有理数知识点总结

合集下载

有理数字知识点总结

有理数字知识点总结

有理数字知识点总结一、有理数的基本概念有理数是可以写成分数形式的数,包括正整数、负整数和分数。

一般记作Q。

有理数集包括正整数、负整数、零和分数。

1. 正整数:1, 2, 3, …2. 负整数:-1, -2, -3, …3. 零:04. 分数:a/b(a和b都是整数,b≠0)和自然数、整数、整数和分数相比,有理数具备更广泛的适用性,它能够准确地表示各种有关量的大小,如长度、质量、时间、温度等。

二、有理数的运算有理数的运算包括加法、减法、乘法和除法。

下面我们将分别介绍有理数的四则运算。

1. 加法有理数的加法满足交换律、结合律和对称律。

(1)同号相加:两个正数相加,或者两个负数相加,其和为它们的绝对值相加,并且符号不变。

(2)异号相加:一个正数和一个负数相加,其和的绝对值为它们的绝对值相减,符号取绝对值较大的数的符号。

2. 减法有理数的减法可以转化为加法,即 a - b = a + (-b)。

(1)减去一个正数等于加上一个负数。

(2)减去一个负数等于加上一个正数。

3. 乘法有理数的乘法满足交换律、结合律和分配律。

(1)同号相乘,积为正数。

(2)异号相乘,积为负数。

4. 除法有理数的除法可以转化为乘法,即 a ÷ b = a × (1/b)。

(1)有理数相除,不等于零的数除以零是无意义的。

(2)同号相除,商为正数。

(3)异号相除,商为负数。

有理数的四则运算是数学中最基本的运算,它们在解决实际问题中起着重要的作用。

为了掌握有理数的四则运算,我们需要多做一些练习,加深对有理数运算规律的理解。

三、有理数的比较大小比较有理数的大小有以下几种方法:1. 同号比较大小:绝对值大的数更大。

2. 异号比较大小:正数大于零,负数大于负无穷小,零等于零。

3. 有理数的绝对值比较大小。

深化理解有理数的比较大小规律,对解决实际问题具有重要意义。

在实际生活中,我们经常需要比较各种有关量的大小,如温度的高低、时间的长短、质量的轻重等,而有理数的比较大小知识点正是这些实际问题的数学抽象。

有理数知识点

有理数知识点

有理数知识点有理数是数学中的一种基本的数学对象,它包括整数和分数。

以下是有理数的一些基本知识点:一、有理数的定义有理数是可以写成两个整数的比值形式的数,其中分母不为零。

二、有理数的比较两个有理数a和b的比较有以下几种情况:1. 如果a和b都是正数,那么a<b当且仅当a的分子乘以b的分母小于b的分子乘以a的分母。

2. 如果a和b都是负数,那么a<b当且仅当a的分子乘以b的分母小于b的分子乘以a的分母。

3. 如果a是正数,b是负数,那么a<b。

4. 如果a是负数,b是正数,那么a<b当且仅当a的分子乘以b的分母小于b的分子乘以a的分母。

三、有理数的四则运算有理数的四则运算包括加法、减法、乘法和除法。

1. 加法:有理数a和b的和可以通过将a的分子与b的分母相乘再加上a的分母与b的分子相乘的结果作为新的分子,而将a的分母与b的分母的乘积作为新的分母。

2. 减法:有理数a和b的差可以通过将a的分子与b的分母相乘再减去a的分母与b的分子相乘的结果作为新的分子,而将a的分母与b的分母的乘积作为新的分母。

3. 乘法:有理数a和b的积可以通过将a的分子与b的分子相乘作为新的分子,而将a的分母与b的分母的乘积作为新的分母。

4. 除法:有理数a除以b可以通过将a的分子与b的分母相乘作为新的分子,而将a的分母与b的分子相乘作为新的分母。

四、有理数的绝对值有理数的绝对值是该数到0的距离。

对于一个非负有理数a,其绝对值等于a本身;而对于一个负有理数a,其绝对值等于-a。

五、有理数的乘方有理数的乘方运算是一个数与自身连乘n次的运算,其中n是一个整数。

六、有理数的应用有理数在日常生活中的应用非常广泛,它们可以用来表示人口数量、货币金额、温度、距离等。

七、有理数的化简有理数化简是指将一个有理数写成最简分数的形式,即分子和分母没有公因子。

八、有理数的性质1. 有理数的加法和乘法封闭性:两个有理数的和或积仍然是有理数。

有理数的知识点总结

有理数的知识点总结

有理数的知识点总结一、有理数的定义及基本性质:有理数是指所有可以表示为两个整数的比值的数,包括整数、分数和零。

有理数可以用一组整数的比值表示成两种形式:分数形式(也称作比例效应)和小数形式(也称作数列形式)。

有理数的集合通常记作Q。

有理数具有以下基本性质:1. 有理数的加法、减法、乘法和除法仍然是有理数,也就是说,有理数集合对于这四种运算是封闭的。

2. 有理数满足交换律和结合律,在加法和乘法运算中,a+b =b+a,(a+b)+c = a+(b+c);在乘法运算中,a×b = b×a,(a×b)×c= a×(b×c)。

3. 有理数乘法和除法具有倒数性质,即对于任意非零有理数a,存在一个有理数b使得a×b = 1。

4. 有理数乘法符合分配律,即对于任意有理数a、b和 c,a×(b+c) = a×b + a×c。

5. 有理数具有唯一分解性质,即任何一个非零有理数都可以唯一表示为两个整数的比值,而且这个比值对于最简分数形式是唯一的。

二、有理数的四则运算:1. 有理数的加法和减法:对于两个有理数a/b和 c/d,它们的加法定义为(a/b) + (c/d) = (ad+bc)/bd,减法定义为(a/b) - (c/d) = (ad-bc)/bd。

在进行加法和减法运算时,通常需要化简结果为最简分数形式。

2. 有理数的乘法和除法:对于两个有理数 a/b和 c/d,它们的乘法定义为(a/b) × (c/d) =ac/bd,除法定义为(a/b) ÷ (c/d) = ad/bc(其中c/d≠0)。

在进行乘法和除法运算时,同样需要化简结果为最简分数形式。

三、有理数的大小比较:在有理数集合中,任何两个有理数都可以通过大小比较运算来确定它们的相对大小。

有理数的大小比较有以下几个基本原则:1. 相同符号的有理数比较大小,绝对值越大的数为更大的数;2. 不同符号的有理数比较大小,正数大于零,零大于负数;3. 相同符号的两个有理数的绝对值比较,绝对值较小的数较小。

有理数知识点总结

有理数知识点总结

有理数知识点总结1. 有理数的定义和性质1.1 有理数的定义有理数是可以表示为两个整数的比的数,包括整数、分数和零。

1.2 有理数的性质•有理数可以进行加、减、乘、除运算,并仍为有理数。

•有理数的加法和乘法满足交换律、结合律和分配律。

2. 有理数的表示和分类2.1 有理数的表示有理数可以用分数的形式表示,即分子和分母都是整数,并且分母不为零。

2.2 有理数的分类有理数可以分为以下几类: - 正数:大于零的有理数。

- 负数:小于零的有理数。

- 零:既不大于零也不小于零的有理数。

3. 有理数的比较和大小关系3.1 有理数的比较•对于同号的两个有理数,绝对值大的数较大。

•对于异号的两个有理数,正数较大。

3.2 有理数的大小关系•两个正数比较大小,数值大的较大。

•两个负数比较大小,数值小的较大。

•正数大于零,零大于负数。

4. 有理数的运算4.1 加法和减法有理数的加法和减法满足交换律和结合律,可以通过以下步骤进行: - 对于同号的两个有理数,将它们的绝对值相加(减),并保持符号不变。

- 对于异号的两个有理数,将它们的绝对值相减,结果的符号由绝对值较大的数决定。

4.2 乘法和除法有理数的乘法和除法满足交换律、结合律和分配律,可以通过以下步骤进行: -两个有理数的乘积的符号由乘数的符号决定。

- 两个有理数的商的符号由被除数和除数的符号决定。

5. 有理数的进一步思考5.1 有理数的无穷性有理数是无穷的,可以无限接近但无法达到某些无理数,如圆周率π和自然对数的底数e。

5.2 有理数的应用有理数在实际生活中有广泛的应用,如计算、测量、金融等领域。

在金融中,有理数可以表示货币的数量,进行利息计算等。

5.3 有理数的拓展有理数是数的一个重要分支,还有其他类型的数如无理数、实数、复数等。

无理数是无法表示为两个整数的比的数,实数是有理数和无理数的统称,而复数是实数和虚数的组合。

结论有理数是可以表示为两个整数的比的数,包括整数、分数和零。

关于有理数的知识点总结

关于有理数的知识点总结

关于有理数的知识点总结一、有理数的概念及性质1. 有理数的定义有理数是指可以表示为两个整数的比的数,它通常用分数形式表示。

实际上,每个有理数都可以写成一个整数和一个非零整数的商。

例如,2/3、-5/4、3等都是有理数。

2. 有理数的性质(1)有理数可以用分数形式表示,例如2/3、-5/4等。

(2)有理数中包括正整数、负整数、零以及所有的分数。

(3)有理数的数轴表示:有理数可以用数轴上的点来表示,正数在原点的右侧,负数在原点的左侧,0在原点上。

二、有理数的表示和分类1. 有理数的表示有理数可以用分数形式表示或者小数形式表示。

对于分数形式,它可以用a/b的形式表示,其中a为分子,b为分母;对于小数形式,它可以用有限小数或者循环小数来表示。

2. 有理数的分类有理数可以分为正数、负数和零三种。

其中正数是大于0的数,负数是小于0的数,零表示0。

三、有理数的加法和减法1. 有理数的加法(1)同号数的加法:两个正数相加或者两个负数相加,结果为正数;例如2+3=5,(-2)+(-3)=-5。

(2)异号数的加法:两个正数相加或者一个正数和一个负数相加,结果的绝对值大的减去绝对值小的,符号取绝对值大的数的符号;例如2+(-3)=-1,(-2)+3=1。

2. 有理数的减法有理数的减法可以转化为加法来进行,即a-b=a+(-b)。

也就是说,将减法问题转化为加法问题,然后按照加法的规则进行计算。

四、有理数的乘法和除法1. 有理数的乘法(1)同号数的乘法:两个正数相乘或者两个负数相乘,结果为正数;例如2*3=6,(-2)*(-3)=6。

(2)异号数的乘法:一个正数和一个负数相乘,结果为负数;例如2*(-3)=-6。

2. 有理数的除法有理数的除法同样可以转化为乘法来进行,即a/b=a*(1/b)。

也就是说,将除法问题转化为乘法问题,然后按照乘法的规则进行计算。

五、有理数的绝对值1. 有理数绝对值的定义有理数a的绝对值定义为a的非负数表示,即a的绝对值记为|a|,有两种定义形式:(1)当a>=0时,|a|=a;(2)当a<0时,|a|=-a。

有理数的知识点总结

有理数的知识点总结

有理数1. 重要观点有理数是数学中的一类数,它包括整数和分数。

有理数可以表示为两个整数的比值,其中分母不为零。

有理数的重要观点如下:1.1 有理数的定义有理数是可以表示为两个整数的比值的数,其中分母不为零。

有理数可以用分数形,其中a和b是整数,b不为零。

式表示,如ab1.2 有理数的分类有理数可以分为正有理数、负有理数和零。

正有理数是大于零的有理数,负有理数是小于零的有理数,零是整数中的特殊有理数。

1.3 有理数的运算有理数的运算包括加法、减法、乘法和除法。

有理数的加法和乘法满足交换律、结合律和分配律。

有理数的减法可以转化为加法,除法可以转化为乘法。

1.4 有理数的比较有理数的大小可以通过比较其大小关系来确定。

两个有理数a和b,如果a−b大于零,则a大于b;如果a−b小于零,则a小于b;如果a−b等于零,则a等于b。

1.5 有理数的绝对值有理数的绝对值表示有理数的距离到零的距离,可以用来表示有理数的大小。

一个有理数a的绝对值,表示为|a|,如果a大于等于零,则|a|=a;如果a小于零,则|a|=−a。

1.6 有理数的约分有理数可以进行约分操作,即将分子和分母同时除以它们的公因数,得到一个等价的有理数。

约分可以使有理数的表示更简洁。

2. 关键发现在学习有理数的过程中,我们可以发现以下关键点:2.1 有理数与整数的关系整数是有理数的一种特殊情况,可以看作分母为1的有理数。

有理数的加法、减法和乘法运算也适用于整数。

2.2 有理数的小数表示有理数可以通过将分子除以分母得到小数表示形式。

有些有理数可以精确表示为有限小数,有些有理数则会出现循环小数。

2.3 有理数的运算性质有理数的运算满足交换律、结合律和分配律。

这些运算性质使得有理数的运算更加方便和灵活。

2.4 有理数的应用有理数在日常生活和实际问题中有广泛的应用。

例如,有理数可以用来表示温度、货币、时间等实际量,并进行相关的计算。

3. 进一步思考学习有理数的过程中,我们可以深入思考以下问题:3.1 无理数与有理数的关系除了有理数,还存在一类不能表示为两个整数的比值的数,称为无理数。

有理数章节知识点总结

有理数章节知识点总结

有理数章节知识点总结有理数的表示形式有理数可以用分数表示,分子为整数,分母为非零整数。

有理数也可以用小数表示,可以是有限小数,也可以是循环小数。

有理数的运算1. 加法和减法有理数的加法和减法遵循数轴的移动规律,即同号相加为绝对值相加,异号相加取绝对值相减,并且结果的符号和绝对值相加减后的符号相同。

2. 乘法和除法有理数的乘法是正数与正数相乘为正,正数与负数相乘为负,负数与负数相乘为正;除法是乘法的逆运算,即被除数乘以除数的倒数。

需要注意的是除数不能为零。

3. 混合运算有理数的混合运算是指加、减、乘、除四则运算的组合,根据运算法则进行逐步计算,并注意特殊情况的处理。

有理数的性质1. 封闭性有理数的加、减、乘、除运算结果仍然是有理数。

即有理数集合对加、减、乘、除运算封闭。

2. 对称性对于有理数a,其相反数为-a。

即有理数a和-a是数轴上以原点为中心的对称点。

3. 传递性对于任意有理数a、b、c,如果a>b,b>c,则a>c。

即有理数的大小关系具有传递性。

4. 0的特殊性0是除数,不能作为除数;0和任何非零有理数相乘结果为0;0与任何有理数相加减仍然为原来的数。

有理数的大小比较1. 同号比较两个正数比较大小时,绝对值越大,数值越大;两个负数比较大小时,绝对值越大,数值越小。

2. 异号比较正数和负数比较大小时,正数大于负数。

3. 绝对值比较对于有理数a、b,若|a|>|b|,则a>b;若|a|<|b|,则a<b。

有理数的应用1. 有理数在实际生活中有着广泛的应用,比如金融领域的利息计算、温度计算中的正负值表示等等。

2. 在几何中,有理数也有着重要的作用,可以表示点的坐标,直线方程等。

3. 有理数也常用于解决生活中的实际问题,比如物品价格的计算、家庭开支的统计等。

总结:有理数是数学中一个基础且重要的概念,它在数学中以及实际生活中有着广泛的应用。

有理数具有封闭性、对称性、传递性等性质,通过加减乘除等运算可以进行混合运算,有理数的大小比较也有一定的规则。

(完整版)有理数知识点总结

(完整版)有理数知识点总结

有理数基础知识正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。

(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。

所以省略“+”的正数的符号是正号。

2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。

如:有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。

2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数正整数整数 0 正有理数负整数正分数有理数有理数 0 (0不能忽视)正分数负整数分数负有理数负分数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。

2.数轴上的点与有理数的关系⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。

有理数的46个知识点总结

有理数的46个知识点总结

有理数的46个知识点总结一、有理数的概念。

1. 有理数的定义。

- 有理数是整数(正整数、0、负整数)和分数的统称。

例如,5是正整数属于有理数,-3是负整数属于有理数,(1)/(2)是分数属于有理数。

2. 有理数的分类。

- 按定义分类:有理数可分为整数和分数。

整数包括正整数、0、负整数;分数包括有限小数和无限循环小数,如0.25(有限小数),0.3̇(无限循环小数)。

- 按正负性分类:有理数可分为正有理数、0、负有理数。

正有理数包括正整数和正分数,负有理数包括负整数和负分数。

3. 有理数与无理数的区别。

- 无理数是无限不循环小数,如π、√(2)等,而有理数是整数或分数。

有理数可以表示为两个整数之比,无理数则不能。

二、有理数的数轴表示。

4. 数轴的定义。

- 规定了原点、正方向和单位长度的直线叫做数轴。

原点表示0,原点右边表示正数,原点左边表示负数。

5. 有理数在数轴上的表示。

- 每一个有理数都可以用数轴上的一个点来表示。

例如,3在原点右边3个单位长度处, -2在原点左边2个单位长度处。

6. 数轴上点的移动规律。

- 向右移动为加,向左移动为减。

如点A表示2,向右移动3个单位长度后表示2 + 3=5;向左移动4个单位长度后表示2-4 = - 2。

三、相反数。

7. 相反数的定义。

- 绝对值相等,符号相反的两个数互为相反数。

例如,3和 - 3互为相反数,0的相反数是0。

8. 相反数的性质。

- 互为相反数的两个数相加为0,即a+(-a)=0。

如5+( - 5)=0。

- 在数轴上,互为相反数的两个数位于原点两侧,且到原点的距离相等。

四、绝对值。

9. 绝对值的定义。

- 一个数在数轴上所对应点到原点的距离叫做这个数的绝对值。

正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

例如,|3| = 3,| - 2|=2,|0| = 0。

10. 绝对值的性质。

- | a|≥slant0,即绝对值是非负的。

- 若| a|=| b|,则a = b或a=-b。

有理数章知识点总结

有理数章知识点总结

有理数章知识点总结一、有理数的概念有理数是指可以表示为两个整数的比值的数,包括有限小数、无限循环小数和整数。

有理数的特点是可以表示为分数形式,即p/q的形式,其中p和q都是整数,且q不能为0。

有理数用符号Q表示,其中Q={a/b|a∈Z, b∈Z*, b≠0}。

有理数的分类:1. 正有理数:大于0的有理数,如1/2、3/4等;2. 负有理数:小于0的有理数,如-1/3、-5/6等;3. 零:0也是一个有理数。

二、有理数的性质1. 有理数的比较对于任意两个不相等的有理数a和b,有以下性质:(1)如果a>b,则-a<-b;(2)如果a<b,则-a>-b。

这表明有理数的大小可以相互比较,且有明确的大小关系。

2. 有理数的加法性质对于任意三个有理数a、b、c,有以下加法性质:(1)交换律:a+b=b+a;(2)结合律:(a+b)+c=a+(b+c);(3)存在零元素:a+0=a;(4)存在相反元素:a+(-a)=0。

这些性质表明有理数的加法操作满足基本的性质。

3. 有理数的乘法性质对于任意三个有理数a、b、c,有以下乘法性质:(1)交换律:a×b=b×a;(2)结合律:(a×b)×c=a×(b×c);(3)存在单位元素:a×1=a;(4)存在倒数元素:a×(1/a)=1,其中a≠0。

这些性质表明有理数的乘法操作也满足基本的性质。

4. 有理数的除法性质对于任意两个有理数a和b,其中b≠0,有以下除法性质:(1)存在商:a/b是一个有理数;(2)零除不合法:a/0是不合法的;(3)乘法逆元:a/1=a;(4)除法逆元:a/(1/a)=a×a。

5. 有理数的分配律对于任意三个有理数a、b、c,有以下分配律:a×(b+c)=a×b+a×c三、有理数的运算1. 有理数的加法两个有理数a和b相加,可以通过以下步骤完成:(1)如果a和b的符号相同,则它们的绝对值相加,并保留原来的符号;(2)如果a和b的符号不同,则它们的绝对值相减,并以绝对值大的符号为结果的符号。

(完整版)有理数运算知识点总结

(完整版)有理数运算知识点总结

(完整版)有理数运算知识点总结有理数运算知识点总结1. 有理数的定义有理数是可以用两个整数的比(分数形式)表示的数。

有理数包括正数、负数和零。

2. 有理数的四则运算2.1 加法有理数的加法满足以下运算规则:- 正数与正数相加,结果为正数;- 负数与负数相加,结果为负数;- 正数与负数相加,结果的绝对值为两数绝对值之差,并且符号与绝对值较大的数相同。

2.2 减法有理数的减法可以转化为加法运算,即a - b = a + (-b)。

2.3 乘法有理数的乘法满足以下运算规则:- 正数与正数相乘,结果为正数;- 负数与负数相乘,结果为正数;- 正数与负数相乘,结果为负数。

2.4 除法有理数的除法可以转化为乘法运算,即a ÷ b = a × (1/b)。

3. 有理数的运算性质3.1 交换律加法和乘法满足交换律,即a + b = b + a,a × b = b × a.3.2 结合律加法和乘法满足结合律,即(a + b) + c = a + (b + c),(a × b) × c = a × (b × c).3.3 分配律乘法对加法满足左分配律和右分配律,即a × (b + c) = (a × b) + (a × c),(a + b) × c = (a × c) + (b × c).4. 有理数的大小比较4.1 绝对值比较对于两个有理数a和b,如果|a| = |b|,则a = b,如果|a| > |b|,则a > b,如果|a| < |b|,则a < b.4.2 正负数比较对于一个正数和一个负数,正数大于负数。

4.3 同号数比较对于两个正数或两个负数,绝对值较大的数较大。

5. 有理数的相反数和倒数5.1 相反数一个有理数a的相反数记作-a,即a + (-a) = 0。

有理数有理数知识点归纳

有理数有理数知识点归纳

0000<=>⎪⎩⎪⎨⎧-=a a a a a a一、有理数1. 0和正整数叫做自然数,也叫非负整数.2. 有理数的分类: (1) ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数正整数整数有理数0 (2) ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数负整数正整数正有理数有理数0二、数轴1.规个定了原点、正方向和单位长度的直线叫做数轴.2. 任意一个有理数,都可以用数轴上的一个点表示,但数轴上的任意一点却不一定表示一个有理数,正有理数用原点右边的点表示,负有理数用原点左边的点表示.3. 利用数轴比较有理数的大小,数轴上右边的点表示的数总大于左边的点表示的数.三、相反数1. 只有符号不同的两个数叫做互为相反数.0的相反数仍是0.2. 在数轴上,表示一对相反数的点分别位于原点两侧,并且到原点的距离相等,它们关于原点对称.3. 互为相反数的两个数的和为0,即a 与b 互为相反数.四、绝对值1. 数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记做a .2. 绝对值的性质:(1)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.(2)绝对值具有非负性,即有理数a 的绝对值a >0.(3)利用绝对值可以比较两个 负数的大小,两个负数绝对 值大的反而小. 五、倒数乘积是1的两个数互为倒数.倒数是成对的,互为倒数的两个数同号;0没有倒数.六、乘方求n 个相同的因数的积的运算,叫做乘方,乘方的结果叫做幂.在na 中,a 叫做底数,n 叫 做指数.乘方的运算法则:(1)负数的奇次幂是负数,负数的偶次幂是正数.(2)正数的任何次幂都是正数,0的任何任何正整数次幂都是0.七、科学记数法1. 把一个大于10的数表示成n a 10⨯的形式(其中a 的整数数位只有一位的数,n 是正整数). 有理数知识点归纳2. 精确度:近似数四舍五人到哪一位,就精确到哪一位.3. 有效数字: 从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效 数字.4. (1)科学记数法中a 应满足101<≤a ,n 等于原数的整数位数减1,一个负数的科学记数法只 要在n a 10⨯前面加上“一”即可.(2) 用科学记数法表示的数na 10⨯,精确度由还原后的数字中a 的末位字所在的数位决定.(3) 用科学记数法表示的数n a 10⨯,有效数字与n 10无关,只与a 有关,当近似数后面有单位是,有效数字与单位无关,只与单位前面的数有关.八、有理数的混合运算(1)先乘方,在乘除,最后加减.(2)同级运算,从做到右进行.(3) 如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.考点分析1. 用正负数表示具有相反意义的量;2. 有理数相关概念;3. 数轴、相反数、绝对值、倒数;4.有理数的大小比较及运算;5. 有理数的乘方;6. 科学记数法.两个负数比较大小有两个步骤:①先分别求出这两个负数的绝对值,并比较绝对值大小.②根据“两个负数,绝对值大的反而小”得出结论.。

有理数知识点梳理

有理数知识点梳理

有理数知识点梳理有理数是整数和分数的统称,是数学中重要的概念。

本文将对有理数的相关知识点进行梳理和总结。

一、有理数的定义有理数是可以用两个整数比值表示的数,包括整数和分数。

有理数可以表示为 p/q 的形式,其中 p 和 q 是整数,且 q 不等于 0。

二、有理数的分类1. 正有理数:大于零的有理数,记作 Q+。

2. 负有理数:小于零的有理数,记作 Q-。

3. 零:既不是正有理数也不是负有理数,记作 0。

三、有理数的运算有理数的运算包括加法、减法、乘法和除法。

1. 加法:有理数的加法满足交换律和结合律。

当两个有理数符号相同时,将它们的绝对值相加,并保持符号不变;当两个有理数符号不同时,将它们的绝对值相减,并取绝对值大的数的符号。

2. 减法:减法可以转化为加法运算,在减法运算中,将减数取相反数,然后进行加法运算。

3. 乘法:有理数的乘法满足交换律和结合律。

将两个有理数的绝对值相乘,符号由乘法规则决定:同号得正,异号得负。

4. 除法:除法可以转化为乘法运算,即将被除数乘以除数的倒数。

除数不能为零。

四、有理数的比较有理数的大小可以通过比较绝对值的大小来确定。

当两个有理数符号相同时,比较它们的绝对值;当两个有理数符号不同时,正有理数大于负有理数,零等于零。

五、有理数的化简有理数可以进行化简操作,即将分子和分母同时除以它们的最大公约数,从而得到一个最简形式的有理数。

六、有理数的逆元有理数的逆元是指与其相加为零的数,对于有理数 a,它的逆元记作 -a,满足 a + (-a) = 0。

七、有理数在数轴上的表示有理数可以在数轴上表示出来,将数轴上的零点与每个有理数点对应起来,通过正数方向表示正有理数,负数方向表示负有理数,可以直观地理解有理数的大小和相对关系。

结语:通过对有理数的梳理,我们可以更清晰地认识到有理数的定义、分类、运算、比较等基本概念和操作。

有理数是数学中的重要概念,对于几乎所有数学领域都有着广泛的应用。

有理数知识点总结

有理数知识点总结

有理数知识点总结(2016)第一章有理数1.1正数和负数一、概念1、正数:大于零的数,有时根据需要在正数前面加“+”(正号)2、负数:在正数前面加上“—”(负号)的数说明:一个数前面的“+”“—”叫做它的号,其中“+”有时可以省略,但仍然表示正数,有时“+”是为了强调它是正数,但“—”号是绝对不能省略的。

3、0既不是正数也不是负数,它是正负数的分界。

说明:关于0的总结——实数,自然数,有理数,整数,非正数,非负数,偶数,相反数是本身,没有倒数,绝对值是本身,正负数分界二、实际应用在解决一些实际问题时,可以认为规定具有相反意义的量的正负。

例如:收入为正,支出为负,收支平衡为0 零上为正,零下为负,分界为0 向北(东)走为正,向南(西)走为负,原地不动为0 加分为正,扣分为负,不加不扣为0 逆时针为正,顺时针为负超标为正,低标为负,标准为0 地上为正,地下为负,地面基准为0 盈余为正,亏空为负,收支平衡为0 水位上升为正,水位下降为负,水平面为0 高于平均分为正,低于平均分为负增加为正,减少为负,不增不减为0 海平面以上为正,以下为负,海平面记为0三、易错易误点1、-a一定是负数么?答案:不一定,需要分类分析解析:当a大于0时,-a就是负数;当a等于0时,-a为0;当a小于0时,-a是正数因此,a不一定是正数也不一定是负数,判断字母的正负时,需要分类讨论,也不能忽略0的存在。

2、海拔0米并不表示没有海拔,而是说海拔中海平面的平均高度为0米。

3、非正数:0和负数非负数:0和正数1.2 有理数、、概念1、有理数:正整数,0,负整数,正分数,负分数都可以写成分数(含有限小数和无限循环小数)的形式,这样的数称为有理数。

2、无理数:既不是正数也不是分数,就一定不是有理数。

如无限不循环小数π=3.1415926… 它不能化成分数形式。

、、分类1、按定义分类;有理数分为整数(正整数、0、负整数);分数(正分数、负分数)2、按性质符号分类;有理数分为正有理数(正整数、正分数)、0、负有理数(负整数、负分数)三、数轴1、定义:数轴是一条可以向两端无限延伸的直线规定三要素——原点,正方向,单位长度注意“规定”二字,是说三要素是根据实际需要认为规定的。

有理数知识点汇总

有理数知识点汇总

有理数知识点汇总一、有理数的概念和性质有理数是指可以表示为两个整数之比(分母不为零)的数。

有理数包括正整数、负整数、零以及正分数和负分数。

有理数的性质主要有以下几点:1. 有理数的加法和减法:有理数相加减时,可以先化简为同分母,然后对分子进行相应的运算。

同号数相加减,结果符号不变,异号数相加减,结果取绝对值较大的数的符号。

2. 有理数的乘法和除法:有理数相乘除时,先对分子分母分别进行相应的运算,然后再化简为最简形式。

同号数相乘除,结果为正数,异号数相乘除,结果为负数。

3. 有理数的比较:有理数大小的比较可以转化为同号数的比较。

对于两个同号数,绝对值较大的数较大;对于两个异号数,负数较大。

4. 有理数的绝对值:有理数的绝对值是该数去掉符号的值,即正数的绝对值还是正数,负数的绝对值就是对应的正数。

5. 有理数的倒数:非零有理数的倒数,是指该数的分子与分母互换位置所得的有理数。

二、有理数的运算法则1. 有理数的加法法则:同号数相加,保持符号,将绝对值相加;异号数相加,结果取绝对值较大的数的符号,将绝对值较小的数从绝对值较大的数上减去。

2. 有理数的减法法则:可以通过加法法则化简为加法运算。

3. 有理数的乘法法则:同号数相乘,结果为正,将绝对值相乘;异号数相乘,结果为负,将绝对值相乘。

4. 有理数的除法法则:除法可以通过乘法的倒数来计算,即将被除数乘以除数的倒数。

三、有理数的应用有理数在日常生活和实际问题中有广泛的应用,例如:1. 温度的表示:正数表示高温,负数表示低温,零表示冰点或零度。

2. 货币的计算:正数表示收入或盈利,负数表示支出或亏损。

3. 钱的存取:正数表示存钱,负数表示取钱。

4. 海拔的高低:正数表示海拔高,负数表示海拔低。

5. 游戏得分:正数表示得分,负数表示扣分或失分。

四、有理数的运算技巧在进行有理数的运算时,有一些技巧可以简化计算,例如:1. 加法与减法混合运算时,可以先合并同号数进行运算,再对异号数进行运算。

有理数的知识点总结

有理数的知识点总结

有理数的知识点总结有理数是数学中的一个重要概念,它是整数(正整数、0、负整数)和分数的统称。

有理数的学习对于后续数学知识的掌握具有基础性的作用。

下面我们来详细总结一下有理数的相关知识点。

一、有理数的定义有理数是可以表示为两个整数之比的数,其中分母不为 0。

例如,5/3、-2/7 都是有理数。

而像圆周率π和根号 2 这样不能表示为两个整数之比的数,则不是有理数,被称为无理数。

整数包括正整数、0 和负整数。

正整数如 1、2、3 等,负整数如-1、-2、-3 等。

分数包括正分数和负分数。

正分数如1/2、3/4 等,负分数如-1/2、-3/4 等。

二、有理数的分类1、按定义分类整数:正整数、0、负整数。

分数:正分数、负分数。

2、按性质分类正有理数:正整数、正分数。

负有理数:负整数、负分数。

三、有理数的数轴表示数轴是规定了原点、正方向和单位长度的直线。

有理数可以在数轴上表示出来,任何一个有理数都可以用数轴上的一个点来表示。

例如,数字 2 可以用数轴上距离原点 2 个单位长度的点表示,且在原点右侧;而-3 则可以用数轴上距离原点 3 个单位长度的点表示,且在原点左侧。

数轴上的点越往右越大,越往左越小。

四、有理数的大小比较1、正数大于 0,0 大于负数,正数大于负数。

2、两个负数比较大小,绝对值大的反而小。

例如,比较-2 和-5 的大小。

先求出它们的绝对值,|-2| =2,|-5| = 5。

因为 5 > 2,所以-2 >-5 。

五、有理数的加减法1、加法法则同号两数相加,取相同的符号,并把绝对值相加。

例如,3 + 5 = 8,-3 +(-5) =-8 。

异号两数相加,绝对值相等时和为 0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

例如,7 +(-5) = 2 ,-7 + 5 =-2 。

一个数同 0 相加,仍得这个数。

2、减法法则减去一个数,等于加上这个数的相反数。

例如,8 3 = 8 +(-3) = 5 ,-8 (-5) =-8 + 5 =-3 。

有理数的知识点总结

有理数的知识点总结

有理数的知识点总结一、有理数的定义有理数是可以表示为两个整数的比的数,形式为a/b,其中a和b是整数,且b不为零。

有理数集合包括所有整数、分数和它们的负数。

二、有理数的分类1. 正有理数:大于零的有理数。

2. 负有理数:小于零的有理数。

3. 零:唯一的非正非负的有理数。

三、有理数的性质1. 封闭性:有理数集合在加法、减法、乘法和除法(除数不为零)下是封闭的。

2. 有序性:任何两个有理数都可以比较大小。

3. 稠密性:任何两个有理数之间都存在另一个有理数。

4. 可数性:有理数集合是可数的,即可以列出所有有理数的序列。

四、有理数的运算规则1. 加法规则:- 同号相加,取相同的符号,并将绝对值相加。

- 异号相加,取绝对值较大的数的符号,并将绝对值相减。

- 任何数与零相加,结果不变。

2. 减法规则:- 减去一个数等于加上它的相反数。

3. 乘法规则:- 正数乘以正数得正数,负数乘以负数得正数,正数乘以负数得负数。

- 任何数乘以零得零。

4. 除法规则:- 除以一个非零数等于乘以它的倒数。

- 零除以任何非零数得零。

五、有理数的简化1. 约分:将分数的分子和分母同时除以它们的最大公约数。

2. 通分:将不同分母的分数转化为具有相同分母的分数。

六、有理数的比较1. 正数大于零,负数小于零。

2. 两个负数比较大小,绝对值大的反而小。

七、有理数的实际应用1. 在日常生活中,有理数用于计数、测量和计算。

2. 在数学中,有理数是实数的一个子集,是许多数学概念和定理的基础。

八、有理数的局限性1. 有理数不能表示无理数,如圆周率π和黄金比例φ。

2. 有理数在连续性上存在局限性,因为存在不可表示为有理数的实数。

九、结论有理数是数学中最基本的数之一,它们在数学理论和实际应用中都扮演着重要角色。

理解有理数的性质和运算规则对于学习更高级的数学概念至关重要。

尽管有理数有其局限性,但它们仍然是解决许多实际问题的有效工具。

有理数必背43个知识点

有理数必背43个知识点

有理数必背43个知识点嘿,小伙伴们,今天咱们来聊聊数学里的“黄金宝藏”——有理数,那些听起来高深莫测,实则和咱们生活息息相关的小精灵。

别担心,咱们不整那些高深的理论,就用大白话,把有理数的43个知识点,变成一场说走就走的旅行,沿途风景美不胜收,保证让你笑着记住它们!首先,咱们得知道啥是有理数。

简单来说,就是那些能写成两个整数相除(分母不为0)的数,它们就像是数学王国里的“规矩孩子”,整整齐齐,有理有据。

就像你分蛋糕给朋友,不管怎么分,只要是用整数表示的数量和份数,那结果就是有理数啦!第一站,正负数的秘密花园。

你知道吗?正负数就像是生活中的“好”与“坏”,有阳光就有阴影,有收入就有支出。

正数代表“正能量”,比如你兜里的零花钱;负数则是“小淘气”,比如你欠小伙伴的糖果。

记住,它们不是敌人,而是数学世界的两面镜子,让咱们看得更全面。

接下来,咱们走进绝对值的小巷。

绝对值啊,就像是给数字穿上了一层“隐形斗篷”,不管是正是负,都只看它的“大小”,不管它是“好人”还是“坏人”。

比如,-5的绝对值就是5,就像是说:“我不管你欠了多少,我只关心你欠的数额是多少。

”然后,咱们来到有理数的加减乘除大舞台。

这里可是热闹非凡,规则简单却充满乐趣。

加法就像是合并同类项,减法就是“你拿走我的,我还剩多少”;乘法嘛,就像是组队打怪,正正得正,负负也得正,但正负相遇就“翻脸不认人”了;除法呢,就是看看你要分多少次才能分完,记得哦,除数不能为0,不然就像让空气帮你搬东西,根本不可能嘛!别忘了,咱们还得逛逛有理数的比较和排序的市集。

在这里,数字们排排坐,比大小。

正数永远在负数前面,就像好学生总是坐在前排一样。

而两个负数比较,绝对值大的反而小,这就像是说:“别看我欠得多,其实我比你更‘穷’呢!”当然,有理数的世界还有很多宝藏等着咱们去发现,比如倒数、有理数的混合运算、科学记数法……每一个都是通往数学智慧殿堂的钥匙。

记住,学数学就像探险,只要咱们用心,就没有什么难题是解决不了的!所以,小伙伴们,别害怕有理数,它们其实是咱们的好朋友,用简单的语言,就能讲述出丰富的故事。

有理数的知识点

有理数的知识点

有理数1、绝对值是指一个数在数轴上所对应点到原点的距离叫做这个数的绝对值,绝对值用“ | |”来表示。

(1)如果a>0,那么|a|=a,(2)如果a<0,那么|a|=-a,(3)如果a=0,那么|a|=0,2、只有符号不同的两个数,我们就说其中一个是另一个的相反数。

若a.b互为相反数,则a+b=0,反之若a+b=0,则a、b互为相反数。

3、加法法则(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数.4、减法法则减去一个数,等于加上这个数的相反数.a-b=a+(-b)。

运用此法则时注意“两变”:一是减法变为加法;二是减数变为其相反数.总结①.有理数的加减法可统一成加法.②.因为有理数加减法可统一成加法,所以在加减运算时,适当运用加法运算律,把正数与负数分别相加,可使运算简便.但要注意交换加数的位置时,要连同前面的符号一起交换.5、乘法的法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0.几个不等于0的数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.7、除法的法则:a÷b=a×除以一个不等于0的数等于乘以这个数的倒数两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不为0的数,都得0.(分母≠0).利用除法法则可以化简分数.(1)两个有理数相除时,首先确定商的符号,其次确定商的绝对值。

(2)有理数除法运算的步骤:(1)“÷”改为“×”,除数变倒数;8、求n个相同因数乘积的运算,叫做乘方,乘方的结果叫做幂(1)负数的偶次幂是正数,负数的奇数幂是负数。

( 2)正数的任何次幂都是正数。

(3)0的任何正数次幂都是0。

9、科学记数法是一种记数的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数知识点总结
理数是指可以用有限个整数相加、相减或相乘来表示的数。

理数包括正整数、负整数、零和分数。

1. 整数:正整数、负整数和零都是整数。

整数的运算有加法、减法和乘法。

加法的运算结果仍然是整数,减法的运算结果也可以是整数,但乘法的运算结果不一定是整数,可能是分数。

2. 分数:分数由分子和分母组成,分子是整数,分母是非零整数。

分数的运算包括加法、减法、乘法和除法。

加法和减法的分数运算基本规则是先通分,然后进行相应的运算。

乘法和除法的分数运算基本规则是分子相乘,分母相乘。

两个分数相除可以变成将除数的分子分母互换,然后再进行乘法运算。

3. 小数:小数是分数的一种特殊形式,用有限的十进制数或无限循环的十进制数表示。

小数可以转换为分数,将小数的数值部分作为分子,小数点后的位数作为分母的10的幂。

4. 数轴:数轴是用来表示有理数的直线,从左向右递增,可以根据数轴进行加法、减法和比较大小等操作。

5. 绝对值:绝对值是一个有理数的非负值。

对于正数,它的绝对值等于本身;对于负数,它的绝对值等于去掉负号。

绝对值的运算规则包括绝对值取正和绝对值取负。

6. 有理数的大小比较:有理数的大小比较可以根据数轴上的位置进行判断,也可以通过将有理数化为相同的分数形式进行比
较。

在数轴上,离原点越远的数值越大。

7. 有理数的相反数:一个有理数的相反数是与它数值大小相等但符号相反的有理数。

8. 有理数的倒数:一个非零有理数的倒数是与它的分数定义中分子和分母交换位置后得到的分数。

倒数的运算规则包括正数的倒数仍然是正数,负数的倒数是与它的绝对值的倒数相等。

这些是关于有理数的一些基本知识点总结,理解这些知识点有助于我们在数学运算中正确地使用有理数。

相关文档
最新文档