职业中学高二数学教案5篇

合集下载

职高数学教案高二范文精选

职高数学教案高二范文精选

职高数学教案高二范文精选一、教学内容本节课选自《职高数学》教材第二章“函数的单调性与极值”,详细内容包括:函数的单调性的定义及判定方法、函数极值的定义及求解方法、导数在求解函数极值中的应用。

二、教学目标1. 理解并掌握函数单调性的定义、判定方法及其性质。

2. 理解并掌握函数极值的定义、求解方法及其性质。

3. 学会运用导数求解函数的极值问题。

三、教学难点与重点重点:函数单调性的判定方法、函数极值的求解方法。

难点:运用导数求解函数极值的问题。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。

2. 学具:学生笔记本、教材、练习本。

五、教学过程1. 导入:通过实际生活中的例子,引入函数单调性和极值的概念。

例子:气温随时间的变化,讨论气温的单调性变化及最高温度和最低温度。

2. 知识讲解:(1)函数单调性的定义、判定方法及其性质。

(2)函数极值的定义、求解方法及其性质。

(3)导数在求解函数极值中的应用。

3. 例题讲解:(1)求解函数的单调性。

(2)求解函数的极值。

4. 随堂练习:(1)判断给定函数的单调性。

(2)求解给定函数的极值。

5. 学生练习,教师指导:学生完成练习,教师针对学生的疑问进行解答。

六、板书设计1. 函数单调性的定义、判定方法及其性质。

2. 函数极值的定义、求解方法及其性质。

3. 导数在求解函数极值中的应用。

4. 例题及解答。

七、作业设计1. 作业题目:(1)求函数f(x) = x^3 3x^2 9x + 5的单调区间。

(2)求函数g(x) = 2x^3 3x^2 12x + 5的极大值和极小值。

2. 答案:(1)单调递增区间:(∞, 1)和(3, +∞),单调递减区间:(1, 3)。

(2)极大值:x = 1,极小值:x = 2。

八、课后反思及拓展延伸1. 反思:本节课学生对函数单调性和极值的概念掌握程度,以及运用导数求解极值问题的能力。

2. 拓展延伸:(1)研究其他类型的函数单调性和极值问题。

高二数学优秀教案优秀5篇

高二数学优秀教案优秀5篇

高二数学优秀教案优秀5篇高二数学教案优秀教案篇一教材分析教材的地位和作用期望是概率论和数理统计的重要概念之一,是反映随机变量取值分布的特征数,学习期望将为今后学习概率统计知识做铺垫。

同时,它在市场预测,经济统计,风险与决策等领域有着广泛的应用,为今后学习数学及相关学科产生深远的影响。

教学重点与难点重点:离散型随机变量期望的概念及其实际含义。

难点:离散型随机变量期望的实际应用。

[理论依据]本课是一节概念新授课,而概念本身具有一定的抽象性,学生难以理解,因此把对离散性随机变量期望的概念的教学作为本节课的教学重点。

此外,学生初次应用概念解决实际问题也较为困难,故把其作为本节课的教学难点。

二、教学目标[知识与技能目标]通过实例,让学生理解离散型随机变量期望的概念,了解其实际含义。

会计算简单的离散型随机变量的期望,并解决一些实际问题。

[过程与方法目标]经历概念的建构这一过程,让学生进一步体会从特殊到一般的。

思想,培养学生归纳、概括等合情推理能力。

通过实际应用,培养学生把实际问题抽象成数学问题的能力和学以致用的数学应用意识。

[情感与态度目标]通过创设情境激发学生学习数学的情感,培养其严谨治学的态度。

在学生分析问题、解决问题的过程中培养其积极探索的精神,从而实现自我的价值。

三、教法选择引导发现法四、学法指导“授之以鱼,不如授之以渔”,注重发挥学生的主体性,让学生在学习中学会怎样发现问题、分析问题、解决问题。

高二数学优秀教案篇二一、教学目标:掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。

二、教学重点:向量的性质及相关知识的综合应用。

三、教学过程:(一)主要知识:1、掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。

(二)例题分析:四、小结:1、进一步熟练有关向量的运算和证明;能运用解三角形的知识解决有关应用问题,2、渗透数学建模的思想,切实培养分析和解决问题的能力。

职高数学教案高二范文精选(1)

职高数学教案高二范文精选(1)

职高数学教案高二范文精选一、教学内容本节课选自职高数学教材第二章《函数的单调性与极值》,具体内容包括:函数单调性的定义与判定,函数极值的定义及其求法,实际问题的函数模型建立。

二、教学目标1. 理解并掌握函数单调性与极值的概念,能够运用这些概念分析具体问题。

2. 学会运用导数判断函数的单调性,求解函数的极值。

3. 能够建立实际问题的函数模型,运用所学知识解决实际问题。

三、教学难点与重点教学难点:函数单调性的判定,函数极值的求解。

教学重点:理解函数单调性与极值的概念,掌握相关求解方法。

四、教具与学具准备教具:多媒体教学设备,PPT课件,黑板。

学具:教材,笔记本,练习本。

五、教学过程1. 导入新课:通过展示实际生活中函数模型的例子,激发学生的学习兴趣,引入函数单调性与极值的概念。

2. 知识讲解:(1) 函数单调性的定义与判定。

(2) 函数极值的定义及其求法。

3. 例题讲解:(1) 求解函数的单调区间。

(2) 求解函数的极值。

4. 随堂练习:针对例题进行变式练习,巩固所学知识。

5. 小组讨论:针对实际问题,引导学生运用所学知识建立函数模型,解决实际问题。

六、板书设计1. 函数单调性的定义与判定。

2. 函数极值的定义及其求法。

3. 例题及解答步骤。

4. 实际问题的函数模型建立。

七、作业设计1. 作业题目:(1) 求函数f(x) = x^3 3x^2 9x + 5的单调区间和极值。

(2) 某商品的需求量Q(单位:千件)与价格P(单位:元/件)之间的关系为Q = 30 2P,求价格P为多少时,销售利润最大?2. 答案:(1) 单调增区间:(∞, 1)和(3, +∞),单调减区间:(1, 3)。

极大值:f(1) = 10,极小值:f(3) = 22。

(2) 利润最大时的价格为P = 10元/件。

八、课后反思及拓展延伸1. 课后反思:本节课学生对函数单调性与极值的概念掌握程度,以及对相关求解方法的熟练程度。

2. 拓展延伸:引导学生思考如何运用所学知识解决更复杂的实际问题,如多变量函数的极值问题等。

中职高二数学教学计划(通用8篇)

中职高二数学教学计划(通用8篇)

中职高二数学教学计划(通用8篇)中职高二数学教学计划篇1一、指导思想准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注意参透教学思想和方法,针对学生实际,不断研究数学教学,改进教法,指导学法。

数学目标要求1、理解集合及充要条件的有关知识,掌握不等式的性质,一元二次不等式、绝对值不等的解法,掌握函数的概念及指数函数,对函数和幕函数的性质和图象。

2、理解角的概念的推广和三角函数的`定义,掌握基本的三角函数公式和三角函数巅峰性质、图像,理解三角函数的周期性3、理解数列的概念,掌握等差数列和等比数列的性质,并会求等差数列、等比数列前n项的和。

4、掌握平面向量时有关概念和运算,掌握直线和圆的方程的求法。

5、掌握空间几何直线、平面之间的位置关系及其判定方法。

6、掌握概率与统计初步里的计数原理,理解三种抽样方法,会求简单问题的概率。

二、教学建议1、深入钻研教材。

以教材为核心,深入研究教材中章节知识的内外结构,熟练掌握知识和逻辑体系,细致领悟教材改革的精髓,逐步明确教材教学形式,内容和教学目标的影响。

2、准确吧握新大纲。

新大纲修改了部分内容的教学要求层次,把握新大纲对知识点的基本要求,防止自觉不自觉地对教材加深加宽。

同时,在整体上要重视数学应用;重视教学思想方法的参透。

3、树立以学生为主体的教育观念。

学生的发展是课程实施的出发点和归宿,教师必须面向全体学生因材施材,以学生为账户提,构建新的认识体系,营造有利于学生的氛围。

4、发挥教材的多种教学功能。

用好章头图,激发学生学习兴趣;发挥阅读材料的功能,培养学生用数学的意识;组织好研究性课题的教学,让学生感受社会生活之所需;小结和复习是培养学生自学的好材料。

5、加强课堂研究,科学设计教学方法。

根据教材的内容和特征,实行启发式和讨论式教学。

发扬教学民主,师生双方亲切合作,交流互动,让学生感受、理解知识的产生和发展的过程。

根据材料个章节的重难点制定教学专题,积累教学经验。

职高高二下学期数学教案模板

职高高二下学期数学教案模板

职高高二下学期数学教案模板从教学目标角度来看,每节课都会环绕一个或几个教学目标来展开。

这些目标的设定是建立在对教学内容综合分析及掌控的基础之上的。

今天作者在这里给大家分享一些有关于最新职高高二下学期数学教案模板,期望可以帮助到大家。

最新职高高二下学期数学教案模板1一、教材分析1、教材的地位和作用:函数是数学中最主要的概念之一,而函数概念贯穿在中学数学的始终,概念是数学的基础,概念性强是函数理论的一个显著特点,只有对概念作到深入知道,才能正确灵活地加以运用。

本课中对函数概念知道的程度会直接影响其它知识的学习,所以函数的第一课时非常的重要。

2、教学目标及确立的根据:教学目标:(1) 教学知识目标:了解对应和映照概念、知道函数的近代定义、函数三要素,以及对函数抽象符号的知道。

(2) 能力训练目标:通过教学培养的抽象概括能力、逻辑思维能力。

(3) 德育渗透目标:使知道一切事物都是在不断变化、相互联系和相互制约的辩证唯物主义观点。

教学目标确立的根据:函数是数学中最主要的概念之一,而函数概念贯穿全部中学数学,如:数、式、方程、函数、排列组合、数列极限等都是以函数为中心的代数。

加强函数教学可帮助学好其他的内容。

而掌控好函数的概念是学好函数的基石。

3、教学重点难点及确立的根据:教学重点:映照的概念,函数的近代概念、函数的三要素及函数符号的知道。

教学难点:映照的概念,函数近代概念,及函数符号的知道。

重点难点确立的根据:映照的概念和函数的近代定义抽象性都比较强,要求学生的理性认识的能力也比较高,对于刚刚升入高中不久的来说不易知道。

而且由于函数在高考中可以以低、中、高挡题显现,所以近年来有一种“函数热”的趋势,所以本节的重点难点必定落在映照的概念和函数的近代定义及函数符号的知道与运用上。

二、教材的处理:将映照的定义及类比手法的运用作为本课突破难点的关键。

函数的定义,是以集合、映照的观点给出,这与初中教材变量值与对应观点给出不一样了,从而给本身就很抽象的函数概念的知道带来更大的困难。

中职高二职业模块数学教案模板

中职高二职业模块数学教案模板

中职高二职业模块数学教案模板2021中职高二职业模块数学教案模板1一、说教材1.从在教材中的地位与作用来看《等比数列的前n项和》是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养.2.从学生认知角度看从学生的思维特点看,很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导.不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q=1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错.3.学情分析教学对象是刚进入高中的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因此片面、不严谨.4.重点、难点教学重点:公式的推导、公式的特点和公式的运用.教学难点:公式的推导方法和公式的灵活运用.公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了重要的数学思想,所以既是重点也是难点.二、说目标知识与技能目标:理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上能初步应用公式解决与之有关的问题.过程与方法目标:通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力.情感与态度价值观:通过对公式推导方法的探索与发现,优化学生的思维品质,渗透事物之间等价转化和理论联系实际的辩证唯物主义观点.三、说过程学生是认知的主体,设计教学过程必须遵循学生的认知规律,尽可能地让学生去经历知识的形成与发展过程,结合本节课的特点,我设计了如下的教学过程:1.创设情境,提出问题在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求.西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格.国王令宫廷数学家计算,结果出来后,国王大吃一惊.为什么呢?设计意图:设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性.故事内容紧扣本节课的主题与重点.此时我问:同学们,你们知道西萨要的是多少粒小麦吗?引导学生写出麦粒总数.带着这样的问题,学生会动手算了起来,他们想到用计算器依次算出各项的值,然后再求和.这时我对他们的这种思路给予肯定.设计意图:在实际教学中,由于受课堂时间限制,教师舍不得花时间让学生去做所谓的“无用功”,急急忙忙地抛出“错位相减法”,这样做有悖学生的认知规律:求和就想到相加,这是合乎逻辑顺理成章的事,教师为什么不相加而马上相减呢?在整个教学关键处学生难以转过弯来,因而在教学中应舍得花时间营造知识形成过程的氛围,突破学生学习的障碍.同时,形成繁难的情境激起了学生的求知欲,迫使学生急于寻求解决问题的新方法,为后面的教学埋下伏笔.2.师生互动,探究问题在肯定他们的思路后,我接着问:1,2,22,。

职业中学高二数学教案5篇

职业中学高二数学教案5篇

职业中学高二数学教案5篇通过对高二数学的学习,造就学生逻辑推理实力。

今日我在这里整理了一些职业中学高二数学教案5篇最新,我们一起来看看吧!职业中学高二数学教案1课题:两个平行平面的距离教学目的:1.驾驭驾驭平面与平面间距离的概念,并能求出它们的距离 2.弄清平行平面之间的距离的定义;教学重点:平行平面的距离的求法教学难点:平行平面的距离的求法教学过程:一、复习引入:1.点到平面的距离:确定点是平面外的随意一点,过点作,垂足为,那么唯一,那么是点到平面的距离即:一点到它在一个平面内的正射影的距离叫做这一点到这个平面的距离(转化为点到点的距离) 结论:连结平面外一点与内一点所得的线段中,垂线段最短2.直线到与它平行平面的距离:一条直线上的任一点到与它平行的平面的距离,叫做这条直线到平面的距离(转化为点面距离)二、讲解新课:1.两个平行平面的`公垂线、公垂线段:(1)两个平面的公垂线:和两个平行平面同时垂直的直线,叫做两个平面的公垂线(2)两个平面的公垂线段:公垂线夹在平行平面间的局部,叫做两个平面的公垂线段(3)两个平行平面的公垂线段都相等(4)公垂线段小于或等于任一条夹在这两个平行平面间的线段长 2.两个平行平面的距离:两个平行平面的公垂线段的长度叫做两个平行平面的距离三、讲解范例:例1如图,确定正三角形的边形为,点D到各顶点的距离都是,求点D到这个三角形所在平面的距离解:设为点D在平面内的射影,延长,交于,,∴, ∴即是的中心,是边上的垂直平分线,在中,,,,即点D到这个三角形所在平面的距离是. 四、课堂练习:五、课后作业:职业中学高二数学教案2数学教案-菱形教学建议学问构造重难点分析本节的重点是菱形的性质和判定定理。

菱形是在平行四边形的前提下定义的,首先她是平行四边形,但它是特别的平行四边形,特别之处就是“有一组邻边相等”,因而就增加了一些特别的性质和不同于平行四边形的判定方法。

菱形的这些性质和判定定理即是平行四边形性质与判定的持续,又是以后要学习的正方形的根底。

职高高二数学教案

职高高二数学教案

职高高二数学教案【篇一:职高高二数学数学复数及其应用教案】第三十二课时:复数的概念(一)【教学目标】知识目标:理解复数的有关概念.能力目标:通过复数概念的学习与相关计算,使学生的计算技能与计算工具使用技能得到锻炼和提高.【教学重点】复数的概念.【教学难点】复数的概念.【教学设计】首先给出了复数的定义,然后引入虚数、纯虚数的定义,将实数集推广到复数集.介绍复数a+bi(a,b∈r)的概念时,要注意以下几点:(1)复数的虚部是b,而不是bi,如教材中指出复数z=-3-4i的虚部是-4,而不是-4i.(2)当虚部b=0时,复数a+bi=a就是实数.当虚部b≠0时,复数a+bi是虚数,特别a=0时,虚数bi是纯虚数.(3)a+bi(a,b∈r)中的“+”号有两种作用,第一个作用是连接记号,表示a+bi是一个整体,由实数a和纯虚数bi组成复数;第二个作用是运算符号表示实数a和纯虚数bi相加.例1的作用是帮助学生理解概念.这部分内容学生了解即可,不需要特别强化训练,不介绍关于数系讨论问题的解题技巧.教学中要把握难度,不超过教材的例、习题的难度.讲解复数相等的定义时要强调a1+b1i=a2+b2i等价于a1=a2且b1=b2,只有当a1=a2,b1=b2这两个条件同时成立时a1+b1i才能等于a2+b2i. 复数z=a+bi的共轭复数是z=a-bi.要注意它们的特征:实部相等,虚部互为相反数,教学中可引导学生得出:实数的共轭复数就是它本身.例2的作用是帮助学生理解复数相等的定义.教学中要讲清楚解题的基本思想,分清等号两边复数的实部与虚部,利用复数相等的概念,由“实部与实部相等,虚部与虚部相等”列出一个二元一次方程组,最后求出未知数x、y的值.例3的作用是帮助学生理解共轭复数的概念.要强调互为共轭的两个复数,其实部相等,虚部互为相反数.1课时.【教学过程】创设情境兴趣导入我们知道一元二次方程x=-1在实数范围内无解.更一般地,当根的判别式2?=b2-4ac0时,一元二次方程ax2+bx+c=0(其中a,b,c为实数且a≠0)在实数范围内也无解.动脑思考探索新知为了使方程x=-1有解,引进一个新数i,叫做虚数单位,并且规定数i有如下性质:(1)i的平方等于-1,即 i=-1 ;(2)i与实数进行四则运算时,原有的加法、乘法的运算法则和运算律仍然成立. 由性质(1)知,x=i是方程x=-1的一个解.由性质(2)知, 222(-i)2=(-1?i)2=(-1)2?i2=1?(-1)=-1,故x=-i也是方程x=-1的一个解.【注意】为了与表示电流强度的符号相区别,电学中虚数单位用字母j表示.根据上述性质,i可以与实数b相乘,由于满足乘法交换律,其乘积一般写作bi(规定0?i=0),再将bi与实数a相加,动脑思考探索新知为了使方程x=-1有解,引进一个新数i,叫做虚数单位,并且规定数i有如下性质: 22;(1)i的平方等于-1,即 i=-1(2)i与实数进行四则运算时,原有的加法、乘法的运算法则和运算律仍然成立. 由性质(1)知,x=i是方程x=-1的一个解.由性质(2)知, 22(-i)2=(-1?i)2=(-1)2?i2=1?(-1)=-1,故x=-i也是方程x=-1的一个解.【注意】为了与表示电流强度的符号相区别,电学中虚数单位用字母j表示.根据上述性质,i可以与实数b相乘,由于满足乘法交换律,其乘积一般写作bi(规定0?i=0),再将bi与实数a相加,(转下节) 2第三十三课时:复数的概念(二)知识目标:理解复数的有关概念.能力目标:通过复数概念的学习与相关计算,使学生的计算技能与计算工具使用技能得到锻炼和提高.【教学重点】复数的概念.【教学难点】复数的概念.【课时安排】1课时.【教学过程】(接上节)根据上述性质,i可以与实数b相乘,由于满足乘法交换律,其乘积一般写作bi(规定0?i=0),再将bi与实数a相加由于满足加法交换律,其和一般写作a+bi.形如a+bi(a,b∈r)的数叫做复数,其中a叫做复数的实部,b叫做复数的虚部.复数一般使用小写字母z,w, 等来表示.例如,复数z=-3-4i的实部为-3,虚部为-4.当虚部b=0时,复数a+bi=a就是实数.当虚部b≠0时,复数a+bi叫做虚数,特别a=0时虚数bi叫做纯虚数.例如,4,-1-44i都是复数,其中4是实数,-1-i是纯虚数. 55【想一想】 4的实部、虚部各是多少?全体复数组成的集合叫做复数集,常用大写字母c来表示,即c={zz=a+bi,a,b∈r}.显然,实数集r是复数集c的真子集.引入复数后,数的范围得到扩充:??有理数实数a(b=0)???无理数?复数a+bi? ?(a,b∈r)?纯虚数bi(a=0)?虚数a+bi(b≠0)????非纯虚数a+bi(a≠0)?巩固知识典型例题例1指出下列复数的实部和虚部,并判定它们是实数还是虚数?如果是虚数是否为纯虚数?(1)z1=3-i;(2)z2=3;(3)z3=-1i. 4解 (1) z1的实部a=3,虚部b=-1,它是虚数,但不是纯虚数;(2) z2的实部a=3b=0,它是实数;(3) z3的实部a=0,虚部b=-动脑思考探索新知如果两个复数a+bi(a,b∈r)与c+di(c,d∈r)的实部与虚部分别相等,那么称这两个复数相等.记作a+bi=c+di,即 1,它是虚数,且是纯虚数. 4a+bi=c+di ?a=c且b=d.(3.1)特别地a+bi=0?a=0且b=0.(3.2)巩固知识典型例题例2已知(x-2)+xi=1-(x-3y)i,其中x,y是实数,求x和y的值.解根据公式(3.1) ,得?x-2=1, ?x=-(x-3y),?解方程组得x=3,y=2.例3求复数z1=-20+33i,z2=-解 z1=-20-33i,z2=运用知识强化练习1. 指出下列复数的实部和虚部:(1)2-3i;(2) -32.求下列复数的共轭复数:(1) 11+6i; (2) -3-8i.继续探索活动探究 (1)读书部分:教材(2)书面作业:教材习题3.1(必做);学习与训练训练题3.1(选做) 3i,z3=-7的共轭复数. 43i,z3=-7. 4第三十四课时:复数的几何意义(一)【教学目标】知识目标:(1)理解复数的几何意义.(2)会求复数的模、辐角和辐角主值以及复数的三角形式.能力目标:通过复数的模、辐角和辐角主值以及复数的三角形式的学习,使学生的计算技能得到锻炼和提高.【教学重点】(1)复数的几何表示.(2)复数的三角形式、指数形式、极坐标形式.【教学难点】复数的代数形式转化为三角形式.【教学设计】在讲解复平面和复数的几何表示时,自然的建立了复数z=a+bi与直角坐标平面内的点z(a,b)之间的一一对应关系,于是复数z=a+bi (a,b∈r)可以用直角坐标系平面中的点z(a,b)表示.建立了直角坐标系用来表示复数的平面叫做复平面,在复平面内,x轴叫做实轴,实轴上的点都表示实数,虚轴上除去原点以外的点都表示纯虚数.要y轴叫做虚轴,【课时安排】1课时.【教学过程】动脑思考探索新知1.复数的点表示【篇二:高二数学电子教案】第一章算法初步1.1 算法与程序框图 1.1.1 算法的概念整体设计教学分析算法在中学数学课程中是一个新的概念,但没有一个精确化的定义,教科书只对它作了如下描述:“在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤.”为了让学生更好理解这一概念,教科书先从分析一个具体的二元一次方程组的求解过程出发,归纳出了二元一次方程组的求解步骤,这些步骤就构成了解二元一次方程组的算法.教学中,应从学生非常熟悉的例子引出算法,再通过例题加以巩固. 三维目标1.正确理解算法的概念,掌握算法的基本特点.2.通过例题教学,使学生体会设计算法的基本思路.3.通过有趣的实例使学生了解算法这一概念的同时,激发学生学习数学的兴趣. 重点难点教学重点:算法的含义及应用.教学难点:写出解决一类问题的算法. 课时安排 1课时教学过程导入新课思路1(情境导入)一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量狼就会吃羚羊.该人如何将动物转移过河?请同学们写出解决问题的步骤,解决这一问题将要用到我们今天学习的内容——算法. 思路2(情境导入)大家都看过赵本山与宋丹丹演的小品吧,宋丹丹说了一个笑话,把大象装进冰箱总共分几步?答案:分三步,第一步:把冰箱门打开;第二步:把大象装进去;第三步:把冰箱门关上. 上述步骤构成了把大象装进冰箱的算法,今天我们开始学习算法的概念. 思路3(直接导入)算法不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础.在现代社会里,计算机已成为人们日常生活和工作中不可缺少的工具.听音乐、看电影、玩游戏、打字、画卡通画、处理数据,计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始. 推进新课新知探究提出问题(1)解二元一次方程组有几种方法??x-2y=-1,(1)(2)结合教材实例?总结用加减消元法解二元一次方程组的步骤. 2x+y=1,(2)?(3)结合教材实例??x-2y=-1,(1)总结用代入消元法解二元一次方程组的步骤.?2x+y=1,(2)(4)请写出解一般二元一次方程组的步骤. (5)根据上述实例谈谈你对算法的理解. (6)请同学们总结算法的特征. (7)请思考我们学习算法的意义. 讨论结果:(1)代入消元法和加减消元法. (2)回顾二元一次方程组?x-2y=-1,(1)的求解过程,我们可以归纳出以下步骤: ??2x+y=1,(2)35. ?x=1第五步,得到方程组的解为??,?5???y=35.(3)用代入消元法解二元一次方程组??x-2y=-1,(1)2x+y=1,(2)我们可以归纳出以下步骤: ?第一步,由①得x=2y-1.③第二步,把③代入②,得2(2y-1)+y=1.④第三步,解④得y=3535-1=15. ?x=1,第五步,得到方程组的解为???5???y=35.(4)对于一般的二元一次方程组??a1x+b1y=c1,(1)?a2x+b2y=c2,(2)b2c1-b1c2a.1b2-a2b1a1c2-a2c1.a1b2-a2b1b2c1-b1c2?x=,?ab-ab?1221第五步,得到方程组的解为?ac-ac21?y=12.?a1b2-a2b1?(5)算法的定义:广义的算法是指完成某项工作的方法和步骤,那么我们可以说洗衣机的使用说明书是操作洗衣机的算法,菜谱是做菜的算法等等.在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤. 现在,算法通常可以编成计算机程序,让计算机执行并解决问题.(6)算法的特征:①确定性:算法的每一步都应当做到准确无误、不重不漏.“不重”是指不是可有可无的,甚至无用的步骤,“不漏” 是指缺少哪一步都无法完成任务.②逻辑性:算法从开始的“第一步”直到“最后一步”之间做到环环相扣,分工明确,“前一步”是“后一步”的前提,“后一步”是“前一步”的继续.③有穷性:算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制地持续进行.(7)在解决某些问题时,需要设计出一系列可操作或可计算的步骤来解决问题,这些步骤称为解决这些问题的算法.也就是说,算法实际上就是解决问题的一种程序性方法.算法一般是机械的,有时需进行大量重复的计算,它的优点是一种通法,只要按部就班地去做,总能得到结果.因此算法是计算科学的重要基础. 应用示例思路1例1 (1)设计一个算法,判断7是否为质数. (2)设计一个算法,判断35是否为质数. 算法分析:(1)根据质数的定义,可以这样判断:依次用2—6除7,如果它们中有一个能整除7,则7不是质数,否则7是质数. 算法如下:(1)第一步,用2除7,得到余数1.因为余数不为0,所以2不能整除7. 第二步,用3除7,得到余数1.因为余数不为0,所以3不能整除7. 第三步,用4除7,得到余数3.因为余数不为0,所以4不能整除7. 第四步,用5除7,得到余数2.因为余数不为0,所以5不能整除7.第五步,用6除7,得到余数1.因为余数不为0,所以6不能整除7.因此,7是质数. (2)类似地,可写出“判断35是否为质数”的算法:第一步,用2除35,得到余数1.因为余数不为0,所以2不能整除35.第二步,用3除35,得到余数2.因为余数不为0,所以3不能整除35. 第三步,用4除35,得到余数3.因为余数不为0,所以4不能整除35.第四步,用5除35,得到余数0.因为余数为0,所以5能整除35.因此,35不是质数. 点评:上述算法有很大的局限性,用上述算法判断35是否为质数还可以,如果判断1997是否为质数就麻烦了,因此,我们需要寻找普适性的算法步骤. 变式训练请写出判断n(n2)是否为质数的算法.分析:对于任意的整数n(n2),若用i表示2—(n-1)中的任意整数,则“判断n是否为质第三步,用i除n,得到余数r.第四步,判断“r=0”是否成立.若是,则n不是质数,结束算法;否则,将i的值增加1,仍用i表示.第五步,判断“i>(n-1)”是否成立.若是,则n是质数,结束算法;否则,返回第三步.2例2 写出用“二分法”求方程x-2=0 (x0)的近似解的算法.22分析:令f(x)=x-2,则方程x-2=0 (x0)的解就是函数f(x)的零点.2a b. 2第五步,判断[a,b]的长度是否小于d或f(m)是否等于0.若是,则m是方程的近似解;否则,返回第三步.于是,开区间(1.414 062 5,1.417 968 75)中的实数都是当精确度为0.005时的原方程的近似解.实际上,上述步骤也是求2的近似值的一个算法.点评:算法一般是机械的,有时需要进行大量的重复计算,只要按部就班地去做,总能算出结果,通常把算法过程称为“数学机械化”.数学机械化的最大优点是它可以借助计算机来完成,实际上处理任何问题都需要算法.如:中国象棋有中国象棋的棋谱、走法、胜负的评判准则;而国际象棋有国际象棋的棋谱、走法、胜负的评判准则;再比如申请出国有一系列的先后手续,购买物品也有相关的手续??思路2例1 一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量就会吃羚羊.该人如何将动物转移过河?请设计算法. 分析:任何动物同船不用考虑动物的争斗但需考虑承载的数量,还应考虑到两岸的动物都得保证狼的数量要小于羚羊的数量,故在算法的构造过程中尽可能保证船里面有狼,这样才能使得两岸的羚羊数量占到优势. 解:具体算法如下:算法步骤:第一步:人带两只狼过河,并自己返回. 第二步:人带一只狼过河,自己返回.第三步:人带两只羚羊过河,并带两只狼返回. 第四步:人带一只羊过河,自己返回. 第五步:人带两只狼过河. 点评:算法是解决某一类问题的精确描述,有些问题使用形式化、程序化的刻画是最恰当的.这就要求我们在写算法时应精练、简练、清晰地表达,要善于分析任何可能出现的情况,体现思维的严密性和完整性.本题型解决问题的算法中某些步骤重复进行多次才能解决,在现实生活中,很多较复杂的情境经常遇到这样的问题,设计算法的时候,如果能够合适地利用某些步骤的重复,不但可以使得问题变得简单,而且可以提高工作效率.例2 喝一杯茶需要这样几个步骤:洗刷水壶、烧水、洗刷茶具、沏茶.问:如何安排这几个步骤?并给出两种算法,再加以比较.分析:本例主要为加深对算法概念的理解,可结合生活常识对问题进行分析,然后解决问题.解:算法一:第一步,洗刷水壶. 第二步,烧水. 第三步,洗刷茶具. 第四步,沏茶. 算法二:第一步,洗刷水壶.第二步,烧水,烧水的过程当中洗刷茶具. 第三步,沏茶. 点评:解决一个问题可有多个算法,可以选择其中最优的、最简单的、步骤尽量少的算法.上面的两种算法都符合题意,但是算法二运用了统筹方法的原理,因此这个算法要比算法一更科学.例3 写出通过尺轨作图确定线段ab一个5等分点的算法.分析:我们借助于平行线定理,把位置的比例关系变成已知的比例关系,只要按照规则一步一步去做就能完成任务. 解:算法分析:第一步,从已知线段的左端点a出发,任意作一条与ab不平行的射线ap. 第二步,在射线上任取一个不同于端点a的点c,得到线段ac. 第三步,在射线上沿ac的方向截取线段ce=ac. 第四步,在射线上沿ac的方向截取线段ef=ac. 第五步,在射线上沿ac的方向截取线段fg=ac.第六步,在射线上沿ac的方向截取线段gd=ac,那么线段ad=5ac. 第七步,连结db.【篇三:人教版高二数学教案】【小编寄语】查字典数学网小编给大家整理了人教版高二数学教案,希望能给大家带来帮助!一、教学目标根据学生的认知结构特征以及教材内容的特点,依据新课程标准要求,确定本节课的教学目标如下:(1)知识与技能目标:1、了解微积分基本定理的含义;2、会用牛顿-莱布尼兹公式求简单的定积分.(2)过程与方法目标:通过直观实例体会用微积分基本定理求定积分的方法.(3)情感、态度与价值观目标:1、学会事物间的相互转化、对立统一的辩证关系,提高理性思维能力;2、了解微积分的科学价值、文化价值.3、教学重点、难点重点:使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分.难点:了解微积分基本定理的含义.二、教学设计复习:1. 定积分定义:其中 --积分号, -积分上限, -积分下限, -被积函数, -积分变量,-积分区间2.定积分的几何意义:一般情况下,定积分的几何意义是介于轴、函数的图形以及直线之间各部分面积的代数和,在轴上方的面积取正号,在轴下方的面积去负号.曲边图形面积: ;变速运动路程: ;3.定积分的性质:性质1性质2性质3性质4二. 引入新课:计算 (1) (2)上面用定积分定义及几何意义计算定积分,比较复杂不是求定积分的一般方法。

职高高二数学教学

职高高二数学教学

职高高二数学教学一、教学任务及对象1、教学任务本教学设计针对的是我国职高高二学生的数学教学。

教学内容主要包括高二数学的核心知识点,如函数、导数、解析几何等,旨在帮助学生巩固数学基础,提高数学思维能力,为今后的学习和工作打下坚实基础。

同时,注重培养学生的实际应用能力,将数学知识与学生未来职业发展相结合。

2、教学对象本教学设计的教学对象为职业高中二年级的学生。

他们经过高一的学习,已经具备了一定的数学基础,但在逻辑思维、问题解决能力等方面仍有待提高。

此外,职高学生具有较强的动手能力和实践意识,因此,教学过程中应充分考虑学生的这些特点,激发他们的学习兴趣,提高教学效果。

同时,针对职高学生个体差异较大的特点,教学过程中应关注每一个学生的成长,因材施教,使他们在数学学习上取得不同程度的进步。

二、教学目标1、知识与技能(1)掌握高二数学核心知识点,如函数、导数、解析几何等,能够灵活运用这些知识解决实际问题。

(2)提高数学运算能力,熟练运用数学公式和定理,提高解题速度和准确性。

(3)培养逻辑思维能力,能够对数学问题进行合理分析,形成清晰解题思路。

(4)提高数学语言表达能力,能够用准确、简洁的语言描述数学问题和解答过程。

(5)学会使用数学软件和工具,辅助解决复杂的数学问题,提高实际应用能力。

2、过程与方法(1)采用启发式教学,引导学生主动探究数学问题,培养学生独立思考的能力。

(2)运用案例教学法,通过实际案例的分析和讨论,提高学生运用数学知识解决实际问题的能力。

(3)注重合作学习,鼓励学生之间相互讨论、交流,培养学生的团队协作能力。

(4)运用现代教育技术,如多媒体、网络资源等,丰富教学手段,提高教学效果。

(5)实施分层次教学,针对不同层次的学生制定合适的教学计划,使每个学生都能在原有基础上得到提高。

3、情感,态度与价值观(1)培养学生对数学的兴趣和热情,激发他们主动学习的内在动力。

(2)培养学生严谨、踏实的学术态度,养成勤奋好学的良好习惯。

职业学校高二数学教学计划5篇

职业学校高二数学教学计划5篇

职业学校高二数学教学计划5篇83610职业学校高二数学教学计划1一、指导思想:在我校整体建构和谐教学模式下,使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。

具体目标如下。

1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。

通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

二、教材特点:我们所使用的教材是人教版《普通高中课程标准实验教科书·数学(A版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点:1.“亲和力”:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。

2.“问题性”:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。

3.“科学性”与“思想性”:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。

4.“时代性”与“应用性”:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。

三、教法分析:1.选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以达到培养其兴趣的目的。

中职高二数学教案

中职高二数学教案

中职高二数学教案中职高二数学教案3篇作为一名优秀的教育工作者,就不得不需要编写教案,教案是保证教学取得成功、提高教学质量的基本条件。

我们应该怎么写教案呢?下面是小编精心整理的中职高二数学教案,欢迎大家借鉴与参考,希望对大家有所帮助。

中职高二数学教案1一、重点难点教学:1、正确理解映射的概念;2、函数相等的两个条件;3、求函数的定义域和值域。

二、教学过程:1、使学生熟练掌握函数的概念和映射的定义;2、使学生能够根据已知条件求出函数的定义域和值域;3、使学生掌握函数的三种表示方法。

三、教学内容:1、函数的定义设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数()fx和它对应,那么称:fAB?为从集合A到集合B的一个函数(function),记作:其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合{()|}f_A?叫值域(range)。

显然,值域是集合B的子集。

注意:① “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g (x)”;②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x、2、构成函数的三要素定义域、对应关系和值域。

3、映射的定义设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。

4、区间及写法:设a、b是两个实数,且a(1)满足不等式axb??的实数x的集合叫做闭区间,表示为[a,b];(2)满足不等式axb??的实数x的集合叫做开区间,表示为(a,b);5、函数的三种表示方法①解析法②列表法③图像法中职高二数学教案2教学目标(1)掌握圆的标准方程,能根据圆心坐标和半径熟练地写出圆的标准方程,也能根据圆的标准方程熟练地写出圆的圆心坐标和半径.(2)掌握圆的一般方程,了解圆的一般方程的结构特征,熟练掌握圆的标准方程和一般方程之间的互化.(3)了解参数方程的概念,理解圆的参数方程,能够进行圆的普通方程与参数方程之间的互化,能应用圆的参数方程解决有关的简单问题.(4)掌握直线和圆的位置关系,会求圆的切线.(5)进一步理解曲线方程的概念、熟悉求曲线方程的方法.教学建议教材分析(1)知识结构(2)重点、难点分析①本节内容教学的重点是圆的标准方程、一般方程、参数方程的推导,根据条件求圆的方程,用圆的方程解决相关问题.②本节的难点是圆的一般方程的结构特征,以及圆方程的求解和应用.教法建议(1)圆是最简单的曲线.这节教材安排在学习了曲线方程概念和求曲线方程之后,学习三大圆锥曲线之前,旨在熟悉曲线和方程的理论,为后继学习做好准备.同时,有关圆的问题,特别是直线与圆的位置关系问题,也是解析几何中的基本问题,这些问题的解决为圆锥曲线问题的解决提供了基本的思想方法.因此教学中应加强练习,使学生确实掌握这一单元的知识和方法.(2)在解决有关圆的问题的过程中多次用到配方法、待定系数法等思想方法,教学中应多总结.(3)解决有关圆的问题,要经常用到一元二次方程的理论、平面几何知识和前边学过的解析几何的基本知识,教师在教学中要注意多复习、多运用,培养学生运算能力和简化运算过程的意识.(4)有关圆的内容非常丰富,有很多有价值的问题.建议适当选择一些内容供学生研究.例如由过圆上一点的切线方程引申到切点弦方程就是一个很有价值的问题.类似的还有圆系方程等问题.教学设计示例圆的一般方程教学目标:(1)掌握圆的一般方程及其特点.(2)能将圆的一般方程转化为圆的标准方程,从而求出圆心和半径.(3)能用待定系数法,由已知条件求出圆的一般方程.(4)通过本节课学习,进一步掌握配方法和待定系数法.教学重点:(1)用配方法,把圆的一般方程转化成标准方程,求出圆心和半径.(2)用待定系数法求圆的方程.教学难点:圆的一般方程特点的研究.教学用具:计算机.教学方法:启发引导法,讨论法.教学过程:【引入】前边已经学过了圆的标准方程把它展开得任何圆的方程都可以通过展开化成形如①的方程【问题1】形如①的方程的曲线是否都是圆?师生共同讨论分析:如果①表示圆,那么它一定是某个圆的标准方程展开整理得到的我们把它再写成原来的形式不就可以看出来了吗?运用配方法,得②显然②是不是圆方程与是什么样的数密切相关,具体如下:(1)当时,②表示以为圆心、以为半径的圆;(2)当时,②表示一个点;(3)当时,②不表示任何曲线.总结:任意形如①的方程可能表示一个圆,也可能表示一个点,还有可能什么也不表示.圆的一般方程的定义:当时,①表示以为圆心、以为半径的圆,此时①称作圆的一般方程.即称形如的方程为圆的一般方程.【问题2】圆的一般方程的特点,与圆的标准方程的异同.(1)和的系数相同,都不为0.(2)没有形如的二次项.圆的一般方程与一般的二元二次方程③相比较,上述(1)、(2)两个条件仅是③表示圆的必要条件,而不是充分条件或充要条件.圆的一般方程与圆的标准方程各有千秋:(1)圆的标准方程带有明显的几何的影子,圆心和半径一目了然.(2)圆的一般方程表现出明显的代数的形式与结构,更适合方程理论的运用.【实例分析】例1:下列方程各表示什么图形.(1) ;(2) ;一、教学内容分析向量作为工具在数学、物理以及实际生活中都有着广泛的应用.本小节的重点是结合向量知识证明数学中直线的平行、垂直问题,以及不等式、三角公式的证明、物理学中的应用.二、教学目标设计1、通过利用向量知识解决不等式、三角及物理问题,感悟向量作为一种工具有着广泛的应用,体会从不同角度去看待一些数学问题,使一些数学知识有机联系,拓宽解决问题的思路.2、了解构造法在解题中的运用.三、教学重点及难点重点:平面向量知识在各个领域中应用.难点:向量的构造.四、教学流程设计五、教学过程设计一、复习与回顾1、提问:下列哪些量是向量?(1)力(2)功(3)位移(4)力矩2、上述四个量中,(1)(3)(4)是向量,而(2)不是,那它是什么?[说明]复习数量积的有关知识.二、学习新课例1(书中例5)向量作为一种工具,不仅在物理学科中有广泛的应用,同时它在数学学科中也有许多妙用!请看例2(书中例3)证法(一)原不等式等价于,由基本不等式知(1)式成立,故原不等式成立.证法(二)向量法[说明]本例关键引导学生观察不等式结构特点,构造向量,并发现(等号成立的充要条件是)例3(书中例4)[说明]本例的关键在于构造单位圆,利用向量数量积的两个公式得到证明.二、巩固练习1、如图,某人在静水中游泳,速度为km/h.(1)如果他径直游向河对岸,水的流速为4 km/h,他实际沿什么方向前进?速度大小为多少?答案:沿北偏东方向前进,实际速度大小是8 km/h.(2)他必须朝哪个方向游才能沿与水流垂直的方向前进?实际前进的速度大小为多少?答案:朝北偏西方向前进,实际速度大小为km/h.三、课堂小结1、向量在物理、数学中有着广泛的应用.2、要学会从不同的角度去看一个数学问题,是数学知识有机联系.四、作业布置1、书面作业:课本P73,练习8.4 4中职高二数学教案3一、教学目标1、了解函数的单调性和奇偶性的概念,把握有关证实和判定的基本方法、(1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念、(2)能从数和形两个角度熟悉单调性和奇偶性、(3)能借助图象判定一些函数的单调性,能利用定义证实某些函数的单调性;能用定义判定某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程、2、通过函数单调性的证实,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从非凡到一般的数学思想、3、通过对函数单调性和奇偶性的理论研究,增学生对数学美的`体验,培养乐于求索的精神,形成科学,严谨的研究态度、二、教学建议(一)知识结构(1)函数单调性的概念。

职业中专高二数学教案最新范文

职业中专高二数学教案最新范文

职业中专高二数学教案最新范文新授环节是教学的主体,撰写通过怎样的层层教学设计,使学生逐步获得新知识。

巩固环节以设计练习题为主。

那么应该怎么写好教案呢?今天小编在这里给大家分享一些有关于职业中专高二数学教案最新范文,希望可以帮助到大家。

职业中专高二数学教案最新范文1一、教材分析1.教材背景作为曲线内容学习的开始,“曲线与方程”这一小节思想性较强,约需三课时,第一课时介绍曲线与方程的概念;第二课时讲曲线方程的求法;第三课时侧重对所求方程的检验.本课为第二课时主要内容有:解析几何与坐标法;求曲线方程的方法(直译法)、步骤及例题探求.2.本课地位和作用承前启后,数形结合曲线和方程,既是直线与方程的自然延伸,又是圆锥曲线学习的必备,是后面平面曲线学习的理论基础,是解几中承上启下的关键章节.“曲线”与“方程”是点的轨迹的两种表现形式.“曲线”是轨迹的几何形式,“方程”是轨迹的代数形式;求曲线方程是用方程研究曲线的先导,是解析几何所要解决的两大类问题的首要问题.体现了坐标法的本质——代数化处理几何问题,是数形结合的典范.后继性、可探究性求曲线方程实质上就是求曲线上任意一点(x,y)横纵坐标间的等量关系,但曲线轨迹常无法事先预知类型,通过多媒体演示可以生动展现运动变化特点,但如何获得曲线的方程呢?通过创设情景,激发学生兴趣,充分发挥其主体地位的作用,学习过程具有较强的探究性.同时,本课内容又为后面的轨迹探求提供方法的准备,并且以后还会继续完善轨迹方程的求解方法.数学建模与示范性作用曲线的方程是解析几何的核心.求曲线方程的过程类似于数学建模的过程,它贯穿于解析几何的始终,通过本课例题与变式,要总结规律,掌握方法,为后面圆锥曲线等的轨迹探求提供示范.数学的文化价值解析几何的发明是变量数学的第一个里程碑,也是近代数学崛起的两大标志之一,是较为完整和典型的重大数学创新史例.解析几何创始人特别是笛卡儿的事迹和精神——对科学真理和方法的追求、质疑的科学精神等都是富有启发性和激励性的教育材料.可以根据学生实际情况,条件允许时指导学生课后收集相关资料,通过分析、整理,写出研究报告.3.学情分析我所授课班级的学生数学基础比较好,思维活跃,在刚刚学习了“曲线的方程和方程的曲线”后,学生对这种必须同时具备纯粹性和完备性的概念有了初步的认识,对用代数方法研究几何问题的科学性、准确性和优越性等已有了初步了解,对具体(平面)图形与方程间能否对应、怎样对应的学习已经有了自然的求知欲望.二、目标分析1.教学目标知识技能目标理解坐标法的作用及意义.掌握求曲线方程的一般方法和步骤,能根据所给条件,选择适当坐标系求曲线方程.过程性目标通过学生积极参与,亲身经历曲线方程的获得过程,体验坐标法在处理几何问题中的优越性,渗透数形结合的数学思想.通过自主探索、合作交流,学生历经从“特殊——一般——特殊”的认知模式,完善认知结构.通过层层深入,培养学生发散思维的能力,深化对求曲线方程本质的理解.情感、态度与价值观目标通过合作学习,学生间、师生间的相互交流,感受探索的乐趣与成功的喜悦,体会数学的理性与严谨,逐步养成质疑的科学精神.展现人文数学精神,体现数学文化价值及其在在社会进步、人类文明发展中的重要作用.2.教学重点和难点重点:求曲线方程的方法、步骤难点:几何条件的代数化依据:求曲线方程是解几研究的两大类问题之一,既是重点也是难点,是高考解答题取材的源泉.主要包括两种类型求曲线的方程:一是已知曲线形状时常用待定系数法;二是动点轨迹方程探求,本课的重点主要是探索动点的曲线方程.曲线与方程是贯穿平面解几的知识,是解析几何的核心.求曲线方程是几何问题得以代数研究的先决,求曲线方程的过程类似数学建模的过程,是课堂上必须突破的难点.三、教学方法及教材处理1.教学方法:探究发现教学法.遵循以学生为主体,教师为主导,发展为主旨的现代教育原则,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,通过学生主动探索、积极参与、共同交流与协作,在教师的引导和合作下,学生“跳一跳”就能摘得果实,于问题的分析和解决中实现知识的建构和发展,通过不断探究、发现,让学习过程成为心灵愉悦的主动认知过程,使师生的生命活力在课堂上得到充分的发挥.2.学法指导学生学法:互相讨论、探索发现由于学生在尝试问题解决的过程中常会在新旧知识联系、策略选择、思想方法运用等方面遇到一定的困难,需要教师指导.作为学生活动的组织者、引导者、参与者,教师要帮助学生重温与问题解决有关的旧知,给予学生思考的时间和表达的机会,共同对(解题)过程进行反思等,在师生(生生)互动中,给予学生启发和鼓励,在心理上、认知上予以帮助.这样,在学法上确立的教法,能帮助学生更好地获得完整的认知结构,使学生思维、能力等得到和谐发展.3.设计理念:求曲线方程就是将曲线上点的几何表示形式转化为代数表示形式。

职高数学教案高二范文

职高数学教案高二范文

职高数学教案高二范文职高数学教案高二2021范文1一、教材分析1、教材的地位和作用:数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。

一方面, 数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。

而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。

同时等差数列也为今后学习等比数列提供了学习对比的依据。

2、教学目标根据教学大纲的要求和学生的实际水平,确定了本次课的教学目标a在知识上:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。

b在能力上:培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。

c在情感上:通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。

3、教学重点和难点根据教学大纲的要求我确定本节课的教学重点为:①等差数列的概念。

②等差数列的通项公式的推导过程及应用。

由于学生第一次接触不完全归纳法,对此并不熟悉因此用不完全归纳法推导等差数列的同项公式是这节课的一个难点。

同时,学生对“数学建模”的思想方法较为陌生,因此用数学思想解决实际问题是本节课的另一个难点。

二、学情分析对于三中的高一学生,知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了教强的抽象思维能力和演绎推理能力,所以我在授课时注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。

二、教法分析针对高中生这一思维特点和心理特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。

中职高二数学教案全例文

中职高二数学教案全例文

中职高二数学教案全例文老师应当结合教材,从学问、技能、情感看法价值观三方面,确定具有可实施性、可检测性的教学目标,切忌空泛和漫无边际。

今日我在这里整理了一些20xx 中职高二数学教案全例文,我们一起来看看吧!20xx中职高二数学教案全例文1一、指导思想1、造就学生的逻辑思维实力、运算实力、空间想象实力,以及综合运用有关数学学问分析问题和解决问题的实力.使学生逐步地学会视察、分析、综合、比拟、抽象、概括、探究和创新的实力;运用归纳、演绎和类比的方法进展推理,并正确地、有条理地表达推理过程的实力.2、依据数学的学科特点,加强学习目的性的教育,提高学生学习数学的自觉心和爱好,造就学生良好的学习习惯,实事求是的科学看法,顽固的学习毅力和独立思索、探究创新的精神.3、使学生具有必须的数学视野,逐步相识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,理解数学中普遍存在着的运动、改变、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观.二、目的要求1.深化钻研教材,以教材为核心,“以纲为纲,以本为本”深化探究教材中章节学问的内外构造,娴熟把握学问的逻辑体系和网络构造,细致领悟教材改革的精华,把握通性通法,逐步明确教材对教学形式、内容和教学目标的影响.2.因材施教,以学生为学习的主体,构建新的认知体系,营造有利于学生学习的气氛.3.加强课堂教学探究,科学设计教学方法,扎实有效的提高课堂教学效果,全面提高数学教学质量.三、详细措施1.不孤立记忆和相识各个学问点,而要将其放到相应的体系构造中,在比拟、辨析的过程中寻求其内在联系,到达理解层次,留意学问块的复习,构建学问网路.注意根底学问和根本解题技能,留意根本概念、根本定理、公式的辨析比拟,敏捷运用;力求有意识的分析理解实力;尤其是数学语言的表达形式,推力论证要思路清楚、整体完整.2.学会分析,首先是阅读理解,侧重于解题前对信息的捕获和思路的探究;其次是解题回忆,侧重于经历及教训的总结,重视常见题型及通法通解.3.以“错”纠错,查缺补漏,反思错误,严格训练,标准解题,养成:想明白,写清晰,算精确的习惯,留意思路的清楚性、思维的严谨性、表达的条理性、结果的精确性,注意书写过程,举一反三,刚好归纳,触类旁通,加强数学思想和数学方法的应用.4.协调好讲、练、评、辅之间的关系,追求数学复习的效果,注意实效,努力提高复习教学的效率和效益;细心设计教学,做到精讲精练,不加重学生的负担,幸免“题海战”,细心打算,讲评到为,做到讲评试卷或例题时:讲清考察了那些学问点,怎样审题,怎样翻开解题思路,用到了那些方法技巧,关键步骤在那里,哪些是典型错误,是学问和是逻辑,是方法、是心理上、策略上的错误,针对学生的错误调整复习策略,使复习更加有重点、针对性,加快教学节奏,提高教学效率.5.周密打算合理支配,现数学学科特点,注意学问实力的提高,提升综合解题实力,加强解题教学,使学生在解题探究中提高实力.6.多从“贴近教材、贴近学生、贴近实际”角度,选择典型的数学联系生活、生产、环境和科技方面的问题,对学生进展有打算、针对性强的训练,多给学生熬炼各种实力的时机,从而到达提升学生数学综合实力之目的.不脱离根底学问来讲学生的实力,根底扎实的学生不必须实力强.教学中,不断地将根底学问运用于数学问题的解决中,努力提高学生的学科综合实力.新的学期是新的起点,新的盼望。

职高高二(上)数学教案(附计划)

职高高二(上)数学教案(附计划)

高二数学第一学期备课笔记20 -20 学年度第一学期高二数学教学工作计划一、班级情况分析:2007级计算机班现有学生64人,男生24名,女生40人。

本班学生的基础相对于同年级的电子班基础较差,初中数学缺差较多。

上学期期末测试及格率不到50%,态度还算踏实、兴趣较为浓厚、学习刻苦认真的不足20人,方法也不灵活,计算能力较差,逻辑思维能力差,特别突出的也没有,但班级学习气氛较上学期浓厚些,抱着得过且过的态度学习,无目的,思想较为落后的学生只有几个,因此本学期教学中多铺垫、小步走尽量降低难度,实施分层次教学。

根据学生情况及时补缺补差。

最大限度地激发学生学习数学的积极性和自信心。

二、本学期教学目标、要求和任务:本学期要完成以下教学内容:《向量》、《平面解析几何》、《立体几何》、《排列与组合》四章内容.《平面向量》教学要求有:1.理解向量的概念,掌握向量的几何表示,了解共线向量的概念.2.掌握向量的加法与减法.3.掌握实数与向量的积,理解两个向量共线的充要条件.4.了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.5.掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件.6.了解向量在其他科学中的应用.7.培养学生“数形结合”的思想.8.培养学生辩证唯物主义认识论的观点.《平面解析几何》教学要求有:1.理解一个点和一个方向决定一条直线,理解直线的方向向量的概念,理解直线的点向式方程.2.理解直线的斜率的概念,理解直线的点斜式方程,斜截式方程.3.理解直线方程的一般式.4.了解平面上两条直线的位置关系,理解两条直线平行的条件,会求两条5.理解两条直线垂直的条件.6.会求两条直线的夹角,会求点到直线的距离.7.了解用二元一次不等式表示平面区域.8.了解曲线的方程的概念.9.掌握圆的标准方程和一般方程,了解圆的参数方程.10.了解圆与直线的位置关系.11.理解椭圆的标准方程及其几何性质.12.使学生了解解析几何的基本思想,了解用解析法研究几何问题的方法,培养学生数形结合的能力和逻辑思维能力.《立体几何》教学要求有:1.理解平面的基本性质和确定平面的方法.2.了解空间向量的概念,理解空间向量的加法、减法和数乘运算.3.理解两条直线的位置关系,理解异面直线的概念.4.理解直线和平面的位置关系,理解直线和平面平行的判定和性质定理.5.理解两个平面的位置关系,理解两个平面平行的判定定理和性质定理.6. 理解空间向量分解定理.会利用坐标来进行空间向量的加法、减法和数乘的运算.7.理解空间向量的内积的概念和性质,了解在由两两垂直的3个单位向量组成的基下,可以用坐标计算空间向量的内积.理解两条直线所成的角的概念和它的求法.8.理解平面的垂线的概念,理解直线和平面垂直的判定定理和性质定理.了解点到平面的距离,了解与平面平行的直线到这个平面的距离的概念,了解两个平行平面的距离的概念. 《排列与组合》的教学要求有:1.理解计数的两个基本原理:分类计数原理和分步计数原理,2.了解两类基本计数问题:排列与组合的定义,能够区分它们.3.理解排列数和组合数的计算公式,会用它们解决一些简单的计数问题.4.了解组合数的性质.5.了解二项式定理.三、方法措施:(1)钻研教学新大纲、钻研新教材. 在认真钻研高二教学大纲及教材的基础上,应放眼高中教学全局,注意高考命题中的知识要求,能力要求及新趋势,这样才能统筹安排,循序渐进,使高二的数学教学与高中教学的全局有机结合.(2)注意研究学生,要从学生的认识水平和实际能力出发,研究学生的心理特征,进行适当知识铺垫,降低难度,激发学习兴趣,注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法。

职高高二数学教案

职高高二数学教案

职高高二数学教案【篇一:职高高二数学数学复数及其应用教案】第三十二课时:复数的概念(一)【教学目标】知识目标:理解复数的有关概念.能力目标:通过复数概念的学习与相关计算,使学生的计算技能与计算工具使用技能得到锻炼和提高.【教学重点】复数的概念.【教学难点】复数的概念.【教学设计】首先给出了复数的定义,然后引入虚数、纯虚数的定义,将实数集推广到复数集.介绍复数a+bi(a,b∈r)的概念时,要注意以下几点:(1)复数的虚部是b,而不是bi,如教材中指出复数z=-3-4i的虚部是-4,而不是-4i.(2)当虚部b=0时,复数a+bi=a就是实数.当虚部b≠0时,复数a+bi是虚数,特别a=0时,虚数bi是纯虚数.(3)a+bi(a,b∈r)中的“+”号有两种作用,第一个作用是连接记号,表示a+bi是一个整体,由实数a和纯虚数bi组成复数;第二个作用是运算符号表示实数a和纯虚数bi相加.例1的作用是帮助学生理解概念.这部分内容学生了解即可,不需要特别强化训练,不介绍关于数系讨论问题的解题技巧.教学中要把握难度,不超过教材的例、习题的难度.讲解复数相等的定义时要强调a1+b1i=a2+b2i等价于a1=a2且b1=b2,只有当a1=a2,b1=b2这两个条件同时成立时a1+b1i才能等于a2+b2i. 复数z=a+bi的共轭复数是z=a-bi.要注意它们的特征:实部相等,虚部互为相反数,教学中可引导学生得出:实数的共轭复数就是它本身.例2的作用是帮助学生理解复数相等的定义.教学中要讲清楚解题的基本思想,分清等号两边复数的实部与虚部,利用复数相等的概念,由“实部与实部相等,虚部与虚部相等”列出一个二元一次方程组,最后求出未知数x、y的值.例3的作用是帮助学生理解共轭复数的概念.要强调互为共轭的两个复数,其实部相等,虚部互为相反数.1课时.【教学过程】创设情境兴趣导入我们知道一元二次方程x=-1在实数范围内无解.更一般地,当根的判别式2?=b2-4ac0时,一元二次方程ax2+bx+c=0(其中a,b,c为实数且a≠0)在实数范围内也无解.动脑思考探索新知为了使方程x=-1有解,引进一个新数i,叫做虚数单位,并且规定数i有如下性质:(1)i的平方等于-1,即 i=-1 ;(2)i与实数进行四则运算时,原有的加法、乘法的运算法则和运算律仍然成立. 由性质(1)知,x=i是方程x=-1的一个解.由性质(2)知, 222(-i)2=(-1?i)2=(-1)2?i2=1?(-1)=-1,故x=-i也是方程x=-1的一个解.【注意】为了与表示电流强度的符号相区别,电学中虚数单位用字母j表示.根据上述性质,i可以与实数b相乘,由于满足乘法交换律,其乘积一般写作bi(规定0?i=0),再将bi与实数a相加,动脑思考探索新知为了使方程x=-1有解,引进一个新数i,叫做虚数单位,并且规定数i有如下性质: 22;(1)i的平方等于-1,即 i=-1(2)i与实数进行四则运算时,原有的加法、乘法的运算法则和运算律仍然成立. 由性质(1)知,x=i是方程x=-1的一个解.由性质(2)知, 22(-i)2=(-1?i)2=(-1)2?i2=1?(-1)=-1,故x=-i也是方程x=-1的一个解.【注意】为了与表示电流强度的符号相区别,电学中虚数单位用字母j表示.根据上述性质,i可以与实数b相乘,由于满足乘法交换律,其乘积一般写作bi(规定0?i=0),再将bi与实数a相加,(转下节) 2第三十三课时:复数的概念(二)知识目标:理解复数的有关概念.能力目标:通过复数概念的学习与相关计算,使学生的计算技能与计算工具使用技能得到锻炼和提高.【教学重点】复数的概念.【教学难点】复数的概念.【课时安排】1课时.【教学过程】(接上节)根据上述性质,i可以与实数b相乘,由于满足乘法交换律,其乘积一般写作bi(规定0?i=0),再将bi与实数a相加由于满足加法交换律,其和一般写作a+bi.形如a+bi(a,b∈r)的数叫做复数,其中a叫做复数的实部,b叫做复数的虚部.复数一般使用小写字母z,w, 等来表示.例如,复数z=-3-4i的实部为-3,虚部为-4.当虚部b=0时,复数a+bi=a就是实数.当虚部b≠0时,复数a+bi叫做虚数,特别a=0时虚数bi叫做纯虚数.例如,4,-1-44i都是复数,其中4是实数,-1-i是纯虚数. 55【想一想】 4的实部、虚部各是多少?全体复数组成的集合叫做复数集,常用大写字母c来表示,即c={zz=a+bi,a,b∈r}.显然,实数集r是复数集c的真子集.引入复数后,数的范围得到扩充:??有理数实数a(b=0)???无理数?复数a+bi? ?(a,b∈r)?纯虚数bi(a=0)?虚数a+bi(b≠0)????非纯虚数a+bi(a≠0)?巩固知识典型例题例1指出下列复数的实部和虚部,并判定它们是实数还是虚数?如果是虚数是否为纯虚数?(1)z1=3-i;(2)z2=3;(3)z3=-1i. 4解 (1) z1的实部a=3,虚部b=-1,它是虚数,但不是纯虚数;(2) z2的实部a=3b=0,它是实数;(3) z3的实部a=0,虚部b=-动脑思考探索新知如果两个复数a+bi(a,b∈r)与c+di(c,d∈r)的实部与虚部分别相等,那么称这两个复数相等.记作a+bi=c+di,即 1,它是虚数,且是纯虚数. 4a+bi=c+di ?a=c且b=d.(3.1)特别地a+bi=0?a=0且b=0.(3.2)巩固知识典型例题例2已知(x-2)+xi=1-(x-3y)i,其中x,y是实数,求x和y的值.解根据公式(3.1) ,得?x-2=1, ?x=-(x-3y),?解方程组得x=3,y=2.例3求复数z1=-20+33i,z2=-解 z1=-20-33i,z2=运用知识强化练习1. 指出下列复数的实部和虚部:(1)2-3i;(2) -32.求下列复数的共轭复数:(1) 11+6i; (2) -3-8i.继续探索活动探究 (1)读书部分:教材(2)书面作业:教材习题3.1(必做);学习与训练训练题3.1(选做) 3i,z3=-7的共轭复数. 43i,z3=-7. 4第三十四课时:复数的几何意义(一)【教学目标】知识目标:(1)理解复数的几何意义.(2)会求复数的模、辐角和辐角主值以及复数的三角形式.能力目标:通过复数的模、辐角和辐角主值以及复数的三角形式的学习,使学生的计算技能得到锻炼和提高.【教学重点】(1)复数的几何表示.(2)复数的三角形式、指数形式、极坐标形式.【教学难点】复数的代数形式转化为三角形式.【教学设计】在讲解复平面和复数的几何表示时,自然的建立了复数z=a+bi与直角坐标平面内的点z(a,b)之间的一一对应关系,于是复数z=a+bi (a,b∈r)可以用直角坐标系平面中的点z(a,b)表示.建立了直角坐标系用来表示复数的平面叫做复平面,在复平面内,x轴叫做实轴,实轴上的点都表示实数,虚轴上除去原点以外的点都表示纯虚数.要y轴叫做虚轴,【课时安排】1课时.【教学过程】动脑思考探索新知1.复数的点表示【篇二:高二数学电子教案】第一章算法初步1.1 算法与程序框图 1.1.1 算法的概念整体设计教学分析算法在中学数学课程中是一个新的概念,但没有一个精确化的定义,教科书只对它作了如下描述:“在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤.”为了让学生更好理解这一概念,教科书先从分析一个具体的二元一次方程组的求解过程出发,归纳出了二元一次方程组的求解步骤,这些步骤就构成了解二元一次方程组的算法.教学中,应从学生非常熟悉的例子引出算法,再通过例题加以巩固. 三维目标1.正确理解算法的概念,掌握算法的基本特点.2.通过例题教学,使学生体会设计算法的基本思路.3.通过有趣的实例使学生了解算法这一概念的同时,激发学生学习数学的兴趣. 重点难点教学重点:算法的含义及应用.教学难点:写出解决一类问题的算法. 课时安排 1课时教学过程导入新课思路1(情境导入)一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量狼就会吃羚羊.该人如何将动物转移过河?请同学们写出解决问题的步骤,解决这一问题将要用到我们今天学习的内容——算法. 思路2(情境导入)大家都看过赵本山与宋丹丹演的小品吧,宋丹丹说了一个笑话,把大象装进冰箱总共分几步?答案:分三步,第一步:把冰箱门打开;第二步:把大象装进去;第三步:把冰箱门关上. 上述步骤构成了把大象装进冰箱的算法,今天我们开始学习算法的概念. 思路3(直接导入)算法不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础.在现代社会里,计算机已成为人们日常生活和工作中不可缺少的工具.听音乐、看电影、玩游戏、打字、画卡通画、处理数据,计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始. 推进新课新知探究提出问题(1)解二元一次方程组有几种方法??x-2y=-1,(1)(2)结合教材实例?总结用加减消元法解二元一次方程组的步骤. 2x+y=1,(2)?(3)结合教材实例??x-2y=-1,(1)总结用代入消元法解二元一次方程组的步骤.?2x+y=1,(2)(4)请写出解一般二元一次方程组的步骤. (5)根据上述实例谈谈你对算法的理解. (6)请同学们总结算法的特征. (7)请思考我们学习算法的意义. 讨论结果:(1)代入消元法和加减消元法. (2)回顾二元一次方程组?x-2y=-1,(1)的求解过程,我们可以归纳出以下步骤: ??2x+y=1,(2)35. ?x=1第五步,得到方程组的解为??,?5???y=35.(3)用代入消元法解二元一次方程组??x-2y=-1,(1)2x+y=1,(2)我们可以归纳出以下步骤: ?第一步,由①得x=2y-1.③第二步,把③代入②,得2(2y-1)+y=1.④第三步,解④得y=3535-1=15. ?x=1,第五步,得到方程组的解为???5???y=35.(4)对于一般的二元一次方程组??a1x+b1y=c1,(1)?a2x+b2y=c2,(2)b2c1-b1c2a.1b2-a2b1a1c2-a2c1.a1b2-a2b1b2c1-b1c2?x=,?ab-ab?1221第五步,得到方程组的解为?ac-ac21?y=12.?a1b2-a2b1?(5)算法的定义:广义的算法是指完成某项工作的方法和步骤,那么我们可以说洗衣机的使用说明书是操作洗衣机的算法,菜谱是做菜的算法等等.在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤. 现在,算法通常可以编成计算机程序,让计算机执行并解决问题.(6)算法的特征:①确定性:算法的每一步都应当做到准确无误、不重不漏.“不重”是指不是可有可无的,甚至无用的步骤,“不漏” 是指缺少哪一步都无法完成任务.②逻辑性:算法从开始的“第一步”直到“最后一步”之间做到环环相扣,分工明确,“前一步”是“后一步”的前提,“后一步”是“前一步”的继续.③有穷性:算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制地持续进行.(7)在解决某些问题时,需要设计出一系列可操作或可计算的步骤来解决问题,这些步骤称为解决这些问题的算法.也就是说,算法实际上就是解决问题的一种程序性方法.算法一般是机械的,有时需进行大量重复的计算,它的优点是一种通法,只要按部就班地去做,总能得到结果.因此算法是计算科学的重要基础. 应用示例思路1例1 (1)设计一个算法,判断7是否为质数. (2)设计一个算法,判断35是否为质数. 算法分析:(1)根据质数的定义,可以这样判断:依次用2—6除7,如果它们中有一个能整除7,则7不是质数,否则7是质数. 算法如下:(1)第一步,用2除7,得到余数1.因为余数不为0,所以2不能整除7. 第二步,用3除7,得到余数1.因为余数不为0,所以3不能整除7. 第三步,用4除7,得到余数3.因为余数不为0,所以4不能整除7. 第四步,用5除7,得到余数2.因为余数不为0,所以5不能整除7.第五步,用6除7,得到余数1.因为余数不为0,所以6不能整除7.因此,7是质数. (2)类似地,可写出“判断35是否为质数”的算法:第一步,用2除35,得到余数1.因为余数不为0,所以2不能整除35.第二步,用3除35,得到余数2.因为余数不为0,所以3不能整除35. 第三步,用4除35,得到余数3.因为余数不为0,所以4不能整除35.第四步,用5除35,得到余数0.因为余数为0,所以5能整除35.因此,35不是质数. 点评:上述算法有很大的局限性,用上述算法判断35是否为质数还可以,如果判断1997是否为质数就麻烦了,因此,我们需要寻找普适性的算法步骤. 变式训练请写出判断n(n2)是否为质数的算法.分析:对于任意的整数n(n2),若用i表示2—(n-1)中的任意整数,则“判断n是否为质第三步,用i除n,得到余数r.第四步,判断“r=0”是否成立.若是,则n不是质数,结束算法;否则,将i的值增加1,仍用i表示.第五步,判断“i>(n-1)”是否成立.若是,则n是质数,结束算法;否则,返回第三步.2例2 写出用“二分法”求方程x-2=0 (x0)的近似解的算法.22分析:令f(x)=x-2,则方程x-2=0 (x0)的解就是函数f(x)的零点.2a b. 2第五步,判断[a,b]的长度是否小于d或f(m)是否等于0.若是,则m是方程的近似解;否则,返回第三步.于是,开区间(1.414 062 5,1.417 968 75)中的实数都是当精确度为0.005时的原方程的近似解.实际上,上述步骤也是求2的近似值的一个算法.点评:算法一般是机械的,有时需要进行大量的重复计算,只要按部就班地去做,总能算出结果,通常把算法过程称为“数学机械化”.数学机械化的最大优点是它可以借助计算机来完成,实际上处理任何问题都需要算法.如:中国象棋有中国象棋的棋谱、走法、胜负的评判准则;而国际象棋有国际象棋的棋谱、走法、胜负的评判准则;再比如申请出国有一系列的先后手续,购买物品也有相关的手续??思路2例1 一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量就会吃羚羊.该人如何将动物转移过河?请设计算法. 分析:任何动物同船不用考虑动物的争斗但需考虑承载的数量,还应考虑到两岸的动物都得保证狼的数量要小于羚羊的数量,故在算法的构造过程中尽可能保证船里面有狼,这样才能使得两岸的羚羊数量占到优势. 解:具体算法如下:算法步骤:第一步:人带两只狼过河,并自己返回. 第二步:人带一只狼过河,自己返回.第三步:人带两只羚羊过河,并带两只狼返回. 第四步:人带一只羊过河,自己返回. 第五步:人带两只狼过河. 点评:算法是解决某一类问题的精确描述,有些问题使用形式化、程序化的刻画是最恰当的.这就要求我们在写算法时应精练、简练、清晰地表达,要善于分析任何可能出现的情况,体现思维的严密性和完整性.本题型解决问题的算法中某些步骤重复进行多次才能解决,在现实生活中,很多较复杂的情境经常遇到这样的问题,设计算法的时候,如果能够合适地利用某些步骤的重复,不但可以使得问题变得简单,而且可以提高工作效率.例2 喝一杯茶需要这样几个步骤:洗刷水壶、烧水、洗刷茶具、沏茶.问:如何安排这几个步骤?并给出两种算法,再加以比较.分析:本例主要为加深对算法概念的理解,可结合生活常识对问题进行分析,然后解决问题.解:算法一:第一步,洗刷水壶. 第二步,烧水. 第三步,洗刷茶具. 第四步,沏茶. 算法二:第一步,洗刷水壶.第二步,烧水,烧水的过程当中洗刷茶具. 第三步,沏茶. 点评:解决一个问题可有多个算法,可以选择其中最优的、最简单的、步骤尽量少的算法.上面的两种算法都符合题意,但是算法二运用了统筹方法的原理,因此这个算法要比算法一更科学.例3 写出通过尺轨作图确定线段ab一个5等分点的算法.分析:我们借助于平行线定理,把位置的比例关系变成已知的比例关系,只要按照规则一步一步去做就能完成任务. 解:算法分析:第一步,从已知线段的左端点a出发,任意作一条与ab不平行的射线ap. 第二步,在射线上任取一个不同于端点a的点c,得到线段ac. 第三步,在射线上沿ac的方向截取线段ce=ac. 第四步,在射线上沿ac的方向截取线段ef=ac. 第五步,在射线上沿ac的方向截取线段fg=ac.第六步,在射线上沿ac的方向截取线段gd=ac,那么线段ad=5ac. 第七步,连结db.【篇三:人教版高二数学教案】【小编寄语】查字典数学网小编给大家整理了人教版高二数学教案,希望能给大家带来帮助!一、教学目标根据学生的认知结构特征以及教材内容的特点,依据新课程标准要求,确定本节课的教学目标如下:(1)知识与技能目标:1、了解微积分基本定理的含义;2、会用牛顿-莱布尼兹公式求简单的定积分.(2)过程与方法目标:通过直观实例体会用微积分基本定理求定积分的方法.(3)情感、态度与价值观目标:1、学会事物间的相互转化、对立统一的辩证关系,提高理性思维能力;2、了解微积分的科学价值、文化价值.3、教学重点、难点重点:使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分.难点:了解微积分基本定理的含义.二、教学设计复习:1. 定积分定义:其中 --积分号, -积分上限, -积分下限, -被积函数, -积分变量,-积分区间2.定积分的几何意义:一般情况下,定积分的几何意义是介于轴、函数的图形以及直线之间各部分面积的代数和,在轴上方的面积取正号,在轴下方的面积去负号.曲边图形面积: ;变速运动路程: ;3.定积分的性质:性质1性质2性质3性质4二. 引入新课:计算 (1) (2)上面用定积分定义及几何意义计算定积分,比较复杂不是求定积分的一般方法。

职高数学教案高二范文精选

职高数学教案高二范文精选

职高数学教案高二范文精选教案高二数学《导数的基本概念与应用》一、教学内容:本节课的教学内容选自人教版高中数学教材高二下册第三章《导数》的第一节。

主要内容包括:导数的定义,导数的几何意义,导数的基本计算法则,导数在实际问题中的应用。

二、教学目标:1. 理解导数的定义,掌握导数的几何意义。

2. 学会运用导数的基本计算法则计算简单函数的导数。

3. 能够运用导数解决实际问题,提高学生的应用能力。

三、教学难点与重点:重点:导数的定义,导数的几何意义,导数的基本计算法则。

难点:导数在实际问题中的应用。

四、教具与学具准备:教具:多媒体教学设备,黑板,粉笔。

学具:教材,笔记本,尺子,圆规。

五、教学过程:1. 实践情景引入:讲解速度与时间的关系,引导学生思考如何求速度的变化率。

2. 导数的定义:通过实例讲解导数的定义,引导学生理解导数表示函数在某一点的瞬时变化率。

3. 导数的几何意义:讲解导数表示曲线在某一点的切线斜率,引导学生理解导数的几何意义。

4. 导数的基本计算法则:讲解导数的四则运算规则,引导学生掌握导数的基本计算方法。

5. 导数在实际问题中的应用:举例讲解导数在实际问题中的应用,如物体的运动,函数的极值等。

6. 例题讲解:选取典型例题,讲解求函数导数的方法和步骤。

7. 随堂练习:学生独立完成练习题,教师巡回指导。

六、板书设计:1. 导数的定义2. 导数的几何意义3. 导数的基本计算法则4. 导数在实际问题中的应用七、作业设计:1. 作业题目:求下列函数的导数。

答案:八、课后反思及拓展延伸:本节课通过讲解导数的定义,几何意义和基本计算法则,使学生掌握了导数的基本知识。

在实际问题中的应用环节,培养了学生的动手能力。

但导数的应用部分,学生掌握情况参差不齐,需要在今后的教学中加强练习和指导。

拓展延伸:研究导数在实际问题中的应用,如优化问题,经济问题等。

重点和难点解析:一、导数的定义:导数的定义是本节课的核心内容,也是学生理解导数概念的关键。

中职职业教学高二数学教案

中职职业教学高二数学教案

中职职业教学高二数学教案最新中职职业教学高二数学教案范文1【教学目标】掌握两平面垂直的判定和性质,并用以解决有关问题.【知识梳理】1.定义两个平面相交,如果所成的二面角是直二面角,就说这两个平面互相垂直.2.两个平面垂直的判定和性质语言表述图示字母表示应用判定根据定义.证明两平面所成的二面角是直二面角.AOB是二面角a的平面角,且AOB=90,则证两平面垂直如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.性质如果两个平面垂直,那么它们所成二面角的平面角是直角.,AOB是二面角a的平面角,则AOB=90证两条直线垂直如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.a证直线和平面垂直重要提示1.两个平面垂直的性质定理,即:“如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面”是作点到平面距离的依据,要过平面外一点P作平面的垂线,通常是先作(找)一个过点P并且和垂直的平面,设=l,在内作直线al,则a.2.三种垂直关系的证明(1)线线垂直的证明①利用“两条平行直线中的一条和第三条直线垂直,那么另一条也和第三条直线垂直”;②利用“线面垂直的定义”,即由“线面垂直线线垂直”;③利用“三垂线定理或三垂线定理的逆定理”.(2)线面垂直的证明①利用“线面垂直的判定定理”,即由“线线垂直线面垂直”;②利用“如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于同一个平面”;③利用“面面垂直的性质定理”,即由“面面垂直线面垂直”;④利用“一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面”.(3)面面垂直的证明①利用“面面垂直的定义”,即证“两平面所成的二面角是直二面角;②利用“面面垂直的判定定理”,即由“线面垂直面面垂直”.1、在三棱锥A-BCD中,若AD⊥BC,BD⊥AD,⊿BCD是锐角三角形,那么必有……()A、平面ABD⊥平面ADCB、平面ABD⊥平面ABCC、平面ADC⊥平面BCDD、平面ABC⊥平面BCD最新中职职业教学高二数学教案范文2【学习目标】1、进一步体会数形结合的思想,提高分析问题解决问题的能力;2、能借助正余弦函数的诱导公式推导出正切函数的诱导公式;3、掌握诱导公式在求值和化简中的应用.【学习重点】正切函数的诱导公式及应用【学习难点】正切函数诱导公式的推导【学习过程】一、预习自学1.观察课本38页图1-46,当-414【导学案】正切函数的诱导公式<414【导学案】正切函数的诱导公式<414【导学案】正切函数的诱导公式时,角414【导学案】正切函数的诱导公式与角2414【导学案】正切函数的诱导公式的正切函数值有什么关系我们可以归纳出以下公式:tan(2414【导学案】正切函数的诱导公式)=tan(-414【导学案】正切函数的诱导公式)=tan(2414【导学案】正切函数的诱导公式)=tan(414【导学案】正切函数的诱导公式=tan(414【导学案】正切函数的诱导公式=2.我们可以利用诱导公式,将任意角的三角函数问题转化为锐角三角函数的问题,参考下面的框图,想想每次变换应该运用哪些公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

职业中学高二数学教案5篇通过对高二数学的学习,培养学生逻辑推理能力。

今天作者在这里整理了一些职业中学高二数学教案5篇最新,我们一起来看看吧!职业中学高二数学教案1课题:两个平行平面的距离教学目的: 1.掌控掌控平面与平面间距离的概念,并能求出它们的距离 2.弄清平行平面之间的距离的定义;教学重点:平行平面的距离的求法教学难点:平行平面的距离的求法教学进程:一、复习引入: 1.点到平面的距离:已知点是平面外的任意一点,过点作,垂足为,则唯独,则是点到平面的距离即:一点到它在一个平面内的正射影的距离叫做这一点到这个平面的距离(转化为点到点的距离) 结论:连结平面外一点与内一点所得的线段中,垂线段最短 2.直线到与它平行平面的距离:一条直线上的任一点到与它平行的平面的距离,叫做这条直线到平面的距离(转化为点面距离)二、讲授新课: 1.两个平行平面的`公垂线、公垂线段:(1)两个平面的公垂线:和两个平行平面同时垂直的直线,叫做两个平面的公垂线(2)两个平面的公垂线段:公垂线夹在平行平面间的部分,叫做两个平面的公垂线段(3)两个平行平面的公垂线段都相等(4)公垂线段小于或等于任一条夹在这两个平行平面间的线段长 2.两个平行平面的距离:两个平行平面的公垂线段的长度叫做两个平行平面的距离三、讲授范例:例1如图,已知正三角形的边形为,点D到各顶点的距离都是,求点D到这个三角形所在平面的距离解:设为点D在平面内的射影,延长,交于, ,∴, ∴即是的中心,是边上的垂直平分线,在中,,,,即点D到这个三角形所在平面的距离是. 四、课堂练习:五、课后作业:职业中学高二数学教案2数学教案-菱形教学建议知识结构重难点分析本节的重点是菱形的性质和判定定理。

菱形是在平行四边形的条件下定义的,第一她是平行四边形,但它是特别的平行四边形,特别之处就是“有一组邻边相等”,因此就增加了一些特别的性质和不同于平行四边形的判定方法。

菱形的这些性质和判定定理即是平行四边形性质与判定的延续,又是以后要学习的正方形的基础。

本节的难点是菱形性质的灵活运用。

由于菱形是特别的平行四边形,所以它不但具有平行四边形的性质,同时还具有自己特殊的性质。

如果得到一个平行四边形是菱形,就可以得到许多关于边、角、对角线的条件,在实际解题中,应当运用哪些条件,怎样运用这些条件,常常让许多学生手足无措,教师在教学进程中应给予足够重视。

教法建议根据本节内容的特点和与平行四边形的关系,建议教师在教学进程中注意以下问题:1.菱形的.知识,学生在小学时接触过一些,可由小学学过的知识作为引入。

2.菱形在现实中的实例较多,在讲授菱形的性质和判定时,教师可自行准备或由学生准备一些生活实例来进行判别运用了哪些性质和判定,既增加了学生的参与感又巩固了所学的知识.3. 如果条件答应,教师在讲授这节内容前,可指导学生依照教材148页图4-33所示,制作一个平行四边形作为教学进程中的道具,既增强了学生的动手能力和参与感,有在教学中有切实的体例,使学生对知识的掌控更轻松些.4. 在对性质的讲授中,教师可将学生分成若干组,每个学生分别对事先准备后的图形进行边、角、对角线的测量,然后在组内进行整理、归纳.5. 由于菱形和菱形的性质定理证明比较简单,教师可引导学生分析思路,由学生来进行具体的证明.6.在菱形性质运用讲授中,为便于知道掌控,教师要注意题目的层次安排。

一、教学目标1.掌控菱形概念,知道菱形与平行四边形的关系.2.掌控菱形的性质.3.通过运用菱形知识解决具体问题,提高分析能力和视察能力.4.通过教具的演示培养学生的学习爱好.5.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想.6.通过菱形性质的学习,体会菱形的图形美.二、教法设计视察分析讨论相结合的方法三、重点·难点·疑点及解决办法1.教学重点:菱形的性质定理.2.教学难点:把菱形的性质和直角三角形的知识综合运用.3.疑点:菱形与矩形的性质的区分.四、课时安排1课时五、教具学具准备教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具六、师生互动活动设计教师演示教具、创设情境,引入新课,学生视察讨论;学生分析论证方法,教师适时点拨七、教学步骤【复习提问】1.什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?2.矩形中对角线与大边的夹角为,求小边所对的两条对角线的夹角.3.矩形的一个角的平分线把较长的边分成、,求矩形的周长.【引入新课】我们已经学习了一种特别的平行四边形——矩形,其实还有另外的特别平行四边形,这时可将事先按课本中图4-38做成的一个短边也能够活动的教具进行演示,如图,改变平行四边形的边,使之一组邻进相等,引出菱形概念.【讲授新课】1.菱形定义:有一组邻边相等的平行四边形叫做菱形.讲授这个定义时,要抓住概念的本质,应突出两条:(1)强调菱形是平行四边形.(2)一组邻边相等.2.菱形的性质:教师强调,菱形既然是特别的平行四边形,因此它就具有平行四边形的一切性质,另外由于它比平行四边形多了“一组邻边相等”的条件,和矩形类似,也比平行四边形增加了一些特别性质.下面研究菱形的性质:师:同学们根据菱形的定义结合图形猜一下菱形有什么性质(让学生们讨论,并引导学生分别从边、角、对角线三个方面分析).生:由于菱形是有一组邻边相等的平行四边形,所以根据平行四边形对边相等的性质可以得到.菱形性质定理1:菱形的四条边都相等.由菱形的四条边都相等,根据平行四边形对角线相互平分,可以得到菱形性质定理2:菱形的对角线相互垂直并且每一条对角线平分一组对角.引导学生完成定理的规范证明.师:视察右图,菱形被对角线分成的四个直角三角形有什么关系?生:全等.师:它们的底和高和两条对角线有什么关系?生:分别是两条对角线的一半.师:如果设菱形的两条对角线分别为、,则菱形的面积是什么?生:教师指出当不易求出对角线长时,就用平行四边形面积的一样运算方法运算菱形面积.例2 已知:如右图,是△的角平分线,交于,交于 .求证:四边形是菱形.(引导学生用菱形定义来判定.)例3 已知菱形的边长为,,对角线,相交于点,如右图,求这个菱形的对角线长和面积.(1)按教材的方法求面积.(2)还可以引导学生求出△一边上的高,即菱形的高,然后用平行四边形的面积公式运算菱形的面积.【总结、扩大】1.小结:(打出投影)(图4)(1)菱形、平行四边形、四边形的从属关系:(2)菱形性质:图5①具有平行四边形的所有性质.②特有性质:四条边相等;对角线相互垂直,且平分每一组对角.八、布置作业教材P158中6、7、8,P196中10职业中学高二数学教案3高中数学命题教案命题及其关系1.1.1命题及其关系一、课前小练:浏览下列语句,你能判定它们的真假吗?(1)矩形的对角线相等;(2)3 ;(3)3 吗?(4)8是24的约数;(5)两条直线相交,有且只有一个交点;(6)他是个高个子.二、新课内容:1.命题的概念:①命题:可以判定真假的陈说句叫做命题(proposition).上述6个语句中,哪些是命题.②真命题:判定为真的语句叫做真命题(true proposition); 假命题:判定为假的语句叫做假命题(false proposition). 上述5个命题中,哪些为真命题?哪些为假命题?③例1:判定下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)若整数是素数,则是奇数;(3)2小于或等于2;(4)对数函数是增函数吗?(5) ;(6)平面内不相交的两条直线一定平行;(7)明天下雨.(学生自练个别回答教师点评)④探究:学生自我举出一些命题,并判定它们的真假.2. 将一个命题改写成“若,则”的情势:三、练习:教材 P4 1、2、3四、作业:1、教材P8第1题2、作业本1-10五、课后反思命题教案课题1.1.1命题及其关系(一)课型新授课目标1)知识方法目标了解命题的概念,2)能力目标会判定一个命题的真假,并会将一个命题改写成“若,则”的情势. 重点难点1)重点:命题的改写2)难点:命题概念的知道,命题的条件与结论区分教法与学法教法:教学进程备注1.课题引入(创设情形)浏览下列语句,你能判定它们的真假吗?(1)矩形的对角线相等;(2)3 ;(3)3 吗?(4)8是24的约数;(5)两条直线相交,有且只有一个交点;(6)他是个高个子.2.问题探究1)难点突破2)探究方式3)探究步骤4)高潮设计1.命题的概念:①命题:可以判定真假的陈说句叫做命题(proposition).上述6个语句中,(1)(2)(4)(5)(6)是命题.②真命题:判定为真的语句叫做真命题(true proposition);假命题:判定为假的语句叫做假命题(false proposition).上述5个命题中,(2)是假命题,其它4个都是真命题.③例1:判定下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)若整数是素数,则是奇数;(3)2小于或等于2;(4)对数函数是增函数吗?(5) ;(6)平面内不相交的两条直线一定平行;(7)明天下雨.(学生自练个别回答教师点评)④探究:学生自我举出一些命题,并判定它们的真假.2. 将一个命题改写成“若,则”的情势:①例1中的(2)就是一个“若,则”的命题情势,我们把其中的叫做命题的条件,叫做命题的结论.②试将例1中的命题(6)改写成“若,则”的情势.③例2:将下列命题改写成“若,则”的情势.(1)两条直线相交有且只有一个交点;(2)对顶角相等;(3)全等的两个三角形面积也相等.(学生自练个别回答教师点评)3. 小结:命题概念的知道,会判定一个命题的真假,并会将命题改写“若,则”的情势.引导学生归纳出命题的概念,强调判定一个语句是不是命题的两个关键点:是否符合“是陈说句”和“可以判定真假”。

通过例子引导学生辨别命题,区分命题的条件和结论。

改写为“若,则”的情势,为后续的学习打好基础。

3.练习提高1. 练习:教材 P4 1、2、3师生互动4.作业设计作业:1、教材P8第1题2、作业本1-105.课后反思本节课是一堂概念课,比较枯燥,在教学时应充分调动学生的积极性,比如引例中的“他是个高个子.”例1中的“(7)明天下雨.”等比较有趣的生活问题,和学生有充分的语言交换,在一问一答中,引导学生完本钱节课的学习。

职业中学高二数学教案4一、教学进程1.复习。

反函数的概念、反函数求法、互为反函数的函数定义域值域的关系。

求出函数y=x3的反函数。

2.新课。

先让学生用几何画板画出y=x3的图象,学生纷纭动手,很快画出了函数的图象。

有部分学生发出了“咦”的一声,由于他们得到了以下的图象(图1):教师在画出上述图象的学生中选定生1,将他的屏幕内容通过教学系统放到其他同学的屏幕上,很快有学生作出反应。

相关文档
最新文档