x f x +'联想函数2()x e f x ,()()222222()()222x x x x xf x f x e f x e e f x e dx e '⎡⎤+'>⇔>⇔>=⎣⎦⎰,故构造22()()x xg x e f x e =-对函数求导可得()g x 在(,)-∞+∞单调递增,2()1()()(1)ef lnag lna g a>+⇔>.【解析】设:22()()x x g x e f x e =-,则2()(2()()2)0x g x e f x f x '=+'->恒成立:()g x ∴在(,)-∞+∞单调递增, 又222()1()[()1]ef lna a f lna e a >+⇔->22[()1][(lna e f lna e f ⇔->(1)1]-()g lna g ⇔>(1).1lna ∴>,a e ∴>.故选A .测试组11.(2018•黄冈期末)设函数()f x 是定义在R 上的偶函数,()f x '为其导函数,已知0)1(=f ,当0x >时()()0f x x f x +'<,则不等式()0x f x >的解集为( )A .)1,0()0,1( -B .),1()0,1(+∞-C .),1()1,(+∞--∞D .)1,0()1,( --∞2.(2019•咸阳一模)已知奇函数()f x 的导函数为()f x ',当0x ≠时,()()0xf x f x '+>,若11()a f e e=,()b ef e =--,)1(f c =,则a ,b ,c 的大小关系正确的是( )A .a b c <<B .b c a <<C .a c b <<D .c a b <<3.(2018•张家界期末)已知函数()f x 的导函数为()f x ',对任意x R ∈,都有()()f x f x '>成立,则( ) A .)3()2(23f e f e >⋅B .)3()2(23f e f e ⋅=⋅C .)3()2(23f e f e ⋅<⋅D .)2(3f e ⋅与)3(2f e ⋅的大小不确定4.(2018•城关期末)定义在R 上的函数()f x 满足:()()0f x f x +'>,(0)4f =,则不等式()4x e f x >(其中e 为自然对数的底数)的解集为( ) A .(3,)+∞ B .),3()0,(+∞-∞C .),0()0,(+∞-∞D .(0,)+∞5.(2019•绵阳模拟)设()f x '是函数()f x 的导函数,且()()()f x f x x R '>∈,f (2)2(e e =为自然对数的底数),则不等式2(2)f lnx x <的解集为( )A .),(e eB .C .(0,)eD .(1,)e6.(2018•博望区月考)已知可导函数()f x 的定义域为(,0)-∞,其导函数()f x '满足()2()0xf x f x '->,则不等式2(2017)(2017)(1)0f x x f +-+-<的解集为( ) A .(,2018)-∞- B .(2018,2017)--C .(2018,0)-D .(2017,0)-7.(2018•福州期末)已知定义在R 上的函数()f x ,其导函数为()f x ',若()()4f x f x '-<-,(0)5f =,则不等式()4x f x e >+的解集是( ) A .]1,(-∞B .(,0)-∞C .(0,)+∞D .(1,)+∞8.(2018•南昌期中)已知函数(1)y f x =-的图象关于点(1,0)对称,函数()y f x =对于任意的(0,)x π∈满足()sin ()cos f x x f x x '>(其中()f x '是函数()f x 的导函数),则下列不等式成立的是( )A .()()36f ππ->B 3()()42f ππ<--C ()2()23f ππ> D 53()()64f ππ<9.(2017•德州期末)设偶函数()f x 定义在⎪⎭⎫⎝⎛⋃⎪⎭⎫ ⎝⎛2,00,2-ππ上,其导函数为()f x ',当02x π<<时,()cos ()sin 0f x x f x x '+<,则不等式()2()cos 3f x f x π>的解集为( )A .)3,0()3,2(πππ - B .)2,3()0,3(πππ-C .)3,0()0,3(ππ-D .)2,3()3,2(ππππ --10.(2018•烟台期中)已知定义在(,0)-∞上的函数()f x ,其导函数记为()f x ',若2()()01f x xf x x '->+成立,则下列正确的是( ) A .2()(1)0f e e f ---> B .41()()0f e e f e --->C .2()(1)0e f e f --->D .41()()0e f e f e--->11.(2017•诸暨期末)已知()f x 的导函数()f x ',若满足2()()xf x f x x x '-=+,且f (1)1,则()f x 的解析式可能是( ) A .2x xlnx x -+ B .2x xlnx x --C .2x xlnx x ++D .22x xlnx x ++12.(2018•攀枝花期末)设函数()f x '是奇函数()()f x x R ∈的导函数,当0x >时,()()0f x xlnx f x '+<,则使得2(1)()0x f x -<成立的x 的取值范围是( ) A .),1()1,(+∞--∞ B .)1,0()1,( --∞C .)1,0()0,1( -D .),1()0,1(+∞-13.(2018•新余期末)定义在(0,)+∞上的可导函数()f x 的导数为()f x ',且()()()xlnx f x f x '<,则( ) A .)()(2e f e f > B .)1()(2e f e f ->C .)1(2)1(2e f e f >D .)1()(ef e f ->14.(2017•雁峰期末)设函数()f x 是定义在(0,)+∞上的可导函数,其导函数为()f x ',且有22()()f x xf x x +'>,则不等式2(2016)(2016)4(2)x f x f ---0>的解集为( ) A .(2014,)+∞ B .(0,2014)C .(0,2018)D .(2018,)+∞15.(2018•澧县一模)设函数()f x '是函数()()f x x R ∈的导函数,已知()()f x f x '<,且()(4)f x f x ''=-,0)4(=f ,1)2(=f ,则使得()20x f x e -<成立的x 的取值范围是( )A .(2,)-+∞B .(0,)+∞C .(1,)+∞D .(4,)+∞16.(2018•安徽二模)()y f x =的导函数满足:当2x ≠时,(2)(()2()())0x f x f x xf x ''-+->,则( )A .(4)4)2(3)f f f >+>B .(4)2(3)4)f f f >>C .4)2(3)(4)f f f >>D .2(3)(4)4)f f f >>17.已知函数)(x f 在R 上存在导函数)('x f ,若32)()(x x f x f =--,且0≥x 时03)('2≥-x x f ,则不等式1337)1()2(23+-+>--x x x x f x f 的解集为( )A .)1,(--∞B .)31,1(-C .),31()1,(+∞--∞D .),1()1,(+∞--∞18.(2019•广元模拟)设函数)(x f 在R 上存在导数)('x f ,对任意的R x ∈,有2)()(x x f x f =+-,且),0(+∞∈x 时,x x f >)('.若a a f a f 22)()2(-≥--,则实数a 的取值范围为( ) A .),1[+∞B .]1,(-∞C .]2,(-∞D .),2[+∞19.(2018•南岗期末)设函数)(x f 在R 上存在导函数)('x f ,对任意的实数x 都有x x f x f 2)()(+-=,当0>x 时,12)('+>x x f .若24)()1(++-≥+a a f a f ,则实数a 的取值范围是( )A .),21[+∞-B .),23[+∞-C .),1[+∞-D .),2[+∞-20.(2018•重庆期中)已知定义在R 上的函数()f x 的导函数为()f x ',2)1(=f ,且对任意x R ∈,2()()2f x f x +'>恒成立,若2()1()ef lna a>+,则实数a 的取值范围是( )A .(,)e +∞B .),(2+∞eC .(0,)eD .2(0,)e21.(2018•红河州二模)已知函数()f x 满足条件:当0x >时,1()()12f x xf x '+>,则下列不等式正确的是( )A .)2(43)1(f f >+B .)4(43)2(f f >+C .)3(98)1(f f <+D .)4(34)2(f f <+22.(2018•朝阳三模)已知()f x 是定义在区间),21(+∞上的函数,()f x '是()f x 的导函数,且)(2ln )('x f x x xf >)21(>x ,()12ef =,则不等式()2x e f x <的解集是( )A .(,1)-∞B .(1,)+∞C .1(,1)2D .(0,1)23.(2018•新罗期中)设函数()f x '是奇函数()()f x x R ∈的导函数,当0x >时,()()xlnx f x f x '<-,则使得2(4)()0x f x ->成立的x 的取值范围是( )A .)2,0()0,2( -B .),2()2,(+∞--∞C .),2()0,2(+∞-D .)2,0()2,( --∞24.(2018•德州期末)已知在R 上的可导函数()f x 的导函数为()f x ',满足()()f x f x '<,且(5)f x +为偶函数,(10)1f =,则不等式()x f x e <的解集为( ) A .(0,)+∞ B .(1,)+∞C .(5,)+∞D .(10,)+∞25.(2018•资阳期末)已知()f x 是定义在R 上的偶函数,且5(2)2f =,当0x >时,()()2xf x f x '+>(其中()f x '为()f x 的导函数).则不等式||()2||1x f x x ⋅>+的解集为( ) A .)2,0()0,2( - B .)2,0()2,( --∞C .),2()0,2(+∞-D .),2()2,(+∞--∞26.(2018•河西期末)设函数)(x f 在R 上存在导数)('x f ,R x ∈∀,有2)()(x x f x f =+-,在),0(+∞上,x x f <)(',若0618)()6(≥+---m m f m f ,则实数m 的取值范围是 .【答案】1.D2.C3.C4.D5.C6.B7.B8.C9.C10.A11.C12.D13.A14.D15.B 16.C17.C18.B19.A20.A21.C22.D23.D24.A25.D26.[3,+∞)测试组2【2019届高三第二次全国大联考(新课标Ⅲ卷)文科数学试题】设y=f(x)是定义在R 上的可导偶函数,若当x>0时,,则函数的零点个数为()A.0 B.1 C.2D.0或2【答案】A【解析】设,因为函数为偶函数,所以也是上的偶函数,所以.由已知,时,,可得当时,,故函数在上单调递减,由偶函数的性质可得函数在上单调递增.所以,所以方程,即无解,所以函数没有零点.【新疆乌鲁木齐2019届高三第二次质量检测文科数学试题】f(x)的定义域是(0,+ ),其导函数为,若,且(其中e是自然对数的底数),则A.B.C.当x=e时,f(x)取得极大值D.当时,【答案】C【解析】设,则则又得即,所以即,由得,得,此时函数为增函数由得,得,此时函数为减函数则,即,则,故错误,即,则,故错误当时,取得极小值即当,,即,即,故错误当时,取得极小值此时,则取得极大值【黑龙江省龙东南七校2018-2019学年高二上学期期末联考数学(文)试题】定义在(0,+∞)上的可导函数f(x)满足,且,则的解集为( )A.(3,+∞)B.(0,3)∪(3,+∞) C.(0,3)D.【答案】C【解析】令g(x),∵,∴<0.∴,∴g(x)在(0,+∞)上单调递减,∵f(3)=0,即g(3)=0.∴g(x)0的解是0<x<3.【辽宁省庄河市高级中学2018-2019学年高二下学期开学考试数学(文)试题】已知定义域为R的奇函数y=f(x)的导函数为,当时,,若,,,则a,b,c,的大小关系正确的是()A.B.C.D.【答案】B【解析】设,则,因为当时,,所以当时,,即;当时,,即;所以在上单调递增,在上单调递减;又函数为奇函数,所以,因此,故函数为偶函数,所以,,,因为在上单调递减,所以,故.【云南省玉溪市第一中学2019届高三下学期第五次调研考试数学(理)试题】设为函数f(x)的导函数,且满足,若恒成立,则实数b的取值范围是()A.B.C.D.【答案】A【解析】,由,可得的对称轴为,所以,所以,所以,由可得,变形可得,即,设,,易得函数在区间上单调递增,在区间上单调递减,所以,故实数b的取值范围为 .【安徽省黄山市2019届高三毕业班第二次质量检测数学(文)试题】已知函数f(x)是定义在R上的可导函数,对于任意的实数x,都有,当时f'(x)+f(x)>0,若,则实数a的取值范围是()A.B.C.D.【答案】B【解析】令,则当时,,又,所以为偶函数,从而等价于,因此【河南省洛阳市2018-2019学年第一学期期末考试高二数学试卷(文)】定义在R上的可导函数f(x)满足f'(x)+f(x)<0,则下列各式一定成立的是()A.B.C.D.【答案】A【解析】解:可导函数满足等价于故令所以在R上单调递减,所以即即【甘肃省武威第一中学2018-2019学年高二下学期第一次阶段测试数学(理)试题】已知函数的图象如图所示(其中是函数f(x)的导函数),下面四个图象中y=f(x)的图象大致是( )A. B.C.D.【答案】C【解析】由函数y=xf′(x)的图象可知:当x<﹣1时,xf′(x)<0,f′(x)>0,此时f(x)增当﹣1<x<0时,xf′(x)>0,f′(x)<0,此时f(x)减当0<x<1时,xf′(x)<0,f′(x)<0,此时f(x)减当x>1时,xf′(x)>0,f′(x)>0,此时f(x)增.【海南省海口市2019届高三高考调研测试数学(文科)试题】已知函数f(x)的导函数满足对恒成立,则下列判断一定正确的是()A.B.C.D.【答案】B【解析】由题意设,则,所以函数在上单调递增,所以,即.【内蒙古通辽实验中学2018-2019学年高二下学期第一次月考数学(理)试题】已知f(x)是定义在R上的可导函数,当x∈(1,+∞)时,(x−1)(x)−f(x)>0恒成立,若a=f(2),b=f(3),c=f(),则a,b,c的大小关系是( )A.c<a<b B.b<a<c C.a<b<c D.a<c<b【答案】C【解析】解:设g(x)=,当x>1时,g′(x)=,即此时函数单调递增.则a=f(2)=g(2),b=f(3)=g(3),c=()f()=g(),∵,∴g(2)<g(3)<g(),即,【甘肃省兰州第一中学2018-2019学年高二3月月考数学(理)试题】设f0(x)=sin x,f1(x)=f0′(x),f2(x)=f1′(x),…,f n+1(x)=f n′(x),n∈N,则f2019(x)=()A.sin x B.-sin x C.cos x D.-cos x【答案】D【解析】由题意可得:,,,,,据此可得的解析式周期为,注意到,故.【宁夏六盘山高级中学2019届高三下学期第二次模拟考试数学(理)试题】定义域为R的奇函数f(x),当时,恒成立,若,,则()A.B.C.D.【答案】D【解析】构造函数因为f(x)是奇函数,所以为偶函数当时,恒成立,即,所以在时为单调递减函数在时为单调递增函数根据偶函数的对称性可知,所以【黑龙江省大庆实验中学2018-2019学年高二下学期第二次月考数学(文)试题】已知f(x)的定义域为,为f(x)的导函数,且满足,则不等式的解集是()A.B.C.D.【答案】B【解析】解:构造函数则所以在上单调递减又因为所以所以解得或(舍)所以不等式的解集是【四川省教考联盟2019届高三第三次诊断性考试数学(理)试题】已知定义在R上的函数f(x)关于y轴对称,其导函数为,当时,不等式.若对,不等式恒成立,则正整数a的最大值为()A.B.C.D.【答案】B【解析】因为,所以,令,则,又因为f(x)是在R上的偶函数,所以F(x)是在R上的奇函数,所以是在上的单调递增函数,又因为,可化为,即,又因为是在上的单调递增函数,所以恒成立,令,则,因为,所以在单调递减,在上单调递增,所以,则,所以.所以正整数a的最大值为2.【2019届湘赣十四校高三联考第二次考试(文数)试题】已知函数为R上的偶函数,且当时函数f(x)满足,,则的解集是()A.B.C.D.【答案】A【解析】设,则,∴,化简可得.设,∴,∴时,,因此为减函数,∴时,,因此为增函数,∴,∴,∴在上为增函数.∵函数是偶函数,∴函数,∴函数关于对称,又∵,即,又在上为增函数,∴,由函数关于对称可得,,【河南省六市2019届高三第一次联考数学(理)试题】函数是定义在上的可导函数,为其导函数,若,且,则不等式的解集为A.B.C.D.【答案】C【解析】解:函数是定义在上的可导函数,为其导函数,令,则,可知当时,是单调减函数,并且,即,则,时,函数是单调增函数,,则,则不等式的解集就是的解集,即又x>1,所以,故不等式的解集为:.【北京师范大学附属实验中学2018-2019学年高二第二学期3月考数学试题】设函数f(x)在R 上可导,其导函数为,且函数的图象如图所示,则下列结论中一定成立的是()A.函数 f(x) 有极大值和极小值B.函数f(x)有极大值和极小值C.函数f(x) 有极大值和极小值D.函数f(x)有极大值和极小值【答案】D【解析】解:由函数的图象可知,f′(﹣2)=0,f′(2)=0,并且当x<﹣2时,f′(x)>0,当﹣2<x<1,f′(x)<0,函数f(x)有极大值f(﹣2).又当1<x<2时,f′(x)<0,当x>2时,f′(x)>0,故函数f(x)有极小值f(2).【新疆乌鲁木齐市第七十中学2018-2019学年高二下学期第一次月考数学(理)试题】函数的图象关于点(1,0)对称,当时,成立,若,则的大小关系是()A.B.C.D.【答案】C【解析】函数的图象关于点(1,0)对称,所以函数是奇函数。
利用导数运算法则构造函数含详解
利用导数运算法则构造函数✬导数的常见构造类型1. 对于()()x g x f ''>,可构造()()()x g x f x h -=注:遇到()()0'≠>a a x f 导函数大于某种非零常数(若0=a 则无需构造),则可构造()()ax x f x h -=2. 对于()()0''>+x g x f ,可构造()()()x g x f x h +=3. 对于()()0'>+x f x f ,可构造()()x f e x h x =4. 对于()()x f x f >'(或()()0'>-x f x f ),可构造()()xex f x h = 5. 对于()()0'>+x f x xf ,可构造()()x xf x h = 6. 对于()()0'>-x f x xf ,可构造()()x x f x h =7. 对于()()x nf x f +'形式,可构造()()x f e x F nx = 8. 对于()()x nf x f -'形式,可构造()()nx ex f x F =✬典型例题:类型1:和差导数公式逆用: 例1. 设函数()f x ,()g x 在[],a b 上均可导,且()()f x g x '>',则当a x b <<时,有.A ()()f x g x > .B ()()f x g x <.C ()()()()f x g a g x f a +>+ .D ()()()()f x g b g x f b +>+解:构造)()()(x g x f x F -=,0)()()(>'-'='x g x f x F , )(x F 为增函数,)()()(b F x F a F << )()()()()()(b g b f x g x f a g a f -<-<-, ∴()()()()f x g b g x f b +>+,选D 类型2,积的导数公式逆用:例 2.设函数()f x 是定义在(),0-∞上的可导函数,其导函数为()f x ',且有x x f x x f <'+)()(,则不等式0)2(2)2014()2014(>-+++f x f x 的解集为( )A .(),2012-∞-B .()20120-,C .(),2016-∞-D .()20160-,解:由()()f x xf x x '+<,0x <得: [()]0xf x x '<<,令()()F x xf x =,则当0x <时,()0F x '<, 即()F x 在(,0)-∞是减函数,(2014)+=F x (2014)(2014)x f x ++ ,(2)(2)(2)F f -=--,由题意:(2014)F x +>(2)F -又()F x 在(,0)-∞是减函数,∴20142x +<-,即2016x <-,故选C类型3,商的导数公式逆用:当出现导数差的形式是,可以考虑商的导数 例3.已知函数)(x f 是定义在R 上的奇函数,0)1(=f , 当0x >时,有2()()0xf x f x x'->成立,则不等式0)(>x f 的解集是 A .(1,0)(1,)-+∞ B .(1,0)- C .(1,)+∞ D .(,1)(1,)-∞-+∞解:由当0x >时,有2()()0xf x f x x '->成立, 知函数x x f x F )()(=的导函数0)()()(2>-'='x x f x f x x F 在),0(+∞上恒成立, 所以函数xx f x F )()(=在),0(+∞上是增函数,又因为函数)(x f 是定义在R 上的奇函数,所以函数xx f x F )()(=是定义域上的偶函数,且由0)1(=f 得0)1()1(==-F F ,由此可得函数xx f x F )()(=的大致图象为:由图可知不等式0)(>x f 的解集是),1()0,1(+∞⋃-. 故选A.例4.若定义在R 上的函数f(x)的导函数为()f x ',且满足()()f x f x '>,则(2011)f 与2(2009)f e 的大小关系为( ).A 、(2011)f <2(2009)f eB 、(2011)f =2(2009)f eC 、(2011)f >2(2009)f eD 、不能确定 【答案】C解:构造函数x ex f x g )()(=,则x e x f x f x g )()()(''-=,因为()()f x f x '>,所以0)('>x g ; 即函数)(x g 在R 上为增函数, 则20092011)2009()2011(ef e f >,即2)2009()2011(e f f >. 类型4,构造组合函数形式例 5. 定义在上R 上的可导函数)(x f ,满足2)()(x x f x f =+-,当0<x 时,x x f <')(,则不等式x x f x f +-≥+)1(21)(的解集为_________解:221)()(x x f x g -=,0)()(=-+x g x g ,)(x g 为奇函数,当0<x 时,0)()(<-'='x x f x g ,)(x g 为减函数,,x x f x f +-≥+)1(21)(, 可得22)1(21)1(21)(x x f x x f ---≥-,即)1()(x g x g -≥∴x x -≤1,即21≤x ✬好题训练 一、单选题1.已知定义在R 上的函数()f x 满足()()102f x f x '+>,且有()112f =,则()122x f x e->的解集为( )A .(),2-∞B .()1,+∞C .(),1-∞D .()2,+∞2.若定义在R 上的函数()f x 满足()()1f x f x '+>,(0)4f =,则不等式()3x x e f x e ⋅>+ (其中e 为自然对数的底数)的解集为( )A .(,0)(0,)-∞+∞B .(,0)(3,)-∞⋃+∞C .(0,)+∞D .(3,)+∞3.已知函数()f x 是(0,)+∞上的可导函数,且()()0f x f x x'+>,则( ) A .(3)(2)f f > B .(3)(2)f f < C .3(3)2(2)f f >D .3(3)2(2)f f <4.已知定义在R 上的可导函数()f x ,对x R ∀∈,都有()()2xf x e f x -=,当0x >时()()0f x f x '+<,若()()211211a a e f a e f a -+-≤+,则实数a 的取值范围是( )A .[]0,2B .(][),12,-∞-⋃+∞C .(][),02,-∞⋃+∞D .[]1,2-5.已知函数()f x 是定义在R 上的偶函数,其导函数为()f x ',若()()f x f x '<,且()2f x +是偶函数,()20174f =,则不等式()40xef x e ->的解集为( )A .(),1-∞B .(),e -∞C .()0,+∞D .1,e ⎛⎫+∞ ⎪⎝⎭6.已知函数()f x 为R 上的可导函数,且x R ∀∈,均有()()f x f x '<,则有( ) A .2021e (2021)(0)f f -<,2021(2021)e (0)f f < B .2021e (2021)(0)f f -<,2021(2021)e (0)f f >C .2021e (2021)(0)f f ->,2021(2021)e (0)f f >D .2021e (2021)(0)f f ->,2021(2021)e (0)f f <7.已知可导函数()f x 的导函数为()'f x ,若对任意的x R ∈,都有()()1f x f x '->.且()2022f x -为奇函数,则不等式()2021e 1x f x ->的解集为( ) A .(),0-∞B .()0,+∞C .(),e -∞D .()e,+∞8.函数()f x 的定义域是R ,()02f =,对任意R x ∈,()()1f x f x +'>,则不等式()e e 1x xf x >+⋅的解集为( )A .{} |0x x >B .{}|0x x <C .{|1x x <-或}1x >D .{|1x x <-或}01x <<9.已知函数()f x 满足()11f =,且()f x 的导函数()13f x '<,则()233x f x <+的解集为( ) A .{}1x x <-B .{1x x <-或}1x >C .{}1x x >D .{}0x x <10.定义在R 上的奇函数()f x 的图象光滑连续不断,其导函数为()f x ',对任意正实数x 恒有()()2xf x f x >-',若()()2g x x f x =,则不等式()()23log 110g x g ⎡⎤-+-<⎣⎦的解集是( )A .()0,2B .()2,2-C .()3,2-D .()()2,11,2--⋃11.已知函数()f x 满足()()0f x f x +-=,且当(,0)x ∈-∞时,()()0f x xf x '+<成立,若()()0.60.622a f =⋅,(ln 2)(ln 2)b f =⋅,2211loglog 88c f ⎛⎫⎛⎫=⋅ ⎪ ⎪⎝⎭⎝⎭,则a ,b ,c 的大小关系是( ) A .a b c >>B .c b a >>C .a c b >>D .c a b >>12.已知偶函数()f x 的定义域为,22ππ⎛⎫- ⎪⎝⎭,其导函数为()f x ',当02x π<<时,有()cos ()sin 0f x x f x x '+<成立,则关于x 的不等式()2cos 3f x f x π⎛⎫< ⎪⎝⎭的解集为( )A .,,2332ππππ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭B .,33ππ⎛⎫- ⎪⎝⎭C .,23ππ⎛⎫-- ⎪⎝⎭D .,32ππ⎛⎫ ⎪⎝⎭13.已知奇函数()f x 是定义在R 上的可导函数,其导函数为()'f x ,当0x ≥时,有22()()f x xf x x +'>,则不等式()()()220182018420x f x f +++-<的解集为( ) A .(),2016-∞-B .()2016,2012--C .(),2018-∞-D .()2016,0-14.已知()f x 是定义在R 上的奇函数,(2)0f =,当0x ≠时,2()()f x f x x '>,则不等式()0f x <的解集为( ) A .(,2)(0,2)-∞-⋃ B .(2,0)(2,)-+∞ C .(,2)(2,)-∞-+∞D .(2,0)(0,2)-15.已知()f x 是定(,0)(0,)-∞+∞的奇函数,()'f x 是()f x 的导函数,(1)0f <,且满足:()()ln 0f x f x x x+'⋅<,则不等式(1)()0x f x -⋅<的解集为( ) A .(1,)+∞B .(,1)(0,1)-∞-C .(,1)-∞D .(,0)(1,)-∞⋃+∞ 16.已知定义在R 上的可导函数()f x ,对任意的实数x ,都有()()4f x f x x --=,且当()0,x ∈+∞时,()2f x '>恒成立,若不等式()()()1221f a f a a --≥-恒成立,则实数a 的取值范围是( )A .1,02⎛⎫- ⎪⎝⎭B .10,2⎡⎤⎢⎥⎣⎦C .1,2⎛⎫-∞ ⎪⎝⎭ D .1,2⎡⎫+∞⎪⎢⎣⎭17.已知定义域为R 的奇函数()y f x =的导函数为()y f x '=,当0x ≠时,()()0f x f x x '+<,若2211(),2(2),ln (ln )3333a fb fc f ==--=,则,,a b c 的大小关系正确的是( ) A .a b c <<B .b c a <<C .a c b <<D .c a b <<18.已知函数()f x 的定义域为R ,且()21f =,对任意x ∈R ,()()0f x xf x '+<,则不等式()()112x f x ++>的解集是( ) A .(),1-∞ B .(),2-∞ C .()1,+∞D .()2,+∞19.已知定义在R 上的函数()f x 满足1()()02f x f x '+>且有1(2)f e=,则()f x >)A .1,2⎛⎫-∞ ⎪⎝⎭B .1,2⎛⎫+∞ ⎪⎝⎭C .(,2)-∞D .(2,)+∞20.已知()f x 是定义在R 上的函数,()'f x 是()f x 的导函数,满足:()(1)()0x x e f x e f x ++'>,且1(1)2f =,则不等式1()2(1)x e f x e +>+的解集为( ) A .()1,1-B .()(),11,-∞-+∞C .(),1-∞-D .()1,+∞21.设函数()f x 在R 上的导函数为()f x ',若()()1x f f x '+>,()()6f x f x ''=-,()31f =,()65f =,则不等式()ln 210f x x ++<的解集为( )A .()0,1B .()0,3C .()1,3D .()3,622.设函数()f x 在R 上的导函数为()'f x ,若()()1f x f x '>+,()(6)2f x f x +-=,(6)5f =,则不等式()210x f x e ++<的解集为( )A .(,0)-∞B .(0,)+∞C .(0,3)D .(3,6)23.已知函数()y f x =对于任意的,22x ππ⎛⎫∈- ⎪⎝⎭满足()()cos sin 0f x x f x x '+>(其中()f x '是函数()f x 的导函数),则下列不等式成立的是( )A .()04f π⎛⎫> ⎪⎝⎭B 34f ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭C 34f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭D .()023f f π⎛⎫> ⎪⎝⎭24.已知定义在,22ππ⎛⎫- ⎪⎝⎭上的奇函数()f x 的导函数为()f x ',且()tan ()0f x x f x '+⋅>,则( )A 063ππ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭B 063ππ⎛⎫⎛⎫-+> ⎪ ⎪⎝⎭⎝⎭C 064ππ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭D 046ππ⎛⎫⎛⎫-+> ⎪ ⎪⎝⎭⎝⎭25.已知在定义在R 上的函数()f x 满足()()62sin 0f x f x x x ---+=,且0x ≥时,()3cos f x x '≥-恒成立,则不等式()π3ππ6224f x f x x x ⎛⎫⎛⎫≥--++ ⎪ ⎪⎝⎭⎝⎭的解集为( ) A .π0,4⎛⎤⎥⎝⎦B .,4π⎡⎫+∞⎪⎢⎣⎭C .,6π⎛⎤-∞ ⎥⎝⎦D .,6π⎡⎫+∞⎪⎢⎣⎭26.已知函数()y f x =对任意的(0,)x π∈满足()cos ()sin f x x f x x '>(其中()f x '为函数()f x 的导函数),则下列不等式成立的是( )A .63f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭ B .63f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭C 63f ππ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭D 63f ππ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭27.已知定义在R 上的函数()f x 的导函数为'()f x ,'()()ln 20f x f x +<,则下列不等关系成立的是( ) A .2(1)(0)f f > B .2(2)(1)f f > C .2(0)(1)f f >-D .()23log 32(1)f f <28.已知定义在R 上的函数()f x 的导函数为()f x ',且满足()()0f x f x '->,2022(2022)e 0f -=,则不等式1ln 4f x ⎛⎫< ⎪⎝⎭)A .()6063e,+∞ B .()20220,eC .()8088e,+∞ D .()80880,e29.已知函数()y f x =是定义在R 上的奇函数,且当(),0x ∈-∞时,不等式()()0f x xf x '+>恒成立,若()0.30.322a f =,()()log 2log 2b f ππ=,2211log log 44c f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则,,a b c 的大小关系是( )A .a b c >>B .c b a >>C .b a c >>D .a c b >>30.已知奇函数()f x 是定义在R 上的可导函数,其导函数为()'f x ,当0x >时,有22()()f x xf x x '+>,则不等式2(2021)(2021)4(2)0x f x f +++-<的解集为( ) A .(,2019)-∞- B .(2023,2019)-- C .(2023)-∞-, D .(2019,0)-二、多选题31.设函数()f x '是奇函数()()f x x R ∈的导函数,()10f -=,当0x >时,()()0xf x f x '-<,则使得()0f x >成立的x 的取值范围是( )A .(),1-∞-B .()0,1C .()1,0-D .()1,+∞32.已知函数()f x 的定义域为(0,)+∞,其导函数为()f x ',对于任意,()0x ∈+∞,都有()ln ()0x xf x f x '+>,则使不等式1()ln 1f x x x+>成立的x 的值可以为( ) A .12B .1C .2D .333.定义在(0,)+∞上的函数()f x 的导函数为()f x ',且()()2(32)()x x f x x f x '+<+恒成立,则必有( ) A .(3)20(1)f f >B .(2)6(1)f f <C .13(1)162f f ⎛⎫> ⎪⎝⎭D .(3)3(2)f f <34.已知函数()f x 的导函数为()f x ',若()()()2f x xf x f x x <<-′对()0,x ∈+∞恒成立,则下列不等式中,一定成立的是( ) A .()()1f f ππ< B .()()1f f ππ> C .()()21142f f <+ D .()()21142f f +< 35.已知函数()f x 的定义域、值域都是()0,∞+,且满足()()12f x f x '<,则下列结论一定正确的是( ) A .若()1e f =,则()322e f > B .()()23f f <C .()()3224f f >D .181176e 43f f ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭第II 卷(非选择题)请点击修改第II 卷的文字说明三、双空题36.定义在R 上的函数()f x 的导函数为()f x ',且()()1f x f x '>-,()06f =,则函数()()5x xg x e f x e =--在R 上单调递_______(填“增”或“减”);不等式()5x xe f x e >+(其中e 为自然对数的底数)的解集是_______.37.设()f x '是奇函数()f x 的导函数,()23f -=-,且对任意x ∈R 都有()2f x '<,则()2f =_________,使得()e 2e 1x xf <-成立的x 的取值范围是_________.四、填空题38.已知函数()f x 是定义在R 上的函数,且满足()()0f x f x +'>其中()f x '是()f x 的导函数,设()0a f =,()2ln2b f =,()e 1c f =,,,a b c 的大小关系是________.39.已知定义在R 上的函数()f x 的导函数为()'f x ,且满足()()xf x f x '<,若(ln 4)(3)(1),,ln 43f f a f b c ===,则,,a b c 的大小关系为_________. 40.已知定义在()0,∞+的函数()f x 满足()()0xf x f x '-<,则不等式()210x f f x x ⎛⎫-< ⎪⎝⎭的解集为___________. 41.已知定义在R 上的偶函数()f x 的导函数为()'f x ,当0x >时,有()()0f x xf x '+>,且(1)0f =,则使得()0f x <成立的x 的取值范围是___________. 42.若定义在R 上的函数()f x 满足()()30f x f x '->,13f e ⎛⎫= ⎪⎝⎭,则不等式()3x f x e >的解集为________________.43.若()f x 是定义在R 上函数,且(2)y f x =-的图形关于直线2x =对称,当0x <时,()()0f x xf x '+<,且(3)0f -=,则不等式()0f x >的解集为___________.答案第1页,共24页参考答案1.B 【分析】构造函数()()2xF x f x e =⋅,利用导数,结合已知条件判断()F x 的单调性,由此化简不等式()122xf x e ->并求得其解集. 【详解】设()()2x F x f x e =⋅,则()()()()()222110 22x x xF x f x e f x e e f x f x ⎡⎤'''=⋅+⋅=+>⎢⎥⎣⎦,所以函数()F x 在R 上单调递增,又()112f =,所以()()11221112F f e e =⋅=.又()122xf x e->等价于()12212x f x e e ⋅>,即()()1F x F >,所以1x >,即所求不等式的解集为()1,+∞. 故选:B 2.C 【分析】构造函数()()3x x g x e f x e =⋅--,求导结合题干条件可证明()g x 在R 上单调递增,又(0)0g =,故()0(0)0g x g x >=⇒>,即得解 【详解】令()()3x x g x e f x e =⋅--,则()()()[()()1]0x x x x g x e f x e f x e e f x f x '''=⋅+⋅-=+-> 所以()g x 在R 上单调递增, 又因为00(0)(0)30g e f e =⋅--=, 所以()0(0)0g x g x >=⇒>, 即不等式的解集是(0,)+∞ 故选:C 3.C 【分析】由已知构造函数()()g x xf x =,求导,由导函数的符号得出所令函数的单调性,从而可得选项. 【详解】 解:因为()()0f x f x x'+>,所以当0x >时,有()()0xf x f x '+>, 令()()g x xf x =,则当0x >时,()'()()>0g x xf x f x '=+,所以()g x 在()0+∞,上单调递增,所以()()3>2g g ,即3(3)2(2)f f >, 故选:C. 4.C 【分析】令()()x g x e f x =,由已知得()()xg x e f x =在区间()0,∞+单调递减, ()g x 为偶函数,且在区间(),0∞-单调递增,由此可将不等式等价转化为211a a -≥+,求解即可. 【详解】解:令()()x g x e f x =,则当0x >时,()()()0x g x e f x f x ''=+<⎡⎤⎣⎦,所以()()x g x e f x =在区间()0,∞+单调递减,又()()()()()()2x x x xg x e f x e e f x e f x g x ---=-===,所以()g x 为偶函数,且在区间(),0∞-单调递增,又()()211211a a ef a e f a -+-≤+,即()()211g a g a -≤+,所以211a a -≥+,即()()22211a a -≥+,得0a ≤或2a ≥, 故选:C. 5.A 【分析】由函数()f x 是定义在R 上的偶函数,()2f x +是偶函数可得()f x 是周期为4的周期函数,令()()x f x g x e=,然后利用()g x 的单调性可解出不等式. 【详解】因为函数()f x 是定义在R 上的偶函数,()2f x +是偶函数, 所以()()()4f x f x f x +=-=,即()f x 是周期为4的周期函数, 所以()()201714f f ==, 令()()xf xg x e=,则()()()x f x f x g x e '-'=,因为()()f x f x '<,所以()0g x '<, 所以()g x 在R 上单调递减,由()40xef x e ->可得()4x f x ee>,即()()41g x g e>=,所以1x <,故选:A. 6.B 【分析】 令()()e xf xg x =,x ∈R 并求导函数,根据已知可得函数()g x 的单调性,进而得出结论. 【详解】令()()e x f x g x =,x ∈R ,则()()()e xf x f xg x ''-=,x R ∀∈,均有()()f x f x '<,()g x ∴在R 上单调递增,(2021)(0)(2021)g g g ∴-<<,可得:2021e (2021)(0)f f -<,2021(2021)e (0)f f >.故选:B. 7.A 【分析】根据题意构造()()1e xf x F x -=,结合已知条件,讨论其单调性,再将不等式()2021e 1x f x ->转化为()F x 的不等式,即可利用单调性求解.【详解】根据题意,构造()()1exf x F x -=,则()()1xf x F x e =+,且''()()1()0exf x f x F x -+=<,故()F x 在R 上单调递减; 又()2022f x -为R 上的奇函数,故可得()020220f -=,即()02022f =,则()02021F =.则不等式()2021e 1x f x ->等价于()()20210F x F >=, 又因为()F x 是R 上的单调减函数,故解得0x <. 故选:A. 【点睛】关键点点睛:本题考查构造函数法,涉及利用导数研究函数的单调性以及利用函数单调性求解不等式;本题中,根据()()1f x f x '->以及题意,构造()()1e xf x F x -=是解决问题的关键,属中等偏上题. 8.A 【分析】构造函数()()e e x xg x f x =⋅-,结合已知条件可得()0g x '>恒成立,可得()g x 为R 上的减函数,再由()01g =,从而将不等式转换为()()0g x g >,根据单调性即可求解. 【详解】构造函数()()e e x xg x f x =⋅-,因为()()()e e e x x xx f x f x g '=⋅+-'⋅()()e e e e 0x x x x f x f x +--=⎡⎤⎣⎦='>,所以()()e e x xg x f x =⋅-为R 上的增函数.又因为()()000e 0e 1g f -⋅==,所以原不等式转化为()e e 1x xf x ->,即()()0g x g >,解得0x >.所以原不等式的解集为{}|0x x >, 故选:A. 9.C 【分析】构造函数()()233x g x f x =--,求函数的导数,利用函数的单调性即可得到结论. 【详解】解:设()()233x g x f x =--,则函数()g x 的导函数()()13g x f x ''=-,f x 的导函数()13f x '<,()()103g x f x ''∴=-<,则函数()g x 单调递减,()11f =,()()1211033g f ∴=--=,则不等式()233x f x <+,等价为()0g x <, 即()()1g x g <, 则1x >,即()233x f x <+的解集为{}1x x >, 故选:C. 10.D 【分析】分析函数()g x 的奇偶性,利用导数分析函数()g x 在R 上的单调性,将所求不等式变形为()()23log 11g x g ⎡⎤-<⎣⎦,可得出()23log 11x -<,解此不等式即可. 【详解】因为函数()f x 为R 上的奇函数,则()()2g x x f x =的定义域为R ,且()()()()22g x x f x x f x g x -=-=-=-,所以,函数()g x 为奇函数,且()00g =,对任意正实数x 恒有()()()22xf x f x f x >-=-',即()()20xf x f x '+>,则()()()()()2220g x xf x x f x x xf x f x '''=+=+>⎡⎤⎣⎦,所以,函数()g x 在()0,∞+上为增函数,故函数()g x 在(),0∞-上也为增函数, 因为函数()g x 在R 上连续,故函数()g x 在R 上为增函数,由()()23log 110g x g ⎡⎤-+-<⎣⎦得()()()23log 111g x g g ⎡⎤-<--=⎣⎦,所以,()23log 11x -<,故有2013x <-<,解得21x -<<-或12x <<.故选:D. 11.D 【分析】构造函数()()g x x f x =⋅,利用奇函数的定义得函数()g x 是偶函数,再利用导数研究函数的单调性,结合0.621ln 212log 8<-<<,再利用单调性比较大小得结论. 【详解】解:因为函数()f x 满足()()0f x f x +-=,即()()f x f x =--,且在R 上是连续函数,所以函数()f x 是奇函数,不妨令()()g x x f x =⋅,则()()()()g x x f x x f x g x -=-⋅-=⋅=,所以()g x 是偶函数, 则''()()()g x f x x f x =+⋅,因为当(,0)x ∈-∞时,()'()0f x xf x +<成立, 所以()g x 在(,0)x ∈-∞上单调递减,又因为()g x 在R 上是连续函数,且是偶函数,所以()g x 在()0+∞,上单调递增, 则()0.62a g =,(ln 2)b g =,2211loglog 88c g g ⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭, 因为0.621>,0ln 21<<,()21log 33>08-=--=,所以0.621ln 212log 8<-<<,所以c a b >>,故选:D. 12.A 【分析】 先构造函数()()cos f x g x x=,进而根据题意判断出函数的奇偶性和单调性,进而解出不等式. 【详解】因为偶函数()f x 的定义域为,22ππ⎛⎫- ⎪⎝⎭,设()()cos f x g x x=,则()()()()cos cos f x f x g x x x--==-,即()g x 也是偶函数.当02x π<<时,根据题意()()()2cos sin 0cos f x x f x xg x x'+'=<,则()g x 在0,2π⎛⎫⎪⎝⎭上是减函数,而函数为偶函数,则()g x 在,02π⎛⎫- ⎪⎝⎭上是增函数.于是,()()3()2cos 3cos 3cos 3f f x f x f xg x g x ππππ⎛⎫ ⎪⎛⎫⎛⎫⎝⎭<⇔<⇔< ⎪ ⎪⎝⎭⎝⎭,所以3,,233222x x x πππππππ⎧>⎪⎪⎛⎫⎛⎫⇒∈--⋃⎨⎪ ⎪⎝⎭⎝⎭⎪-<<⎪⎩. 故选:A. 13.A 【分析】利用22(()0)f xf x x x '>+≥,构造出()()2g x x f x =,会得到()g x 在R 上单调递增,再将待解不等式的形式变成和()g x 相关的形式即可. 【详解】设()()2g x x f x =,因为()f x 为R 上奇函数,所以()()()()22g x x f x x f x -=--=-,即()g x 为R 上奇函数对()g x 求导,得[]()2()()g x f x x x xf '=+',而当0x >时,有()()220f x xf x x '>+≥,故0x >时,()0g x '>,即()g x 单调递增,所以()g x 在R 上单调递增 不等式()()()22018+2018420x f x f ++-<()()()22018+201842x f x f +<--,又()f x 是奇函数,则()()()22018+201842x f x f +<,即()()20182g x g +<所以20182x +<,解得2016x <-,即(,2016)x ∈-∞-. 故选:A. 14.A 【分析】根据题意,构造出函数()()2f x g x x=,则()0()0f x g x <⇔<,进而结合题意求得答案.【详解】设()()2f x g x x=,则()0()0f x g x <⇔<,()()()()()24322f x x xf x xf x f x g x x x ''⋅--'==,若x >0,由2()()()2()0f x f x xf x f x x ''>⇒->,则()0g x '>,即()()2f x g x x =在()0,∞+上单调递增.因为()f x 是R 上的奇函数,(2)0f =,容易判断,()()2f x g x x =在R 上是奇函数,且(2)0=g ,则函数()g x 在(),0-∞上单调递增,且(2)0g -=,所以()0<g x 的解集为:(,2)(0,2)-∞-⋃.于是()0f x <的解集为:(,2)(0,2)-∞-⋃. 故选:A. 15.D 【分析】 令()()g x lnxf x =对函数求导可得到函数()g x 单调递减,再结合()10g =,和()f x 的奇偶性,通过分析得到当0x >,()0f x <,0x <,()0f x >,故不等式(1)()0x f x -⋅<等价于()10x f x >⎧⎨<⎩或()10x f x <⎧⎨>⎩,求解即可.【详解】 令()()g x lnxf x =,则1()()()0g x f x lnx f x x'=+'<, 故函数()g x 单调递减,定义域为()0,∞+,g (1)0=,01x ∴<<时,()0>g x ;1x <时,()0<g x .01x <<时,0lnx <;1x >时,0lnx >.∴当0x >,1x ≠时,()0f x <,又f(1)0<.∴当0x >,()0f x <,又()f x 为奇函数, ∴当0x <,()0f x >.不等式(1)()0x f x -⋅<等价于()10x f x >⎧⎨<⎩或()10x f x <⎧⎨>⎩解得1x >或者0x < 故答案为:D.【分析】由题意可得()()()f x x f x x -=---,令()()2F x f x x =-,根据奇偶性的定义,可得()F x 为偶函数,利用导数可得()F x 的单调性,将题干条件化简可得()2(1)2(1)f a a f a a -≥---,即()(1)F a F a ≥-,根据()F x 的单调性和奇偶性,计算求解,即可得答案. 【详解】由()()4f x f x x --=,得()2()2()f x x f x x -=---, 记()()2F x f x x =-,则有()()F x F x =-,即()F x 为偶函数, 又当(0,)x ∈+∞时,()()20F x f x ''=->恒成立, 所以()F x 在(0,)+∞上单调递增,所以由()()()1221f a f a a --≥-,得()2(1)2(1)f a a f a a -≥---, 即()(1)F a F a ≥-(||)(|1|)F a F a ⇔-,所以|||1|a a -,即2212a a a ≥+-,解得12a, 故选:D. 17.B 【分析】 根据()()0f x f x x'+<构造函数()()g x xf x =,利用函数()g x 的奇偶性、单调性比较大小. 【详解】解:令函数()()g x xf x =,因为定义域为R 的()y f x =是奇函数,所以函数()g x 为偶函数;()()()g x f x xf x ''=+,当0x >时,因为()()0f x f x x '+<,所以()()0xf x f x x'+<,所以()()0xf x f x '+<,即()0g x '<,所以()g x 在(0,)+∞上为减函数,()()()()222111(),2(2)22,ln (ln )ln ln 3ln 3333333a f g b f g g c f g g g ⎛⎫⎛⎫===--=-====-= ⎪ ⎪⎝⎭⎝⎭, 因为2ln 323<<,所以()()2ln 323g g g ⎛⎫>> ⎪⎝⎭,即a c b >>.18.A 【分析】构造函数()()g x xf x =,利用导数法结合条件,得到()g x 在R 上单调递减,利用单调性可得答案. 【详解】设()()g x xf x =,则()()()0g x f x xf x =+'<' 所以()g x 在R 上单调递减,又()()2222g f == 由()()112x f x ++>,即()()12g x g +>,所以12x +< 所以1x < 故选:A 19.D 【分析】构造函数2()e ()x g x f x =,求导后确定其单调性,原不等式转化为关于()g x 的不等式,再利用单调性得解集. 【详解】设2()e ()x g x f x =,则221()e ()()2x x g x f x e f x ''=+,因为1()()02f x f x '+>,所以()0g x '>,所以()g x 是R 上的增函数,(2)e (2)1g f ==,不等式()f x >2e ()1xf x >,即()(2)g x g >,所以2x >, 故选:D . 20.D 【分析】构造函数()()1()xg x e f x =+,利用导数求得()g x 的单调性,由此求得不等式1()2(1)x e f x e +>+的解集. 【详解】令()()1()x g x e f x =+,则()()()1()0x xg x e f x e f x =+'+>',所以()g x 在R 上单调递增,不等式()1()21x e f x e +>+可化为()11()2x e e f x ++>, 而1(1)2f =,则1(1)(1)(1)2e g ef +=+=,即()()1g x g >, 所以1x >,即不等式解集为(1,)+∞. 故选:D 21.A 【分析】 构造函数()1(),xf xg x e+=得到()g x 也是R 上的单调递增函数.,分析得到函数()f x 关于点(3,1)对称.由()ln 210f x x ++<得到(ln )(0)g x g <,即得解. 【详解】 构造函数()1()()1(),()0x xf x f x f xg x g x e e '+--'==>, 所以()g x 也是R 上的单调递增函数.因为()()6f x f x ''=-,所以()'f x 关于直线3x =对称,所以12()(6),()(6)f x dx f x dx f x c f x c ''=-∴+=--+⎰⎰,(12,c c 为常数),21()(6)f x f x c c ∴+-=-,令3x =,所以21212(3),(3)2c c f c c f -=-∴=. 因为()31f =,所以212,c c -=所以()(6)2f x f x +-=,所以函数()f x 关于点(3,1)对称. 由(3)1,(6)5f f ==得到(0)3f =-,因为()()ln ln 210ln 122x f x x f x x e ++<∴+<-=-,, 所以()ln ln 12xf x e +<-, 所以031(ln )2(0)g x g e -+<-==, 所以(ln )(0)g x g <, 所以ln 0,01x x <∴<<. 故选:A22.A 【分析】 令()()1xf xg x e +=,根据因为()()1f x f x '>+,得到()0g x '>,得出函数()g x 为R 上的单调递增函数,由题设条件,令0x =,求得()02g =-,把不等式转化为()()0g x g <,结合单调性,即可求解. 【详解】令()()1x f x g x e +=,可得()()()()11x xf x f x f xg x e e ''+--⎛⎫'== ⎪⎝⎭, 因为()()1f x f x '>+,可得()()10f x f x '-->,所以()0g x '>,所以函数()g x 为R 上的单调递增函数, 由不等式()210x f x e ++<,可得()12x f x e +<-, 所以()12xf x e +<-,即()2g x <- 因为()(6)2f x f x +-=,令0x =,可得(0)(6)2f f +=,又因为(6)5f =,可得(0)3f =-,所以()()00102f g e+==- 所以不等式等价于()()0g x g <,由函数()g x 为R 上的单调递增函数,所以0x <,即不等式的解集为(,0)-∞. 故选:A. 23.C 【分析】 可构造函数()()cos f x g x x=,由已知可证()g x 在,22x ππ⎛⎫∈- ⎪⎝⎭单增,再分别代值检验选项合理性即可 【详解】 设()()cos f x g x x=,则()()()2cos sin 0cos f x x f g x x xx'+='>,则()g x 在,22x ππ⎛⎫∈-⎪⎝⎭单增, 对A ,()04cos0cos 4f f ππ⎛⎫ ⎪⎝⎭<,化简得()04f π⎛⎫< ⎪⎝⎭,故A 错;对B ,34cos cos 34f f ππππ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭<⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭34f ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,故B 错; 对C ,43cos cos 43f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭34f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,故C 正确;对D ,()03cos0cos 3f f ππ⎛⎫⎪⎝⎭<⎛⎫⎪⎝⎭,化简得()023f f π⎛⎫< ⎪⎝⎭,故D 错, 故选:C 24.B 【分析】 令()()cos f x g x x =,,22x ππ⎛⎫∈- ⎪⎝⎭,得到()g x 是奇函数,单调递增,再利用函数的单调性和奇偶性分析判断得解. 【详解】因为()tan ()0f x x f x '+⋅>,所以()sin ()0,cos xf x f x x'+⋅> cos ()sin ()0x f x x f x '∴⋅+⋅>,令()()cos f x g x x =,,22x ππ⎛⎫∈- ⎪⎝⎭,则()2cos ()sin ()0cos f x x f x x g x x'⋅+⋅'=>, 所以()g x 单调递增, 所以()()()()cos()cos f x f x g x g x x x---===--,所以()g x 为奇函数,(0)0g =,所以6430cos cos cos643f f f ππππππ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭<<<,即0643πππ⎛⎫⎛⎫⎛⎫<<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以A ,C 错误;63ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,所以063ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,又因为()f x 为奇函数,所以063ππ⎛⎫⎛⎫-> ⎪ ⎪⎝⎭⎝⎭,所以B 正确;64ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭064ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭.又因为()f x 为奇函数,所以046ππ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭,所以D 错误. 故选:B 25.B 【分析】结合已知不等式,构造新函数()()3sin g x f x x x =-+,结合单调性及奇偶性,列出不等式,即可求解. 【详解】由题意,当0x ≥时,()3cos f x x '≥-恒成立,即()3cos 0f x x '-+≥恒成立, 又由()()62sin 0f x f x x x ---+=,可得()3sin ()3sin f x x x f x x x -+=-+-, 令()()3sin g x f x x x =-+,可得()()g x g x -=-,则函数()g x 为偶函数, 且当0x ≥时,()g x 单调递增,结合偶函数的对称性可得()g x 在(,0)-∞上单调递减,由()36224f x f x x x πππ⎛⎫⎛⎫≥--++ ⎪ ⎪⎝⎭⎝⎭,化简得到()3sin 3()sin()222f x x x f x x x πππ⎛⎫-+≥---+- ⎪⎝⎭,即()()2g x g x π≥-,所以2x x π≥-,解得4x π≥,即不等式的解集为,4π⎡⎫+∞⎪⎢⎣⎭.故选:B. 26.D 【分析】令()()cos g x f x x =,求出函数的导数,根据函数的单调性判断即可. 【详解】解:令()()cos g x f x x =,(0,)x π∈ 故()()cos ()sin 0g x f x x f x x ''=->,故()g x 在(0,)π递增,所以()()36g g ππ>,可得1()()236f f ππ63f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,所以D 正确;故选:D . 27.D 【分析】根据题意构造函数()()2x h x f x =,利用导数研究函数的单调性,根据单调性结合2log 31>即可求解.【详解】设()()2x h x f x =,则()()()()()22ln 22ln 2xx x h x f x f x f x f x '''=+=+⎡⎤⎣⎦,又()()ln 20f x f x '+<,20x >,所以()0h x '<,所以()h x 在(),-∞+∞上单调递减,由10>可得2(1)(0)f f >,故A 错; 由21>可得22(2)2(1)f f <,即2(2)(1)f f <,故B 错; 由01>-可得012(0)2(1)f f -<-,即2(0)(1)f f <-,故C 错; 因为2log 31>,所以()()2log 31h h <,得()()23log 321f f <,故D 正确. 故选:D 28.D 【分析】 由题设()()xf x F x e =,由已知得函数()F x 在R 上单调递增,且1ln 1(2022)4F x F ⎛⎫<= ⎪⎝⎭,根据函数的单调性建立不等式可得选项. 【详解】 由题可设()()ex f x F x =,因为()()0f x f x '->, 则2()e ()e ()()()0e e x x x xf x f x f x f x F x ''--'==>, 所以函数()F x 在R 上单调递增,又2022(2022)(2022)1e f F ==,不等式1ln 4f x ⎛⎫< ⎪⎝⎭1ln 41ln 41e x f x ⎛⎫ ⎪⎝⎭<, ∴1ln 1(2022)4F x F ⎛⎫<= ⎪⎝⎭,所以1ln 20224x <,解得80880e x <<,所以不等式1ln 4f x ⎛⎫< ⎪⎝⎭()80880,e .故选:D. 29.C 【分析】设()()g x xf x =,由奇偶性定义知()g x 为偶函数,结合导数和偶函数性质可确定()g x 在()0,∞+上单调递减,由指数和对数函数单调性可确定0.32log 42log 20π>>>,结合偶函数性质和单调性可得()()0.321log 22log4g g g π⎛⎫>> ⎪⎝⎭,由此可得大小关系. 【详解】设()()g x xf x =,则()()()()g x xf x xf x g x -=--==,()g x ∴为定义在R 上的偶函数; 当(),0x ∈-∞时,()()()0g x f x xf x ''=+>,()g x ∴在(),0-∞上单调递增, 由偶函数性质可知:()g x 在()0,∞+上单调递减,0.32log 4221log 20π=>>>>,()()()0.32log 22log 4g g g π∴>>,又()()2221log 4log 4log 4g g g ⎛⎫=-= ⎪⎝⎭,()()0.321log 22log4g g g π⎛⎫∴>> ⎪⎝⎭, 即b a c >>. 故选:C. 30.A 【分析】构造函数2()()g x x f x =,然后结合已知可判断()g x 的单调性及奇偶性,从而可求. 【详解】解:设2()()g x x f x =,由()f x 为奇函数,可得22()()()()()g x x f x x f x g x -=--=-=-, 故()g x 为R 上的奇函数,当0x >时,202()()f x xf x x '>>+,()[2()()]0g x x f x xf x ''∴=+>,()g x 单调递增,根据奇函数的对称性可知,()g x 在R 上单调递增, 则不等式2(2021)(2021)4(2)0x f x f +++-<可转化为()2(2021)(2021)4(2)42x f x f f ++<--=,即()()20212g x g +<,20212x ∴+<即2019x <-,即(),2019x ∈-∞-.故选:A 31.AB 【分析】首先根据已知条件构造函数()()f xg x x=,利用其导数得到()g x 的单调性,然后结合()f x 奇函数,将不等式()0f x >转化为()·0x g x >求解. 【详解】解:设()()f xg x x=, 则()()()2''xf x f x g x x -=,当0x >时总有()()'xf x f x <成立, 即当0x >时, ()'g x <0恒成立,∴当0x >时,函数()()f xg x x =为减函数, 又()()()()f x f x g x g x xx---===--,∴函数()g x 为定义域上的偶函数,又()()1101f g --==-,所以不等式()0f x >等价于()·0x g x >, 即()00x g x >⎧⎨>⎩或()0x g x <⎧⎨<⎩, 即01x <<或1x <-,所以()0f x > 成立的x 的取值范围是()(),10,1-∞-⋃. 故选:AB . 32.CD 【分析】构造函数1()()ln 1g x f x x x=+-,由导数确定其单调性,再由单调性解不等式,确定正确选项. 【详解】令1()()ln 1g x f x x x=+-,所以()2()1()ln f x g x f x x x x''=++, 因为()ln ()0xf x x f x x'+>,210x >,所以()0g x '>,所以()g x 在(0,)+∞上单调递增,又(1)0g =,可得()0>g x 的解集为(1,)+∞. 故选:CD. 33.BD 【分析】首先根据条件构造函数()()32f x g x x x=+,0x >,根据()()()()()()322232320f x x x f x x x g x xx+-'+'+=<得到()g x 在()0,∞+上单调递减,从而得到()()()11232g g g g ⎛⎫>>> ⎪⎝⎭,再化简即可得到答案. 【详解】由()()()()232x x f x x f x +'+<及0x >,得()()()()32232x x f x x x f x +'+<.设函数()()32f xg x x x =+,0x >, 则()()()()()()322232320f x x x f x x x g x xx+-'+'+=<, 所以()g x 在()0,∞+上单调递减,从而()()()11232g g g g ⎛⎫>>> ⎪⎝⎭,即()()()112323212368f f f f ⎛⎫ ⎪⎝⎭>>>,所以()()3181f f <,()()261f f <,()131162f f ⎛⎫< ⎪⎝⎭,()()332f f <.故选:BD 34.AD 【分析】。
导数构造函数解决问题类型总结(解析版)
导数构造函数解决问题类型总结一、重点题型目录【题型一】构造函数x n f (x )型【题型二】构造函数e nx f (x )型【题型三】构造函数f (x )x n 型【题型四】构造函数f (x )e nx型【题型五】构造函数sin x 与函数f (x )型【题型六】构造函数cos x 与函数f (x )型【题型七】构造e n 与af (x )+bf (x )型【题型八】构造kx +b 与f (x )型【题型九】构造ln kx +b 型【题型十】构造综合型二、题型讲解总结【题型】一、构造函数x n f (x )型例1.(2022·四川·盐亭中学模拟预测(文))已知定义在0,+∞ 上的函数f x 满足2xf x +x 2f x <0,f 2 =34,则关于x 的不等式f x >3x 2的解集为( )A.0,4B.2,+∞C.4,+∞D.0,2 【答案】D【分析】构造函数h x =x 2f x ,得到函数h x 的单调性,根据单调性解不等式即可.【详解】令h x =x 2f x ,则h x =2xf x +x 2f x <0,所以h x 在0,+∞ 单调递减,不等式f x >3x 2可以转化为x 2f x >4×34=22f 2 ,即h x >h 2 ,所以0<x <2.故选:D .例2.(2022·河北·高三阶段练习)已知奇函数f x 的定义域为R ,导函数为f x ,若对任意x ∈0,+∞ ,都有3f x +xf x >0恒成立,f 2 =2,则不等式x -1 3f x -1 <16的解集是__________.【答案】-1,3【分析】构造新函数g x =x 3f x ,根据f (x )的性质推出g (x )的性质,最后利用g (x )单调性解不等式.【详解】设g x =x 3f x ,x ∈R ,f x 为奇函数,∴g -x =-x 3f (-x )=x 3f (x )=g x ,即g x 是偶函数,有g (x )=g (-x )=g x ,∵∀x ∈0,+∞ ,3f x +xf x >0恒成立,故x ∈0,+∞ 时,g x =3x 2f x +x 3f x =x 23f x +xf x ≥0,∴函数g x 在0,+∞ 上为增函数,∵f 2 =2,∴g 2 =g -2 =16,x -1 3f x -1 <16等价于g x -1 <16=g (2),g (x -1)=g x -1 <g (2),且函数g x 在0,+∞ 上为增函数,∴x -1 <2,解得-1<x <3.故答案为:-1,3【题型】二、构造函数e nx f (x )型例3.(2022·河南·襄城高中高二阶段练习(理))已知奇函数f x 的定义域为R ,其函数图象连续不断,当x >0时,x +2 f x +xf x >0,则( )A.f 1 4e >f 2 B.f 2 <0 C.f -3 ⋅f 1 >0 D.f -1 e>4f -2 【答案】D【解析】令g x =x 2e x f x ,根据导数可知其在0,+∞ 上单调递增,由g 2 >g 1 >g 0 =0可知AB 错误,同时得到f 1 e<4f 2 ,f 1 >0,f 3 >0,结合奇偶性知C 错误,D 正确.【详解】对于AB ,令g x =x 2e x f x ,则g 0 =0,g x =x x +2 e x f x +x 2e x f x ,当x ≥0时,g x =xe x x +2 ⋅f x +xf x ≥0,∴g x 在0,+∞ 上单调递增,∴g 0 <g 1 <g 2 ,即0<ef 1 <4e 2f 2 ,∴f 2 >0,f 1 4e <f 2 ,AB 错误;对于C ,由A 的推理过程知:当x >0时,g x =x 2e x f x >0,则当x >0时,f x >0,∴f 1 >0,f 3 >0,又f x 为奇函数,∴f -3 =-f 3 <0,∴f -3 ⋅f 1 <0,C 错误.对于D ,由A 的推理过程知:f 1 e <4f 2 ,又f -1 =-f 1 ,f -2 =-f 2 ,∴-f -1 e <-4f -2 ,则f -1 e>4f -2 ,D 正确.故选:D .例4.(2022·江苏·南师大二附中高二期末)已知f (x )为R 上的可导函数,其导函数为f x ,且对于任意的x ∈R ,均有f x +f x >0,则( )A.e -2021f (-2021)>f (0),e 2021f (2021)<f (0)B.e-2021f(-2021)<f(0),e2021f(2021)<f(0)C.e-2021f(-2021)>f(0),e2021f(2021)>f(0)D.e-2021f(-2021)<f(0),e2021f(2021)>f(0)【答案】D【解析】通过构造函数法,结合导数确定正确答案.【详解】构造函数F x =e x⋅f x ,F x =f x +f x⋅e x>0,所以F x 在R上递增,所以F-2021<F0 ,F0 <F2021,即e-2021⋅f-2021<f0 ,f0 <e2021⋅f2021.故选:D例5.(2022·辽宁·大连二十四中模拟预测)已知函数y=f x ,若f x >0且f x +xf x >0,则有( )A.f x 可能是奇函数,也可能是偶函数B.f-1>f1C.π4<x<π2时,f(sin x)<e cos2x2f(cos x)D.f(0)<e f(1)【答案】D【解析】根据奇函数的定义结合f x >0即可判断A;令g x =e x22f x ,利用导数结合已知判断函数g x 的单调性,再根据函数g x 的单调性逐一判断BCD即可得解.【详解】解:若f x 是奇函数,则f-x=-f x ,又因为f x >0,与f-x=-f x 矛盾,所有函数y=f x 不可能时奇函数,故A错误;令g x =e x22f x ,则g x =xe x22f x +e x22f x =e x22xf x +f x,因为e x22>0,f x +xf x >0,所以g x >0,所以函数g x 为增函数,所以g-1<g1 ,即e 12f-1<e12f1 ,所以f-1<f1 ,故B错误;因为π4<x<π2,所以0<cos x<22,22<sin x<1,所以sin x>cos x,故g sin x>g cos x,即e sin2x2f sin x>e cos2x2f cos x,所以f sin x>e cos2x-sin2x2f cos x=e cos2x2f cos x,故C错误;有g0 <g1 ,即f0 <e f1 ,故D正确.故选:D.例6.(2022·黑龙江·哈尔滨三中高三阶段练习)f x 是定义在R上的函数,满足2f x +f x =xe x,f-1=-12e,则下列说法错误的是( )A.f x 在R上有极大值B.f x 在R上有极小值C.f x 在R上既有极大值又有极小值D.f x 在R上没有极值【答案】ABC【分析】先由题意得f -1=0,再构造g x =e2x f x ,得到g x =xe3x,进而再构造h x =e2x f x =xe3x-2g x ,判断出h x >0,即f x >0,由此得到选项.【详解】根据题意,2f x +f x =xe x,故2f-1+f -1=-e-1,又f-1=-12e,得2-12e+f -1 =-1e,故f -1 =0,令g x =e2x f x ,则g x =2e2x f x +e2x f x =e2x2f x +f x=e2x⋅xe x=xe3x,又2e2x f x +e2x f x =xe3x,记h x =e2x f x =xe3x-2e2x f x =xe3x-2g x ,所以h x =e3x+3xe3x-2g x =e3x+3xe3x-2xe3x=e3x x+1,当x<-1时,h x <0,h x 单调递减;当x>-1时,h x >0,h x 单调递增,所以h x >h-1=e-2f -1=0,即e2x f x >0,即f x >0,所以f x 在R上单调递增,故f x 在R上没有极值.故选项ABC说法错误,选项D说法正确.故选:ABC【题型】三、构造函数f(x)x n型例7.(2022·山东·潍坊一中高三期中)设函数f (x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x> 0时,xf (x)-f(x)>0,则使得f(x)>0成立的x取值范围是( )A.(-∞,-1)∪(1,+∞)B.(-1,0)∪(0,1)C.(-∞,-1)∪(0,1)D.(-1,0)∪(1,+∞)【答案】D【分析】根据题意构造函数g(x)=f(x)x,由求导公式和法则求出g (x),结合条件判断出g (x)的符号,即可得到函数g(x)的单调区间,根据f(x)奇函数判断出g(x)是偶函数,由f(-1)=0求出g(-1)=0,结合函数g(x)的单调性、奇偶性,再转化f(x)>0,由单调性求出不等式成立时x的取值范围.【详解】由题意设g(x)=f(x)x,则g (x)=xf (x)-f(x)x2∵当x>0时,有xf (x)-f(x)>0,∴当x>0时,g (x)>0,∴函数g(x)=f(x)x在(0,+∞)上为增函数,∵函数f(x)是奇函数,∴g(-x)=g(x),∴函数g(x)为定义域上的偶函数,g(x)在(-∞,0)上递减,由f(-1)=0得,g(-1)=0,∵不等式f(x)>0⇔x∙g(x)>0,∴x>0g(x)>g(1)或x<0g(x)<g(-1),即有x>1或-1<x<0,∴使得f(x)>0成立的x的取值范围是:(-1,0)∪(1,+∞),故选:D例8.(2022·安徽·砀山中学高三阶段练习)已知a=ln24,b=1e2,c=lnπ2π则a,b,c的大小关系为( )A.a<c<bB.b<a<cC.a<b<cD.c<a<b 【答案】C【分析】构造函数,根据函数的单调性比较大小.【详解】令f x =ln xx2,则fx =x-2x ln xx4,令f x <0,解得x>e,因此f x =ln xx2在e,+∞上单调递减,又因为a=ln24=ln416=f4 ,b=1e2=ln ee2=f e ,c=lnπ2π=lnππ=fπ,因为4>e>π>e,所以a<b<c.故选:C.【题型】四、构造函数f(x)e nx型例9.(2022·陕西·西安中学高二期中)已知定义在R上的函数f x 的导函数f x ,且f x <f x <0,则( )A.ef2 >f1 ,f2 >ef1B.ef2 >f1 ,f2 <ef1C.ef 2 <f 1 ,f 2 <ef 1D.ef 2 <f 1 ,f 2 >ef 1【答案】D 【分析】据已知不等式构造函数,结合导数的性质进行求解即可.【详解】构造函数g (x )=f (x )e x ⇒g (x )=f (x )-f (x )ex ,因为f x <f x ,所以g (x )>0,因此函数g (x )是增函数,于是有g (2)>g (1)⇒f (2)e 2>f (1)e ⇒f (2)>ef (1),构造函数h (x )=f (x )⋅e x ⇒h (x )=e x [f (x )+f (x )],因为f x <f x <0,所以h (x )<0,因此h (x )是单调递减函数,于是有h (2)<h (1)⇒e 2f (2)<ef (1)⇒ef (2)<f (1),故选:D例10.(2022·江苏·涟水县第一中学高三阶段练习)f x 是定义在R 上的函数,f x 是f x 的导函数,已知f x >f x ,且f (1)=e ,则不等式f 2x -5 -e 2x -5>0的解集为( )A.-∞,-3B.-∞,-2C.2,+∞D.3,+∞【答案】D【分析】根据已知条件构造函数,利用导数法求函数的单调性,结合函数的单调性即可求解.【详解】由f x >f x ,得f x -f x >0,设g x =f x e x ,则g x =f x -f x e x>0,所以函数g x 在-∞,+∞ 上单调递增,因为f 1 =e ,所以g 1 =f 1 e 1=1,所以不等式f 2x -5 -e 2x -5>0等价于f 2x -5 e 2x -5>1即g 2x -5 >g 1 ,所以2x -5>1,解得x >3,所以不等式f 2x -5 -e 2x -5>0的解集为3,+∞ .故选:D .例11.(2023·江西·赣州市赣县第三中学高三期中(理))设f x 是函数f x 的导函数,且f x >3f x x ∈R ,f 13=e (e 为自然对数的底数),则不等式f ln x <x 3的解集为( )A.0,e 3 B.1e ,e 3 C.0,3e D.e 3,3e【答案】C【分析】构造函数g x =f x e 3x ,由已知可得函数g x 在R 上为增函数,不等式f ln x <x 3即为g ln x <g 13,根据函数的单调性即可得解.【详解】解:令g x =f xe3x,则gx =f x -3f xe3x,因为f x >3f x x∈R,所以g x =f x -3f xe3x>0,所以函数g x 在R上为增函数,不等式f ln x<x3即不等式f ln xx3<1 x>0,又g ln x=f ln xe3ln x=f ln xx3,g13 =f13e=1,所以不等式f ln x<x3即为g ln x<g 13 ,即ln x<13,解得0<x<3e,所以不等式f ln x<x3的解集为0,3e.故选:C.例12.(2022·河北廊坊·高三开学考试)已知定义域为R的函数f x 的导函数为f x ,且f x -f x = 2xe x,f0 =0,则以下错误的有( )A.f x 有唯一的极值点B.f x 在-3,0上单调递增C.当关于x的方程f x =m有三个实数根时,实数m的取值范围为0,4e-1D.f x 的最小值为0【答案】ABC【分析】构造g(x)=f(x)e x,结合已知求g(x)的解析式,进而可得f(x)=x2e x,再利用导数研究f(x)的极值点、单调性,并判断其值域范围,即可判断各选项的正误.【详解】令g(x)=f(x)e x,则g(x)=f (x)-f(x)e x=2x,故g(x)=x2+C,(C为常数),所以f(x)=e x(x2+C),而f0 =e00+C=0,故C=0,所以f(x)=x2e x,则f (x)=(x2+2x)e x,令f (x)=0,可得x=-2或x=0,在(-∞,-2)、(0,+∞)上f (x)>0,f(x)递增;在(-2,0)上f (x)<0,f(x)递减;所以f(x)有2个极值点,在-3,0上不单调,A、B错误;由x趋于负无穷时f(x)趋向于0,f(-2)=4e2,f(0)=0,x趋于正无穷时f(x)趋向于正无穷,所以f x =m有三个实数根时m的范围为0,4e-2,f x 的最小值为0,C错误,D正确;故选:ABC【题型】五、构造函数sin x 与函数f (x )型例13.(2022·云南师大附中高三阶段练习)已知a =sin111,b =331,c =ln1.1,则( )A.a <b <cB.a <c <bC.c <a <bD.b <a <c 【答案】B【分析】根据结构构造函数f (x )=x -sin x ,x ∈0,π2 ,利用导数判断单调性,即可得到a <b ;根据结构构造函数g (x )=ln x +1-x ,利用导数判断单调性,即可得到a <c ;根据结构构造函数h (x )=ln(x +1)-3x 3+x ,利用导数判断单调性,即可得到c <b .【详解】构造函数f (x )=x -sin x ,x ∈0,π2 ,则f (x )=1-cos x ≥0,故函数y =f (x )在0,π2 上单调递增,故f 111 >f (0)=0,即111>sin 111,又331>111,故a <b .构造函数g (x )=ln x +1-x ,则g (x )=1x-1,易知函数y =g (x )在x =1处取得最大值g (1)=0,故g 1011 <0,即ln 1011+1-1011<0,即111<-ln 1011=ln 1110=ln1.1,由前面知sin 111<111,故a <c .构造函数h (x )=ln (x +1)-3x 3+x ,则h (x )=1x +1-9(3+x )2=(3+x )2-9(x +1)(x +1)(3+x )2=x (x -3)(x +1)(3+x )2,故知函数y =h (x )在(0,3)上单调递减,故h (0.1)<h (0)=0,即ln1.1<0.33.1=331,故c <b .综上,a <c <b .故选:B .例14.(2022·全国·高三阶段练习)已知函数f (x )及其导函数f (x )的定义域均为R ,且f (x )为偶函数,f π6 =-2,3f (x )cos x +f (x )sin x >0,则不等式f x +π2 cos 3x -14>0的解集为( )A.-π3,+∞ B.-2π3,+∞ C.-2π3,π3 D.π3,+∞ 【答案】B 【分析】令g x =f x sin 3x -14,结合题设条件可得g x 为R 上的增函数,而原不等式即为g x +π2>0,从而可求原不等式的解集.【详解】f x +π2 cos 3x -14>0可化为f x +π2 sin 3x +π2 -14>0,令g x =f x sin 3x -14,则g x =f x sin 3x +3f x sin 2x cos x =sin 2x f (x )sin x +3f x cos x ,因为3f (x )cos x +f (x )sin x >0,故g x ≥0(不恒为零),故g x 为R 上的增函数,故f x +π2 cos 3x -14>0即为g x +π2>0,而g -π6 =f -π6 sin 3-π6 -14=f π6 sin 3-π6 -14=0,故g x +π2 >0的解为x +π2>-π6,故x >-2π3即f x +π2 cos 3x -14>0的解为-2π3,+∞ .故选:B .【题型】六、构造函数cos x 与函数f (x )型例15.已知函数f x 的定义域为-π2,π2,其导函数是f (x ).有f (x )cos x +f (x )sin x <0,则关于x 的不等式3f (x )<2f π6cos x 的解集为()A.π3,π2 B.π6,π2 C.-π6,-π3 D.-π2,-π6【答案】B【分析】令F x =f x cos x ,根据题设条件,求得F 'x <0,得到函数F x =f x cos x 在-π2,π2内的单调递减函数,再把不等式化为f x cos x <f π6 cos π6,结合单调性和定义域,即可求解.【详解】由题意,函数f x 满足f 'x cos x +f x sin x <0,令F x =f x cos x ,则F 'x =f 'x cos x +f x sin x cos 2x<0函数F x =f x cos x 是定义域-π2,π2内的单调递减函数,由于cos x >0,关于x 的不等式3f (x )<2f π6 cos x 可化为f x cos x <f π6 cos π6,即F x <F π6 ,所以-π2<x <π2且x >π6,解得π2>x >π6,不等式3f (x )<2f π6 cos x 的解集为π6,π2 .故选:B 例16.(2021·重庆·高二期末)已知f x 的定义域为(0,+∞)且满足f x >0,f x 为f x 的导函数,f x -f x =e x (x +cos x ),则下列结论正确的是( )A.f x 有极大值无极小值B.f x 无极值C.f x 既有极大值也有极小值D.f x 有极小值无极大值【答案】B【解析】令F x =f xe x,根据题意得到Fx =x+cos x,设g x =x+cos x,x>0,利用导数求得g x 在区间(0,+∞)单调递增,得到F x >0,由f x =e x⋅F x ,得到f x >0,即函数f x 为单调递增函数,得到函数无极值.【详解】令F x =f xe x,x>0,可得F x =f x -f xe x,因为f x -f x =e x(x+cos x),可得F x =x+cos x,设g x =x+cos x,x>0,可得g x =1-sin x≥0,所以g x 在区间(0,+∞)单调递增,又由g0 =1,所以g x >g0 =1,所以F x >0,所以F x 单调递增,因为f x >0且e x>0 ,可得F x >0,因为F x =f xe x,可得f x =ex⋅F x ,x>0,则f x =e x F x +F x>0,所以函数f x 为单调递增函数,所以函数f x 无极值.故选:B.【题型】七、构造e n与af(x)+bf(x)型例17.(2022·陕西·西安中学高二期中)已知定义在R上的函数f x 的导函数f x ,且f x <f x < 0,则( )A.ef2 >f1 ,f2 >ef1B.ef2 >f1 ,f2 <ef1C.ef2 <f1 ,f2 <ef1D.ef2 <f1 ,f2 >ef1【答案】D【分析】据已知不等式构造函数,结合导数的性质进行求解即可.【详解】构造函数g(x)=f(x)e x⇒g (x)=f (x)-f(x)e x,因为f x <fx ,所以g (x)>0,因此函数g(x)是增函数,于是有g(2)>g(1)⇒f(2)e2>f(1)e⇒f(2)>ef(1),构造函数h(x)=f(x)⋅e x⇒h (x)=e x[f(x)+f (x)],因为f x <f x <0,所以h (x)<0,因此h(x)是单调递减函数,于是有h(2)<h(1)⇒e2f(2)<ef(1)⇒ef(2)<f(1),故选:D例18.(2022·河南·高三阶段练习(文))已知函数f x =ax-e x-k,其中e为自然对数的底数,若k∈-1,e2时,函数f x 有2个零点,则实数a的可能取值为( )A.eB.2eC.e 2D.3e【答案】D【分析】由题意可知方程ax -e x =k ,k ∈-1,e 2 有两个实数根,令g (x )=ax -e x ,则g (x )的图象与直线y =k ,k ∈-1,e 2 有两个交点,结合导数分析函数g (x )的单调性与极值情况即可解决问题.【详解】由题意可知方程ax -e x =k ,k ∈-1,e 2 有两个实数根,令g (x )=ax -e x ,则g (x )的图象与直线y =k ,k ∈-1,e 2 有两个交点,g (x )=a -e x .(1)若a ≤0,g (x )<0在R 上恒成立,所以g (x )在R 上单调递减,g (x )的图象与直线y =k ,k ∈-1,e 2 至多只有一个交点,不合题意;(2)若a >0,当x <ln a 时,g (x )>0,当x >ln a 时,g (x )<0,所以g (x )的单调递增区间是(-∞,ln a ),单调递减区间是(ln a ,+∞),所以当x =ln a 时,g (x )取得极大值,也是最大值,为a ln a -a .当x →-∞时,g (x )→-∞,当x →+∞时,g (x )→-∞,所以要使g (x )的图象与直线y =k ,k ∈-1,e 2 有两个交点,只需a ln a -a >e 2.a ln a -a =a (ln a -1),当0<a ≤e 时,a ln a -a ≤0,当a >e 时,a ln a -a >0,所以a ln a -a >e 2,a >e ,设h (a )=a ln a -a ,a >e ,则h (a )=ln a >0,所以h (a )在(e ,+∞)上单调递增,而h e 2 =e 2,所以a ln a -a >e 2的解为a >e 2,而3e >e 2,故选:D .例19.(2023·全国·高三专题练习)已知定义在R 上的偶函数y =f (x )的导函数为y =f (x ),当x >0时,f (x )+f (x )x <0,且f (2)=-3,则不等式f (2x -1)<-62x -1的解集为( )A.-∞,12 ∪32,+∞ B.32,+∞C.12,32D.-12,12 ∪12,32【答案】A【分析】根据题干中的不等式,构造函数F x =xf x ,结合y =f (x )在在R 上为偶函数,得到F x =xf x 在R 上单调递减,其中F 2 =2f 2 =-6,分x >12与x <12,对f (2x -1)<-62x -1变形,利用函数单调性解不等式,求出解集.【详解】当x >0时,f(x )+f (x )x =xf (x )+f (x )x<0,所以当x >0时,xf (x )+f (x )<0,令F x =xf x ,则当x >0时,F x =xf (x )+f (x )<0,故F x =xf x 在x >0时,单调递减,又因为y=f(x)在在R上为偶函数,所以F x =xf x 在R上为奇函数,故F x =xf x 在R上单调递减,因为f(2)=-3,所以F2 =2f2 =-6,当x>12时,f(2x-1)<-62x-1可变形为2x-1f(2x-1)<-6,即F2x-1<F2 ,因为F x =xf x 在R上单调递减,所以2x-1>2,解得:x>3 2,与x>12取交集,结果为x>32;当x<12时,f(2x-1)<-62x-1可变形为2x-1f(2x-1)>-6,即F2x-1>F2 ,因为F x =xf x 在R上单调递减,所以2x-1<2,解得:x<3 2,与x<12取交集,结果为x<12;综上:不等式f(2x-1)<-62x-1的解集为-∞,12∪32,+∞.故选:A例20.(2022·全国·高三阶段练习(理))已知函数f x =x3-x+2+e x-e-x,其中e是自然对数的底数,若f a-2+f a2>4,则实数a的取值范围是( )A.-2,1B.-∞,-2C.1,+∞D.-∞,-2∪1,+∞【答案】D【分析】构造函数g(x)=f x -2,利用奇偶性的定义、导数的符号变化判定其奇偶性和单调性,再将f (a-2)+f(a2)>4变为g(a-2)>g(-a2),利用g(x)的单调性进行求解.【详解】构造函数g(x)=f x -2=x3-x+e x-e-x,因为g(x)的定义域为(-∞,+∞),且g-x= -x3--x+e-x-e x=-x3+x-e x+e-x=-(x3-x+e x-e-x)=-g(x),即g(x)是奇函数,又g x =3x2-1+e x+e-x≥3x2-1+2e x⋅e-x=3x2+1>0,所以g(x)在 (-∞,+∞)上单调递增;因为f(a-2)+f(a2)>4,所以f(a-2)-2>-[f(a2)-2],即g(a-2)>-g(a2),即g(a-2)>g(-a2),所以a-2>-a2,即a2+a-2>0,解得a>1或a<-2,即a∈(-∞,-2)∪(1,+∞).故选:D.【点睛】方法点睛:利用函数的性质解决不等式问题时,往往要利用题干中的表达式或不等式的结构特点合理构造函数,如本题中,构造函数g(x)=f x -2,将问题转化为利用函数的奇偶性和单调性求g(a-2)>-g(a2)的解集.【题型】八、构造kx+b与f(x)型例21.(2022·河南·高三阶段练习(文))已知定义在0,+∞上的函数f x 的导函数为f x ,若f x < 2,且f4 =5,则不等式f2x>2x+1-3的解集是( )A.0,2B.0,4C.-∞,2D.-∞,4【答案】C【分析】根据所求不等式f2x>2x+1-3的形式,构造函数g x =f x -2x+3,利用题目中的条件判断出g x 在0,+∞上单调递减,进而将所求转化为g2x>g4 ,再利用单调性求出解集.【详解】设g x =f x -2x+3,则g x =f x -2.因为f x <2,所以f x -2<0,即g x <0,所以g x 在0,+∞上单调递减.不等式f2x>2x+1-3等价于不等式f2x-2×2x+3>0,即g2x>0.因为f4 =5,所以g4 =f4 -2×4+3=0,所以g2x>g4 .因为g x 在0,+∞上单调递减,所以2x<4,解得x<2.故选:C.例22.(2022·河南·襄城高中高二阶段练习(理))已知奇函数f x 的定义域为R,其函数图象连续不断,当x>0时,x+2f x +xf x >0,则( )A.f14e>f2 B.f2 <0 C.f-3⋅f1 >0 D.f-1e>4f-2【答案】D【解析】令g x =x2e x f x ,根据导数可知其在0,+∞上单调递增,由g2 >g1 >g0 =0可知AB错误,同时得到f1e<4f2 ,f1 >0,f3 >0,结合奇偶性知C错误,D正确.【详解】对于AB,令g x =x2e x f x ,则g0 =0,g x =x x+2e xf x +x2e x f x ,当x≥0时,g x =xe x x+2⋅f x +xf x≥0,∴g x 在0,+∞上单调递增,∴g0 <g1 <g2 ,即0<ef1 <4e2f2 ,∴f2 >0,f14e<f2 ,AB错误;对于C,由A的推理过程知:当x>0时,g x =x2e x f x >0,则当x>0时,f x >0,∴f1 >0,f3 >0,又f x 为奇函数,∴f-3=-f3 <0,∴f-3⋅f1 <0,C错误.对于D,由A的推理过程知:f1e<4f2 ,又f-1=-f1 ,f-2=-f2 ,∴-f-1e<-4f-2,则f-1e>4f-2,D正确.故选:D.【题型】九、构造ln kx+b型例23.(2023·全国·高三专题练习)定义在(0,+∞)上的函数f(x)满足xf x +1>0,f2 =ln 12,则不等式f(e x)+x>0的解集为( )A.(0,2ln2)B.(0,ln2)C.(ln2,1)D.(ln2,+∞)【答案】D【分析】构造新函数g(x)=f(x)+ln x,(x>0),利用导数说明其单调性,将f(e x)+x>0变形为g(e x) >g(2),利用函数的单调性即可求解.【详解】令g(x)=f(x)+ln x,(x>0) ,则g (x)=f (x)+1x=xf x +1x,由于xf x +1>0,故g (x)>0,故g(x)在(0,+∞)单调递增,而g(2)=f(2)+ln2=ln 12+ln2=0 ,由f(e x)+x>0,得g(e x)>g(2) ,∴e x>2 ,即x>ln2 ,∴不等式f(e x)+x>0的解集为(ln2,+∞),故选:D.例24.(2022·河南·高三阶段练习(理))设a=cos 12,b=78,c=ln158,则a,b,c之间的大小关系为( )A.c<b<aB.c<a<bC.b<c<aD.a<c<b 【答案】A【分析】构造函数g x =ln x+1-x,f x =cos x-1-x2 2,借助函数的单调性分别得出c<b与a>b,从而得出答案.【详解】构造函数g x =ln x+1-x,x>-1,则g x =1x+1-1=-xx+1,当-1<x<0时,g x >0,g x 单调递增,当x>0时,g x <0,g x 单调递减,∴g x ≤g 0 =0,∴ln x +1 ≤x (当x =0时等号成立),∴ln 158=ln 78+1 <78,则c <b ,构造函数f x =cos x -1-12x 2 ,0<x <1,则f x =x -sin x ,令φx =x -sin x ,0<x <1,∴φ x =1-cos x >0,φx 单调递增,∴φx >φ0 =0,∴f x >0,f x 单调递增,从而f x >f 0 =0,∴f 12 >0,即cos 12>1-12⋅122=78,则a >b .∴c <b <a .故选:A .例25.(2022·贵州·高三阶段练习(理))已知命题p :在△ABC 中,若A >π4,则sin A >22,命题q :∀x >-1,x ≥ln (x +1).下列复合命题正确的是( )A.p ∧q B.(¬p )∧(¬q )C.(¬p )∧qD.p ∧(¬q )【答案】C【分析】命题p 可举出反例,得到命题p 为假命题,构造函数证明出q :∀x >-1,x ≥ln (x +1)成立,从而判断出四个选项中的真命题.【详解】在△ABC 中,若A =5π6,此时满足A >π4,但sin A =12<22,故命题p 错误;令f x =x -ln x +1 ,x >-1,则f x =1-1x +1=xx +1,当x >0时,f x >0,当-1<x <0时,f x <0,所以f x 在x >0上单调递增,在-1<x <0上单调递减,所以f x 在x =0处取得极小值,也是最小值,f 0 =0-ln 0+1 =0,所以q :∀x >-1,x ≥ln (x +1)成立,为真命题;故p ∧q 为假命题,(¬p )∧(¬q )为假命题,(¬p )∧q 为真命题,p ∧(¬q )为假命题.故选:C【题型】十、构造综合型例26.(2022·全国·高三阶段练习(理))下列命题为真命题的个数是( )①log 32>23;②e lnπ<π;③sin 12>2348;④3e ln2<4 2.A.1 B.2C.3D.4【答案】C【分析】利用指数式与对数的互化、对数函数的单调性推得①错误;构造函数f x =ln xx,利用导数研究其单调性和最值,进而判定②④正确;构造函数h(x)=sin x-x+16x3,x∈0,π2,利用二次求导确定其单调性,利用h 12 >h(0)得到③正确.【详解】对于①:若log32>23,则2>323,即8>9,显然不成立,故①错误;对于②:将e lnπ<π变为lnππ<ln ee,构造f x =ln xx,则f x =1-ln xx2,则当0<x<e时,f x >0,x>e时,f x <0,所以f x =ln xx在(0,e)上单调递增,在(e,+∞)上单调递减,则x=e时,f x 取得最大值1 e,由fπ <f e 得lnππ<ln ee,即e lnπ<π成立,故②正确;对于③:令h(x)=sin x-x+16x3,x∈0,π2,则g x =h x =cos x-1+12x2,t x =g x =-sin x+1,因为t x =g x =-sin x+1>0在0,π2成立,所以g x =h x =cos x-1+12x2在0,π2上单调递增,又g(0)=cos0-1+0=0,所以g x =h x >0在0,π2上成立,即h(x)=sin x-x+16x3在在0,π2上单调递增,所以h 12 >h(0),即sin12-2348>0,即sin12>2348,故③正确;对于④:将3e ln2<42变为ln2222<ln e e,由②得f22<f e ,即ln2222<ln e e,即3e ln2<42成立,故④正确;综上所述,真命题的个数为3.故选:C.【点睛】方法点睛:利用函数的单调性解决不等式问题时,往往要利用题干中的不等式的结构特点合理构造函数,如本题中证明e lnπ<π、3e ln2<42构造函数f x =ln xx,证明sin12>2348构造h(x)=sin x -x +16x 3,x ∈0,π2,将问题转化为利用导数研究函数的单调性问题.例27.(2022·江苏·南京师大附中高三期中)已知函数f x =ln x -ax 2,则下列结论正确的有( )A.当a <12e 时,y =f x 有2个零点B.当a >12e 时,f x ≤0恒成立C.当a =12时,x =1是y =f x 的极值点D.若x 1,x 2是关于x 的方程f x =0的2个不等实数根,则x 1x 2>e 【答案】BCD【分析】对于A 和B ,由f x =0可得a =ln x x 2,令g x =ln xx 2,利用导数得到g x 的单调性和最值情况即可判断;对于C ,将a =12代入f x ,利用导数得到f x 的单调性即可判断;对于D ,问题转化为2at =ln t 有两个零点,证明t 1t 2>e 2,进而只需要证明ln t 1+ln t 2>2,也即是ln t 1t 2>2t1t 2-1 t 1t 2+1,从而令m =t 1t 2>1,构造函数s m =ln m -2m -1 m +1m >1 求出最值即可【详解】对于A ,令f x =ln x -ax 2=0即a =ln xx 2,令g x =ln x x 2,x >0,则g x =1x⋅x 2-ln x ⋅2x x 2 2=1-2ln x x 3,令g x =0,解得x =e ,故当x ∈0,e ,g x >0,g x 单调递增;当x ∈e ,+∞ ,g x <0,g x 单调递减;所以g x 的最大值为g e =12e,又因为当x <1时,g x =ln x x 2<0;当x >1时,g x =ln xx 2>0,故g x 如图所示,当0<a <12e时,函数y =a 与g x 有两个交点,此时y =f x 有2个零点,故A 错误;对于B ,由A 选项可得g x =ln x x2≤12e ,当a >12e 时,由a >ln xx 2,可整理得ln x -ax 2<0,即f x <0,故B 正确;对于C ,将a =12代入f x 得f x =ln x -12x 2,x >0,所以f x =1x -x =1-x 2x,令f x =0,解得x =1,故当x ∈0,1 ,f x >0,f x 单调递增;当x ∈1,+∞ ,f x <0,f x 单调递减;所以x=1是y=f x 的极大值点,故C正确;对于D,由f x =ln x-ax2=0即ax=ln x x,因为x1,x2是关于x的方程f x =0的2个不等实数根,所以ax1=ln x1x1ax2=ln x2x2,即2ax21=ln x212ax22=ln x22,所以等价于:2at=ln t有两个零点,证明t1t2>e2,不妨令t1>t2>0,由2at1=ln t12at2=ln t2⇒2a=ln t1-ln t2t1-t2,要证t1t2>e2,只需要证明ln t1+ln t2>2,即只需证明:ln t1+ln t2=2a t1+t2=t1+t2ln t1-ln t2t1-t2>2,只需证明:ln t1-ln t2>2t1-t2t1+t2,即lnt1t2>2t1t2-1t1t2+1,令m=t1t2>1,只需证明:ln m>2m-1m+1m>1,令s m=ln m-2m-1m+1m>1,则s m=m-12m m+12>0,即s m在1,+∞上为增函数,又s1 =0,所以s m>s1 =0.综上所述,原不等式成立,即x1x2>e成立,故D正确,故选:BCD【点睛】方法点睛:对于利用导数研究函数的综合问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.3、根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.例28.(2022·黑龙江·齐齐哈尔市实验中学高三阶段练习)已知函数f x 的定义域是0,+∞,f x 是f x 的导数,若f x =xf x -x,f 1 =1,则下列结论正确的是( )A.f x 在0,1e上单调递减 B.f x 的最大值为eC.f x 的最小值为-1eD.存在正数x0,使得f x0<ln x0【答案】AC【分析】构造g x =f xx,得到g x =1x,从而得到g x =ln x+c,结合f 1 =1,得到f x =x ln x,求导得到f x =ln x+1,从而得到函数的单调性和极值,最值情况,判断出ABC选项;解不等式x-1ln x<0得到解集为∅,故D错误.【详解】由f x =xf x -x得f x =f xx+1,设g x =f xx,则g x =xf x -f xx2=xf xx+1-f xx2=1x.设c为常数,则ln x+c=1 x,∴g x =ln x+c,∴f x =xg x =x ln x+cx.∵f 1 =1,∴f1 =0,∴c=0,所以f x =x ln x,∴f x =ln x+1.当0<x<1e时,f x <0,f x 单调递减,当x>1e时,f x >0,f x 单调递增.∵f 1e =0,∴f x 在x=1e时取得极小值,也是最小值-1e,f x 无最大值.∴A正确,B错误,C正确,由f x <ln x得x ln x<ln x,∴x-1ln x<0.当0<x<1时,x-1<0,ln x<0,x-1ln x>0.当x=1时,x-1ln x=0.当x>1时,x-1>0,ln x>0,x-1ln x>0.因此不等式x-1ln x<0即f x <ln x的解集是∅.所以D错误.故选:AC【点睛】当条件中出现类似f x =xf x -x的条件时,通常要构造函数来解决问题,本题中的难点是利用f x =f xx+1来构造g x =f xx,从而结合f 1 =1求出f x =x ln x.例29.(2023·全国·高三专题练习)已知函数f x =x e x+1,g x =x+1ln x,若f x1=g x2>0,则x2x1可取( )A.1B.2C.eD.e2【答案】CD【分析】由g x =x+1ln x=ln x e ln x+1,利用同构结合f x 在(0,+∞)上单调递增,即可得到x1=ln x2,则x2x1=e x1x1,x1>0,记h(x)=e xx,(x>0),求出h (x)即可判断h(x)在(0,+∞)上的单调性,即可得出x2x1≥e,由此即可选出答案.【详解】因为f x1=g x2>0,所以x1>0,x2>1,因为f x =e x+1+xe x=(x+1)e x+1>0恒成立,所以f x 在(0,+∞)上单调递增,又g x =x+1ln x=ln x e ln x+1,因为f x1=g x2,即x1e x1+1=ln x2e ln x2+1,所以x1=ln x2⇒x2=e x1,所以x2x1=e x1x1,x1>0,记h(x)=e xx,(x>0),所以h (x)=e x(x-1)x2当0<x<1时,h (x)<0,h(x)单调递减,当x>1时,h (x)>0,h(x)单调递增,所以h(x)≥h(1)=e,即x2x1≥e故选:CD.【点睛】本题考查利用导数求函数的最值,属于难题,其中将g x =x+1ln x=ln x e ln x+1变形为f x =x e x+1的结构,是解本题的关键.。
专题25 构造函数法解决导数问题(解析版)-2022年高考数学一轮考点+重点+难点专项复习
专题25 构造函数法解决导数问题【知识总结】若直接求导比较复杂或无从下手时,可将待证式进行变形,构造两个都便于求导的函数,从而找到可以传递的中间量,达到证明的目标。
若直接构造函数,则很难借助导数研究其单调性。
【例题讲解】【例1】已知函数f (x )=ax 2-x ln x 。
(1)若函数f (x )在(0,+∞)上单调递增,求实数a 的取值范围; (2)若a =e ,证明:当x >0时,f (x )<x e x +1e。
【思路点拨】 第(1)小题转化为当x >0时,不等式f ′(x )≥0恒成立,进而应用分离变量法求解;第(2)小题将待证不等式等价变形为e x -e x <ln x +1e x,构造函数,进而分别研究构造函数的单调性解决问题。
【解】 (1)由题意知,f ′(x )=2ax -ln x -1。
因为函数f (x )在(0,+∞)上单调递增,所以当x >0时,f ′(x )≥0,即2a ≥ln x +1x 恒成立。
令g (x )=ln x +1x (x >0),则g ′(x )=-ln xx2,易知g (x )在(0,1)上单调递增,在(1,+∞)上单调递减,则g (x )max =g (1)=1, 所以2a ≥1,即a ≥12。
故实数a 的取值范围是⎣⎡⎭⎫12,+∞。
(2)若a =e ,要证f (x )<x e x +1e ,只需证e x -ln x <e x +1e x ,即e x -e x <ln x +1e x 。
令h (x )=ln x +1e x (x >0),则h ′(x )=e x -1e x2,易知h (x )在⎝⎛⎭⎫0,1e 上单调递减,在⎝⎛⎭⎫1e ,+∞上单调递增,则h (x )min =h ⎝⎛⎭⎫1e =0, 所以ln x +1e x≥0。
再令φ(x )=e x -e x ,则φ′(x )=e -e x ,易知φ(x )在(0,1)上单调递增,在(1,+∞)上单调递减,则φ(x )max =φ(1)=0,所以e x -e x ≤0。
数学-导数压轴题之构造函数和同构异构详述(解析版)
导数章节知识全归纳导数压轴题之构造函数和同构异构(详述版)一.考试趋势分析:由于该内容在高考内容中考试频率相对比较低,然而它却在我们平时考试或是诊断型考试中出现又较高,并且该内容属于高中数学里面导数的基本考试题型之一,基本上尖子生里面的基础题,又是一般学生里面的压轴题,所以老师你觉得讲还是不讲呢?针对这个情况,作者进行了多年研究和分析,这个内容一定要详细讲述,并且结合技巧性让学生能够熟练掌握,优生几秒钟,一般学生几分钟就可以完成该题解答,是设计这个专题的核心目的! 二.所用知识内容: 1.导数八大基本求导公式:①0;C '=(C 为常数) ②()1;nn xnx-'=③(sin )cos x x '=; ④(cos )sin x x '=-;⑤();x xe e '= ⑥()ln x xa a a '=;⑦()1ln x x '=; ⑧()1l g log a a o x e x'= 2.常见构造:和与积联系:()()f x xf x '+,构造()xf x ;22()()xf x x f x '+,构造2()x f x ;3()()f x xf x '+,构造3()x f x ;…………………()()nf x xf x '+,构造()n x f x ;()()f x f x '+,构造e ()x f x .等等.减法与商联系:如()()0xf x f x ->',构造()()f x F x x=;()2()0xf x f x ->',构造2()()f x F x x =;………………… ()()0xf x nf x ->',构造()()nf x F x x =. ()()f x f x '-,构造()()ex f x F x =,()2()f x f x '-,构造2()()e xf x F x =,……………… ()()f x nf x '-,构造()()enxf x F x =, 3.同构异构方法:1.顺反同构:顺即为平移拉伸后的同构函数,反即为乘除导致的凹凸反转同构函数. 2.同位同构:①加减同构是指在同构的过程中“加减配凑”,从而完成同构;②局部同构是指在同构过程中,我们可以将函数的某两个或者多个部分构造出同构式,再构造同构体系中的亲戚函数即可;③差一同构是指指对跨阶以及指数幂和对数真数差1,我们往往可考虑用同构秒杀之.三.导数构造函数典型题型: 1.构造函数之和差构造:例:1.已知定义在R 上的函数()f x 满足()220f =,且()f x 的导函数()f x '满足()262f x x >'+,则不等式()322f x x x >+的解集为( )A .{2}xx >-∣ B .{2}xx >∣ C .{2}xx <∣ D .{2∣<-xx 或2}x > 【答案】B 【分析】令函数()()322g x f x x x =--,求导,结合题意,可得()g x 的单调性,又()20g =,则原不等式等价于()()2g x g >,根据()g x 的单调性,即可得答案. 【详解】令函数()()322g x f x x x =--,则()()2620g x f x x =--'>',所以()g x 在R 上单调递增.因为()2g =()3222220f -⨯-⨯=,所以原不等式等价于()()02g x g >=,所以所求不等式的解集为{2}.xx >∣ 故选:B2.定义在()0,∞+上的函数()f x 满足()()10,42ln 2xf x f '->=,则不等式()xf e x <的解集为( ) A .()0,2ln 2 B .(),2ln 2-∞ C .()2ln 2,+∞ D .()1,2ln 2【答案】B 【分析】构造函数()()ln g x f x x =-,()0,x ∈+∞,先判断其导函数的正负,来确定该函数的单调性,再化简不等式为()()4xg e g <,根据单调性解不等式即可.【详解】设()()ln g x f x x =-,()0,x ∈+∞,则()()()110xf x g x f x x x'-''=-=>, 故()g x 在()0,∞+上单调递增,()()2l 4n 22ln 2404ln g f -===-,不等式()xf ex <,即()ln 0xxf e e-<,即()()4x g e g <,根据单调性知04x e <<,即ln 44x e e <=,得ln 4x <,即2ln 2x <,故解集为(),2ln 2-∞. 故选:B. 【点睛】 思路点睛:利用导数解不等式时,常常要构造新函数,新函数一方面与已知不等式有关,一方面与待求不等式有关,再结合导数判断单调性,利用单调性解不等式.变式:1.已知奇函数()f x 在R 上的导函数为()'f x ,且当(],0x ∈-∞时,()'1f x <,则不等式()()2101110102021f x f x x --+≥-的解集为( ) A .()2021,+∞ B .[)2021,+∞ C .(],2021-∞ D .(),2021-∞【答案】C 【分析】利用()'1f x <构造函数g (x ),即可得到函数g (x )的单调性,再将所解不等式转化为用g (x )表达的抽象函数不等式而得解. 【详解】因()'1f x <,即()10f x '-<,令()()g x f x x =-,则()0g x '<,()g x 在(,0]-∞上递减, 又()f x 是R 上的奇函数,则()g x 也是R 上的奇函数,从而有()g x 在R 上单调递减, 显然()()f x g x x =+,则有()()2101110102021f x f x x --+≥-(21011)(21011)[(1010)(1010)]2021g x x g x x x ⇔-+--+++≥-(21011)21011(1010)10102021g x x g x x x ⇔-+--+--≥- (21011)(1010)g x g x ⇔-≥+由()g x 在R 上单调递减得2101110102021x x x -≤+⇔≤, 所以所求不等式的解集为(],2021-∞. 故选:C 【点睛】关键点睛:解给定导数值特征的抽象函数不等式,根据导数值特征构造对应函数是解题的关键.2.构造函数之乘积构造:例:1.()f x 在()0,∞+上的导函数为()f x ',()()2xf x f x '>,则下列不等式成立的是( ).A .()()222021202220222021f f >B .()()222021202220222021f f <C .()()2021202220222021f f >D .()()2202220222021021f f <【答案】A 【分析】构造()2()f x g x x =,求导得3()2()0()xf x g x f x x '-'=>,知()2()f x g x x=在()0,∞+上为增函数,进而由(2022)(20221)g g >即可判断.【详解】令()2()f x g x x =,则243()()2()()2()x f x xf x xf x g x f x x x''--'==, 因为在()0,∞+上的导函数为()()2xf x f x '>,所以在()0,∞+上()0g x '>,即()2()f x g x x=在()0,∞+上为增函数. 所以()()()()22202220212022202120222021f f g g >⇒>,即()()222021202220222021f f >.故选:A.2.已知定义在R 上的偶函数()f x ,其导函数为()f x ',若()2()0xf x f x '->,(3)1f -=,则不等式()19f x x x <的解集是( ) A .(,3)(0,3)-∞-B .()3,3-C .(3,0)(0,3)-⋃D .(,3)(3,)-∞-⋃+∞【答案】A 【分析】根据题目中信息其导函数为()f x ',若()2()0xf x f x '->可知,需构造函数2()()f x g x x =, 利用导函数判断函数()g x 的单调性,利用函数()g x 的单调性、奇偶性来解题,当0x > 时,即2()19f x x <,1()9g x <,当0x < 时,即2()19f x x >,1()9g x >. 【详解】构造函数2()()f x g x x =,43'()2()'()2()'()xf x f x xf x f x g x x x x --=⋅= , 当0x > 时,()2()0xf x f x '->,故'()0g x >,()g x 在(0,)+∞ 上单调递增, 又()f x 为偶函数,21y x =为偶函数, 所以2()()f x g x x =为偶函数,在,0()-∞ 单调递减. (3)1f -=,则(3)1f =,231(3)(3)39f g g -===(); ()19f x x x <, 当0x > 时,即2()19f x x <,1()(3)9g x g <=,所以(0,3)x ∈ ; 当0x < 时,即2()19f x x >,1()(3)9g x g >=-,所以(,3)x ∈-∞-. 综上所述,(,3)(0,3)x ∈-∞-⋃.故选:A 【点睛】需对题中的信息联想到构造函数利用单调性解不等式,特别是分为当0x > 时, 当0x < 时两种情况,因为两边同时除以x ,要考虑其正负.3.定义在R 上的连续函数()f x 的导函数为()'f x ,且cos ()(cos sin )()xf x x x f x '<+成立,则下列各式一定成立的是( ) A .(0)0f =B .(0)0f <C .()0f π>D .02f ⎛⎫=⎪⎝⎭π【答案】C 【分析】设cos () ()e xx f x g x ⋅=,由条件可得()0g x '<,即()g x 在R 上单调递减,且02g π⎛⎫= ⎪⎝⎭,由此卡判断选项A ,B , C , 将2x π=代入条件可得02f π⎛⎫>⎪⎝⎭,可判断选项D. 【详解】由题可得cos ()sin ()cos ()xf x xf x xf x '-<,所以(cos ())cos ()xf x xf x '<,设cos () ()e x x f x g x ⋅=则(cos ())cos ()()0e xxf x xf x g x '-'=<, 所以()g x 在R 上单调递减,且02g π⎛⎫=⎪⎝⎭由(0)()2g g g ππ⎛⎫>>⎪⎝⎭可得() (0)0e f f ππ>>-, 所以(0)0f >,()0f π>,所以选项A 、B 错误,选项C 正确.把2x π=代入cos ()(cos sin )()xf x x x f x '<+,可得02f π⎛⎫> ⎪⎝⎭,所以选项D 错误,故选:C . 【点睛】关键点睛:本题考查构造函数,判断函数单调性判断函数值的符号,解答本题的关键是根据题意构造函数cos () ()e xx f x g x ⋅=,由条件得出其单调性,根据02g π⎛⎫= ⎪⎝⎭,判断选项,属于难题.变式:1.已知定义在0,2π⎛⎫⎪⎝⎭的函数()f x 的导函数为()f x ',且满足()()sin cos 0f x x f x x '-<成立,则下列不等式成立的是( )A64f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭B.36f ππ⎫⎫⎛⎛<⎪ ⎪⎝⎝⎭⎭C43ππ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭D.234f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭【答案】B 【分析】 构造函数()()sin f x g x x=,求导后可确定其单调性,利用单调性比较大小可判断各选项. 【详解】设()()sin f x g x x =,则2()sin ()cos ()0sin f x x f x x g x x -''=<,所以()g x 在0,2π⎛⎫⎪⎝⎭上是减函数, 所以()()64sin sin 64f f ππππ>()()64f ππ>,A 错;()()63sin sin 63f f ππππ>()()63f ππ>,B 正确; ()()34sin sin43f f ππππ>()()43ππ>,C 错;3f π⎛⎫ ⎪⎝⎭3π⎛⎫ ⎪⎝⎭与23f π⎛⎫ ⎪⎝⎭大小不确定,D 不能判断.故选:B . 【点睛】关键点点睛:本题考查比较大小问题,解题关键是构造新函数()()sin f x g x x=,由导数确定其单调性,从而可比较函数值大小.变式:2。
导数压轴题十种构造方法大全以及解题方法导引
导数压轴题十种构造方法大全以及解题方法导引方法一 等价变形,转化构造 方法导读研究函数的性质是高考压轴题的核心思想,但直接构造或者简单拆分函数依然复杂,这时候需要依赖对函数的等价变形,通过恒等变形发现简单函数结构再进行构造研究,会起到事半功倍的效果。
方法导引例1 已知函数f(x)=a e x (a ∈R ),g(x)=lnx x+1.(1)求函数g(x)的极值;(2)当a ≥1e 时,求证:f(x)≥g(x). 解析:(1)由g (x )=ln x x+1,得g ′(x )=1−ln x x 2,定义域为(0,+∞).令g ′(x )=0,解得x =e , 列表如下:结合表格可知函数g (x )的极大值为g (e )=1e +1,无极小值. (2)要证明f (x )≥g (x ),即证ae x ≥ln x x+1,而定义域为(0,+∞),所以只要证axe x −ln x −x ≥0,又因为a ≥1e,所以axe x −ln x −x ≥1exe x −ln x −x , 所以只要证明1e xe x −ln x −x ≥0.令F (x )=1e xe x −ln x −x ,则F ′(x )=(x +1)(e x−1−1x ), 记ℎ(x )=e x−1−1x ,则ℎ(x )在(0,+∞)单调递增且ℎ(1)=0,所以当x ∈(0,1)时,ℎ(x )<0,从而F ′(x )<0;当x ∈(1,+∞)时,ℎ(x )>0,从而F ′(x )>0,即F (x )在(0,1)单调递减,在(1,+∞)单调递增,F (x )≥F (1)=0. 所以当a ≥1e 时,f (x )≥g (x ).例2已知a ∈R ,a ≠0,函数f (x ) =e ax -1-ax ,其中常数e =2.71828.(1)求f (x ) 的最小值;(2)当a ≥1时,求证:对任意x >0 ,都有xf (x ) ≥ 2ln x +1-ax 2. 解析:(1)因为()1ax f x eax -=-,则()()11ax f x a e -'=-,()210ax f x a e -'=>'故()f x '为R 上的增函数,令()0f x '=,解得1x a= 故当()1,,0x f x a ⎛⎫∈-∞< '⎪⎝⎭,()f x 单调递减; 当()1,,0x f x a ⎛⎫∈+∞>'⎪⎝⎭,()f x 单调递增, 则()10min f x f a ⎛⎫==⎪⎝⎭故函数()f x 的最小值为0.(2)证明:要证明xf (x ) ≥ 2ln x +12ax - 等价于证明121ax xe lnx -≥+由(1)可知:10ax e ax --≥,即1ax e ax -≥ 因为0x >,故12ax xe ax -≥ 故等价于证明221ax lnx ≥+即()2210,0,ax lnx x --≥∈+∞令()221g x ax lnx =--,即证()()0,0,g x x ≥∈+∞恒成立.又())21122g x ax x x+-=-='令()0g x '=,解得x =故当(),0x g x⎛'∈< ⎝,()g x 单调递减; 当(),0x g x⎫∈+∞>'⎪⎭,()g x 单调递增;故()2g x g lna≥== 有因为1a ≥,故0lna ≥ 故()0g x lna ≥≥即证.即对任意x >0 ,都有xf (x ) ≥ 2ln x +1-ax 2. 方法二:构造常见典型函数 方法导读常见典型函数主要包括xlnx ,x/lnx ,lnx/x ; xe x ,xe x ,e x /x 等,通过变形发现简单函数结构再进行构造研究,会起到事半功倍的效果。
构造函数(含答案)
构造函数常见构造函数方法:1.利用和差函数求导法则构造(1))()()()0(0)()(x g x f x F x g x f +=⇒<>'+'或; (2))(-)()()0(0)(-)(x g x f x F x g x f =⇒<>''或; (3)kx x f x F k x f -=⇒<>')()()(k )(或; 2.利用积商函数求导法则构造(1))()()()0(0)()()(g )(x g x f x F x g x f x x f =⇒<>'+'或; (2))0)(()(g )()()0(0)()(-)(g )(≠=⇒<>''x g x x f x F x g x f x x f 或; (3))()()0(0)()(x x xf x F x f x f =⇒<>+'或; (4))0(x)()()0(0)(-)(x ≠=⇒<>'x x f x F x f x f 或; (5))()()0(0)(n )(x x f x x F x f x f n=⇒<>+'或; (6))0(x)()()0(0)(n -)(x n ≠=⇒<>'x x f x F x f x f 或; (7))(e )()0(0)()(x f x F x f x f x=⇒<>+'或; (8))0(e )()()0(0)(-)(x≠=⇒<>'x x f x F x f x f 或; (9))(e )()0(0)(k )(x f x F x f x f kx=⇒<>+'或; (10))0(e)()()0(0)(k -)(k x≠=⇒<>'x x f x F x f x f 或; (11))(sin )()0(0tanx )()(x xf x F x f x f =⇒<>'+或;(12))0(sin sinx )()()0(0tan )(-)(≠=⇒<>'x x f x F x x f x f 或; (13))0(cos cos )()()0(0)(tanx )(≠=⇒<>+'x xx f x F x f x f 或; (14))(cos )()0(0)(tanx -)(x f x F x f x f =⇒<>'或;(15)()+lna ()0(0)()()xf x f x F x a f x '><⇒=或;(16)()()lna ()0(0)()x f x f x f x F x a '-><⇒=或;考点一。
导数利器——导数比大小十三种题型(精简版)
1导数技巧:比大小对数函数基础构造1:x ln x 型【典例分析】1(2022·全国·高三专题练习)已知a ,b ,c ∈1e ,+∞ ,且ln5a =-5ln a ,ln3b=-3ln b ,ln2c =-2ln c ,则()A.b <c <aB.c <b <aC.a <c <bD.a <b <c答案A解析【分析】构造函数f (x )=x ln x ,根据单调性即可确定a ,b ,c 的大小.【详解】设函数f (x )=x ln x ,f (x )=1+ln x ,当x ∈1e ,+∞ ,f (x )>0,此时f (x )单调递增,当x ∈0,1e,f (x )<0,此时f (x )单调递减,由题ln5a =-5ln a ,ln3b=-3ln b ,ln2c =-2ln c ,得a ln a =15ln 15,b ln b =13ln 13,c ln c =12ln 12=14ln 14,因为15<14<13<1e ,所以15ln 15>14ln 14>13ln 13,则a ln a >c ln c >b ln b ,且a ,b ,c ∈1e ,+∞ ,所以a >c >b .故选:A .【变式演练】1.(2022·全国·高三专题练习)已知a =810,b =99,c =108,则a ,b ,c 的大小关系为()A.b >c >aB.b >a >cC.a >c >bD.a >b >c答案D解析【分析】构造函数f x =18-x ln x ,x ≥8,求其单调性,从而判断a ,b ,c 的大小关系.【详解】构造f x =18-x ln x ,x ≥8,f x =-ln x +18x -1,f x =-ln x +18x -1在8,+∞ 时为减函数,且f 8 =-ln8+94-1=54-ln8<54-ln e 2=54-2<0,所以f x =-ln x +18x-1<0在8,+∞ 恒成立,故f x =18-x ln x 在8,+∞ 上单调递减,所以f 8 >f 9 >f 10 ,即10ln8>9ln9>8ln10,所以810>99>108,即a >b >c .故选:D2.(2022·四川宜宾·二模(文))已知a =1010,b =911,c =119,则a ,b ,c 的大小关系为()A.c <a <bB.b <a <cC.a <b <cD.c <b <a答案A解析【分析】先构造函数f (x )=20-x ln x x ≥9 ,求导确定函数单调性,即可判断a ,b ,c 的大小.【详解】令f (x )=20-x ln x x ≥9 ,则f (x )=-ln x +20-x ⋅1x =-ln x +20x-1,显然当x ≥9时,f (x )是减函数且f (9)=-ln9+209-1<0,故f (x )是减函数,f (9)>f (10)>f (11),即11ln9>10ln10>9ln11,ln911>ln1010>ln119,可得911>1010>119,即c <a <b .故选:A .3.(2022·安徽·淮南第一中学一模(理))设a =15ln13,b =14ln14,c =13ln15,则()A.a >c >bB.c >b >aC.b >a >cD.a >b >c答案D2解析【分析】构造函数f x =14+x ln 14-x ,利用函数f x 的导数讨论函数f x 的单调性.【详解】令f x =14+x ln 14-x ,x ∈-1,1 ,则f x =ln 14-x -14+x 14-x <ln15-1315<0,所以f x =14+x ln 14-x 在-1,1 上单调递增,所以f -1 <f 0 <f 1 ,即13ln15<14ln14<15ln13,所以,a >b >c 故选:D【题型二】对数函数基础构造2:x ln x型【典例分析】2(2022·全国·模拟预测)已知1<a <b <e ,有以下结论:①a b <b a ;②b a >e abe ;③a a <e abe ;④a b <e abe ,则其中正确的个数是()A.1个B.2个C.3个D.4个答案C解析【分析】构造f x =ln xx,x ∈1,e ,利用导函数得到其单调性,从而比较出①,②,在①的基础上得到④的正误,根据g x =a x 的单调性及④得到③的正误..【详解】设f x =ln x x ,x ∈1,e ,则f x =1-ln x x 2>0在x ∈1,e 上恒成立,所以f x =ln xx 在x ∈1,e 上单调递增,因为1<a <b <e ,所以ln a a <ln bb,即b ln a <a ln b ,因为y =ln x 单调递增,所以a b <b a ,①正确;ln b b <ln e e =1e ,即a ln b <abe ,因为y =ln x 单调递增,所以b a <e ab e ,②错误;因为a b <b a ,所以a b <e abe ,④正确;因为g x =a x 单调递增,1<a <b <e 所以a a <a b ,所以a a <e ab e ,③正确.故选:C【变式演练】1.(2022·全国·高三专题练习)a =3(2-ln3)e2,b =1e ,c =ln33,则a ,b ,c 的大小顺序为()A.a <c <bB.c <a <bC.a <b <cD.b <a <c答案A解析【分析】构造函数f (x )=ln x x ,应用导数研究其单调性,进而比较a =f e 23 ,b =f (e ),c =f (3)的大小,若t =ln xx有两个解x 1,x 2,则1<x 1<e <x 2,t ∈0,1e ,构造g (x )=ln x -2(x -1)x +1(x >1),利用导数确定g (x )>0,进而得到ln x 2-ln x 1x 2-x 1>2x 2+x 1,即可判断a 、c 的大小,即可知正确选项.【详解】令f (x )=ln x x ,则a =f e 23 =lne 23e23,b =f (e )=ln e e ,c =f (3)=ln33,而f(x )=1-ln x x 2且x >0,即0<x <e 时f (x )单调增,x >e 时f (x )单调减,又1<e 23<e <3,∴b >c ,b >a .若t =ln x x 有两个解x 1,x 2,则1<x 1<e <x 2,t ∈0,1e ,即t =ln x 2-ln x 1x 2-x 1,x 1+x 2=ln x 1x 2t,令g (x )=ln x -2(x -1)x +1(x >1),则g(x )=(x -1)2x (x +1)2>0,即g (x )在(1,+∞)上递增,∴g (x )>g (1)=0,即在(1,+∞)上,ln x >2(x -1)x +1,若x =x 2x 1即ln x 2-ln x 1x 2-x 1>2x 2+x 1,故t >2tln x 1x 2,有x 1x 2>e 23∴当x 2=3时,e >x 1>e 23,故f e 23<f (x 1)=f (3),综上:b >c >a .故选:A 2.(2022·湖北·宜都二中高三开学考试)已知a =4ln5π,b =5ln4π,c =5lnπ4,则a ,b ,c 的大小关系是()A.c <a <bB.a <b <cC.a <c <bD.c <b <a答案B解析【分析】令f x =ln xxx ≥e ,利用导数判断f x 在e ,+∞ 上的单调性,即可得a ,b ,c 的大小关系.【详解】令f x =ln x x x ≥e ,可得f x =1x ⋅x -ln xx =1-ln xx,当x ≥e 时,f x ≤0恒成立,所以f x =ln xx在e ,+∞ 上单调递减,所以f π >f 4 >f 5 ,即lnππ>ln44>ln55,可得4lnπ>πln4,5ln4>4ln5,所以lnπ4>ln4π,5πln4>4πln5,所以5lnπ4>5ln4π,5ln4π>4ln5π,即c >b ,b >a .所以a <b <c .故选:B .3.(2022·全国·高三专题练习(理))设a =20202022,b =20212021,c =20222020,则()A.a >b >cB.b >a >cC.c >a >bD.c >b >a答案A解析【分析】由于ln a ln b=ln20202021ln20212022,所以构造函数f x =ln x x +1x ≥e 2,利用导数判断其为减函数,从而可比较出f 2020 >f 2021 >0,进而可比较出a ,b 的大小,同理可比较出b ,c 的大小,即可得答案【详解】∵ln a ln b =2022ln20202021ln2021=ln20202021ln20212022,构造函数f x =ln x x +1x ≥e 2,f x =x +1-x ln x x x +1 2,令g x =x +1-x ln x ,则gx =-ln x <0,∴g x 在e 2,+∞ 上单减,∴g x ≤g e 2 =1-e 2<0,故f x <0,∴f x 在e 2,+∞ 上单减,∴f 2020 >f 2021 >0,∴ln aln b =f 2020 f 2021>1∴ln a >ln b .∴a >b ,同理可得ln b >ln c ,b >c ,故a >b >c ,故选:A【题型三】指数函数基础构造【典例分析】3设正实数a ,b ,c ,满足e 2a =b ln b =ce c =2,则a ,b ,c 的大小关系为()A.a <b <cB.a <c <bC.c <a <bD.b <a <c答案B 解析【分析】通过构造函数f (x )=xe x (x >0),利用导数判断函数的单调性,并判断c 的范围,通过变形得b =e c ,得b ,c 的大小关系,再直接解方程求a 的范围,最后三个数比较大小.【详解】设f (x )=xe x (x >0),x >0时,f x =x +1 e x >0恒成立,f (x )在(0,+∞)单调递增,x ∈12,1时,f (x )∈e2,e,而e 2<2,所以c ∈12,1 ,b ln b =ln b ⋅e ln b =ce c ,故ln b =c ,即b =e c ∈(e ,e ),而a =ln22<12,所以a <c <b .故选:B 【变式演练】1.已知a,b,c∈R.满足3b ln b=2a ln a=-2c ln c<0.则a,b,c的大小关系为().A.c>a>bB.a>c>bC.c>b>aD.b>a>c答案A解析【分析】根据指数函数值域可确定c>1,a,b∈0,1;构造函数f x =2xln x0<x<1,利用导数可知f x 在0,1上单调递减,利用2aln a=3bln b<2bln b可知b<a,由此可得结果.【详解】∵3b>0,2a>0,2c>0,∴ln b<0,ln a<0,ln c>0,∴0<b<1,0<a<1,c>1;∵3b>2b>0,ln b<0,∴2a ln a=3b ln b<2b ln b,令f x =2xln x0<x<1,则f x =2x ln2⋅ln x-2x xln x2=2x ln2⋅ln x-1xln x2,当0<x<1时,ln x<0,-1x<0,∴f x <0,∴f x 在0,1上单调递减,∵2a ln a<2b ln b,即f a <f b ,∴b<a,∴c>a>b.故选:A.2.已知a+2a=2,b+3b=2,则b lg a与a lg b的大小关系是()A.b lg a<a lg bB.b lg a=a lg bC.b lg a>a lg bD.不确定答案C解析【分析】令f x =x+2x,g x =x+3x,结合题意可知0<b<a<1,进而有a b>b b>b a,再利用对数函数的单调性和运算性质即可求解【详解】令f x =x+2x,g x =x+3x,则当x>0时,g x >f x ,当x<0时,g x <f x ;由a+2a=2,b+3b=2,得f a =2,g b =2考虑到f a =g b =2得0<b<a<1,∴a b>b b>b a由a b>b a,得lg a b >lg b a ,即b lg a>a lg b故选:C3.已知实数a=32e12,b=43e23,c=87e67,(e为自然对数的底数)则a,b,c的大小关系为()A.a<b<cB.b<c<aC.c<b<aD.b<a<c答案A解析【分析】由已知实数的形式构造函数f(x)=x+1x ex-1x,即有a=f(2),b=f(3),c=f(7),利用导数研究f(x)的单调性,再比较对应函数值的大小即可.【详解】由题意,令f(x)=x+1x ex-1x,则a=f(2),b=f(3),c=f(7),而f (x)=e x-1xx3,所以x>0时f(x)>0,即f(x)在(0,+∞)上单调递增,∴f(2)<f(3)<f(7),即a<b<c,故选:A【题型四】“取对数”法45【典例分析】4(2023·全国·高三专题练习)已知a =2ln7,b =3ln6,c =4ln5,则()A.b <c <aB.a <b <cC.b <a <cD.a <c <b答案B解析【分析】对a ,b ,c 取对数,探求它们的结构特征,构造函数f x =ln x ⋅ln 9-x (2≤x ≤4),借助导数判断单调性即可作答.【详解】对a ,b ,c 取对数得:ln a =ln2⋅ln7,ln b =ln3⋅ln6,ln c =ln4⋅ln5,令f x =ln x ⋅ln 9-x (2≤x ≤4),f x =ln 9-x x -ln x9-x =9-x ln 9-x -x ln x x 9-x ,令g (x )=x ln x ,x >1,g (x )=ln x +1>0,即g (x )=x ln x 在(1,+∞)上单调递增,由2≤x ≤4得,9-x ≥5>x >1,于是得9-x ln 9-x >x ln x ,又x 9-x >0,因此,f x >0,即f x 在2,4 上单调递增,从而得f 2 <f 3 <f 4 ,即ln2ln7<ln3ln6<ln4ln5,ln a <ln b <ln c ,所以a <b <c .故选:B【变式演练】1.(2021·全国·高三专题练习)已知实数a ,b ,c ∈0,e ,且3a =a 3,4b =b 4,5c =c 5,则()A.c <b <aB.b <c <aC.a <c <bD.a <b <c答案A解析【分析】将已知的等式两边取对数可得ln33=ln a a ,ln44=ln b b,ln55=ln c c .设函数f x =ln x x ,求导,分析导函数的正负,得出所令函数的单调性,由此可得选项.【详解】由3a =a 3,4b =b 4,5c =c 5得a ln3=3ln a ,b ln4=4ln b ,c ln5=5ln c ,因此ln33=ln a a ,ln44=ln b b,ln55=ln cc .设函数f x =ln xx,则f 3 =f a ,f 4 =f b ,f 5 =f c ,f x =1-ln xx2,令f x =0,得x =e ,所以f x 在0,e 上单调递增,在e ,+∞ 上单调递减,所以f 3 >f 4 >f 5 ,即f a >f b >f c ,又a ,b ,c ∈0,e ,所以a >b >c ,故选:A .2.(2022·全国·高三专题练习)已知a =3.93.9,b =3.93.8,c =3.83.9,d =3.83.8,则a ,b ,c ,d 的大小关系为()A.d <c <b <aB.d <b <c <aC.b <d <c <aD.b <c <d <a答案B解析【分析】构造函数f x =ln xx,利用导数判断函数的单调性,可得f 3.9 <f (3.8),从而可得3.93.8<3.83.9,再由y =x 3.8在0,+∞ 上单调递增,即可得出选项.【详解】构造函数f x =ln x x ,则f x =1-ln xx 2,当x ∈e ,+∞ 时,f x <0,故f x=ln xx在x ∈e ,+∞ 上单调递减,所以f 3.9 <f (3.8),所以ln3.93.9<ln3.83.8,3.8ln3.9<3.9ln3.8所以ln3.93.8<ln3.83.9,3.93.8<3.83.9,因为y =x 3.8在0,+∞ 上单调递增,所以3.83.8<3.93.8,同理3.83.9<3.93.9,所以3.83.8<3.93.8<3.83.9<3.93.9,故选:B3.已知55<84,134<85,设a =log 53,b =log 85,c =log 138,找出这三个数大小关系答案a <b <c 解析【分析】把a ,b ,c 用换底公式变形,已知不等关系及53>34,83<54也取对数后,可把a ,b ,c 与中间值比较大小,从而得出结论.【详解】6由已知a =lg3lg5,b =lg5lg8,c =lg8lg13,又55<84,则5lg5<4lg8,∴b =lg5lg8<45,134<85,则4lg13<5lg8,c =lg8lg13>45,又53=125>81=34,∴3lg5>4lg3,a =lg3lg5<34,而83=512<625=54,∴3lg8<4lg5,b =lg5lg8>34,综上有a <b <c .故答案为:a <b <c .【题型五】指数切线构造:e x -x +1【典例分析】5(2022·江西·南昌市八一中学三模(理))设a =1101,b =ln1.01,c =e 0.01-1,则()A.a <b <cB.b <c <aC.b <a <cD.c <a <b答案A解析【分析】观察式子的结构,进而设x =1.01,然后构造函数,随即通过求解函数的单调性得到答案.【详解】设x =1.01,所以a =1-1x,b =ln x ,c =e x -1-1,设f x =e x -x +1 x >1 ,则f x =e x -1>0,所以f x 在(1,+∞)单调递增,所以f x >f 1 =e 2-2>0⇒e x -x +1 >0⇒e x >x +1⋯①,所以e x -1>x ⋯②,由①,x >ln x +1 ⇒x -1>ln x ⇒1x -1>ln x -1⇒1x -1>-ln x ⇒ln x >1-1x⋯③,由②,x -1>ln x ⋯④,由②④,e x -1-1>x -1>ln x ,则c >b ,由③,b >a ,所以c >b >a .故选:A .【提分秘籍】基本规律指数和对数切线放缩法基础图【变式演练】71.(2022·河南·模拟预测(理))已知a =1.2,b =119,c =e 0.2,则()A.a <b <cB.c <a <bC.a <c <bD.c <b <a答案C解析【分析】构造函数f (x )=e x -x -1x >0 ,g (x )=(x +1)e -x -(1-x )e x (0<x <1),利用导数研究函数的单调性,得出f x ,g x 的单调性,得出e x >x +1(x >0),令x =0.2,可得出a <c ,再由得出的e 2x <1+x1-x(0<x <1),令x =0.1,得出c <b ,从而得出结果.【详解】解:先证e x >x +1(x >0),令f (x )=e x -x -1x >0 ,则f (x )=e x -1>0,可知f x 在0,+∞ 上单调递增,所以f x >f 0 =0,即e x >x +1(x >0),令x =0.2,则e 0.2>1.2,所以a <c ;再证e 2x <1+x1-x(0<x <1)即证(x +1)e -x >(1-x )e x ,令g (x )=(x +1)e -x -(1-x )e x (0<x <1),则g x =x e x -e -x >0,所以g x 在0,1 上单调递增,所以g x >g 0 =0,即e 2x <1+x1-x(0<x <1),令x =0.1,则e 0.2<119,所以c <b ,从而a <c <b .故选:C . 2.(2022·广东·深圳外国语学校高三阶段练习)已知a =e 0.05,b =ln1.12+1,c = 1.1,则()A.a >b >cB.c >b >aC.b >a >cD.a >c >b答案D解析【分析】利用导数可求得e x >x +1,ln x ≤x -1;分别代入x =0.1和x =1.1,整理可得a ,b ,c 的大小关系.【详解】令f x =e x -x -1x >0 ,则f x =e x -1>0,∴f x 在0,+∞ 上单调递增,∴f x >f 0 =0,即e x >x +1,∴e 0.1>1.1,∴e 0.05> 1.1,即a >c ;令g x =ln x -x +1,则g x =1x -1=1-xx,∴当x ∈0,1 时,g x >0;当x ∈1,+∞ 时,g x <0;∴g x 在0,1 上单调递增,在1,+∞ 上单调递减,∴g x ≤g 1 =0,∴ln x ≤x -1(当且仅当x =1时取等号),∴ln x ≤x -1,即ln x 2+1≤x (当且仅当x =1时取等号),∴ln1.12+1< 1.1,即b <c ;综上所述:a >c >b .故选:D .3.(2022·全国·高三专题练习)已知a =1101,b =e -99100,c =ln 101100,则a ,b ,c 的大小关系为()A.a <b <cB.a <c <bC.c <a <bD.b <a <c答案B解析【解析】首先设f x =e x-x -1,利用导数得到e x>x +1x ≠0 ,从而得到b =e-99100>-99100+1=1100>1101=a ,设g x =ln x -x +1,利用导数得到ln x <x -1x ≠1 ,从而得到b >c 和c >a ,即可得到答案.【详解】设f x =e x -x -1,f x =e x -1,令f x =0,解得x =0.x ∈-∞,0 ,f x <0,f x 为减函数,x ∈0,+∞ ,f x >0,f x 为增函数.所以f x ≥f 0 =0,即e x -x -1≥0,当且仅当x =0时取等号.所以e x >x +1x ≠0 .故b =e -99100>-99100+1=1100>1101=a ,即b >a .设g x =ln x -x +1,g x =1x -1=1-xx,令g x =0,解得x =1.x ∈0,1 ,g x >0,g x 为增函数,x ∈1,+∞ ,g x <0,g x 为减函数.所以g x ≤g 1 =0,即ln x -x +1≤0,当且仅当x =1时取等号.所以ln x <x -1x ≠1 .所以c =ln 101100<101100-1=1100,又因为b >1100,所以b >c .8又因为-ln x >-x +1x ≠1 ,所以c =ln 101100=-ln 100101>-100101+1=1101=a ,即c >a ,综上b >c >a .故选:B【题型六】对数切线构造【典例分析】6(2022·江苏·阜宁县东沟中学模拟预测)已知a >12且2a =e a -12,b >13且3b =e b -13,c >14且4c =e c -14,则()A.ln a bc <ln b ac <ln cabB.ln a bc <ln c ab<ln bac C.ln c ab <ln b ac <ln a bc D.ln b ac <ln a bc <ln c ab答案A解析【分析】对已知的等式进行变形,转化成结构一致,从而构造函数,确定构造的函数的性质,得到a 、b 、c 的大小,再根据选项构造函数,借助函数的单调性比较大小即可.【详解】由已知条件,对于2a =e a -12,两边同取对数,则有ln2+ln a =a -12,即a -ln a =12+ln2=12-ln 12,同理:b -ln b =13-ln 13;c -ln c =14-ln 14构造函数f x =x -ln x ,则f a =f 12 ,f b =f 13 ,f c =f 14 .对其求导得:f x =x -1xx >0∴当0<x <1时,f x <0,f x 单调递减;当x >1时,f x >0,f x 单调递增;又∵a >12,b >13,c >14∴1<a <b <c 再构造函数g x =x ln x ,对其求导得:g x =ln x +1x >0∴当0<x <1e 时,g x <0,g x 单调递减;当x >1e时,g x >0,g x 单调递增;∴g a <g b <g c 即:a ln a <b ln b <c ln c 又∵abc >0∴ln a bc <ln b ac <ln cab .故选:A .【提分秘籍】基本规律指数和对数放缩法基础图【变式演练】1.(2022·山西运城·高三期末(理))已知a ,b ,c ∈0,+∞ ,且e a -e -12=a +12,e b -e -13=b +13,e c -e -15=c +15,则()A.a <b <cB.a <c <bC.c <b <aD.b <c <a答案C解析【分析】构造函数f x =e x -x ,利用导函数可得函数的单调性,又f a =f -12 ,f b =f -13,f c =9f -15,a ,b ,c >0,即得.【详解】由题可得e a -a =e-12+12,e b -b =e -13+13,e c -c =e -15+15.令f x =e x -x ,则f x =e x -1,令fx =0,得x =0,∴x ∈0,+∞ 时,f x >0,f x 在0,+∞ 上单调递增,x ∈-∞,0 时,f x <0,f x 在-∞,0 上单调递减,又f a =f -12,f b =f -13 ,f c =f -15 ,a ,b ,c >0,由-12<-13<-15,可知f -12 >f -13 >f -15 即f a >f b >f c ,∴c <b <a .故选:C .2.(2021·四川·双流中学高三阶段练习(理))已知a -4=ln a 4≠0,b -5=ln b 5≠0,c -6=ln c6≠0,则()A.c <b <aB.b <c <aC.a <b <cD.a <c <b答案A解析【分析】根据给定条件构造函数f (x )=x -ln x (x >0),探讨函数的单调性,借助单调性进行推理即可得解.【详解】令函数f (x )=x -ln x (x >0),则f (x )=1-1x =x -1x,则有f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,且x 趋近于0和趋近于正无穷大时,f (x )值都趋近于正无穷大,由a -4=ln a4≠0得,a -ln a =4-ln4,即f (a )=f (4),且a ≠4,显然0<a <1,若a ≥1,而f (x )在(1,+∞)上单调递增,由f (a )=f (4)必有a =4与a ≠4矛盾,因此得0<a <1,同理,由b -5=ln b5≠0得f (b )=f (5),且b ≠5,并且有0<b <1,由c -6=ln c6≠0得f (c )=f (6),且c ≠6,并且有0<c <1,显然有f (4)<f (5)<f (6),于是得f (a )<f (b )<f (c ),又f (x )在(0,1)上单调递减,所以c <b <a .故选:A3.(2022·全国·高三专题练习)已知e ≈ 2.71828是自然对数的底数,设a =3-3e ,b =2-2e,c =e 2-1-ln2,则()A.a <b <cB.b <a <cC.b <c <aD.c <a <b答案A解析【分析】首先设f x =x -xe ,利用导数判断函数的单调性,比较a ,b 的大小,设利用导数判断e x ≥x +1,放缩c >2-ln2,再设函数g x =xe -ln x ,利用导数判断单调性,得g 2 >0,再比较b ,c 的大小,即可得到结果.【详解】设f x =x -x e ,f x =12x-1e ,10当0≤x <e 24时,f x >0,函数单调递增,当x >e 24时,f x <0,函数单调递减,a =f 3 ,b =f 2 ,e 24<2<3时,f 3 <f 2 ,即a <b ,设y =e x -x -1,y =e x -1,-∞,0 时,y <0,函数单调递减,0,+∞ 时,y >0,函数单调递增,所以当x =0时,函数取得最小值,f 0 =0,即e x ≥x +1恒成立,即e2-1>2,令g x =x e -ln x ,g x =1e -1x,x ∈0,e 时,g x <0,g x 单调递减,x ∈e ,+∞ 时,g x >0,g x 单调递增,x =e 时,函数取得最小值g e =0,即g 2 >0,得:2e >ln2,那么2-2e<2-ln2,即e 2-1-ln2>2-ln2>2-2e,即b <c ,综上可知a <b <c 故选:A 【题型七】反比例构造:ln x <2(x -1)x +1型【典例分析】7(2022·江苏·金陵中学二模)设a =e 1.1-27,b = 1.4-1,c =2ln1.1,则()A.a <b <cB.a <c <bC.b <a <cD.c <a <b答案A解析【分析】利用幂函数和指数函数的性质判断的范围,a 利用基本不等式判断b 的范围,构造新函数并利用导数讨论函数的单调性求出c 的范围,进而得出结果.【详解】由e 3<28,得e 3<28,即e 32<27,所以e 1.1<e 1.5=e 32,所以e 1.1<27,则e 1.1-27<0,即a <0;由 1.4-1= 1.41.2×1.2-1<1.41.2+1.22-1<0.184,即b <0.184;设f (x )=ln x -2(x -1)x +1(x >0),则f(x )=1x -4(x +1)2=(x -1)2x (x +1)2≥0,所以f (x )在(0,+∞)上单调递增,且f (1)=0,所以当x ∈(1,+∞)时f (x )>0,即ln x >2(x -1)x +1,当x ∈(0,1)时f (x )<0,即ln x <2(x -1)x +1,又1.1>1,则ln1.1>21.1-11.1+1≈0.095,所以c =2ln1.1>0.19,即c >0.19,综上,a <b <c .故选:A【变式演练】1.(2022·全国·高三专题练习)若a =e 0.2,b = 1.2,c =ln3.2,则a ,b ,c 的大小关系为()A.a >b >cB.a >c >bC.b >a >cD.c >b >a答案B解析【分析】构造函数f x =e x -x -1x >0 ,利用导数可得a =e 0.2>1.2>b ,进而可得e 1.2>3.2,可得a >c ,再利用函数g x =ln x -2x -1x +1,可得ln3.2>1.1,即得.【详解】令f x =e x -x -1x >0 ,则f x =e x -1>0,∴f x 在0,+∞ 上单调递增,∴a =e 0.2>0.2+1=1.2> 1.2=b ,a =e 0.2>1.2=ln e 1.2,c =ln3.2,∵e 1.2 5=e 6> 2.7 6≈387.4,3.2 5≈335.5,∴e 1.2>3.2,故a >c ,设g x =ln x-2x-1x+1,则g x =1x-2x+1-2xx+12=x-12x x+12≥0,所以函数在0,+∞上单调递增,由g1 =0,所以x>1时,g x >0,即ln x>2x-1x+1,∴ln3.2=ln2+ln1.6>22-12+1+21.6-11.6+1=1539>1550=1.1,又1<1.2<1.21,1<b= 1.2<1.1,∴c>1.1>b,故a>c>b.故选:B.2.(2022·江西·模拟预测(理))设a=4(2-ln4)e2,b=1e,c=ln44,则a,b,c的大小顺序为()A.a<c<bB.c<a<bC.a<b<cD.b<a<c 答案A解析【分析】根据a、b、c的结构,构造函数f x =ln xx,利用导数判断单调性,即可比较出a、b、c的大小,得到正确答案.【详解】因为a=4(2-ln4)e2=ln e24e24,b=1e=ln ee,c=ln44构造函数f x =ln xx,则f x =1-ln xx2,a=fe24,b=f(e),c=f4 ,f(x)在(0,e)上递增,在(e,+∞)上递减.则有b=f(e)最大,即a<b,c<b.若t=ln x x有两个解,则1<x1<e<x2,t∈0,1e,所以ln x1=tx1,ln x2=tx2,所以ln x1-ln x2=tx1-tx2,ln x1+ln x2=tx1+tx2,即t=ln x2-ln x1x2-x1,ln x1x2=t x1+x2,令g x =ln x-2x-1x+1x>1,则g x =x-12x x+1>0,故g x 在1,+∞上单增,所以g x >g1 =0,即在1,+∞上,ln x>2x-1x+1.若x=x2x1,则有lnx2x1>2x2x1-1x2x1+1,即ln x2-ln x1x2-x1>2x2+x1.故t>2tln x1x2,所以x1x2>e2.当x2=4时,有e24<x1<e,故fe24<f x1 =f4所以a<c.综上所述:a<c<b.故选:A【题型八】“零点”构造法【典例分析】8(2022·广东广州·高三开学考试)设a=ln1.1,b=e0.1-1,c=tan0.1,d=0.4π,则()A.a<b<c<dB.a<c<b<dC.a<b<d<cD.a<c<d<b 答案B解析【分析】观察4个数易得均与0.1有关,故考虑a x =ln x+1,b x =e x-1,c x =tan x,d x =4πx在x=0.1时的大小关系,故利用作差法,分别构造相减的函数判断单调性以及与0的大小关系即可.【详解】设a x =ln x+1,b x =e x-1,c x =tan x,d x =4πx,易得a0 =b0 =c0 =d0 .设y=d x -b x =4πx-e x+1,则令y =4π-e x=0有x=ln4π,故y=d x -b x 在-∞,ln4π上单调递增.①因为4π10>43.210=54 10=2516 5>2416 5=32 5>e,即4π 10>e,故10ln4π>1,即ln4π>0.1,故d0.1-1112b 0.1 >d 0 -b 0 =0,即d >b .②设y =b x -c x =e x-1-tan x ,则y=e x-1cos 2x =e x cos 2x -1cos 2x,设f x =e x cos 2x -1,则f x =e x cos 2x -2sin x =e x -sin 2x -2sin x +1 .设g x =x -sin x ,则g x =1-cos x ≥0,故g x =x -sin x 为增函数,故g x ≥g 0 =0,即x ≥sin x .故f x ≥e x -x 2-2x +1 =e x -x +1 2+2 ,当x ∈0,0.1 时f x >0,f x =e x cos 2x -1为增函数,故f x ≥e 0cos 20-1=0,故当x ∈0,0.1 时y =b x -c x 为增函数,故b 0.1 -c 0.1 >b 0 -c 0 =0,故b >c .③设y =c x -a x =tan x -ln x +1 ,y =1cos 2x -1x +1=x +sin 2xx +1cos 2x ,易得当x ∈0,0.1 时y >0,故c 0.1 -a 0.1 >c 0 -a 0 =0,即c >a .综上d >b >c >a 故选:B【变式演练】1.(2020·北海市北海中学高三)已知x 1=ln 12,x 2=e -12,x 3满足e -x 3=ln x 3,则下列各选项正确的是A.x 1<x 3<x 2B.x 1<x 2<x 3C.x 2<x 1<x 3D.x 3<x 1<x 2答案B解析【详解】因为函数y =ln x 在0,+∞ 上单调递增,所以x 1=ln 12<ln1=0;0<x 2=e -12=1e12=1e=e e <1;因为x 3满足e -x3=ln x 3,即x 3是方程1ex-ln x =0的实数根,所以x 3是函数f x=1ex -ln x 的零点,函数f (x )在定义域内是减函数,因为f 1 =1e ,f e =1ee-1<0,所以函数有唯一零点,即x 3∈1,e .所以x 1<x 2<x 3.“跨界”构造:切、弦、指、对构造【典例分析】9(2022·湖北·宜城市第二高级中学高三开学考试)已知a =e 0.2-1,b =ln1.2,c =tan0.2,其中e =2.71828⋯为自然对数的底数,则()A.c >a >bB.a >c >bC.b >a >cD.a >b >c答案B解析【分析】观察a =e 0.2-1,b =ln1.2,c =tan0.2,发现都含有0.2,把0.2换成x ,自变量在(0,1)或其子集范围内构造函数,利用导数证明其单调性,比较a ,b ,c 的大小.【详解】令f (x )=e x-1-tan x =cos x e x -cos x -sin x cos x ,0<x <π4,令g (x )=cos x e x -cos x -sin x ,g (x )=(-sin x +cos x )e x +sin x -cos x =(e x -1)⋅(cos x -sin x ),当0<x <π4时,g (x )>0,g (x )单调递增,又g (0)=1-1=0,所以g (x )>0,又cos x >0,所以f (x )>0,在0,π4成立,所以f (0.2)>0即a >c ,令h (x )=ln (x +1)-x ,h (x )=1x +1-1=-x x +1,h (x )在x ∈0,π2为减函数,所以h (x )<h (0)=0,即ln (x +1)<x ,令m (x )=x -tan x ,m (x )=1-1cos 2x,m (x )在x ∈0,π2 为减函数,所以m (x )<m (0)=0,即x <tan x ,所以ln (x +1)<x <tan x ,x ∈0,π2成立,令x =0.2,则上式变为ln (0.2+1)<0.2<tan0.2,所以b <0.2<c 所以b <c ,所以b <c <a .13故答案为:B .【提分秘籍】基本规律比较难,需要结合数据寻找合适的构造函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第7讲 导数构造函数13类【题型一】 利用x nf (x )构造型【典例分析】函数()f x 是定义在区间(0,)+∞上的可导函数,其导函数为'()f x ,且满足'()2()0+>xf x f x ,则不等式(2016)(2016)5(5)52016x f x f x ++<+的解集为A .{}2011x x -B .{}|2011x x <-C .{}|20110x x -<<D .{}|20162011x x -<<-【答案】D 【详解】设2()()g x x f x =,则2'()2()'()['()2()]g x xf x x f x x xf x f x =+=+,由已知当0x >时,'()0g x >,()g x 是增函数,不等式(2016)(2016)5(5)52016x f x f x ++<+等价于22(2016)(2016)5(5)x f x f ++<,所以020165x <+<,解得20162011x -<<-.点睛:本题考查导数的综合应用,解题关键是构造新函数2()()g x x f x =,从而可以利用已知的不等式关系判断其导数的正负,以确定新函数的单调性,在构造新函数时,下列构造经常用:()()g x xf x =,()()f x g x x=,()()x g x e f x =,()()xf xg x e =,构造新函数时可结合所要求的问题确定新函数的形式.【变式演练】1.已知定义域为的奇函数的导函数为()f x ',当时,()()0f x f x x'+>,若,则的大小关系正确的是A .B .C .D .【答案】C 【解析】分析:构造函数()()g x xf x =,利用已知条件确定'()g x 的正负,从而得其单调性. 详解:设()()g x xf x =,则'()()'()g x f x xf x =+,∵()'()0f x f x x +>,即'()()'()0xf x f x g x x x+=>,∵当0x <时,)'(0g x <,当0x >时,'()0g x >,()g x 递增.又()f x 是奇函数,∵()()g x xf x =是偶函数,∵(2)(2)g g -=,1(ln )(ln 2)(ln 2)2g g g =-=,∵10ln 222<<<,∵1()(ln 2)(2)2g g g <<,即a c b <<.故选C .2.已知()f x 的定义域为0,,()'f x 为()f x 的导函数,且满足()()f x xf x '<-,则不等式()()()2111f x x f x +>--的解集是( )A .0,1B .2,C .1,2D .1,【答案】B 【分析】根据题意,构造函数()y xf x =,结合函数的单调性解不等式,即可求解. 【详解】根据题意,构造函数()y xf x =,()0,x ∈+∞,则()()0y f x xf x ''=+<, 所以函数()y xf x =的图象在()0,∞+上单调递减.又因为()()()2111f x x f x +>--,所以()()22(1)(1)11x f x x f x ++>--,所以2011x x <+<-,解得2x >或1x <-(舍).所以不等式()()()2111f x x f x +>--的解集是()2,+∞.故选:B.3.设函数()f x 在R 上可导,其导函数为()'f x ,且2()()0f x xf x '+>.则下列不等式在R 上恒成立的是( ) A .()0f x ≥ B .()0f x ≤ C .(x)x f ≥ D .()f x x ≤【答案】A 【分析】根据给定不等式构造函数2()()g x x f x =,利用导数探讨()g x 的性质即可判断作答. 【详解】依题意,令函数2()()g x x f x =,则2()2()()[2()()]g x xf x x f x x f x xf x '=+''=+, 因2()()0f x xf x '+>,于是得0x <时()0g x '<,0x >时()0g x '>, 从而有()g x 在(,0)-∞上单调递减,在(0,)+∞上单调递增,因此得:2,()()(0)0x R x f x g x g ∀∈=≥=,而(0)0f >,即f (x )不恒为0, 所以()0f x ≥恒成立.故选:A【题型二】 利用f (x )/x n构造型【典例分析】 函数()f x 在定义域0,内恒满足:①()0f x >,①()()()23f x xf x f x '<<,其中f x 为()f x 的导函数,则A .()()111422f f << B .()()1111628f f << C .()()111322f f << D .()()111824f f << 【答案】D 【详解】令()()2f xg x x =,()0,x ∈+∞,()()()32xf x f x g x x '-'=,∵()0,x ∀∈+∞,()()()23f x xf x f x '<<,∵()0f x >,0g x,∵函数()g x 在()0,x ∈+∞上单调递增,∵()()12g g <,即()()412f f <,()()1124f f <, 令()()3f x h x x =,()0,x ∈+∞,()()()43xf x f x h x x '-'=,∵()0,x ∀∈+∞,()()()23f x xf x f x '<<,()0h x '<, ∵函数()h x 在()0,x ∈+∞上单调递减,∵()()12h h >,即()()218f f >,()()1182f f <,故选D.【变式演练】1.已知定义在R 上的偶函数()f x ,其导函数为()f x ',若()2()0xf x f x '->,(3)1f -=,则不等式()19f x x x <的解集是( ) A .(,3)(0,3)-∞- B .()3,3-C .(3,0)(0,3)-⋃D .(,3)(3,)-∞-⋃+∞【答案】A【分析】根据题目中信息其导函数为()f x ',若()2()0xf x f x '->可知,需构造函数2()()f x g x x =, 利用导函数判断函数()g x 的单调性,利用函数()g x 的单调性、奇偶性来解题,当0x > 时,即2()19f x x <,1()9g x <,当0x < 时,即2()19f x x >,1()9g x >. 【详解】构造函数2()()f x g x x =,43'()2()'()2()'()xf x f x xf x f x g x x x x --=⋅= , 当0x > 时,()2()0xf x f x '->,故'()0g x >,()g x 在(0,)+∞ 上单调递增, 又()f x 为偶函数,21y x =为偶函数,所以2()()f x g x x =为偶函数,在,0()-∞ 单调递减. (3)1f -=,则(3)1f =,231(3)(3)39f g g -===();()19f x x x <, 当0x > 时,即2()19f x x <,1()(3)9g x g <=,所以(0,3)x ∈ ; 当0x < 时,即2()19f x x >,1()(3)9g x g >=-,所以(,3)x ∈-∞-. 综上所述,(,3)(0,3)x ∈-∞-⋃.故选:A2.已知定义在R 上的函数()f x 的导函数为()f x ',若()11f =,()()ln 10f x f x '++>⎡⎤⎣⎦,则不等式()1xf x e -≥的解集为( ) A .(],1-∞B .(],e -∞C .[)1,+∞D .[),e +∞【答案】C 【分析】由()()ln 10f x f x '++>⎡⎤⎣⎦,可得()()0f x f x +'>,令()()xg x e f x =⋅,对其求导可得()0g x '>,可得函数()g x 在R 上单调递增,可得()1g e =,()()1g x g ≥可得原不等式的解集.【详解】解:因为()()ln 10f x f x '++>⎡⎤⎣⎦,所以()()11f x f x '++>,即()()0f x f x +'>.令()()xg x e f x =⋅,则()()()0x g x e f x f x ''=+>⎡⎤⎣⎦,所以函数()g x 在R 上单调递增.又因为()1g e =,不等式()1x f x e -≥,可变形为()x e f x e ⋅≥,即()()1g x g ≥,所以1x ≥,即不等式()1xf x e -≥的解集为[)1,+∞.故选:C.【题型三】 利用e nx f (x )构造型【典例分析】已知函数()f x 在R 上 可导,其导函数为()f x ',若()f x 满足:当1x ≠时,()()()1x f x f x ⎡⎤-+⎣'⎦>0,()()222x f x e f x -=-,则下列判断一定正确的是A .()()10f f <B .()()440e f f <C .()()20ef f >D .()()330e f f >【答案】D 【分析】构造函数()()xg x f x e =,结合导函数,判定()g x 的单调性,()()g 2x g x 由,-=得()g x 的对称轴,对选项判断即可. 【详解】构造函数()()x g x f x e =,计算导函数得到()'g x =()()xe f x f x +'⎡⎤⎣⎦,由()1x -()()f x f x +'⎡⎤⎣⎦>0,得当x 1>,()()f x f x '+>0,当x 1<时,()()f x f x '+<0.所以()g x 在()1,∞+单调递增,在(),1∞-单调递减,而()()()()()2x 2x x 22xf xg 2x f 2x e e f x e g x e----=-=⋅==,所以()g x 关于x 1=对称,故()()()()()3g 3e f 3g 1g 00f ==->=,得到()()3e f 3f 0>,故选:D.【变式演练】1.已知()f x 是R 上可导的图象不间断的偶函数,导函数为()f x ',且当0x >时,满足()()20'+>f x xf x ,则不等式()()121xef x f x -->-的解集为( )A .1,2⎛⎫+∞ ⎪⎝⎭B .1,2⎛⎫-∞ ⎪⎝⎭C .(),0-∞D .()0,∞+【答案】B【分析】构造函数2()()x g x e f x =,根据()()20'+>f x xf x ,结合题意可知函数()g x 是偶函数,且在()0,∞+上是增函数,由此根据结论,构造出x 的不等式即可. 【详解】由题意:不等式()()121xef x f x -->-可化为:21(1)()x f x f x e -->,两边同乘以2(1)x e -得:22(1)(1)()x x e f x e f x -->,令2()()x h x e f x =,易知该函数为偶函数, 因为[]2()()2()xh x e f x xf x ''=+, ()()20'+>f x xf x ,所以()0,(0)h x x '>>所以()h x 在()0,∞+上是单调增函数,又因为()h x 为偶函数,故22(1)x x ->,解得:12x <.故选:B . 2.设函数()f x 的定义域为R ,()'f x 是其导函数,若()()e ()x f x f x f x '-'+>-,()01f =,则不等式()f x >21x e +的解集是( ) A .(0,)+∞ B .(1,)+∞C .(,0)-∞D .(0,1)【答案】A 【分析】构造函数()()1()xg x e f x =+,通过求导判断函数()g x 的单调性,利用函数()g x 的单调性解不等式即可.【详解】令()()1()x g x e f x =+,则()()()1()x x g x e f x e f x ''=++,因为()()e ()x f x f x f x '-'+>-,所以()()1e ()0x f x f x -'++>,化简可得()e ()e 1()0x x f x f x '++>,即()0g x '>,所以函数()g x 在R 上单调递增,因为()f x >21xe +,化简得()1()2xe f x +>, 因为()()0202g f ==,()()1()xg x e f x =+,所以()(0)g x g >,解得0x >,所以不等式2()1xf x e >+的解集是(0,)+∞.故选:A 3.已知定义在R 上的函数()f x 的导函数为()f x ',若()11f =,()()ln 10f x f x '++>⎡⎤⎣⎦,则不等式()1xf x e -≥的解集为( ) A .(],1-∞ B .(],e -∞ C .[)1,+∞ D .[),e +∞【答案】C 【分析】由()()ln 10f x f x '++>⎡⎤⎣⎦,可得()()0f x f x +'>,令()()xg x e f x =⋅,对其求导可得()0g x '>,可得函数()g x 在R 上单调递增,可得()1g e =,()()1g x g ≥可得原不等式的解集.【详解】解:因为()()ln 10f x f x '++>⎡⎤⎣⎦,所以()()11f x f x '++>,即()()0f x f x +'>.令()()xg x e f x =⋅,则()()()0x g x e f x f x ''=+>⎡⎤⎣⎦,所以函数()g x 在R 上单调递增.又因为()1g e =,不等式()1x f x e -≥,可变形为()x e f x e ⋅≥,即()()1g x g ≥,所以1x ≥,即不等式()1xf x e -≥的解集为[)1,+∞.故选:C.【题型四】 用f (x )/e nx 构造型【典例分析】已知函数()f x 是定义在R 上的可导函数,且对于x R ∀∈,均有()()'f x f x >,则有 A .()()()()2017201720170,20170e f f f e f -B .()()()()2017201720170,20170ef f f e f -<< C .()()()()2017201720170,20170ef f f e f ->>D .()()()()2017201720170,20170ef f f e f -><【答案】D 【分析】通过构造函数()()x f x g x e =,研究()()xf xg x e =函数的单调性进而判断出大小关系.【详解】因为()()'f x f x >。