《自动控制》一二阶典型环节阶跃响应实验分析报告

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自动控制原理实验分析报告姓名:学号:班级:一、典型一阶系统的模拟实验:

1.比例环节(P) 阶跃相应曲线。

传递函数:G(S)=-R2/R1=K

说明:K为比例系数

(1)R1=100KΩ,R2=100KΩ;特征参数实际值:K=-1.

(2)(2)R1=100KΩ,R2=200KΩ;即K=-2.

〖分析〗:经软件仿真,比例环节中的输出为常数比例增益K;比例环节的特性参数也为K,表征比例环节的输出量能够无失真、无滞后地按比例复现输入量。

2、惯性环节(T) 阶跃相应曲线及其分析。

传递函数:G(S)=-K/(TS+l) K=R2/R1 , T=R2C

说明:特征参数为比例增益K和惯性时间常数T。

(1)、R2=R1=100KΩ , C=1µF;特征参数实际值:K=-1,T=0.1。

(2)、R2=R1=100KΩ , C=0.1µF;特征参数实际值:K=-1,T=0.01。

〖分析〗:惯性环节的阶跃相应是非周期的指数函数,当t=T时,输出量为0.632K,当t=3~4T时,输出量才接近稳态值。比例增益K表征环节输出的放大能力,惯性时间常数T表征环节惯性的大小,T越大表示惯性越大,延迟的时间越长,反

之亦然。

传递函数:G(S)= -l/TS ,T=RC

说明:特征参数为积分时间常数T。

(1)、R=100KΩ , C=1µF;特征参数实际值:T=0.1。

(2)R=100KΩ , C=0.1µF;特征参数实际值:T=0.01。

〖分析〗:只要有一个恒定输入量作用于积分环节,其输出量就与时间成正比地无限增加,当t=T时,输出量等于输入信号的幅值大小。积分时间常数T表征环节积累速率的快慢,T越大表示积分能力越强,反之亦然。

4、比例积分环节(PI) 阶跃相应曲线及其分析。

传递函数:G(S)=K( l+l/TS) K=-R2/R1, T=R2C

说明:特征参数为比例增益K和积分时间常数T。

(1)、R2=R1=100KΩ , C=1µF;特征参数实际值:K=-1,T=0.1。

〖分析〗:比例积分环节的输出是在比例作用的基础上,再叠加积分作用,其输出量随时间的增加无限地增加。但是实际上放大器都有饱和特性,积分后的输出量不可能无限增加。

5、微分环节(D) 阶跃相应曲线及其分析。

传递函数:G(S)=-TS T=RC1

说明:特征参数为微分时间常数T。

(2)、R=100KΩ , C2=0.01µF,C1=0.1µF;特征参数实际值:T=0.01。

〖分析〗:微分环节在输入信号维持恒值情况下,输出信号按指数规律随时间推移逐步下降,经过一段时间后,稳定输出为0。实际微分环节不具备理想微分环节的特征,但是仍能够在输入跃变时,于极短时间内形成一个较强的脉冲输出。

其特征参数T表征了输出脉冲的面积。

6、比例微分环节(PD) 阶跃相应曲线及其分析。

传递函数:G(S)=K(TS+1) K= -R2/R1,T=R2C1。

说明:特征参数为比例增益K和微分时间常数T。

(1)、R2=R1=100KΩ , C2=0.01µF,C1=1µF;特征参数实际值:K= -1,T=0.1。

(2)、R2=R1=100KΩ , C2=0.01µF,C1=0.1µF;特征参数实际值:K= -1,T=0.01。

〖分析〗:比例微分环节是在微分作用的基础上,再叠加比例作用,其稳定输出与输入信号成比例关系。

二、典型二阶系统的模拟实验: 典型二阶系统的闭环传递函数为:

其中ζ 和ωn 对系统的动态品质有决定的影响。 1.典型二阶系统的模拟电路,并测量其阶跃响应:

二阶系统模拟电路图

其结构图为:

系统闭环传递函数为:

式中 T=RC ,K=R 2/R 1。

比较上面二式,可得:ωn =1/T=1/RC ζ=K/2=R 2/2R 1 。

2、画出系统响应曲线,再由ts 和Mp 计算出传递函数,并与由模拟电路计算的传递函数相比较。

2

2

2

2)()()(n

n n

w s w s w s R s C S ++==ξ

φ

(1)当R1=R=100KΩ,C=1uF,ωn=10rad/s时:

① R2=40KΩ,ζ=0.2,响应曲线:

〖分析〗:系统处于欠阻尼状态,0<ζ<1。系统的闭环根为两个共轭复根,系统处于稳定状态,其单位阶跃响应是衰减振荡的曲线,又称阻尼振荡曲线。

其振荡频率为ωd ,称为阻尼振荡频率

〖分析〗:系统处于欠阻尼状态,0<ζ<1。系统的闭环根为两个共轭复根,系统处于稳定状态,其单位阶跃响应是衰减振荡的曲线,又称阻尼振荡曲线。其振荡频率为ωd ,称为阻尼振荡频率。

〖总结〗:由①②两个实验数据和仿真图形可知:对不同的ζ,振荡的振幅和频率都是不同的。ζ越小,振荡的最大振幅愈大,振荡的频率ωd也愈大,即超调量和振荡次数愈大,调整时间愈长。当ζ=0.707时,系统达到最佳状态,此时称为最佳二阶系统。

〖分析〗:系统处于临界阻尼状态,ζ=1。系统的闭环根为两个相等的实数根,系统处于稳定状态,其单位阶跃响应为单调上升曲线,系统无超调。

④ R2=240KΩ,ζ=1.2,响应曲线:

〖分析〗:系统处于过阻尼状态,ζ>1。系统的闭环根为两个不相等的实数根,系统处于稳定状态,其单位阶跃响应也为单调上升曲线,不过其上升的速率较临界阻尼更慢,系统无超调。

⑤ R2=0KΩ,ζ=0,响应曲线:

〖分析〗:系统处于无阻尼或零阻尼状态,ζ=0。系统的闭环根为两个共轭虚根,系统处于临界稳定状态(属于不稳定),其单位阶跃响应为等幅振荡曲线,又称自由振荡曲线,其振荡频率为ωn ,且ωn=1/(RC)。

相关文档
最新文档