《统计学》第六章抽样调查
统计学第六章抽样调查
Part
05
系统抽样技术
系统抽样原理及步骤
• 系统抽样原理:系统抽样是一种等距抽样方法,它首先确定一个抽样间隔,然后在总体中按照这个间隔进行抽 样。这种方法适用于总体单位排列有序且周期性变化的情况。
系统抽样原理及步骤
01
系统抽样步骤
02
确定总体范围和抽样框;
03
计算抽样间隔,确定样本量;
系统抽样原理及步骤
01
03 02
分层标准选择与确定方法
• 以调查对象的某些自然特征或社会特征作 为分层标准。
分层标准选择与确定方法
专家判断法
依靠专家经验判断选择合 适的分层标准。
数据分析法
通过对历史数据或相关数据的 分析,找出影响调查指标的主 要因素,作为分层标准。
试验法
通过试验确定不同分层标准 对调查结果的影响程度,选 择最优的分层标准。
缺点
由于样本可能被重复抽取,导致样本的代表性降 低。
缺点
操作相对复杂,需要记录已经抽取过的样本。
简单随机抽样优缺点分析
操作简单
简单随机抽样的操作过程相对简单,易于理解和实施。
等概率原则
保证了每个单位被抽中的机会相等,避免 具有代表性:当样本量足够大时,简单随机抽样可以获得具有代表性的样本。
整群抽样优缺点比较
• 适用于某些特定情况:对于某些总体分布不均匀或难以划分的情况,整群抽样 可能更为适用。
整群抽样优缺点比较
抽样误差较大
01
由于是以群为单位进行抽样,可能导致抽样误差较大。
样本代表性不足
02
如果群的划分不合理或随机性不足,可能导致样本代表性不足。
对群内个体差异考虑不足
03
统计学第六章抽样推断
尖山一委…
尖山二委
居民一组
居民二
组
…
第六章 抽样推断
某外国公司在##进行 微波炉市场调查:
STAT
在商场的大门口
在微波炉柜台前
在市区街道旁边
在某个住宅小区
时间表抽样框
第六章 抽样推断
连续出产的产品总体 可以编制抽样框:均STAT 匀的出产时间、可以 预见到的产品总量.
连续到加油站加油的 汽车总体无法编制抽 样框:时间不定、总 量也无法确定.
抽样估计的特点
第六章 抽样推断
按随机原则抽取样本单位
目的是推断总体的数量特征
抽样推断的结果具有一定的可靠程度, 抽样误差可以事先计算并控制
抽样估计的应用
第六章 抽样推断
不可能进行全面调查时 不必要进行全面调查时 来不及进行全面调查时 对全面调查资料进行补充修正时
抽样调查研究
Sampling Study
P N nN N NN n
共n个
⒉ 不重复抽样的可能样本数目:
C N n N N 1 N n 1
第六章 抽样推断
第六章 抽样推断
STAT
★§1.1 抽样方案的设计 ★§1.2 简单随机抽样的抽样误差的测定
§1.3 简单随机抽样的抽样估计
第六章 抽样推断
§1.2 简单随机抽样的抽样误差的测定 STAT
n1 1{i n1E(xiX)2nn(E xX)2} 由E(于 xX)2D (x)D (i1 nxi)n 1 2i n1D (xi)n2
E(sn21)n11{n2nn2}
2
⒋ 样本成数:
pn1,qn0 1p nn
⒌ 样本单位是非标志的标准差:
第六章 抽样推断
统计学原理-第六章 抽样调查(复旦大学第六版)
2.样本总体:简称样本,是从全及总体中随机
抽取出来,代表全及总体部分单 位的集合体。单位数用n表示。
5
二.全及指标和抽样指标
(一)全及指标
X 总体平均数: X N 总体成数:P
2
XF 或X F Q=
2 2
N1 N N
(X-X) 总体方差: = 总体标准差:= (X-X)
(一)考虑顺序的不重复抽样数目
N! A N ( N 1)(N 2) ( N n 1) ( N n)! 4 3 2 1 2 例如A4 12 2 1
n N
(二)考虑顺序的重复抽样数目
B N
n N 2 4
n 2
例如 B 4 16
10
(三)不考虑顺序的不重复抽样数目
Ex X
28
2、一致性 当抽样单位数充分大时,抽样指标和未知 的总体指标之间的绝对离差为任意小的可能性 也趋于必然性。
x X 任意小
3、有效性
即用抽样指标估计总体指标,要求作为优良估 计量方差应该比其他估计量的方差小。
2
x X f
2
f
2
x X f
x
x E ( x)
2
18
说明:根据数理统计理论,在重复抽样条件下, 抽样平均误差与全及总体的标准差成正比例关系。 与抽样总体单位平方根成反比关系。
19
在不重复抽样情况下,抽样平均误差计算公式如下:
x x
N n 250 4-2 ( )= ( ) =9.13(件) n N 1 2 4-1
2
N
X X F 或 F X X F 或 F
统计学罗文宝主编 第六章抽样推断单选题多选题参考答案
第六章抽样推断二、单项选择题1.抽样平均误差是( A )。
A.抽样指标的标准差B.总体参数的标准差C.样本变量的函数D.总体变量的函数2.抽样调查所必须遵循的基本原则是( B )。
A.准确性原则B.随机性原则C.可靠性原则D.灵活性原则3.在简单随机重复抽样条件下,当抽样平均误差缩小为原来的1/2时,则样本单位数为原来的( C )。
A.2倍B.3倍C.4倍D.1/4倍4.按随机原则直接从总体N个单位中抽取n个单位作为样本,这种抽样组织形式是( A )。
A.简单随机抽样B.类型抽样C.等距抽样D.整群抽样5.事先将总体各单位按某一标志排列,然后依排列顺序和按相同的间隔来抽选调查单位的抽样称为( C ) 。
A.简单随机抽样B.类型抽样C.等距抽样D.整群抽样6.在一定的抽样平均误差条件下( A )。
A.扩大极限误差范围,可以提高推断的可靠程度B.扩大极限误差范围,会降低推断的可靠程度C.缩小极限误差范围,可以提高推断的可靠程度D.缩小极限误差范围,不改变推断的可靠程度7.映样本指标与总体指标之间的平均误差程度的指标是( C )。
A,平均数离差 B,概率度C,抽样平均误差 D,抽样极限误差8 以抽样指标估计总体指标要求抽样指标值的平均数等于被估计的总体指标值本身,这一标准称为( A )。
A.无偏性B.一致性C.有效性D.准确性9.在其他条件不变的情况下,提高估计的概率保证程度,其估计的精确程度( B )。
A.随之扩大B.随之缩小C.保持不变D.无法确定10.对某种连续生产的产品进行质量检验,要求每隔一小时抽出10分钟的产品进行检验,这种抽查方式是( D )。
A.简单随机抽样B.类型抽样C.等距抽样D.整群抽样三、多项选择题1.抽样推断的特点是(ABCE) 。
A.由推算认识总体的一种认识方法B.按随机原则抽取样板单位C.运用概率估计的方法D.可以计算,但不能控制抽样误差E.可以计算并控制抽样误差2. 抽样估计中的抽样误差(ACE) 。
统计学第六章 抽样法
第六章 抽样法
序号
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16 合计
样本变量x
40、40 40、50 40、70 40、80
50、40 50、50 50、70 50、80
70、40 70、50 70、70 70、80
80、40 80、50 80、70 80、80
-
x
x E(x)
总体
研究如何利用 样本数据来 推断总体特 征。
内容包括:参 数估计和假 设检验。
目的:对总体
特征作出推
样 本
断。
这是推断统计学研 究的问题
5
第六章 抽样法
描述统计与推断统计的关系
反映客观 现象的数
据
概率论
(包括分布理论、大 数定律和中心极限定
理等)
样本数
描述统计
推断统计
据
总体数 据
(统计数据的搜集 、整理、显示和分
13
第六章 抽样法
第二节 有关抽样的基本概念(2)
(二)抽样总体
也称子样,样本或样本总体,它是从全 及总体中随机抽取出来的,代表全及总体的 那部分单位的集合体。抽样总体的单位数称 为样本容量,用n表示,对于N来说,n是很 小的。
总体
样 本
14
第六章 抽样法
第二节 有关抽样的基本概念(3)
• 二 全及指标和抽样指标p.249 (一) 全及指标
研究总体中 的品质标志
总体成数 P N1
N
总体成数标准差 P
P1 P
17
第六章 抽样法
第二节 有关抽样的基本概念(5)
(二)抽样指标
抽样指标是由样本总体各单位标志值 或标志特征计算的综合指标,也称统计量。 与全及指标相对应有:样本平均数,样本 标准差;样本成数,样本成数的标准差。
统计学第六章抽样和抽样分布
2021/3/4
统计学第六章抽样和抽样分布
4
一、总体与样本
▪ 把握两个问题: ▪ 1、总体和总体参数; ▪ 2、样本和样本统计量。
2021/3/4
统计学第六章抽样和抽样分布
5
1、总体与总体参数
(1)总体:指根据研究目的确定的所 要研究的同类事物的全体,是所要说 明其数量特征的研究对象。按所研究 标志性质不同,分为变量总体和属性 总体,分别研究总体的数量特征和品 质特征。 构成总体的个别事物(基本单元 )就是总体单位,也称个体。总体单 位的总数称为总体容量,记作N。
缺点:受主观影响易产生倾向性误差; 不能计算、控制误差,无法说明调查结果 的可靠程度。
抽样一般都是指概率抽样。
2021/3/4
统计学第六章抽样和抽样分布
15
2、重复抽样和非重复抽样
(1)重复抽样:又称重置抽样,是指从总体 中抽出一个样本单位,记录其标志值后,又将 其放回总体中继续参加下一轮单位的抽取。特 点是:第一,n个单位的样本是由n次试验的结 果构成的。第二,每次试验是独立的,即其试 验的结果与前次、后次的结果无关。第三,每 次试验是在相同条件下进行的,每个单位在多 次试验中选中的机会(概率)是相同的。在重复 试验中,样本可能的个数是 N n ,N为总体单位 数,n为样本容量。
2021/3/4
统计学第六章抽样和抽样分布
16
2、重复抽样和非重复抽样
(2)非重复抽样:又称为不重置抽样,即每次从
总体抽取一个单位,登记后不放回原总体,不参加下
一轮抽样。下一次继续从总体中余下的单位抽取样本
。特点是:第一,n个单位的样本由 n 次试验结果构成
统计学第六章抽样和抽样分 布
第六章 抽样与抽样分布
胡德华版统计学第六章
6.2.2 机械抽样
机械抽样又称等距抽样或系统抽样, 机械抽样又称等距抽样或系统抽样,就是将总体的各单位按某一标 志的大小进行排队,用总体单位数除以样本单位数求得抽样间隔, 志的大小进行排队,用总体单位数除以样本单位数求得抽样间隔,然后 按照相同的间隔等距抽取样本的一种抽样方式。 按照相同的间隔等距抽取样本的一种抽样方式。 根据总体单位排列方法,等距抽样可分为两类: 根据总体单位排列方法,等距抽样可分为两类:一是按有关标志排 二是按无关标志排队。 队;二是按无关标志排队。 所谓有关标志就是指与调查问题直接相关的标志。 所谓有关标志就是指与调查问题直接相关的标志。 采用等距抽样法,主要应解决以下两个问题: 采用等距抽样法,主要应解决以下两个问题: 一是要计算抽样间隔, 代表抽样间隔, 代表总体单位数 代表总体单位数, 代 一是要计算抽样间隔,若K代表抽样间隔,N代表总体单位数,n代 代表抽样间隔 表抽取的样本单位数, 表抽取的样本单位数,则K=N / n 。 二是要确定起点样本,即第一个样本。 二是要确定起点样本,即第一个样本。通常的方法可采取在第一组 1-K个样本单位中随机抽取的方法,也可以在第一组 个样本单位中随机抽取的方法, 个样本单位中随机抽取的方法 也可以在第一组1-K个样本单位中采 个样本单位中采 用取中间值的方法,然后,每隔K个单位抽取一个样本 个单位抽取一个样本, 用取中间值的方法,然后,每隔 个单位抽取一个样本,直到抽够样本 为止。 为止。 等距随机抽样方法可以使样本单位均匀地分布在总体的各个部分, 等距随机抽样方法可以使样本单位均匀地分布在总体的各个部分, 因而使样本具有更高的代表性,减少了抽样误差; 因而使样本具有更高的代表性,减少了抽样误差;采用机械顺序抽取样 简单易行,便于操作。但是,在应用等距抽样方法时, 本,简单易行,便于操作。但是,在应用等距抽样方法时,要注意抽样 间隔与现象本身所具有的规律不能重叠,否则,会加大抽样误差。 间隔与现象本身所具有的规律不能重叠,否则,会加大抽样误差。 等距随机抽样方法比较适合于同质性较高的总体。 等距随机抽样方法比较适合于同质性较高的总体。
《国民经济统计学概论》_第六章_抽样推断
总体分组: 2 (X X )2 F F
总体成数的方差为 P(1 - P)
2.统计量,又称样本指标,反映样本特 征的统计指标
(1)样本平均数( x ),样本各 单位数量标志值的平均数
未分组: x x
n
分组: x xf f
(2)样本成数(p) 是指样本中具有某一相同标志表现的单
要有四个:
(1)总体平均数( X )
总体各单位数量标志值的平均数
X
总体未分组情况下:X N
总体分组情况下:
XF
X
F
(2)总体成数(P)
是指总体中具有某一相同标志表现的单 位数占全部总体单位数的比重
多为交替指标
总体中具有相同标志表现的单位数用N1 表示
P N1 N
(3)总体方差和标准差 总体方差(σ2)
特点: 1.抽样方式组织简便,便于实施 2.在已知总体某些有关信息的情况下,
采用等距抽样能保证样本单位在总体中 均匀的分布,从而提高了样本对总体的 代表性,有利于降低抽样误差。
无关标志排队 有关标志排队
(三)类型抽样 首先把总体按某一标志分成若干个类型
组,使各组组内标志值比较接近,然后 分别在各组内按随机原则抽取样本单位。 特点:在于把分组法和随机抽样原则结 合起来。
i2ni
n
抽样成数的平均误差:
重置抽样:
p
P(1 P) n
不重置抽样:
第四节 抽样的组织形式及抽样方 案设计
一、抽样的组织形式 (一)简单随机抽样 从总体全部单位中直接按随机原则抽取
样本单位,使每个总体单位都有同等机 会被抽中
最基本形式
(1)直接抽选法 直接从调查对象中随机抽选。
统计学(抽样调查)
上下或左右顺序读起,每出现两个数字,即为
被抽中的单位码号。假定本例是从第四行左边
第五个数字向右顺序读起,则所抽取单位是: 68 27 31 05 03 72 93 15 55 59 56 35 , 此过程中的96因大于94,舍去不用是因为在顺
序抽取的过程中,遇到比编号大的数字,应该 舍去。
•分層抽樣比簡單隨機抽樣和系統抽樣更 為精確,能夠通過對較少的抽樣單位的 調查,得到比較準確的推斷結果,特別 是當母體較大、內部結構複雜時,分層 抽樣常能取得令人滿意的效果。同時, 分層抽樣在對母體推斷的同時,還能獲 得對每層的推論,並且利於層和層之間 的比較。
• 【观念应用4-2.1】某地共有居民20000户,按经 济收入高低进行分类,其中高收入的居民为4000 户,占总体的20%,中收入为12000户,占总体的 60%,低收入为4000户,占总体的20%。要从中 抽选200户进行购买力调查,则各类型应抽取的样
抽样调查
• 4.1 抽样调查基本理论 • 4.2 抽样技术的类别及特点 • 4.3 抽样误差及样本数目的确定
4.1 抽样调查基本理论
4.1.1 抽样调查的含义及其特点
4.1.1 抽样调查的含义及其特点
1)抽样调查的概念
抽样调查也称为抽查,是指从调研总 体中抽选出一部分要素作为样本,对 样本进行调查,并根据抽样所得的结 果推断总体的一种专门性的调查活动。
• 【观念应用 4-1】从1000个对象中抽选出100个 样本进行访问调查,请他们对经济发展速度的 前景进行预测,其中认为明年经济增长速度将 达到8%以上的有60人,即占被抽样总数的60%, 按百分比推算法,调查总体1000个对象中将有 600人认为明年的经济增长速度将达到8%以上, 说明大多数人对经济发展前景相当看好。也可 按平均数推算法进行推断,即将调查的样本结 果加以平均求出样本平均数代入平均数推算总 体的公式(总体=总体个数*样本平均数)。假 定对500个商店客流量调查,从50个样本调查结 果,平均客流量为350人次,那么500个商店的 总客流量为:500×350人次=175 000人次。 【分析提示】按百分比推算法和平均数推算法, 以样本指标推算总体指标。
统计学中的抽样调查方法
统计学中的抽样调查方法统计学是研究收集、分析、解释和展示数据的学科,而抽样调查是统计学中一种常用的数据收集方法。
抽样调查通过从总体中选择一部分样本来进行数据收集,然后通过对样本数据进行统计分析,得出关于总体的推断和结论。
本文将介绍统计学中常用的抽样调查方法。
一、简单随机抽样简单随机抽样是抽样调查中最基本的方法之一。
它要求从总体中以等概率随机的方式选择样本,保证每个样本有同样的机会被选中。
简单随机抽样有助于减小抽样误差,并且可以充分代表总体特征。
在实际应用中,可以使用随机数表或计算机随机数生成器来进行简单随机抽样。
二、系统抽样系统抽样是指按照一定的系统规则从总体中选择样本的抽样方法。
在系统抽样中,首先确定抽样的间隔,然后从总体中随机选择一个起始点,依照固定的间隔排列顺序选择样本。
系统抽样简单易行,且适用于总体规模较大的情况,例如市场调查和民意调查。
三、分层抽样分层抽样是将总体划分为若干个相似的子总体,然后分别从每个子总体中进行简单随机抽样。
通过分层抽样,可以更好地代表总体中不同子总体的特征。
分层抽样常用于调查研究中,特别是在总体中存在着明显的差异的情况下,例如不同地区、不同年龄段的人群。
四、整群抽样整群抽样是将总体划分为若干个互不重叠的群体,然后从其中选择若干个群体作为样本。
整群抽样通常用于样本群体之间差异较小的情况下,可以简化调查过程,并提高调查效率。
整群抽样常用于社会学调查和教育调查中,例如在学校中选择部分班级进行问卷调查。
五、多阶段抽样多阶段抽样是将样本选择过程分为多个阶段,并在每个阶段中采用不同的抽样方法。
多阶段抽样适用于总体分布复杂,且难以直接进行抽样调查的情况。
通过分阶段的抽样过程,可以逐步缩小样本范围,并最终选出符合调查要求的样本。
多阶段抽样常用于大型调查和跨国调查,它能够在保证样本代表性的同时,减少调查成本。
综上所述,统计学中的抽样调查方法多种多样,每种方法都适用于不同的研究目的和数据情况。
统计学课件第六章抽样调查PPT课件
特点
每个样本被选中的机会都 相等,样本的代表性相对 较好。
分层抽样
定义
先将总体按一定标准分成 若干层次或群,然后从各 层或群中按随机原则抽取 样本。
方法
分类抽样、比例抽样、类 型抽样。
特点
能够提高样本的代表性, 降低误差,减少资源浪费。
系统抽样
定义
先将总体中的所有个体按某种顺序排列,然后按 照固定的间隔或系统选取样本。
改进抽样方法
采用更科学的抽样方法和技术,如分层抽样、系统抽样等,以提 高样本的代表性。
提高样本代表性
在抽样过程中尽量减少非随机误差,如无回答、不完整数据等, 以提高样本对总体的代表性。
05 抽样调查的组织与实施
抽样调查的设计
确定调查目的
明确调查的目标和意图,为后 续的抽样设计提供指导。
确定调查对象
合理安排问题的顺序、布局和格式,以提高 问卷的易用性和回答率。
确定调查方式
选择合适的调查方式,如自填式、面访式等, 并确定数据收集的途径。
测试与修正
对问卷进行测试和修正,确保问卷的准确性 和可靠性。
调查的实施与质量控制
培训调查员
对调查员进行培训,确保他们了解调 查目的、问卷内容、调查方法等。
现场实施
将总体分成若干个群集或组,然后从每个 群集或组中抽取一定数量的样本,也称为 簇抽样或组抽样。
抽样调查的应用场景
01
02
03
04
市场调查
通过对目标市场的部分消费者 进行调查,了解市场需求、消 费者行为和产品反馈等信息。
社会调查
通过对一定范围内的社会成员 进行调查,了解社会现象、人 口状况和社会问题等信息。
统计学课件第六章抽样调查ppt课 件
统计学中的抽样与调查
统计学中的抽样与调查统计学是一门研究数据收集、整理、分析和解释的学科。
在统计学中,抽样和调查是非常重要的方法,用于获取和分析数据,从而得出对总体的推断和结论。
一、抽样的定义和目的抽样是从总体中选取一部分个体进行调查或研究的方法。
总体是要研究或调查的全部对象,例如,全国的人口或一种药物的副作用。
抽样的目的是通过对样本群体进行观察和测量,从而推断出总体的特征。
抽样可以帮助统计学家节约时间和资源,同时保证研究结论的准确性和可靠性。
二、抽样的方法1. 简单随机抽样:简单随机抽样是一种基本的抽样方法,每个个体都有相等的机会被选中。
使用随机数表或随机数发生器来选择样本,确保样本的代表性和无偏性。
2. 系统抽样:系统抽样是按照固定的间隔从总体中选取样本。
例如,从一个市场中每隔五个人选择一个进行调查,这样可以保证样本的分布均匀。
3. 分层抽样:分层抽样是将总体划分为几个不同的层次,然后从每个层次中进行抽样。
这样可以确保在样本中包含不同层次的特征,提高结果的代表性。
4. 整群抽样:整群抽样是将总体划分为若干个互不重叠的群体,然后从这些群体中随机选取几个进行调查。
这种方法常用于人口普查中,可以减少调查的复杂性。
三、调查的步骤和技巧1. 设计调查问卷:在进行调查之前,首先要设计调查问卷。
问卷应该简洁明了,问题要具体、明确,以确保得到准确和有用的信息。
2. 选择合适的调查方法:根据被调查者的特点和调查的目的,选择合适的调查方法,例如面对面访谈、电话调查、在线问卷等。
3. 实施调查:按照设计好的方案和计划进行调查,确保采集到充分、准确的数据。
调查人员应该专业、礼貌,并保证被调查者的隐私和权益。
4. 数据分析和解释:收集到数据后,使用统计方法对数据进行分析和解释。
常用的数据分析方法包括描述统计分析、推断统计分析等。
5. 结果报告和应用:根据数据分析的结果,撰写报告并对调查结果进行解释和应用。
报告应该简明扼要,结论准确可靠。
统计学 第6章 练习题
一、 填空题 1. 抽样调查可以是 抽样,也可以是 抽样,但作为抽样推断 抽样。 基础的必须是 2. 抽样推断运用 的方法对总体的数量特征进行估计。 3. 在 组 织 抽 样 时 , 以 清 单 、 名 册 、 图 表 等 形 式 来 界 定 总 体 的 范 围 , 称 为 。 。 4. 样本成数的方差是 5. 重复抽样有 个可能的样本,而不重复抽样则有 个可能 的样本。 6. 抽样误差是由于抽样的 而产生的误差,这种误差不可避免,但可 以 。 。 7. 样本平均数的平均数等于 8. 抽样误差与抽样平均误差之比称为 。 9 优良估计的三个标准是 、 和 。 10. 在 实 际 的 抽 样 推 断 中 , 常 用 的 抽 样 组 织 形 式 有 、 、 、 和 等。 二、 单项选择题 1. 抽样推断的目的是( ) A、以样本指标推断总体指标 B、取得样本指标 C、以总体指标估计样本指标 D、以样本的某一指标推断另一指标 2. 在抽样推断中,可以计算和控制的误差是( ) A、抽样实际误差 B、抽样标准误差 C、非随机误差 D、系统性误差 3. 总体参数是( ) A、唯一且已知 B、唯一但已知 C、非唯一但可知 D、非唯一且不可知 4. 样本容量也称( ) A、样本个数 B、样本单位数 C、样本可能数目 D、样本指标数 5. 从总体的 N 个单位中随机抽取 n 个单位, 用不重复抽样方法一共可抽取 ( ) 个样本。 A、 PN B、 p C、 N D、 C N n 1
n
n
ቤተ መጻሕፍቲ ባይዱ
n
n
6. 在重复抽样条件下,平均数的抽样平均误差计算公式是(
)
2
n
)
A、 n B、 n C、 n D、
7. 不重复抽样的抽样标准误公式比重复抽样多了一个系数(
统计学相关 单选题第6章题目及答案
第六章抽样调查题号 1 2 3 4 5 6 7 8 9 10 答案 C B D D D D D C B C 题号11 12 13 14 15 16 17 18 19 20 答案 A C D D B B B B D D 题号21 22 23 24 25 26 27 28 29 30 答案 B C C A A C A C C D 题号31 32 33 34 35 36 37 38 39 40 答案 C B B C C B C D A C 题号41 42 43 44 45 46 47 48 49 50 答案 C C A D D A D B D D 题号81 52 53 54 55 56 57 58 59 60 答案 A B C B A D C B B B 题号61 62 63 64 65 82 67 68 69 70 答案 B B C A C D C A C D 题号83 72 73 74 75 76 77 78 79 80 答案 A A A C A D A B B C 题号84 85 86 87 88 89 90 答案1、抽样调查的主要目的是()A、计算和控制抽样误差B、了解总体单位情况C、用样本指标估计总体指标D、对样本单位作深入的研究2、抽样调查所遵循的基本原则是()A、准确性原则B、随机性原则C、可靠性原则D、灵活性原则3、在抽样推断中,抽样误差是()A、可以避免的B、可避免且可控制C、不可避免且无法控制D、不可避免但可控制4、抽样调查与典型调查的主要区别是()A、所研究的总体不同B、调查对象不同C、调查对象的代表性不同D、调查单位的选取方式不同5、按随机原则抽样即()A、随意抽样B、有意抽样C、无意抽样D、选取样本时要求总体中每个单位都有相等的机会或可能性被抽中6、样本是指()A、任何一个总体B、任何一个被抽中的调查单位C、抽样单元D、由被抽中的调查单位所形成的总体7、抽样框是指()A、总体B、样本C、由总体单位组成的名单或地图D、全部抽样单位组成的名单或地图8、抽样误差是指()A、在调查过程中由于观察、测量等差错所引起的误差B、在调查中违反随机原则出现的系统误差C、随机抽样而产生的代表性误差D、人为原因所造成的误差9、抽样极限误差是()A、随机误差B、一定可靠程度下抽样误差的最大绝对值C、最小抽样误差D、最大抽样误差的绝对值10、反映样本指标与总体指标之间的平均误差程度的指标是()A、抽样误差系数B、概率度C、抽样平均误差D、抽样极限误差11、抽样调查的误差包括()A、登记性误差和代表性误差B、只有登记性误差,没有代表性误差C、没有登记性误差,只有代表性误差D、既没有登记性误差,也没有代表性误差12、抽样平均误差是指样本平均数或样本成数的()A、平均数B、平均差C、标准差D、标准差系数13、抽样平均误差与极限误差的关系是()A、抽样平均误差大于极限误差B、抽样平均误差小于极限误差C、抽样平均误差等于极限误差D、抽样平均误差可能大于、小于或等于极限误差14、下列事件中不属于严格意义上的随机事件的是()。
统计学中的抽样调查方法
统计学中的抽样调查方法统计学是一门研究收集、整理、分析和解释数据的学科。
在统计学中,抽样调查是一种常用的数据收集方法。
通过抽取一部分样本,研究人员可以推断出整个总体的特征。
本文将介绍统计学中的抽样调查方法,并探讨其应用和局限性。
一、简单随机抽样简单随机抽样是最基本的抽样方法之一。
在简单随机抽样中,每个个体都有相等的概率被选中为样本。
这种方法可以确保样本具有代表性,能够准确反映总体的特征。
例如,研究人员想要了解某个国家的人口年龄分布情况,可以通过简单随机抽样的方法从整个国家的人口中选取一部分样本进行调查。
然而,简单随机抽样也存在一些局限性。
首先,由于随机性的存在,有可能抽取到不具有代表性的样本。
其次,简单随机抽样可能需要耗费大量的时间和资源,特别是当总体规模较大时。
因此,在实际应用中,研究人员通常会结合其他抽样方法来提高效率和准确性。
二、分层抽样分层抽样是一种常用的抽样方法,特别适用于总体具有明显特征的情况。
在分层抽样中,研究人员将总体划分为若干个层次,然后从每个层次中抽取样本。
这样可以确保每个层次都有代表性的样本,从而更准确地推断总体的特征。
例如,研究人员想要了解某个城市不同年龄段人口的消费习惯。
他们可以将总体划分为若干个年龄段,然后从每个年龄段中抽取一定数量的样本进行调查。
通过分层抽样,研究人员可以更全面地了解不同年龄段人口的消费情况,为相关决策提供科学依据。
然而,分层抽样也有一些限制。
首先,分层抽样需要事先了解总体的特征,对于未知的特征无法准确划分层次。
其次,分层抽样可能会增加调查的复杂性和成本,特别是当总体层次较多时。
因此,在使用分层抽样时,研究人员需要权衡利弊,选择合适的抽样方法。
三、系统抽样系统抽样是一种常用的抽样方法,特别适用于总体有序排列的情况。
在系统抽样中,研究人员按照一定的间隔从总体中选取样本。
例如,研究人员想要了解某个学校学生的学习成绩,可以按照学生的学号顺序,每隔一定数量选取一个学生进行调查。
统计学第六章抽样调查
标 差 总 标 差 、 本 准 s 准 : 体 准 σ 样 标 差
总体参数和样本统计量符号
总体指标符号 总体容量: N 总体平均数: µ 总体成数: P 总体方差: σ2 总体标准差: σ 样本指标符号 样本容量: n 样本平均数: x 样本成数: p 样本方差: S2 样本标准差: S
抽样组织形式
抽样估计效果好坏,关键是抽样平均误差的 抽样估计效果好坏,关键是抽样平均误差的 抽样平均误差 控制。抽样平均误差小, 控制。抽样平均误差小,抽样效果从整体上 看就是好的;否则,抽样效果就不理想。 看就是好的;否则,抽样效果就不理想。 抽样平均误差受以下几方面的因素影响: 抽样平均误差受以下几方面的因素影响:
抽样调查的基本概念 抽样调查的基本概念 重复抽样和不重复抽样
重复抽样:又称有放回的抽样 有放回的抽样,从总体中 重复抽样 有放回的抽样 抽取样本时,每次被抽中的单位都再被 放回总体中参与下一次抽样。 不重复抽样:又称无放回的抽样 无放回的抽样,总体中 不重复抽样 无放回的抽样 随机抽选的单位经观察后不放回到总体 中,即不再参加下次抽样。
µ ( p) =
P (1 − P ) n
不重复抽样条件下: 不重复抽样条件下: 条件下
µ ( p) =
P (1 − P ) n (1 − ) n N
抽样极限误差
样本平均数的抽样极限误差: 样本平均数的抽样极限误差:以绝对值形式 表示的样本平均数的抽样误差的可能范围, 表示的样本平均数的抽样误差的可能范围, 用符号表示为: 用符号表示为:
样本成数
从成数总体中抽取样本容量为n的样本 从成数总体中抽取样本容量为 的样本 样本中具有此种特征的单位占全部样本单位 数的比例称为样本成数,记作p 数的比例称为样本成数,记作p p=n1/n
统计学原理 第六章 随堂练习题 (1)
2
答案:
16.(2) 17.(1)
18.若总体服从正态分布,且总体方差已知,则通常选用统 计量( )对总体平均数进行检验。
(1)
Z x X0 S n
(2)
Z
x X0
n
x X0 x X0 t t (3) (4) S n n 19.矿砂的5个样品中,测得其含铜量均值为
(
)
( )
10.假设检验和区间估计之间没有必然的联系。
答案: 6. × 7. √ 8. × 9. √ 10. ×
答案:
5.(4)
6.(3)
7.纯随机抽样(重复)的平均误差取决于( )。 (1)样本单位数 (2)总体方差 (3)样本单位数和样本单位数占总体的比重 (4)样本单位数和总体方差
N n 8.抽样平均误差公式中, N 1 这个因子总是( (1)大于1 (2)小于1 (3)等于1 (4)唯一确定值
变异程度的大小和抽样误差无关。 ( ) 7.正态分布总体有两个参数,一个是均值(期望值) X,一个 是方差 2 ,这两个参数确定以后正态分布也就确定了。 ( ) 8.原假设的接受与否,与选择的检验统计量有关,与 (显著
水平)无关。
( )
9.单侧检验中,由于所提出的原假设不同,可分为左侧检验
和右侧检验。
( x x)
n
2
,这是( )。
答案:
3.(2)
4.(1)
5.抽样极限误差是指抽样指标和总体指标之间( (1)抽样误差的平均数 (2)抽样误差的标准差 (3)抽样误差的可靠程度 (4)抽样误差的最大可能范围
)。
6.抽样误差的定义是( )。 (1)抽样指标和总体指标之间抽样误差的可能范围 (2)抽样指标和总体指标之间抽样误差的可能程度 (3)样本指标与所要估计的总体指标之间数量上的差别 (4)抽样平均数的标准差
统计学作业(抽样推断)
第六章抽样推断一、单项选择题1. 抽样调查的主要目的在于()。
A. 计算和控制误差B. 了解总体单位情况 C. 用样本来推断总体D. 对调查单位作深入的研究2. 抽样调查所必须遵循的基本原则是()。
A. 随意原则B. 可比性原则 C. 准确性原则 D. 随机原则3. 下列属于抽样调查的事项有()。
A. 为了测定车间的工时损失,对车间的每三班工人中的第一班工人进行调查B. 为了解某大学生食堂卫生状况,对该校的一个食堂进行了调查C. 对某城市居民1%的家庭调查,以便研究该城市居民的消费水平D. 对某公司三个分厂中的第一个分厂进行调查,以便研究该工厂的能源利用效果4. 无偏性是指()。
A. 抽样指标等于总体指标B. 样本平均数的平均数等于总体平均数C. 样本平均数等于总体平均数 D. 样本成数等于总体成数5. 一致性是指当样本的单位数充分大时,抽样指标()。
A. 小于总体指标B. 等于总体指标 C. 大于总体指标 D. 充分靠近总体指标6. 有效性是指作为优良估计量的方差与其他估计量的方差相比,有()。
A. 前者小于后者B. 前者大于后者C. 两者相等 D. 两者不等7. 能够事先加以计算和控制的误差是()。
A. 抽样误差B. 登记误差 C. 代表性误差 D. 系统性误差8.对两个工厂工人平均工资进行不重复的随机抽样调查,抽查的工人人数一样,两工厂工人工资方差相同,但第二个厂工人数比第一个厂工人数整整多一倍。
抽样平均误差()。
A. 第一工厂大B. 第二个工厂大 C. 两工厂一样大 D. 无法做出结论9. 抽样平均误差是指抽样平均数(或抽样成数)的()。
A. 平均数B. 平均差C. 标准差 D. 标准差系数10.在同样情况下,不重复抽样的抽样平均误差与重复抽样的抽样平均误差相比,是()。
A. 两者相等B. 两者不等 C. 前者小于后者 D. 前者大于后者。
11. 反映抽样指标与总体指标之间抽样的可能范围的指标是()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《统计学》第六章抽样调查
抽样调查
§1抽样调查的意义§2抽样调查的基本概念和理论依据§3抽样平均误差§4抽样推断§5必要抽样单位数的确定
§1、抽样调查的意义一、抽样调查的概念、特点(一)、概念:抽样调查是按照随机原则从全部研究对象中抽取一部分单位进行观察,并依据所获得的数据对全部研究对象的数量特征做出具有一定可靠性的估计判断,从而达到对全部研究对象的认识的一种统计方法。
(二)、抽样调查的基本特点:根据部分实际资料对全部总体的数量特征做出估计。
按随机的原则从全部总体中抽取样本单位。
抽样推断的抽样误差可以事先计算并且加以控制。
二、抽样调查的作用:对某些不可能进行全面调查而又要了解其全面情况的社会经济现象,必须应用抽样调查。
对某些社会经济现象虽然可以进行全面调查,但抽样调查可以节约时间、费用,提高调查的时效性。
抽样调查和全面调查同时进行,可以发挥相互补充和检查质量的作用。
抽样调查可以用于工业生产过程的质量控制。
利用抽样调查原理,还可以对某种总体的假设进行检验,来判断这种假设的真伪,以决定行动的取舍。
§2、抽样调查的基本概念及理论依据一、总体与样本(一)、总体与总体指标总体:是根据研究目的确定的所要研究的同类事物的全体。
总体单位数称为总体容量,一般用N 表示。
总体指标:用来反映总体数量
特征的指标,也称为参数。
一般来说总体指标有:总体平均数、总体成数、总体平均数标准差、总体平均数方差、总体成数标准差、总体成数方差。
参数参数:指反映总体数量特征的综合指标,它是确定的、唯一的。
XF x 总体平均数 F 研究总体中( X X )2 F 的数量标志X 总体标准差 F
总体成数研究总体中的品质标志成数平均数成数标准差
N1 P N
XP P P P(1 P)
未分组情况下的全及指标总体平均数总体成数具备某种特征的单位数P N
总体方差
2
Xi 1
N
i
X
2
N
总体标准差
Xi 1
N
i
X
2
N
资料分组情况下
总体指标:XF F X 或X F F
Xi X F2
F N1 XP P N
P P 1 P
(二)、样本与样本指标样本:从总体中抽取的部分总体单位所构成的整体。
样本所包含的总体单位个数称为样本容量,一般用n表示。
在实际工作中,人们通常把n≥30的样本称为大样本,而把n30 的样本称为小样本。
样本指标:是根据样本资料计算的、用于估计和推断相应总体指标的综合指标
,也称统计量。
一般来说样本指标有:样本平均数、样本成数、样本平均数标准差、样本平均数方差、样本成数标准差、样本成数方差。
统计量:
根据样本数据计算的综合指标。
样本平均数
xf x f x 2 ( x x ) f
研究数量标志样本标准差
f
样本成数研究品质标质成数平均数
n1 p n
xp p p p(1 p)
成数标准差
未分组情况下的抽样指标x1 xn 样本平均数x n 具备某种特征的单位数p 样本成数n n 2 xi x 2 i 1 s 样本方差ns
样本标准差
x x i 1 i
n
2
n
资料分组情况下
样本指标:xf f x 或x f f s xi x f2
f
n1 xp p n sp ( p 1 p)
二、概率抽样与非概率抽样随机原则:就是排除主观意愿的干扰,使总体的每个单位都有一定概率抽样:也叫随机抽样,是指按照随机原则抽取样本。
概率的概率被抽选为样本单位,每个总体单位能否选入样本是随机的。
抽样最基本的组织方式有:简单随机抽样、分层抽样、等距抽样和整群抽样。
非概率抽样:也叫非随机抽样,是指从研究目的出发,根据调查者的经验或判断,从总体中有意识地抽取若干单位构成样本。
重点调查、典型调查、配额调查等属于非随机抽样。
(但由于非随机抽样的效果取决于调查者的经验、主观判断和专业知识,故难免掺杂
调查者的主观偏见,出现因人而异的结果,且容易产生倾向性误差;此外,非随机抽样不能计算和控制其抽样误差,无法说明调查结果的可靠程度。
)
三、抽样框:是包括全部抽样单位的名单框架。
编制抽样框是实施抽样的基础。
抽样框的好坏通常会直接影响到抽样的随机性和调查的效果。
抽样框的主要形式有三种:1、名单抽样框:即列出全部总体单位的名录一览表,如职工名单、企业名单等。
2、区域抽样框:即按地理位置将总体范围划分为若干小区域,以小区域为抽样单位。
3、时间表抽样框:即将总体全部单位按时间顺序排列,把总体的时间过程分为若干个小的时间单位,以此时间单位为抽样单位。
四、抽样误差:登记性误差
登记性误差是指在调查和汇总过程中由于观察、测量、登记、计算等方法的差错或被调查者提供虚假资料而造成的误差。
任何一种统计调查都可能产生登记性误差。
误差
系统性误差是指由于非随机因素引起的样本代表性不足而产生的误差,表现为样本估计量的值系统偏低或偏高。
系统性误差
代表性误差随机性误差代表性误差是指用样本指标推断总体指标时,由于样本结构与总
体结构不一致、样本不能完全代表总体而产生的误差。
随机性误差又称偶然性误差,是指遵循随机原则抽样,由于随机
因素(偶然性因素)引起的误差。
抽样估计中的所谓抽样误差,就是指的这种随机误差。
五、抽样方法和样本可能数目样本的可能数目既和样本的容量有关,也和抽样的方法有关。
根据取样方式的不同,抽样方法有重复抽样和不重复抽样两种。
1、重复抽样:是指从总体的N个单位中抽取一个容量为n的样本,每次抽出一个单位后,再将其放回总体中参加下一次抽取,这样连续抽n次即得到一个样本。
2、不重复抽样:是指抽中单位不再放回总体中,下一个样本单位只能从余下的总体单位中抽取。
重复抽样与不重复抽样的区别:重复抽样:同一总体单位有可能被重复抽中;每个总体单位在每次抽样中被抽中的概率都是相同的。
不重复抽样:同一总体单位不可能被重复抽中;由于每次抽取是在不同数目的总体单位中进行,每个总体单位在各次抽样中被抽中的概率不相等。
抽样误差较小。
抽样误差较大。
根据对样本的要求不同,抽样方法又有考虑顺序抽样和不考虑顺序抽样两种:1、考虑顺序的抽样:即从总体N 中抽取n个单位构成样本,不但要考虑样本各单位的不同性质,而且还考虑不同性质各单位的中选顺序。
相同构成成
分的单位,由于顺序不同,也作为不同样本。
2、不考虑顺序的抽样:即从总体N个单位抽取n个单位构成样本。
只考虑样本各单位的组成成分如何,而不考虑单位的抽样顺序。
如果样本的成分相
同,不论顺序有多大不同,都作为一种样本。
以上抽样方法的两种分类还存在交叉情况,即有:
考虑顺序的不重复抽样数目考虑顺序的重复抽样数目N! A N n !n N
B Nn Nn N
n
不考虑顺序的不重复抽样数目N! C n ! N n !
不考虑顺序的重复抽样数目n n DN CN n 1
例如:从4个(N)职工中抽取其中的2个(n) 进行调查。
考虑顺序的重复抽样数目
B N 4 16(个)n N n 2
不考虑顺序的不重复抽样数目N! 4! 4 3 2 1 C 6(个) n ! N n ! 2! 4 2 ! 2 2n N
A=40、B=50、C=70、D=80 考虑顺序的重复组合:AA BA CA DA AB BB CB DB AC BC CC DC AD BD CD DD 不考虑顺序的不重复抽样数目AB BC CD AC BD AD。