正交实验_方差分析法
(整理)正交试验结果的方差分析方法
正交试验结果的方差分析方法计算公式和项目试验指标的加和值=,试验指标的平均值与表4-13一样,第j列的(1) I j”水平所对应的试验指标的数值之和(2) II j——“ 2”水平所对应的试验指标的数值之和(3)……(4) k j——同一水平出现的次数。
等于试验的次数除以第j列的水平数.(5)I j/k j——“水平所对应的试验指标的平均”(6)II j/k j——“2”水平所对应的试验指标的平均值(7)……以上各项的计算方法,与“极差法”同,见4.1.7节(8)偏差平方和(4-1)(9) fj ——自由度.fj第j列的水平数-1.(10)Vj——方差.Vj =Sj/fj(4-2)(11)Ve——误差列的方差。
(4-3)(12)Fj——方差之比(4-4)(13)查F分布数值表(见附录6),做显著性检验。
显著性检验结果的具体表示方法与第3章相同。
(14)总的偏差平方和(4-5) (15)总的偏差平方和等于各列的偏差平方和之和。
即(4-6) 式中,m为正交表的列数。
若误差列由5个单列组成,则误差列的偏差平方和S e等于5个单列的偏差平方和之和,即:S e=S e1+S e2+S e3+S e4+S e5;也可用S e= S总-S’来计算,其中:S’为安排有因素或交互作用的各列的偏差平方和之和应引出的结论。
与极差法相比,方差分析方法可以多引出一个结论:各列对试验指标的影响是否显著,在什么水平上显著。
在数理统计上,这是一个很重要的问题。
显著性检验强调试验误差在分析每列对指标影响中所起的作用。
如果某列对指标的影响不显著,那么,讨论试验指标随它的变化趋势是毫无意义的。
因为在某列对指标的影响不显著时,即使从表中的数据可以看出该列水平变化时,对应的试验指标的数值也在以某种“规律”发生变化,但那很可能是由于实验误差所致,将它作为客观规律是不可靠的。
有了各列的显著性检验之后,最后应将影响不显著的交互作用列与原来的“误差列”合并起来,组成新的“误差列”,重新检验各列的显著性。
(整理)正交试验结果的方差分析方法
正交试验结果的方差分析方法计算公式和项目试验指标的加和值=,试验指标的平均值与表4-13一样,第j列的(1) I j”水平所对应的试验指标的数值之和(2) II j——“ 2”水平所对应的试验指标的数值之和(3)……(4) k j——同一水平出现的次数。
等于试验的次数除以第j列的水平数.(5)I j/k j——“水平所对应的试验指标的平均”(6)II j/k j——“2”水平所对应的试验指标的平均值(7)……以上各项的计算方法,与“极差法”同,见4.1.7节(8)偏差平方和(4-1)(9) fj ——自由度.fj第j列的水平数-1.(10)Vj——方差.Vj =Sj/fj(4-2)(11)Ve——误差列的方差。
(4-3)(12)Fj——方差之比(4-4)(13)查F分布数值表(见附录6),做显著性检验。
显著性检验结果的具体表示方法与第3章相同。
(14)总的偏差平方和(4-5) (15)总的偏差平方和等于各列的偏差平方和之和。
即(4-6) 式中,m为正交表的列数。
若误差列由5个单列组成,则误差列的偏差平方和S e等于5个单列的偏差平方和之和,即:S e=S e1+S e2+S e3+S e4+S e5;也可用S e= S总-S’来计算,其中:S’为安排有因素或交互作用的各列的偏差平方和之和应引出的结论。
与极差法相比,方差分析方法可以多引出一个结论:各列对试验指标的影响是否显著,在什么水平上显著。
在数理统计上,这是一个很重要的问题。
显著性检验强调试验误差在分析每列对指标影响中所起的作用。
如果某列对指标的影响不显著,那么,讨论试验指标随它的变化趋势是毫无意义的。
因为在某列对指标的影响不显著时,即使从表中的数据可以看出该列水平变化时,对应的试验指标的数值也在以某种“规律”发生变化,但那很可能是由于实验误差所致,将它作为客观规律是不可靠的。
有了各列的显著性检验之后,最后应将影响不显著的交互作用列与原来的“误差列”合并起来,组成新的“误差列”,重新检验各列的显著性。
实验设计的方差分析与正交试验
实验设计的方差分析与正交试验一、实验设计中的方差分析方差分析(analysis of variance,ANOVA)是一种统计方法,用于比较不同组之间的均值差异是否具有统计学上的显著性。
在实验设计中,方差分析主要被用来分析因变量(dependent variable)在不同水平的自变量(independent variable)中的变化情况。
通过比较不同组之间的方差,判断是否存在显著差异,并进一步分析差异的原因。
1. 单因素方差分析单因素方差分析是最简单的方差分析方法,适用于只有一个自变量的实验设计。
该方法通过比较不同组之间的方差来判断各组均值是否有差异。
步骤如下:(1)确定研究目的,选择合适的因变量和自变量。
(2)设计实验,确定各组的样本个数。
(3)进行实验,并收集数据。
(4)计算各组的平均值和总平均值。
(5)计算组内方差和组间方差。
(6)计算F值,通过计算F值来判断各组均值是否有显著差异。
2. 多因素方差分析多因素方差分析是在单因素方差分析的基础上,增加了一个或多个自变量的情况下进行的。
这种方法可以用来分析多个因素对因变量的影响,并判断各因素的主效应和交互效应。
步骤如下:(1)确定研究目的,选择合适的因变量和多个自变量。
(2)设计实验,确定各组的样本个数。
(3)进行实验,并收集数据。
(4)计算各组的平均值和总平均值。
(5)计算组内方差、组间方差和交互方差。
(6)计算F值,通过计算F值来判断各组均值是否有显著差异。
二、正交试验设计正交试验设计是一种设计高效实验的方法,可以同时考虑多个因素和各个因素之间的交互作用,并通过较少的试验次数得到较准确的结果。
1. 正交表的基本原理正交表的设计是基于正交原理,即每个因素和其他所有因素的交互效应都是独立的。
通过正交表设计实验,可以确保各因素和交互作用在样本中能够均匀地出现,从而减少误差来源,提高实验结果的可靠性。
2. 正交试验设计的步骤(1)确定要研究的因素和水平。
正交试验的方差分析法
C×D
B×D A×D
A
B A×B C A×C D A×D
C×D
B×D
B×C
A
B A×B C A×C D
E
D×E C×D C×E B×D B×E A×E A×B
B×C
(四) 列出试验方案
把正交表中安排原因旳各列(不包括欲考 察旳交互作用列)中旳每个数字依次换成该原 因旳实际水平,就得到一种正交试验方案。
上一张 下一张 主 页 退 出
此例不考察交互作用,可将品种(A)、 密度(B)和施氮量 (C)依次安排在L9(34)旳第1、 2、3列上,第4 列 为空列,见表2-4。
表11-4 表头设计
列号 1 2 3 4 因素 A B C 空
原因 数 2 3
4
L9(34)表头设计
列
号
1
2
3
4
A A B×C1
C 3 1(3) 2(5) 3(8) 2(5) 3(8) 1(3) 3(8) 1(3) 2(5)
上一张 下一张 主 页 退 出
第二节 正交试验资料旳方差分析
若各号试验处理都只有一种观察值,则称 之为单个观察值正交试验;
若各号试验处理都有两个或两个以上观察 值,则称之为有反复观察值正交试验。
上一张 下一张 主 页 退 出
A原因是氮肥施用量,设A1、A2、A3 3个水平 ; B原因是磷肥施用量,设B1、B2、B3 3个水平 ; C原因是钾肥施用量,设C1、C2、C3 3个水平。 这是一种3原因每个原因3水平旳试验 ,各原因旳 水平之间全部可能旳组合有27种。
上一张 下一张 主 页 退 出
假如进行全方面试验 ,能够分析各原因 旳效应 ,交互作用,也可选出最优水平组合。
第4讲5(1) 正交试验设计(方差分析)
处理号 1 2
第1列(A) 1 1
表 L9(34)正交表
第2列 1 2
第3列 1 2
第4列 1 2
因素A第1 试验结果y水i 平3次
重复测定 y1 值 y2
3
1
3
3
3
y3
单4 因素 2
1
2
3
y4
试5 验数 2
2
3
1
y5
因素A第2
SS据A6=资13(料y1 y22
格式 78=13(K12
3 K322
y3)2 (y43y5
K32)-
T2 9
1 2
y6)2 ( 1 y7 3 1
y 82y 9)2 2 3
(y1yy62 ...
9
y7 y8
y水9)平2(修 3次正重项) 复测定值
9
3
3
2
1
y9
分析第1列因素时,其它列暂不考虑,将其看做条件因因素素A。第3
因素 重复1 重复2 重复3
显著影响
(6)列方差分析表
(1)偏差平方和分解:
总偏差平方和=各列因素偏差平方和+误差偏差平方和
SST SS因素 SS空列(误差)
(2)自由度分解:
dfT df因素 df空列( 误列(
(3)方差:MS因素=
SS因素 df因素
,MS误差=
SS误差 df误差
(4)构造F统计量:
F因素=
MS因素 MS误差
(5)列方差分析表,作F检验
若计算出的F值F0>Fa,则拒绝原假设,认为 该因素或交互作用对试验结果有显著影响;若 F0≼Fa,则认为该因素或交互作用对试验结果 无显著影响。
正交试验方差分析
1(50) 1(6.5) 1(2.0) 1 1 2 2 2(7.0) 2(2.4) 3(7.5) 3(2.8 2 3 1 3 2 3
2(55) 1
3(58) 1
8பைடு நூலகம்
9 K1j
3
3 15.76
2
3 25.18
1
2 22.65
3
1 20.74
10.9
8.95
T 65.58
K2j
K3j K1j2 K2j2 K3j2
n
对上式做如下变换
SST ( X ij X ) 2 ( X ij X i. X i. X ) 2
i 1 j 1 i 1 j 1
r
n
r
n
( X ij X i. ) ( X i. X ) 2 (X ij X i. )( X i. X )
各式的物理意义
X
所有数据的平均值称为总平均 值 第i个水平的数据平均值称为组平均值 随机误差,又称为组内离差平方和
X i.
SSE 表示每一个数据与其组平均值的离差平方和,反映了实验中的
SS A
表示组平均值与总的平均值得离差平方和,反映了由于因素不同水平引 起的差异又称为组间离差平方和
再稍做整理
X 总和 2 2 SST ( X ij X ) ( X ij ) N i 1 j 1 i 1 j 1 X 总和 校正项CF N
2 2 i 1 j 1 r n i 1 j 1 r n i 1 j 1
r
n
r
n
r
n
( X ij X i. ) ( X i. X ) 2
2 i 1 j 1 i 1 j 1
正交试验设计直观分析法和方差分析法
正交试验设计直观分析法和方差分析法:
自溶酵母提取物是一种多用途食品配料,为探讨外加中性蛋白酶的方法,需作啤酒酵母的最适自溶条件试验,为此安排如下试验,试验指标为自溶液中蛋白质含量(%),取含量越高越好。
因素水平表如下:
试验结果如下,试进行直观分析和方差分析,找出使产量为最高的条件。
A B C e df df df df ====3-1=2
2A A A SS MS df =
=45.422.72=,2B B B SS MS df ==6.49
3.232=, 2C C C SS MS df =
=0.310.1552=,2e e e SS MS df ==0.83
0.4152
= 因为22
2C e MS MS <,所以因素C 的偏差平方和、自由度并入误差的偏差平方和、自由
度
因素A 高度显著,因素B 显著,因素C 不显著。
本试验指标越大越好。
对因素A 、B 分析,确定优水平为3A 、1B ;因素C 的水平改变对试验结果几乎无影响,从经济角度考虑,选1C 。
优水平组合为311A B C 。
即温度为58℃,pH 值为6.5,加酶量为2.0%。
正交试验的方差分析
x 1 4
20 K 1
5 l 1
xkl
1 4
4 K 1
xk
4.2
• 依次求出Q、f、S2、F,与F表比较 2 Q1=10 (xi1 x )2 i 1 =10×[(3.65-4.2)2+(4.75-4.2)2]=6.05
• 其余Qj (j=2,3)同理可求
45
Qr
(xkl xk )2
产率
产率
﹪
-55
xK
50
-5
59
4ቤተ መጻሕፍቲ ባይዱ
56
1
58
3*
55
0
58
3
47
-8
52
-3
x = -5/8
(1)方差分析 • 依次求出Q、f、S2、F,与F表比较
第1列差方和:
2
Q1=4 (xi1 x )2 i 1 = 4{[3/4-(-5/8)]2+[(-2)-(-5/8)]2} = 121/8
• 其余Qj(j=2…7)同理可求
9-3-2 关于Qr的计算 一 表头留出空白列
其它的列若与空白列的Q值相近,加起来共同作 为Qr的估计值,可以提高方差分析检验的灵敏度(自 由度增大了)
二 无空白列
1 根据以往资料
若已知 2 ,可认为fr=∞,此时
F
Q因子 / f因子
2
,查表 Fα (f因子,∞)
2 选更大的正交表,从而留出空白列
1
2
2
1
1
2
2
1
2
2
1
2
1
1
2
3
2
-12
-12
-4
-5
正交实验的计算步骤
正交实验的计算步骤:1.直观分析法该法先将各列相同水平实验组的实测数据进行累加,故得到不同水平时的累加值K1、K2、K3等。
K b =ΣX b然后求得各列K值的极差(R)R=Kmax-Kmin再求得极差的误差值(Re),通常以较小R值或其与空白列R值之和表示。
并求各列R值与R e 之比(G)G=R/R e 若G›1.5时,确认该列因素为主要因素,K b 较大者为较好水平。
2.方差分析法本例N=9,a、b、c分别为因素A、B、C 每个水平实验重复次数,本例为3。
1)CT=全部试验值总和的平方的均数,又称校正值2)三因素同水平指标值和即K值的平方和用Q来表示Q A=(K1a2+ K2a2+K3a2 )/a 计算Q B、Q C、Q空3)组间平方和用S表示S A = Q A―CT 依次类推S空= Q空―CT是误差的估计值,即误差S e4)总平方和的计算S总=W-CTW=各指标值平方后的和5)组内平方和的计算,即误差,用S e 来表示误差一般来自空相,即上面计算的S空来表示计算方法:因为S总=S A+S B+S C+S e故S e=S总-S A-S B-S C6)自由度 df因各因素的自由度等于水平数减1,即为3-1=2。
df T总的平方和的自由度等于实验次数减1,即为9-1=8。
df e误差自由度等于总自由度减去各因素自由度之和,即为8-2-2-2=27)均方的计算用Z表示,Z A= S A/df A 依次类推Z e= S e/df e8)F检验F A= Z A/Z e依次类推F B、F C9)查F检验的临界值F P表为F0。
05(2,2)=19.0 F0。
01(2,2)=99.0F值› F0。
05,则P‹ P0。
05,具有显著性10)最优工艺的选择做完显著性检验后,可以选择最优工艺水平,对显著因素控制,选择K值大的水平组即可。
对于不显著因素则考虑生产实际情况。
正交试验设计2正交试验数据方差分析和贡献率分析
正交试验设计2正交试验数据方差分析和贡献率分析正交试验设计是一种实验设计方法,通过选择适当的试验水平组合和设置统计模型,以减少试验阶段的试验次数和工作量,提高试验的效率和准确性。
正交设计通过对变量进行排列组合,使各变量的效应独立出现并减少副效应的影响,从而使实验结果更加可靠。
正交设计数据分析方法方差分析(ANOVA)是一种统计方法,用于测试在不同因素水平下的平均值是否相等。
在正交试验中,方差分析可以用于测试各个因子对试验结果的影响是否显著。
方差分析通常包括总体均值检验、各因子的效应检验以及误差项的检验。
通过方差分析可以确定哪些因子对试验结果的影响是显著的,进而确定最佳的试验条件。
贡献率分析是一种用于确定各个因子对试验结果的贡献程度的方法。
贡献率分析可以通过计算各个因子的均方根(RMS)值来确定各个因子的贡献程度。
贡献率可以用来排除一些不显著的因子,从而进一步优化试验条件。
1.节省试验次数和工作量:由于正交设计能够减少变量之间的相关性,可以通过较少的试验次数得到可靠的结果。
2.减少误差项:正交设计通过考虑副效应的影响,减少了试验误差的可能性,提高了数据的可靠性。
3.确定关键因素:正交设计通过方差分析和贡献率分析,可以确定对试验结果有着显著影响的关键因素,从而进行进一步优化。
4.灵活性:正交设计可以根据实验需求进行灵活的调整和改变,以适应多样的试验条件和目标。
总结正交试验设计是一种有效的实验设计方法,可用于减少试验次数和工作量,提高试验效率和准确性。
方差分析和贡献率分析是对正交设计数据进行进一步分析和总结的重要工具,可以帮助确定关键因素和优化试验条件。
正交试验设计能够在实验设计的早期阶段对各个因子进行全面考虑,从而为实验结果的有效性和可靠性打下基础。
正交试验设计中的方差分析
目的
通过方差分析,可以确定不同组之间 的平均值差异是否由随机误差引起, 还是由处理因素或自变量引起。
方差分析的数学模型
数学模型
方差分析使用数学模型来描述数据之间的关系,特别是不同组之间的平均值差异。模型通常包括组间差异和组内 差异两部分。
医学研究
通过正交试验设计中的方差分析,研究不同治疗方案、药物剂量等因素对疾病治疗效果的影响,为临床 治疗提供科学依据。
方差分析的局限性
04
方差分析对数据的要求
独立性
数据必须是相互独立的,不存 在相互关联或依赖关系。
正态性
数据应符合正态分布,才能保 证统计推断的准确性。
同方差性
各组数据的方差应相等,否则 可能导致误判。
制定试验方案
根据正交表设计试验方案,确定每个因素的每个 水平。
实施试验
按照试验方案进行试验,记录每个试验的结果。
方差分析
利用方差分析法对试验结果进行分析,确定各因 素对试验结果的影响程度和显著性。
优化方案
根据方差分析结果,优化试验方案,进行下一步试验。
方差分析的基本原理
02
方差分析的定义与目的
定义
拉丁方设计方差分
析
适用于需要控制试验条件的试验, 通过拉丁方设计平衡试验条件和 试验误差。
正交试验设计中的方差分析步骤
确定试验因素和水平
根据研究目的和实际情况确定试验因 素和水平。
制定正交表
根据试验因素和水平选择合适的正交 表。
安排试验
按照正交表进行试验,记录试验数据。
方差分析
对试验数据进行方差分析,包括自由 度、离均平方和、均方、F值等计算。
第五章 方差分析和正交试验
r
i 表示组内理论均值, eij 表示随机误差, eij ~ N (0, 2 ), i 称为效应值. ni i 0.
单因素方差分析的数学模型为 : Yij i eij (i 1, 2, , r; j 1, 2, , ni ) 2 e ~ N ( 0 , ), eij 互相独立; ij n n 0. i i i 1
•步骤2:表头设计.见下表:一般至少安排有一个空列.
17
结束
•步骤3:制订试验方案, 见下表:
18
结束
•步骤4:作试验得到得率 yi .填入表中.作试验时采用随机顺序. •步骤5:计算统计量,填入表5.4.5中.
水平数r 3, 每水平在 1列中出现次数 m 3, 试验数n rm 9, 试验结果为Y1 , Y2 , , Yn , K jl为j列中水平为l (l 1,2, , r )的试验结果之和 . 这里K11 y1 y2 y3 , K 23 y3 y6 y9 . 记K K jl , 显然, K Yi , 与j无关.
l 1 i 1 n 1 2 1 r 2 2 2 P K , Q j K jl , S j Q j P, Q Yi 2 , ST Q P. n m l 1 i 1 r n
S Yi Y
2 T j 1
r
2
1 2 2 2 2 S , Y K , 这里, ST S12 S 2 S3 S4 . n j 1
EYi i , EY ,
2 总离差平方和 ST Yij Y , r ni 2 i 1 r j 1
组间差平方和 S 组内差平方和 S
正交试验的方差分析
计算平均离差平方和(均方):
在计算各因素离差平方和时,我们知道,它们都是若干项平方的和, 它们的大小与项数有关,因此不能确切反映各因素的情况。为了消 除项数的影响,我们计算它们的平均离差的平方和。
因素的平均离差平方和 = (因素离差的平方和)/因素的自由度 = S因 /f因
试验误差的平均离差平方和 = (试验误差的离差的平方和)/试验误差的自由度 = SE / fE
33.212 ) 377.17, 35.882 ) 376.29,
QC
1 (6.272 9
35.212
59.162 )
531.00,
Q( AXB)1
1 (35.632 9
32.082
32.932 )
375.89,
Q( AXB)2
1 (34.302 9
31.732
34.612 ) 375.68,
考 虑A,B的交互作用。试进行方差分析。
第22页/共47页
第三节: 2水平正交设计的方差分析
解:(选用正交表L8(27)
第23页/共47页
第三节: 2水平正交设计的方差分析
这 里
ST
QT
P
8
xk2
k 1
T2 8
65668 1 (724)2 8
146
SA
1 8
(K1
K2 )2
1 8
(366 358)2
第四节:混合型正交设计的方差分析
混合型正交设计的方差分析,本质上与一般水平数相等正交设计 的
方差分析相同,只要在计算时注意到各水平数的差别就行了。
8
现以L8(4X24)混合S型T 正交QT表为P例:k 1
xk2
1 8
正交试验设计的方差分析
三.正交试验设计的方差分析 现以实验室制取H2为例,来说明正交设计的方 差分析的基本方法。若该实验所考察的因素、水平 如表1和表2所示。
表1. 因素水平
因素 水平 一 二 A wH2SO4 (%) 20 25 B mCuSO4· 5H2O(g) 0.4 0.5 C mZn (g) 4 5
三
30
0.6
为了弥补直观分析方法的不足,可采用方差分析 方法对实验结果进行计算分析。所谓方差分析就是将 因素水平(或交互作用)的变化引起的实验结果间的差 异与误差的波动所引起的实验结果间的差异区分开来 的一种数学方法。 方差分析的中心要点是:把实验数据总的波动分 解成两部分,一部分反映因素水平变化引起的波动, 另一部分反映实验误差引起的波动。即把数据总的偏 差平方和(S总)分解为因素的偏差平方和(SA、SB、SC ……)与误差的偏差平方和(Se),并计算它们的平均偏 差平方和(也称均方和,或均方),然后进行检验,最 后得出方差分析表。
方差分析是把实验数据总的波动(即数据的总的偏差平方 和S总)分解成两部分:一部分反映因素水平变化引起的波动 (即因素的偏差平方和),对本例而言仅为S wH2SO4;另一部分 反映实验误差引起的波动(即误差的偏差平方和Se)。即: (1) Se的计算
表3.实验结果分析 参与wH2SO4某一水平的实验编号 A1(20%) 1 4 7 A2 (25%) 2 5 8 平均值y A3 (30%) 3 6 9 10minH2产率 A1(20%) 32.62 34.97 36.62 34.74 A2 (25%) 40.40 36.53 39.19 38.71 A3 (30%) 41.07 45.75 44.53 43.78
在F分布表上横行(n1:1, 2, 3…)代表F比中分子的自 由度;竖行(n2:1, 2, 3…)代表F比中分母的自由度;表 中的数值即各种自由度情况下F比的临界值。 例如,某因素A的偏差平方和的自由度fA=1,误差 (e)的偏差平方和的自由度fe=8,查得F0.1(1,8)=3.64,这 里0.1是信度。 在判断时(如判断因素A的水平的改变对实验结果 是否有显著影响),信度a是指我们对做出的判断有多大 的把握,若a=5%,那就是指当FA>F0.05(fA, fe )时,大概 有95%的把握判断因素A的水平改变对实验结果有显著 影响。对于不同的信度a,有不同的F分布表,常用的 有a=1%, a=5%, a=10%等。根据自由度的大小,可 在各种信度的F表上查得F比的临界值,分别记作 F0.01(n1, n2 ), F0.05(n1, n2 ), F0. 10 (n1, n2 )等。
正交设计试验资料的方差分析
数据整理
将收集到的数据整理成 表格形式,便于后续分 析。
数据筛选
对异常值进行筛选和处 理,确保数据质量。
正交设计试验资料的方差分析过程
确定试验因素和水平
明确试验因素和各因素的水平, 为后续分析提供基础。
计算各因素的效应值
根据试验结果,计算各因素的效 应值。
计算误差平方和
根据效应值和水平,计算误差平 方和。
跨学科融合
标准化与规范化
结合其他学科的理论和方法,拓展正交设 计试验的应用领域,推动多学科交叉融合 发展。
制定和完善正交设计试验的标准和规范, 提高试验的可靠性和可比性。
正交设计试验资料方差分析的实际应用价值
科学研究
在科学研究领域,正交设计 试验资料方差分析可用于探 索和验证科学假设,揭示现 象背后的机制和规律。
正交试验设计的基本原理
1 2
正交性原理
正交试验设计基于正交性原理,即每个因素在试 验中出现的次数相同,且各次出现的概率相等。
均匀分散原理
正交试验设计通过均匀分散原理,确保每个水平 在试验中都有均衡的分布,从而减少结果的偏差。
3
代表性原理
正交试验设计通过代表性原理,选取具有代表性 的样本点进行试验,以反映整体情况。
正交设计试验资料的方差 分析
• 正交设计试验概述 • 方差分析基础 • 正交设计试验资料的方差分析方法 • 实例分析 • 总结与展望
01
正交设计试验概述
正交试验设计的基本概念
正交试验设计是一种统计技术,用于 在多因素、多水平条件下进行试验, 以最小化试验次数,同时最大化信息 收集。
它利用正交表来安排试验,确保每个 因素的每个水平都被等可能地选取, 从而得到全面而均衡的试验结果。
正交试验中的方差分析
QA = p k 1 = p
m
[(
A 1 A
− x
2
) + (k
2
A 2 m
− x
)
2
+⋯ + k
2
(
A m
− x
)]
2
∑ (K )
i =1 i
1 − mp
∑ i =1
∑
p
j =1
x ij
其他因素差方和类似于因素A的计算。
2)总差方和QT: 总差方和 QT是所有试验次数结果的偏差平方和。它反映的是试验结果 的总差异,值越大,说明各次试验的结果之间的差异越大。 这个差异是由因素水平的变化以及试验误差引起的,不可避 免。
fT = n − 1
f因 = m − 1
如果有交互作用,则交互作用的自由度为两因素自由度之积: 即:fA×B=fA×fB 试验误差的自由度fe=fT-f因 。
3.计算平均差方和(均方): 3.计算平均差方和(均方): 计算平均差方和 在计算各因素的差方和时,按照前面的讲述,它是各水平的 偏差方的和,其大小与水平数有关,故此还不能确切的反映 各因素的情况。为了消除水平数的影响,可以计算其平均差 方和:
一般有这样规律: F>F0.01,因素影响非常非常显著,稍微变化即引起指标的 很大变化; F0.01≥F>F0.05,因素影响非常显著; F0.05≥F>F0.10,因素影响显著; F0.10≥F>F0.25,因素有一定影响; F≤F0.25,看不出该因素对指标有什么影响。
1)各因素差方和: 1)各因素差方和: 各因素差方和 正交试验都是多因素多水平的试验,因此有必要对各因素的 差方和进行计算。 各因素差方和等于它的各水平均值k1A,k2A,…,kmA之间偏差平 方和。
正交实验设计与方差分析2024
引言概述正交实验设计与方差分析是一种常用于实验设计和数据分析的统计方法。
这种方法能够帮助研究人员系统地设计实验、收集数据,并通过方差分析对数据进行统计分析。
正交实验设计适用于多因素实验设计,能够探究多个因素对结果变量的影响,并确定各个因素对结果变量的相对重要性。
方差分析则是用来比较不同组别之间的均值差异是否显著,并推断这些差异是否由于随机因素引起。
正文内容1.正交实验设计的基本原理1.1.因素和水平1.2.正交实验设计的完备性和平衡性1.3.主效应和交互效应的概念1.4.正交表和正交实验设计的选择1.5.正交实验设计的优点和局限性2.正交实验设计的建立步骤2.1.确定要研究的因素和水平2.2.选择适当的正交表2.3.构建试验方案2.4.进行实验和数据收集2.5.数据分析和结果解释3.方差分析的基本原理3.1.单因素方差分析3.2.多因素方差分析3.3.方差分析中的假设检验3.4.方差分析的效应量和效应大小3.5.方差分析结果的解释和报告4.正交实验设计与方差分析的应用领域4.1.医学研究4.2.工程设计4.3.农业实验4.4.社会科学研究4.5.生产过程优化5.正交实验设计与方差分析的案例分析5.1.一个药物疗效评价的正交实验设计案例5.2.一个工程设计的正交实验设计案例5.3.一个农业实验的正交实验设计案例5.4.一个社会科学研究的正交实验设计案例5.5.一个生产过程优化的正交实验设计案例总结正交实验设计与方差分析是一种重要的统计方法,在实验设计和数据分析中具有广泛的应用。
通过正交实验设计,研究人员能够系统地探究多个因素对结果变量的影响,并确定各个因素的相对重要性。
方差分析则用于比较不同组别之间的均值差异,并推断这些差异是否显著。
正交实验设计与方差分析能够帮助研究人员有效地设计实验、收集数据并进行统计分析,为科学研究和应用提供有力支持。
在不同领域,如医学研究、工程设计、农业实验、社会科学研究和生产过程优化等方面都有广泛的应用。
正交试验设计直观分析法和方差分析法
正交试验设计直观分析法和方差分析法:
自溶酵母提取物是一种多用途食品配料,为探讨外加中性蛋白酶的方法,需作啤酒酵母的最适自溶条件试验,为此安排如下试验,试验指标为自溶液中蛋白质含量(%),取含量越高越好。
因素水平表如下:
试验结果如下,试进行直观分析和方差分析,找出使产量为最高的条件。
解:直观分析
方差分析n=9,r=3
A B C e df df df df ====3-1=2
2A A A SS MS df =
=45.422.72=,2B B B SS MS df ==6.49
3.232=, 2C C C SS MS df =
=0.310.1552=,2e e e SS MS df ==0.83
0.4152
= 因为22
2C e MS MS <,所以因素C 的偏差平方和、自由度并入误差的偏差平方和、自由
度
根据以上计算,进行显著性检验,列出方差分析表,结果见表:
因素A 高度显著,因素B 显著,因素C 不显著。
本试验指标越大越好。
对因素A 、B 分析,确定优水平为3A 、1B ;因素C 的水平改变对试验结果几乎无影响,从经济角度考虑,选1C 。
优水平组合为311A B C 。
即温度为58℃,pH 值为6.5,加酶量为2.0%。
THANKS !!!
致力为企业和个人提供合同协议,策划案计划书,学习课件等等
打造全网一站式需求
欢迎您的下载,资料仅供参考。
正交试验设计结果的方差分析
n
T xi i 1
②各因素引起的离差平方和
• 第j列所引起的离差平方和 :
S j
1 r
(
m p1
K
2 pj
)
T2 n
k
ST S j Se j 1
③交互作用的离差平方和
• 若交互作用只占有一列,则其离差平方和就等于 所列离差平方和之和,
第6章 正交试验设计结果的方差分析
正交试验设计结果的方差分析法
• 能估计误差的大小 • 能精确地估计各因素的试验结果影响的重要程度
6.1 方差分析的基本步骤
• 正交试验多因素的方差分析,其基本思想是先计算出各因素 和误差的离差平方和,然后求出自由度、均方、F值,最后进 行F检验。
• 如果用正交表Ln(mk)来安排试验,则因素的水平数为m,正交 表的列数为k,总试验次数为n,试验结果为xi(i=1~n)。
– 若m = 2, fA×B=fj – 若m = 3, fA×B= 2fj= fA +fB ④误差的自由度:
fe=空白列自由度之和
(3)计算均方
•
以A因素为例
:VA
SA fA
以A×B为例 :
VAB
S AB f AB
误差的均方:
Ve
Se fe
注意:
• 若某因素或交互作用的均方≤Ve,则应将它们归入误差列 • 计算新的误差、均方
(6)列方差分析表
6.2 二水平正交试验的方差分析
• 正交表中任一列对应的离差平方和:
例6-1
6.2.2 三水平正交试验的方差分析
• m=3,所以任一列的离差平方和:
例6-3 注意: ➢ 交互作用的方差分析 ➢ 有交互作用时,优方案的确定
6.3 混合水平正交试验的方差分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正交实验
1. 选择正交表
根据上面的水平表,由于水平数2,所以要选用L n (2
)型正交表,本例中有3个因素,且考虑因素间的交互作用,所以要选一张5 m 的表,而L 8(27)是满足条件的最小L n (2m )型正交表。
2. 表头设计
3. 数据的填写与试验结果
4. 计算K1、K2、R
由于计算K1、K2、R ,数据量小,且数据所在列不规则,可以直接在要求和单元格里直接输入=单元格+单元格 的简单公式如下图
水平 (A)碱含量/%
(B)操作温度/°C
©填料种类
1 5 40 甲
2 10
20
乙
试验号 A B A ×B C 空列 B ×C 空列 SO 2摩尔分率×100
1 2 3 4 5 6 7
同理用这个方法可以求得K2、R ,如下图
5. 计算离差平方和
利用Excel 内置函数SUMSQ ()该函数返回所选数的平方和,如计算A 2+B 2可以输入=SUMSQ(A,B),可得到结果,与平时所用求和函数SUM ()类似。
由于n
T K K n SS A 22
2)21(2-+=
;其中∑==
n
i i
y
T 1
=97,可用SUM 求得
其中,P=T2/n可在单元格B24中输入“=B23*B23/8”求得。
而SS A的计算可在B20单元格中输入“=SUMSQ(B16:B17)/4-$B$24”;
其中$代表绝对引用。
复制公式到C20,D20,E20,F20,G20,G20,可得到各自的离散和。
6.方差分析
下图为所填写好的方差分析表:
差异源SS df MS F 显著性
A 6.125 1 6.125
B 136.125 1 136.125 14.91781 *
C 3.125 1 3.125
A×B 171.125 1 171.125 18.75342 * B×C 105.125 1 105.125 11.52055 * 误差e 27.25 2 13.625
误差e△36.5 4 9.125
(1,4) 7.708647421
F
0.05
F
(1,4) 21.19768958
0.01
其中A,B,C的自由度是为m(水平数)-1,A×B,B×C的自由度为dfA×df B, df B×
df
C
误差e是空列SS之和,自由度也是空列个数之和。
误差e△是合并A,B两因素离散平方和后的结果,因为SS A,SS B都小于误差项e,故将其并入误差e△中去。
对于显著性水平α=0.05,0.01,的F0.05(1,4),与F0.01(1,4),可通过函数FINV()求得。
7.主次顺序分析
从离散和可以直接看出主次顺序:A×B , B ,B×C
由于存在交互项的影响较在,故应该在通过因子的搭配来确定最优方案。
1.确定无交互项的最佳水平选择B2,因为SO2要越小越好。
2.列出A
1
3.同理可确定C2。
故优优方案为:A1,B2,C2。