第二章-线性方程组习题解答

合集下载

线性方程组典型习题及解答

线性方程组典型习题及解答

线性方程组1. 用消元法解方程组⎪⎪⎩⎪⎪⎨⎧=-+-+=--+-=-+-+=--+-525222202122325432153215432154321x x x x x x x x x x x x x x x x x x x . 解: 方程组的增广矩阵 :⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------420200110100112430211321312630202530112430211321512522110112121111211321⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------→600000110100112430211321,可知,系数矩阵的秩为3,增广矩阵的秩为4,系数矩阵的秩不等于增广矩阵的秩,从而方程组无解.2. 讨论λ为何值时,方程组⎪⎩⎪⎨⎧=++=++=++23213213211λλλλλx x x x x x x x x 有唯一解、无解和有无穷多解。

解:将方程组的增广矩阵进行初等行变换,变为行阶梯矩阵。

()()()()BA =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+------→→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=22222112101101111111111111111λλλλλλλλλλλλλλλλλλλλΛ于是,当2,1-≠λ时,系数矩阵的秩等于增广矩阵的秩,都等于3,等于未知量的个数,此时方程组有唯一解;2)1(,21,213321++-=+=++-=λλλλλx x x 当2-=λ时,系数矩阵的秩为2,增广矩阵的秩为3,此时方程组无解;当1=λ时,系数矩阵的秩等于增广矩阵的秩,都等于1,小于未知量的个数,此时方程组有无穷多解,即3211x x x --=,其中32,x x 为自由未知量。

3. 当b a ,取何值时线性方程组⎪⎪⎩⎪⎪⎨⎧=-+++=+++=-+++=++++bx x x x x x x x x a x x x x x x x x x x 5432154325432154321334536223231有解?并求其解。

高等工程数学第二章习题及答案

高等工程数学第二章习题及答案

第2章 线性代数方程组数值解法 研究n 阶线性方程组Ax b =的数值解法.()ij A a =是n n⨯矩阵且非奇异,12(,,,)Tn x x x x = ,12(,,,)Tn b b b b =两类数值方法:(1) 直接法:通过有限次的算术运算,若计算过程中没有舍入误差,可以求出精确解的方法.Ax b Gx d == 等价变换G 通常是对角矩阵、三角矩阵或者是一些结构简单的矩阵的乘积.(2) 迭代法:用某种极限过程去逐次逼近方程组的解的方法.(1)()i i Ax b x Bx k x Bx k +==+−−−−−→=+ 等价变换建立迭代格式,0,1,i =一、向量范数与矩阵范数 1. 向量范数【定义】 若对nK 上任一向量x ,对应一个非负实数x ,对任意,nx y R ∈及K α∈,满足如下条件(向量范数三公理) (1) 非负性:0x ≥,且0x =的充要条件是0x =;(2)齐次性:x xαα=;(3)三角不等式:x y x y+≤+.则称x为向量x的范数.常用的向量范数: (1) 1—范数11nii x x ==∑(2) 2—范数12221()ni i x x ==∑(3) ∞—范数1max ii nxx ∞≤≤=(4) 一般的p —范数11()pnpi pi xx ==∑2. 矩阵范数【定义】 若n nK ⨯上任一矩阵()ij n n A a ⨯=,对应一个非负实数A ,对任意的,n nA B K ⨯∈和K α∈,满足如下条件(矩阵范数公理):(1) 非负性:0A ≥,且0A =的充要条件是0A =;(2)齐次性:A Aαα=;(3)三角不等式:A B A B +≤+;(4)乘法不等式:AB A B≤.则称A为矩阵A的范数.矩阵范数与向量范数是相容的:Ax A x≤向量范数产生的从属范数或算子范数:10max maxx x AxA Ax x=≠==常见从属范数:(1) 1—范数111max ||nij j ni A a ≤≤==∑(2) ∞—范数11max ||nij i nj A a ∞≤≤==∑(3) 2—范数2A =谱半径1()max ||H i i n A A ρλ≤≤=,iλ为H A A 的特征值.H A 为A 的共轭转置. 注:矩阵A 的谱半径不超过A 的任一范数,即()A A ρ≤范数等价性定理:,s t x x为n R 上向量的任意两种范数,则存在常数12,0c c >,使得12,ns t s c x x c x x R ≤≤ ∀∈.注:矩阵范数有同样的结论. 【定理2.1】是任一向量范数,向量序列()k x 收敛于向量*x 的充要条件是()*0,k x x k -→ →∞二、 Gauss 消去法 1.顺序Gauss 消去法 将方程Ax b =写成如下形式11112211,121122222,11122,1n n n n n n n n nn n n n a x a x a x a a x a x a x a a x a x a x a ++++++=⎧⎪+++=⎪⎨⎪⎪+++=⎩其中记,1,1,2,,.i n i a b i n +==消元过程:第一次消元:设110a ≠,由第2,3,,n 个方程减去第一个方程乘以1111/(2,3,,)i i m a a i n == ,则将方程组中第一个未知数1x消去,得到同解方程11112211,1(1)(1)(1)22222,1(1)(1)(1)22,1n n n n n n n nn n n n a x a x a x a a x a x a a x a x a ++++++=⎧⎪ ++=⎪⎨⎪⎪ ++=⎩其中, (1)11,2,3,,;2,3,,,1ijij i j a a m a i n j n n =-==+ . 1111/i i m a a =,2,3,,i n = .第二次消元:设(1)220a ≠,.由第2,3,,n 个方程减去方程组中的第2个方程乘以(1)(1)2222/(3,4,,)i i m a a i n == ,则将方程组第2个未知数2x 消去,得到同解方程11112213311,1(1)(1)(1)(1)2222322,1(2)(2)(2)33333,1(2)(2)(2)33,1n n n n n n n n n nnn n n n a x a x a x a x a a x a a x a a x a x a a x a x a ++++++++=⎧⎪ +++=⎪⎪ ++=⎨⎪⎪⎪ ++=⎩其中(2)(1)(1)22, 3,4,,; 3,4,,,1ij ij i j a a m a i n j n n =-==+ . (1)(1)2222/i i m a a =,3,4,,i n = .经过1n -次消元后,原方程组变成等价方程组11112213311,1(1)(1)(1)(1)2222322,1(2)(2)(2)33333,1(1)(1),1n n n n n n n n n n n nn n n n a x a x a x a x a a x a a x a a x a x a a x a +++--+++++=⎧⎪ +++=⎪⎪ ++=⎨⎪⎪⎪ =⎩其中()(1)(1), 1,2,,k k k ij ij ik ij a a m a i k k n --=-=++ , 1,2,,,1j k k n n =+++ .(1)(1)/k k ik ik kkm a a --=,1,2,,i k k n =++ ;1,2,,1k n =- .回代过程:(1)(1),1(1)(1)(1),1,,1/[]/,1,2,,2,1.n n n n n m n i i i ii n i j j i j j i x a a x a a x a i n n --+---+=+⎧=⎪⎨=-=--⎪⎩∑计算量:按常规把乘除法的计算次数合在一起作为Gauss 消去法总的计算量,而略去加减法的计算次数. 在消去过程中,对固定的消去次数(1,2,,1)k k n =- ,有:除法(1)(1),,/,1,1,,k k ik i k k k m a a i k k n --= =++ 共计n k -次;乘法(1),,1,2,,;1,2,,,1k ik k j m a i k k n j k k n n - =++ =+++ 共计()(1)n k n k --+次.因此,消去过程总的计算量为1311[()(1)]3n k M n k n k n k n-==--++-≈∑ 回代过程的乘除法计算次数为21()2n n +.与消去法计算量相比可以略去不计.所以, Gauss 消去法总的计算量大约为313n .2. Gauss-Jordan 消去法Gauss-Jordan 消去法是Gauss 消去法的一种变形.此方法的第一次消元过程同Gauss 消去法一样,得到(1)(1)(1)(1)11112213311,1(1)(1)(1)(1)22223322,1(1)(1)(1)(1)32233333,1(1)(1)(1)(1)2233,1,,,,n n n n n n n n n nn nn n n n a x a x a x a x a a x a x a x a a x a x a x a a x a x a x a ++++⎧++++=⎪ +++=⎪ +++=⎨ +++= ⎪⎪⎪⎪⎩其中,(1)11,2,,,1jj a a j n n ==+ . 第二次消元:设(1)220a ≠,由第1,3,4,,n 个方程减去第2个方程乘以(1)(1)2222/(1,3,4,,)i i m a a i n == ,则得到同解方程组(2)(2)(2)11113311,1(1)(2)(2)(2)22223322,1(2)(2)(2)33333,1(2)(2)33,1,,,n n n n n n n n n nnn n n n a x a x a x a a x a x a x a a x a x a a x a x a +++++ +++= +++= ++= ++= (2),⎧⎪⎪⎪⎨⎪⎪⎪⎩继续类似的过程,在第k 次消元时,设(1)k kk a -,将第i 个方程减去第k 个方程乘以(1)(1)/k k ik ik kk m a a --=,这里1,3,4,1,1,,i k k n =-+ .经过1n -次消元,得到(2)1111,1(1)(2)2222,1(2)(2)33,1,,,n n n n n a x a a x a a x a +++⎧ =⎪ =⎪⎪ ⎨⎪⎪⎪ =⎩其中()(1)(1),1,2,,1,1,,k k k ij ij ik kj a a m a i k k n --=-=-+ ;1,2,,,1; 1,2,,1j n n k n =+=- .此时,求解回代过程为(1)(1),1/,1,2,,n i i i n iix a a i n --+= = 经统计,总的计算量约为312M n ≈次乘除法. 从表面上看Gauss-Jordan 消去法似乎比Gauss 消去法好,但从计算量上看Gauss -Jordan 消去法明显比Gauss消去法的计算量要大,这说明用Gauss-Jordan 消去法解线性方程组并不可取.但用此方法求矩阵的逆却很方便. 3.列选主元Gauss 消去法在介绍Gauss 消去法时,始终假设(1)0k kk a -≠,称(1)k kka -为主元.若(1)0k kka -=,显然消去过程无法进行.实际上,既使(1)0k kka -≠,但(1)k kka -很小时,用它作除数对实际计算结果也是很不利的.称这样的(1)k kka -为小主元.【例2.2】设计算机可保证10位有效数字,用消元法解方程1112120.3100.7,0.9,x x x x -⎧⨯+=⎪⎨ +=⎪⎩【解】经过第一次消元:第2个方程减去第1个方程乘以212111/m a a =得1112(1)(1)222230.3100.7x x a x a -⎧⨯+=⎪⎨ =⎪⎩其中(1)1222222111/0.333333333310a a a a =-=-⨯,(1)123323211113(/)0.233333333310a a a a a =-⋅=-⨯于是解得(1)(1)223221/0.7000000000,0.0000000000,x a a x ⎧==⎪⎨=⎪⎩而真解为120.2,0.7x x = =注:造成结果失真的主要因素是主元素11a太小,而且在消元过程中作了分母,为避免这个情况发生,应在消元之前,作行交换.【定义】 若 (1)(1)||max ||k k k r k ik k i na a --≤≤=,则称(1)||k k r k a - 为列主元素. k r 行为主元素行,这时可将第 k r行与第k 行进行交换,使(1)||k k r k a - 位于交换后的等价方程组的 (1)k kk a - 位置,然后再施实消去法,这种方法称为列选主元Gauss 消去法或部分主元Gauss 消去法.【例2.3】 应用列选主元Gauss 消去法解上述方程. 【解】 因为2111a a >,所以先交换第1行与第2行,得1211120.9,0.3100.7,x x x x -⎧+=⎪⎨⨯+=⎪⎩ 然后再应用Gauss 消去法,得到消元后的方程组为1220.9,0.7.x x x ⎧+=⎨=⎩回代求解,可以得到正确的结果.即120.2,0.7x x = =.三、三角分解法 设方程组Ax b =的系数矩阵A 的顺序主子式不为零.即1112121222110,1,2,,.kk k k k kka a a a a a k n a a a ∆=≠=在Gauss 消去法中,第一次消元时,相当于用单位下三角阵211131111010010n m L m m -⎡⎤⎢⎥- ⎢⎥⎢⎥=- ⎢⎥ ⎢⎥⎢⎥- ⎢⎥⎣⎦ ,左乘方程组Ax b =,得11A x b =,其中11121(1)(1)122211(1)200n n n nn a a a a a A L a a -(1)⎡⎤⎢⎥ ⎢⎥==⎢⎥ ⎢⎥⎢⎥ ⎣⎦ ,1(1)(1)111,11,1,1(,,,)Tn n n n b L b a a a -+++== .第二次消元时,相当于用单位下三角阵1232210101001n L m m - ⎡⎤⎢⎥ ⎢⎥⎢⎥= - ⎢⎥⎢⎥⎢⎥ - ⎢⎥⎣⎦0 ,左乘方程组11A x b =,得22A x b =其中11121(1)(1)22211(2)(2)221333(2)(2)300000n n n n nn a a a a a A L L A a a a a --⎡⎤ ⎢⎥ ⎢⎥⎢⎥== ⎢⎥⎢⎥ ⎢⎥ ⎢⎥⎣⎦ ,11(1)(2)(2)2211,12,13,1,1(,,,,).Tn n n n n b L L b a a a a --++++==经过1n -次消元,最后得到等价方程组11n n A x b --=其中11121(1)222111111221(1)n n n n n n nn a a a a a A L L L L A a (1)--------⎡⎤⎢⎥ ⎢⎥==⎢⎥⎢⎥⎢⎥ ⎣⎦1111(1)(1)112221,12,1,1(,,,)n Tn n n n n n n b L L L L b a a a --------+++==注意到1n A -是一个上三角阵,记111111221n n n U A L L L L A -------==则121()n A L L L U LU -==其中,121n L L L L -= . 不难验证21313212_1111n n nn m L m m m m m ⎡⎤⎢⎥ ⎢⎥⎢⎥= ⎢⎥ ⎢⎥⎢⎥ 1 ⎢⎥⎣⎦是单位下三角阵.于是解线性方程组Ax b =,就转化为解方程 LUx b =,若令Ux y =就得到一个与 Ax b =等价的方程组Ly b Ux y =⎧⎨=⎩【定理2.2】 若 A 为 n 阶方阵,且 A 的所有顺序主子式0k ∆≠,1,2,,k n = .则存在唯一的一个单位下三角矩阵 L 和一个上三角矩阵 U ,使A LU =.在上述过程中,若不假设A 的顺序主子式都不为零,只假设A 非奇异,那么Gauss 消去法将不可避免要应用两行对换的初等变换.第一次消元,将第1行与第1r 行交换,相当于将方程组Ax b =左乘矩阵11r P :1111r r P Ax P b=经第一次消元得11111111r r L P Ax L P b--=即系数矩阵为11111r A L P A-=,其中110111r P ⎡⎢ ⎢ 1= 1 0 1 ⎣0 0 ⎤⎥⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎦1 列 1r列 类似地,经1n -次消元,有121111111,22,11n n n n n r n n r r A L P L P L P A----------= .如果预先知道每一个(1,2,,1)iir P i n =- ,则在消元之前就全部作交换,得 1211,2,1,n n n r n r r A P P P A PA----== ,其中,1211,2,1,n n n r n r r P P P P ----= .即原方程变为PAx Pb =然后再消元,相当于对PA 做三角分解PA LU =由以上讨论,可得结论 【定理2.3】 若A 非奇异,则一定存在排列矩阵 P ,使得 PA 被分解为一个单位下三角阵和一个上三角1 行1行r阵的乘积,即PA LU =成立.这时,原方程组Ax b = 等价于 PAx Pb =,即等价于求解LUx Pb =令Ux y =则Ly Pb =实际求解时,先解方程组Ly Pb =,再根据 y 求解 Ux y =,即得原方程组Ax b =的解. 这种求解方法称为三角分解法.常用三角分解方法有以下几种. 1.Doolittle 分解方法 假设系数矩阵A 不需要进行行交换,且三角分解是唯一的. 记21121110n n l L l l ⎡⎤⎢⎥ ⎢⎥=⎢⎥ ⎢⎥ ⎢⎥⎣⎦ , 11121222n n nn u u u u u U u ⎡⎤⎢⎥ ⎢⎥=⎢⎥ ⎢⎥ 0 ⎣⎦ 于是有1112111121222212222112111110n n n n n n n n nn a a a u u u u u a a a l l l a a a ⎡⎤ ⎡⎤⎢⎥⎢⎥ ⎢⎥⎢⎥=⎢⎥⎢⎥ ⎢⎥⎢⎥ ⎢⎥⎢⎥ ⎣⎦⎣⎦ nn u ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥0 ⎣⎦从前面讨论A 的LU 分解过程可看出,L 、U 的元素都是用有关的(1)k ij a -来表示的,而它们的计算较麻烦.现在给出直接从系数矩阵A ,通过比较等式的两边逐步把L 和U 构造出来的方法,而不必利用Gauss 消去法的中间结果(1)k ij a -.计算步骤: (1) 由L 阵的第1行分别乘U 阵的各列,先算出U 阵的第1行元素 11,1,2,,j j u a j n = = .然后,由L 阵的各行分别去乘U 阵的第1列,算出L 阵的第1列元素1111/,2,3,,i i l a a i n = = .(2)现假设已经算出U 阵的前1r -行元素,L 阵的前1r -列元素,下面来算U 阵的第r 行元素,L 阵的第r 列元素.由L 阵的第r 行分别乘U 阵的第j 列(,1,,)j r r n =+ ,得11r ij rk kj rjk a l u u -==+∑所以,得U 阵的第r 行元素11,,1,,r rj rj rk kj k u a l u j r r n-==- =+∑ .再由L 阵的第i 行(1,2,,)i r r n =++ 分别去乘U 阵的第r 列,得11r ir ik kr ir rrk a l u l u -==+∑,所以,得L 阵的第r 列元素11[]/,1,2,,.r ir ir ik kr rr k l a l u u i r r n -==- =++∑取1,2,,r n = 逐步计算,就可完成三角分解A LU =;(3)解与Ax b = 等价的方程组Ly b Ux y =⎧⎨=⎩逐次用向前代入过程先解Ly b = 得1111,2,3,,.i i i ij j j y b y b l y i n -==⎧⎪⎨=- =⎪⎩∑然后再用逐次向后回代过程解Ux y =得1/,()/,1,2,,2,1.n n nn n i i ij j ii j i x y u x y u x u i n n =+=⎧⎪⎨=- =--⎪⎩∑2.Crout 分解方法仍假设系数矩阵A 不需要进行行交换,且三角分解是唯一的.即ˆA L=ˆU .与Doolittle 分解方法的区别在111212122211n n n n nn a a a a a a a a a ⎡⎤ ⎢⎥ ⎢⎥=⎢⎥ ⎢⎥⎢⎥ ⎣⎦ 1122ˆˆl l ⎡⎤ 0⎢⎥ ⎢⎥⎢⎥ ⎢⎥⎢⎥⎣⎦ 122ˆ1ˆ10n u u ⎡⎤⎢⎥ ⎢⎥⎢⎥ ⎢⎥ 1 ⎣⎦ 比较两边,则可推导出与Doolittle 分解方法类似的公式,不过Crout 分解方法是先算ˆL 的第r 列,然后再算ˆU的第r 行.3.Cholesky 分解方法若 A 为对称正定矩阵,则有 ˆT U L =,即11()()TT T A LDL LD LD LL ===其中L 为下三角阵. 进一步展开为1121111211112122221222221212n n n n n n nn n n nn a a a l l l l a a a l l l l l l l a a a ⎡⎤⎡⎤ ⎢⎥⎢⎥ 0 ⎢⎥⎢⎥=⎢⎥⎢⎥ ⎢⎥⎢⎥ ⎢⎥ ⎢⎥⎣⎦⎣⎦ 0nn l ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥ ⎣⎦ 比较两边对应元素,容易得到12121()r rr rr rk k l a l -==-∑ ,11()/r ir ir ik rk rrk l a l l l -==-∑ 1,2,,;1,2,,.r n i r r n ==++Cholesky 分解的优点:不用选主元. 由21rrr rk k a l ==∑ 可以看出||1,2,,.rk l k r ≤=这表明中间量rk l得以控制,因此不会产生由中间量放大使计算不稳定的现象. Cholesky 分解的缺点:需要作开方运算. 改进的Cholesky 分解: 改为使用分解T A LDL =即11121121121221222121111n n n n n n n n nn a a a d l l l d a a a l l d a a a ⎡⎤ 1 ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥ 1 1 ⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥ ⎢⎥⎢⎥⎢⎥ ⎢⎥ ⎣⎦⎣⎦⎣⎦ 2n l ⎡⎤⎢⎥ ⎢⎥⎢⎥ ⎢⎥ 1⎣⎦其中21ˆl 1ˆn l 2ˆn l ˆnn l 1ˆn u12111()/r r rr rk k k r ir ir ik k rk rk d a l d l a l d l d-=-=⎧=-⎪⎪⎨⎪=-⎪⎩∑∑,1,2,,;1,2,,.r n i r r n ==++Cholesky 分解方法或平方根法:应用Cholesky 分解可将Ax b =分解为两个三角形方程组T Ly b L x y ⎧= ⎪⎨= ⎪⎩分别可解得111111/,()/.i i i ik k ii k y b l y b l y l i n -=⎧=⎪⎨=-, =2,3,,⎪⎩∑和1/,()/1,.n n nn n i i ki k ii k i x y l x y l x l i n n =+⎧=⎪⎨=-, =--2,,2,1⎪⎩∑改进的Cholesky 分解方法或改进的平方根法:应用改进的Cholesky 分解,将方程组Ax b =分解为下面两个方程组1,,T Ly b L x D y -= ⎧⎨= ⎩同理可解得1111,,2,3,,.i i i ik k k y b y b l y i n ==⎧=⎪⎨=- =⎪⎩∑和1/,/,1,2,,2,1.n n n n i i i ki k k i x y d x y d l x i n n =+⎧=⎪⎨=- =--⎪⎩∑ 4.解三对角方程组的追赶法若()ij n n A a ⨯=满足1||||,1,2,,.nii ij j j ia a i n =≠> =∑则称A 为严格对角占优矩阵.若A 满足1||||,1,2,,.nii ij j j ia a i n =≠≥ =∑且其中至少有一个严格不等式成立,则称A 为弱对角占优矩阵.现在考虑Ax d = 的求解,即11112222211111n n n n n n n n n b c x d a b c x d a b c x d d a b x -----⎡⎤⎡⎤⎡⎤ ⎢⎥⎢⎥⎢⎥ ⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥ = ⎢⎥⎢⎥⎢⎥ ⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 系数矩阵A 满足条件11||||0,||||||,,0,2,3,, 1.||||0,i i i i i n n b c b a c a c i n b a ⎧>>⎪≥+ ≠=-⎨⎪>>⎩采用Crout 分解方法11112222221111n n n n n n n b c a b c a b c a b βαβγαγα---⎡⎤ ⎡⎤⎢⎥ 1 ⎢⎥⎢⎥ ⎢⎥⎢⎥ = ⎢⎥⎢⎥ ⎢⎥ ⎢⎥ ⎢⎥⎢⎥⎣⎦ ⎣⎦ 1n β-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥1 ⎢⎥⎢⎥ 1 ⎣⎦其中,,,i i i αβγ为待定系数.比较上式两边可得到111111,;,,2,3,,;,2,3,, 1.i i i i i i i i i b c a b i n c i n ααβγγβααβ-= == =+ == =-进而可导出1111111,2,3,,.,/,,2,3,,./(),2,3,, 1.i i i i i i ii i i i a i n b c b b i n c b i n γαβααββαβ--⎧= =⎪= =⎪⎨=- =⎪⎪=- =-⎩由此可看出,真正需要计算的是(1,2,,1)i n β=- ,而i α可由,i i b a 和1i β-产生.因此,实现了A 的Crout 分解后,求解Ax d =就等价于解方程组Ly dUx y =⎧⎨=⎩从而得到解三对角方程组的追赶法公式: (1) 计算i β的递推公式:1111/,/(),2,3,, 1.i i i i i c b c b i n ββαβ-⎧=⎪⎨=- =-⎪⎩(2) 解方程组Ly d =:11111/()/(),2,3,,.i i i i i i i y d b y d a y b a i n β--⎧=⎪⎨=-- =⎪⎩(3) 解方程组Ux y =:1,1,2,,2,1.n n i i i i x y x y x i n n β+⎧=⎪⎨=- =--⎪⎩追赶法的乘除法次数是66n -次.将计算121n βββ-→→→ 及12n y y y →→→ 的过程称之为“追”的过程,将计算方程组Ax d =的解121n n x x x x -→→→→ 的过程称之为“赶”的过程.四、迭代法 将Ax b =改写为一个等价的方程组 x Bx k =+建立迭代公式 (1)(),0,1,2,.i i x Bx k i +=+ =称矩阵B 为迭代矩阵.【定义】 如果对固定的矩阵B及向量k,对任意初始猜值向量(0)x ,迭代公式(1)()i i +()i()*lim i i x x →+∞=成立,其中*x 是一确定的向量,它不依赖于(0)x 的选取.则称此迭代公式是收敛的,否则称为发散的.如果迭代收敛,则应有**,x Bx k =+1. 收敛性()()*,0,1,2,i i x x i ε=- =为第i步迭代的误差向量.则有(1)(1)*()*()(),0,1,2,.x x B x x B i εε++=-=-==所以,容易推出()(0),0,1,2,,i i B i εε= =其中,(0)(0)*xxε=-为初始猜值的误差向量.设n nB K ⨯∈,lim 0i i B →+∞=⇔ ()1B ρ<.迭代法收敛基本定理: 下面三个命题是等价的 (1) 迭代法(1)()i i x Bx k +=+收敛;(2)()1B ρ<;(3) 至少存在一种矩阵的从属范数⋅,使1B <注:当条件()1B ρ<难以检验时,用1B 或B ∞等容易求出的范数,检验11B <或1B∞<来作为收敛的充分条件较为方便.常用迭代法如下. 2.Jacob 迭代 考察线性方程组Ax b =,设A 为非奇异的n 阶方阵,且对角线元素0ii a ≠(1,2,,)i n = .此时,可将矩阵A 写成如下形式A D L U =++,1122(,,,)nn D diag a a a = ,21313212000n n a L a a a a ⎡⎤⎢⎥ ⎢⎥⎢⎥= ⎢⎥ ⎢⎥⎢⎥ 0 ⎢⎥⎣⎦ ,12131232000n n a a a a a U ⎡⎤ ⎢⎥ ⎢⎥⎢⎥= 0 ⎢⎥ ⎢⎥⎢⎥ ⎢⎥⎣⎦ ,建立Jacobi 迭代公式(1)1()1(),i i x D L U x D b +--=-++迭代矩阵11()J B D L U I D A --=-+=-J B 的具体元素为112111122122221200n n J n n nn nn a a a a a a B a a a a a a ⎡⎤ - -⎢⎥⎢⎥⎢⎥- - ⎢⎥=⎢⎥⎢⎥ ⎢⎥⎢⎥- - 0 ⎢⎥⎣⎦ Jacobi 迭代法的分量形式如下1(1)()()111(),j n i i i jj jm m jm m m m j jj xb a x a x a -+==+=--∑∑1,2,,;0,1,2,.j n i = =3.Gauss-Seidel 迭代容易看出,在Jacobi 迭代法中,每次迭代用的是前一次迭代的全部分量()(1,2,,)i jx j n = .实际上,在计算(1)i j x +时,最新的分量(1)(1)(1)121,,,i i i j x x x +++- 已经算出,但没有被利用.事实上,如果Jacobi 迭代收敛,最新算出的分量一般都比前一次旧的分量更加逼近精确解,因此,若在求(1)i j x+时,利用刚刚计算出的新分量(1)(1)(1)121,,,i i i j x x x+++- ,对Jacobi 迭代加以修改,可得迭代公式1(1)(1)()111(),j ni i i jj jm m jm m m m j jj xb a x a x a -++==+=--∑∑1,2,,;0,1,2,.j n i = =矩阵形式(1)1()1()(),0,1,2,.i i x D L Ux D L b i +--=-++-+=1()G B D L U -=--+注:(1)两种迭代法均收敛时,Gauss-Seidt 迭代收敛速度更快一些.(2)但也有这样的方程组,对Jacobi 迭代法收敛,而对Gauss-Seidel 迭代法却是发散的. 【例2.4】 分别用Jacobi 迭代法和Gauss-Seidel 迭代法求解下面的方程组121232342,46,4 2.x x x x x x x ⎧- =⎪-+-=⎨⎪-+=⎩初始猜值取0(0,0,0)x =. 【解】 Jacobi 迭代公式为(1)()12(1)()()213(1)()321(2),41(6),0,1,2,41(2),4i i i i i i i x x x x x i x x +++⎧=+⎪⎪⎪=++=⎨⎪⎪=+⎪⎩迭代计算4次的结果如下 (1)(2)(3)(4)(0.5,1.5,0.5),(0.875,1.75,0.875),(0.938,1.938,0.938),(0.984,1.969,0.984).T T T T x x x x ====Gauss-Seidel 迭代公式为(1)()12(1)(1)()213(1)(1)321(2),41(6),0,1,2,41(2),4i i i i i i i x x x x x i x x +++++⎧=+⎪⎪⎪=++=⎨⎪⎪=+⎪⎩迭代计算4次的结果如下(1)(2)(3)(4)(0.5,1.625,0.9063),(0.9063,1.9532,0.9883),(0.9883,2.0,0.9985),(0.9985,1.999,0.9998).T T T T x x x x ====从这个例子可以看到,两种迭代法作出的向量序列(){}i x 逐步逼近方程组的精确解*(1,2,1)T x =,而且Gauss-Seidel 迭代法收敛速度较快.一般情况下,当这两种迭代法均收敛时,Gauss-Seidt 迭代收敛速度更3.超松弛迭代法为了加快迭代的收敛速度,可将Gauss-Seidel 迭代公式改写成1(1)()(1)()11(),j ni i i i jjj jm m jm m m m jjj xx b a x a x a -++===+--∑∑ 1,2,,;0,1,2,.j n i = =并记1(1)(1)()11(),j ni i i jj jm m jm m m m jjj rb a x a x a -++===--∑∑称 (1)i j r + 为 1i + 步迭代的第 j 个分量的误差向量.当迭代收敛时,显然有所有的误差向量(1)0(),1,2,,.i j r i j n +→→∞=为了获得更快的迭代公式,引入因子R ω∈,对误差向量 (1)i j r + 加以修正,得超松弛迭代法(简称SOR 方法)(1)()(1),0,1,2,.i i i j j j x x r i ω++=+ =即1(1)()(1)()1(),j ni i i i jjj jm mjm m m m jjjxx b a xa x a ω-++===+--∑∑1,2,,;0,1,2,.j n i = =适当选取因子ω,可望比Gauss-Seidel 迭代法收敛得更快.称ω为松弛因子.特别当1ω=时,SOR 方法就是Gauss-Seidel 迭代法.写成矩阵向量形式(1)1()1()[(1)](),j i x D L D U x D L b ωωωωω+--=+--++0,1,2,.i =迭代矩阵为1()[(1)].B D L D U ωωωω-=+--实际计算时,大部分是由计算经验或通过试算法来确定opt ω的近似值.所谓试算法就是从同一初始向量出发,取不同的松驰因子ω迭代相同次数(注意:迭代次数不应太少),然后比较其相应的误差向量()()i i r b Ax =-(或()(1)i i x x --),并取使其范数最小的松弛因子ω作为最佳松弛因子opt ω的近似值.实践证明,此方法虽然简单,但往往是行之有效的. 4.迭代收敛其它判别方法:用迭代法收敛基本定理来判断收敛性时,当n 较大时,迭代矩阵的谱半径计算比较困难,因此,人们试图建立直接利用矩阵元素的条件来判别迭代法的收敛定理. (1) 若方程组Ax b =中的系数矩阵A 是对称正定阵,则 Gauss-Seidel 迭代法收敛. 对于SOR 方法,当02ω<< 时迭代收敛(2)若A 为严格对角占优阵,则解方程组 Ax b = 的Jacobi 迭代法,Gauss -Seidel 迭代法均收敛. 对于SOR 方法,当01ω<< 时迭代收敛.【例2.5】 设线性方程组为121221,32,x x x x ⎧+=-⎪⎨+=⎪⎩建立收敛的Jacobi 迭代公式和Gauss -Seidel 迭代公式. 【解】 对方程组直接建立迭代公式,其Jacobi 迭代矩阵为0230J B -⎡⎤=⎢⎥- ⎣⎦,显见谱半径()1J B ρ=>,故Jacobi 迭代公式发散.同理Gauss -Seidel 迭代矩阵为0206G B -⎡⎤=⎢⎥ ⎣⎦,谱半径()61G B ρ=>,故Gauss -Seidel 选代公式也发散. 若交换原方程组两个方程的次序,得一等价方程组121232,21,x x x x ⎧+=⎪⎨+=-⎪⎩其系数矩阵显然对角占优,故对这一等价方程组建立的Jacobi 迭代公式,Gauss -Seidel 迭代公式皆收敛. (3)SOR 方法收敛的必要条件是 02ω<<【定理2.5】 如果A 是对称正定阵,且02ω<<,则解Ax b =的SOR 方法收敛.注:当(0,2)ω∈ 时,并不是对任意类型的矩阵A ,解线性方程组Ax b =的SOR 方法都是收敛的.当SOR 方法收敛时,通常希望选择一个最佳的值opt ω使SOR 方法的收敛速度最快.然而遗憾的是,目前尚无确定最佳超松弛因子opt ω的一般理论结果.实际计算时,大部分是由计算经验或通过试算法来确定opt ω的近似值.所谓试算法就是从同一初始向量出发,取不同的松驰因子ω迭代相同次数(注意:迭代次数不应太少),然后比较其相应的误差向量()()i i r b Ax =-(或()(1)i i x x --),并取使其范数最小的松弛因子ω作为最佳松弛因子opt ω的近似值.实践证明,此方法虽然简单,但往往是行之有效的.【例2.6】 求解线性方程组Ax b =,其中10.3000900.308980.30009100.4669110.274710.30898A - -- -0.46691 0= - -- 00.274711(5.32088,6.07624,8.80455,2.67600).T b ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥ - ⎣⎦ =-分别利用Jacobi 迭代法,Gauss -Seidel 迭代法,SOR 迭代法求解. 【解】其结果列入下表中,方程组精确解(五位有效数字)为*(8.4877,6.4275, 4.7028,4.0066).T x =-Jacobi 迭代法计算结果i()1i x()2i x ()3i x ()4i x ()2||||i r0 012.3095 1 5.3209 6.0762 -8.8046 2.6760 5.3609 27.97113.5621 -5.2324 1.90143.631820 8.4872 6.4263 -4.7035 4.0041 0.0041 218.48606.4271 -4.7050 4.0063 0.0028Gauss-Seidel 迭代法计算结果i()1i x()2i x()3i x()4i x()2||||i r0 012.3095 1 5.3209 7.6730 -5.2220 2.8855 3.6202 28.51506.1933 -5.1201 3.90040.49098 8.4832 6.4228 -4.7064 4.0043 0.0078 98.48556.4252-4.70554.00550.0038SOR 迭代法计算结果(1.16ω=)i()1i x()2i x()3i x()4i x()2||||i r0 012.3095 1 6.1722 9.1970 -5.2320 3.6492 3.6659 29.69416.1177 -4.8999 4.43351.33136 8.4842 6.4253 -4.7005 4.4047 0.0051 78.48686.4288-4.70314.00650.0016计算结果表明,若求出精确到小数点后两位的近似解,Jacobi 迭代法需要21次,Gauss -Seidel 迭代法需要9次,而SOR 迭代法(选松弛因子 1.16ω=)仅需要7次,起到加速作用.5.误差分析 【定理2.6】设 *x 是方程 Ax b = 的惟一解,v ⋅ 是某一种向量范数,若对应的迭代矩阵其范数1v B <,则迭代法(1)(),0,1,2,.i i xBx k i +=+ = 收敛,且产生向量序列(){}i x 满足()*()(1)||||||||||||1||||i i i vv vvB x x x x B --≤--()*(1)(0)||||||||||||1||||i i vv vvB x x x x B -≤--【证明】 由迭代收敛基本定理的(3)知,迭代法(1)(),0,1,2,.i i x Bx k i +=+ =收敛到方程的解*x .于是,由迭代公式立即得到(1)*()*(1)()()(1)(),().i i i i i i x x B x x x x B x x ++--=--=-为书写方便把v 范数中v 略去,有估计式(1)*()*||||||||||||,i i x x B x x +-≤⋅-(1)()()(1)||||||||||||.i i i i x x B x x +--≤⋅-再利用向量范数不等式||||||||||||x y x y -≥-于是得第一个不等式()(1)(1)()()*(1)*()*||||||||||||||||||||(1||||)||||,i i i i i i i B x x x x x x x x B x x -++ -≥-≥--- ≥--再反复递推即第二个不等式.注:(1)若事先给出误差精度ε,利用第二个不等式可得到迭代次数的估计(1)(0)(1||||)ln ln ||||||||v v v B i B x x ε⎡⎤->⎢⎥-⎣⎦ (2)在||||v B 不太接近1的情况下,由第一个不等式,可用()(1)||||i i v x x ε--<作为控制迭代终止的条件,并取 ()i x 作为方程组 Ax b = 的近似解.但是在||||v B 很接近1时,此方法并不可靠.一般可取1,2,v =∞或F .【例2.7】 用Jacobi 迭代法解方程组123123123202324,812,231530.x x x x x x x x x ⎧++=⎪++=⎨⎪-+=⎩问Jacobi 迭代是否收敛?若收敛,取(0)(0,0,0)T x =,需要迭代多少次,才能保证各分量的误差绝对值小于610-?【解】 Jacobi 迭代的分量公式为(1)()()123(1)()()213(1)()()3121(2423)201(12),0,1,2,81(3022),15i i i i i i i i i x x x x x x i x x x +++⎧=--⎪⎪⎪=-- =⎨⎪⎪=-+⎪⎩Jacobi 迭代矩阵J B 为130102011088210155J B ⎡⎤ - -⎢⎥⎢⎥⎢⎥=- -⎢⎥⎢⎥⎢⎥- ⎢⎥⎣⎦,由5251||||max ,,1208153J B ∞⎧⎫==<⎨⎬⎩⎭知,Jacobi 迭代收敛. 因设(0)(0,0,0)Tx =,用迭代公式计算一次得(1)(1)(1)12363,, 2.52x x x = = =而(1)(0)|||| 2.x x ∞-=于是有6110(1)13ln ln 13.23i -⎡⎤⋅-⎢⎥>=⎢⎥⎢⎥⎣⎦所以,要保证各分量误差绝对值小于610-,需要迭代14次.【例2.8】 用Gauss -Seidel 迭代法解例2.11中的方程组,问迭代是否收敛?若收敛,取(0)(0,0,0)Tx =,需要迭代多少次,才能保证各分量误差的绝对值小于610-?【解】 Gauss -Seidel 迭代矩阵G B 为102403601()03025524000G B D L U - - ⎡⎤⎢⎥=-+= -⎢⎥⎢⎥ 38 -3⎣⎦显然1||||14G B =<,所以迭代收敛. Gauss -Seidel 迭代分量公式为(1)()()123(1)(1)()213(1)(1)(1)3121(2423),201(12),0,1,2,81(3022),15i i i i i i i i i x x x x x x i x x x ++++++⎧=--⎪⎪⎪=-- =⎨⎪⎪=-+⎪⎩因取(0)(0,0,0)T x =,故迭代一次得(1)(1)(1)1231.2, 1.35, 2.11x x x = = =于是有(1)(0)|||| 2.11x x ∞-=,计算得6110(1)14ln ln 10.2.114i -⎡⎤⋅-⎢⎥>=⎢⎥⎢⎥⎣⎦所在,要保证各分量误差绝对值小于610-,需要迭代11次.。

线性代数第二章习题答案

线性代数第二章习题答案

习 题 2-11.由6名选手参加乒乓球比赛,成绩如下:选手1胜选手2、4、5、6而负于选手3;选手2胜选手4、5、6而负于选手1、3;选手3胜选手1、2、4而负于选手5、6;选手4胜选手5、6而负于选手1、2、3;选手5胜选手3、6而负于选手1、2、4;选手6胜选手2而负于选手1、3、4、5.若胜一场得1分,负一场得0分,使用矩阵表示输赢状况,并排序.解: ⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛000010100100110000001011111000111010654321654321,选手按胜多负少排序为:6,5,4,3,2,1.2.设矩阵⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛+-=2521,03231z x y x B A ,已知B A =,求z y x ,,. 解:由于B A =得⎪⎩⎪⎨⎧=-=+=-0253223z x y x ,解得:⎪⎩⎪⎨⎧===211z y x 。

习 题 2-21.设⎪⎪⎭⎫⎝⎛=0112A ,⎪⎪⎭⎫ ⎝⎛-=4021B ,求 (1)B A 52-; (2)BA AB -; (3)22B A -.解:(1)⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛=-202892001050224402150112252B A ;(2)⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-2592041021820112402140210112BA AB ;(3)⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=-152441606112254021402101120112B A 22.2.已知⎪⎪⎪⎭⎫ ⎝⎛--=230412301321A ,⎪⎪⎪⎭⎫ ⎝⎛---=052110351234B ,求B A 23-. 解:⎪⎪⎪⎭⎫ ⎝⎛----⎪⎪⎪⎭⎫⎝⎛--=0521103512342230412301321323B -A⎪⎪⎪⎭⎫⎝⎛----=⎪⎪⎪⎭⎫ ⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛--=619410161510550110104220610246869012369039633.设⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎭⎫⎝⎛=101012121234,432112122121B A ,求(1)B A -3; (2)B A 32+;(3)若X 满足B X A =-,求X ;(4)若Y 满足()()O Y B Y A =-+-22,求Y .解:(1)⎪⎪⎪⎭⎫⎝⎛-----⎪⎪⎪⎭⎫⎝⎛=-10101212123443211212212133B A⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-----⎪⎪⎪⎭⎫ ⎝⎛=13973282851311010121212341296336366363; (2)⎪⎪⎪⎭⎫⎝⎛----+⎪⎪⎪⎭⎫⎝⎛=+1010121212343432112122121232B A⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛----+⎪⎪⎪⎭⎫ ⎝⎛=561252527813143030363636912864224244242; (3)由B X A =-得,⎪⎪⎪⎭⎫⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛-----⎪⎪⎪⎭⎫ ⎝⎛=-=533104041113101012121234432112122121B A X ; (4)由()()O Y B Y A =-+-22得,⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=+=2232323403402231031033112020335532)(32B A Y 。

第二章线性方程组答案全套

第二章线性方程组答案全套

第二章线性方程组答案文档资料可直接使用,可编辑,欢迎下载第二章 线性方程组习题一 消元法一、唯一解 ⎪⎪⎪⎩⎪⎪⎪⎨⎧===23230321x x x 二、5=λ43432431,535753545651x x x x x x x x ⎪⎪⎩⎪⎪⎨⎧+-=+--=为自由未知量 习题二 n 维向量空间一、不相等,()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n n a a a a a a 21'21,,, 二、⎪⎭⎫ ⎝⎛--=10,314,0,32η 三、2,11,1-=-==z y x习题三 向量间的线性关系一、(1)t =5 (2)t 5≠ (3)能,2132ααα+-= 二、能,21713758ααβ-= 三、能,3122ααβ+=四、(1)线性无关 (2)线性相关 21323ααα-=习题四 向量组的秩2、4题考虑向量组之间的秩的关系,利用当一个向量组中向量个数大于其秩必相关的结论。

习题五 矩阵的秩一、1=k 二、(1)4(2)3 三、421,,ααα四、秩为3;421,,ααα;421302αααα+-=习题六 线性方程组解的判定 一、54,1-==λλ或 二、1=λ有解1≠λ无解 三、a =2, 秩(A)=秩(A )有解且有无穷解,2≠a 时无解,解的情况与b 无关,b 为任意数习题七 线性方程组解的结构一、⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0011,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--1302 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1302001121k k 21,k k 为任意数 二、⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-1021,012723 三、⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-10750121005221k k 21,k k 为任意数 四、0=a 且2=b 有解 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-10065010210012100032321k k k 321,,k k k 为任意数自测题一、填空题1、9,4,0=λ ;当0≠λ且4≠λ且9≠λ2、无关3、421,,ααα4、无关5、零解6、无解7、有解8、⎪⎪⎪⎪⎪⎭⎫ ⎝⎛111 k k 为任意数 二、选择题1.A2.C3.D4.B5.D6.C7.B8.D9.D三、计算题1、432141414145ααααβ--+= 2、(1)421,,ααα 秩为3 (2)421544213221124,1,2,1,1ααααααααααααα-+==+===3、⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛10520510151057000130054053321k k k321,,k k k 为任意数 四、证明题1、利用线性相关定义证明。

《线性代数》课后习题答案

《线性代数》课后习题答案

第一章 行列式习题1.11. 证明:(1)首先证明)3(Q 是数域。

因为)3(Q Q ⊆,所以)3(Q 中至少含有两个复数。

任给两个复数)3(3,32211Q b a b a ∈++,我们有3)()3()3)(3(3)()()3()3(3)()()3()3(2121212122112121221121212211b a a b b b a a b a b a b b a a b a b a b b a a b a b a +++=++-+-=+-++++=+++。

因为Q 是数域,所以有理数的和、差、积仍然为有理数,所以)3(3)()3()3)(3()3(3)()()3()3()3(3)()()3()3(2121212122112121221121212211Q b a a b b b a a b a b a Q b b a a b a b a Q b b a a b a b a ∈+++=++∈-+-=+-+∈+++=+++。

如果0322≠+b a ,则必有22,b a 不同时为零,从而0322≠-b a 。

又因为有理数的和、差、积、商仍为有理数,所以)3(33)(3)3()3)(3()3)(3(332222212122222121222222112211Q b a b a a b b a b b a a b a b a b a b a b a b a ∈--+--=-+-+=++。

综上所述,我们有)3(Q 是数域。

(2)类似可证明)(p Q 是数域,这儿p 是一个素数。

(3)下面证明:若q p ,为互异素数,则)()(q Q p Q ⊄。

(反证法)如果)()(q Q p Q ⊆,则q b a p Q b a +=⇒∈∃,,从而有q ab qb a p p 2)()(222++==。

由于上式左端是有理数,而q 是无理数,所以必有02=q ab 。

所以有0=a 或0=b 。

如果0=a ,则2qb p =,这与q p ,是互异素数矛盾。

线性代数第四版课后习题答案

线性代数第四版课后习题答案

线性代数第四版课后习题答案线性代数是数学的一个分支,研究向量空间及其上的线性变换。

它在许多领域中都有广泛的应用,如物理学、计算机科学、经济学等。

而《线性代数第四版》是一本经典的教材,它深入浅出地介绍了线性代数的基本概念和理论,并提供了大量的习题供读者练习。

本文将为读者提供《线性代数第四版》课后习题的答案,以帮助读者更好地理解和掌握线性代数的知识。

第一章:线性方程组1.1 习题答案:1. 解:设方程组的解为x,代入方程组得:2x + 3y + z = 74x + 2y + 5z = 43x + 4y + 2z = 5解得x = 1,y = -1,z = 2。

1.2 习题答案:1. 解:设方程组的解为x,代入方程组得:x - 2y + 3z = 12x + y + z = 23x + 4y - 5z = -1解得x = 1,y = 0,z = 0。

第二章:矩阵代数2.1 习题答案:1. 解:设矩阵A为:3 45 6则A的转置矩阵为:1 3 52 4 62.2 习题答案:1. 解:设矩阵A为:1 23 4则A的逆矩阵为:-2 13/2 -1/2第三章:向量空间3.1 习题答案:1. 解:设向量v为:123则v的范数为sqrt(1^2 + 2^2 + 3^2) = sqrt(14)。

3.2 习题答案:1. 解:设向量v为:23则v的单位向量为v/||v||,即:1/sqrt(14)2/sqrt(14)3/sqrt(14)第四章:线性变换4.1 习题答案:1. 解:设线性变换T为将向量顺时针旋转90度的变换,即:T(x, y) = (y, -x)4.2 习题答案:1. 解:设线性变换T为将向量缩放2倍的变换,即:T(x, y) = (2x, 2y)通过以上习题的答案,我们可以看到线性代数的一些基本概念和理论在实际问题中的应用。

通过解答这些习题,读者可以更好地理解和掌握线性代数的知识,提高自己的解题能力和思维能力。

第二章 线性方程组习题答案与解答

第二章 线性方程组习题答案与解答

第二章 线性方程组习题答案与解答习题二对于数字计算题,仅给出Maple 程序与答案.证明题答案仅供参考。

1.用消元法解下列方程组(1)1221231231321,22,353,22x x x x x x x x x x x -+=⎧⎪--=⎪⎨-+=⎪⎪-++=-⎩ > A:=[[1,-1,2],[1,-2,-1],[3,-1,5],[-1,0,2]]: b:=[1,2,3,-2]:linsolve(A,b);⎡⎣⎢⎢⎤⎦⎥⎥,,107-17-271234512245123452322,(2)3536,2228.x x x x x x x x x x x x x x x -+-+=⎧⎪-+-+=⎨⎪++--=⎩> A:=[[1,-2,3,-1,2],[3,-1,5,-3,1],[2,1,2,-2,-1]]: b:=[2,6,8]: linsolve(A,b);(3) >A:=[[1,2,3],[3,5,7],[2,3,4]]:b:=[4,9,5]:linsolve(A,b,'r',c);[],,- + 2c 1 - 32c 1c 1(4)> A:=[[2,-2,1,-1,1],[1,-4,2,-2,3],[3,-6,1,-3,4],[1,2,-1,1,-2]]:b:=[2,3,5,-1]: linsolve(A,b,'r',c);⎡⎣⎢⎢⎤⎦⎥⎥,,,, + 1313c 1c 20- - + 432c 253c 1c 1 (5) > A:=[[1,1,2,3],[2,3,5,2],[3,-1,-1,-2],[3,5,2,-2]]:b:=[1,-3,-4,-10]: linsolve(A,b,'r',c);[],,,-1-101(6)> A:=[[2,-4,5,3],[3,-6,4,2],[4,-8,17,11]]: b:=[0,0,0]:linsolve(A,b,'r',c);⎡⎣⎢⎢⎤⎦⎥⎥,,, - 2c 125c 2c 1c 2-75c 2(7)> A:=[[1,3,-2,-1],[2,6,-3,0],[3,9,-9,-5]]: b:=[3,13,8]:linsolve(A,b,'r',c);[],,, - 23c 1c 1-35(8)> A:=[[1,-1,2,-3,1],[2,-2,7,-10,5],[3,-3,3,-5,0]]: b:=[2,5,5]:linsolve(A,b,'r',c);⎡⎣⎢⎢⎤⎦⎥⎥,,,, + - + 53c 2c 353c 1c 2c 3c 1- + + c 343c 1132.当k 取何值时,下面的齐次线性方程组有非零解,并求出此非零解.> A:=matrix([[2,-1,3],[3,-4,7],[-1,2,k]]); E:=matrix([[1,0,0],[0,1,0],[0,0,1]]); k1:=solve(det(A)=0,k);A:=matrix([[2,-1,3],[3,-4,7],[-1,2,-3]]); b:=[0,0,0]:linsolve(A,b,'r',c);:= A ⎡⎣⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥2-133-47-12k := E ⎡⎣⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥100010001 := k1-3 := A ⎡⎣⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥2-133-47-12-3 [],,-c 1c 1c 13. 当k 取何值时,下面的线性方程组无解?有解?,在方程组有解时,求出它的解..4.当a 取何值时,线性方程组1231231231,233,32x x x x x ax x ax x +-=⎧⎪++=⎨⎪++=⎩ 无解?有唯一解?有无穷多解?在方程组有解时,求出它的解. 111111112330121.1320141a a a a --⎛⎫⎛⎫ ⎪ ⎪→+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭1.1⎫⎪⎭123210,1,111111110131013100410011/41105/410010101/40101/4.0011/40011/41,1/4,1/4.10,1,111111110121012101410062a a x x x a a a a a a a a -==--⎛⎫⎛⎫ ⎪ ⎪→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭===-≠≠--⎛⎫⎛ ⎪ +→+ ⎪ ⎪---+-⎝⎭⎝11110121.00(2)(3)2(2)(3)0,23,111111110121012100(2)(3)2003111111104/(3)01210101/(3)0011/(3)0011/(3)a a a a a a a a a a a a a a a a a a a ⎫⎪⎪⎪⎭-⎛⎫ ⎪=+ ⎪ ⎪-+-⎝⎭-+≠≠≠---⎛⎫⎛⎫⎪ ⎪+→+ ⎪⎪ ⎪ ⎪-+-+⎝⎭⎝⎭-+⎛⎫⎛ ⎪ →+→+ ⎪ ⎪ ++⎝⎭⎝即且时1231003/(3)0101/(3),0011/(3)3/(3),1/(3),1/(3).a a a x a x a x a ⎫⎪⎪⎪⎭+⎛⎫ ⎪→+ ⎪ ⎪+⎝⎭=+=+=+唯一解2a =时,312111111110121014100(2)(3)200001111105001410141.00000000,5,14.a a a a x c x c x c --⎛⎫⎛⎫ ⎪ ⎪+= ⎪ ⎪ ⎪ ⎪-+-⎝⎭⎝⎭--⎛⎫⎛⎫⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭===-3,111111110121011100(2)(3)20005a a a a a =---⎛⎫⎛⎫ ⎪ ⎪+=⎪ ⎪ ⎪ ⎪-+--⎝⎭⎝⎭时 方程组无解.5.已知向量(2,1,0,1),(1,4,2,3),αβ=-=-计算 (1)2αβ-;(2)1(3)2αβ+.> alpha:=[2,-1,0,1];beta:=[-1,4,2,3];2*alpha-beta;(1/2)*(alpha+3*beta);:= α[],,,2-101 := β[],,,-1423[],,,5-6-2-1 ⎡⎣⎢⎢⎤⎦⎥⎥,,,-12112356.设2(2,1,2,3),2(1,4,2,2),αβαβ+=+=--求,.αβ 求向量,.αβ解2(2,1,2,3),(1)2(1,4,2,2)(2).(1)224(4,2,4,6)(3),αβαβαβ+=⎧⎨+=--⎩⨯+= (3)(2)3(3,6,6,4),(1,2,2,4/3),(2,1,2,3)2(1,2,2,4/3)(0,3,2,1/3).(0,3,2,1/3),(1,2,2,4/3).ββααβ-===-⨯=--=--=7.已知向量123(3,2,0,1),(0,4,3,3),(1,6,5,8)ααα=-==-,而向量β满足1232()3(),βαβααβ-++=-求向量β. 解> alpha1:=[3,2,0,-1]; alpha2:=[0,4,3,3]; alpha3:=[-1,6,5,8];beta:=(1/6)*(2*alpha1-3*alpha2+alpha3);:= α1[],,,320-1 := α2[],,,0433:= α3[],,,-1658 := β⎡⎣⎢⎢⎤⎦⎥⎥,,,56-13-23-128.把向量β表示为其余向量的线性组合.(1) > beta:=[4,5,6];alpha1:=[3,-3,2]; alpha2:=[-2,1,2]; alpha3:=[1,2,-1];A:=transpose(matrix([alpha1,alpha2,alpha3]));linsolve(A,bet a);:= β[],,456 := α1[],,3-32 := α2[],,-212:= α3[],,12-1:= A ⎡⎣⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥3-21-31222-1 [],,234123234.βααα=++(2)> beta:=[-1,1,3,1]; alpha1:=[1,2,1,1]; alpha2:=[1,1,1,2]; alpha3:=[-3,-2,1,-3];A:=transpose(matrix([alpha1,alpha2,alpha3]));linsolve(A,bet a);:= β[],,,-1131:= α1[],,,1211 := α2[],,,1112 := α3[],,,-3-21-3:= A ⎡⎣⎢⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥⎥11-321-211112-3 无法表示.(3)> beta:=[1,0,-1/2]; alpha1:=[1,1,1]; alpha2:=[1,-1,-2]; alpha3:=[-1,1,2];A:=transpose(matrix([alpha1,alpha2,alpha3]));linsolve(A,bet a,'r',c);:= β⎡⎣⎢⎢⎤⎦⎥⎥,,10-12 := α1[],,111:= α2[],,1-1-2 := α3[],,-112:= A ⎡⎣⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥11-11-111-22 ⎡⎣⎢⎢⎤⎦⎥⎥,,12 + 12c 1c 1取10c =得特解123121111,,0..2222x x x βαα====+9.向量β可由向量12,,,m ααα线性表示,但不能由向量组(I):121,,,m ααα-线性表示.记向量组121(II),,,,.m αααβ-试证m α不能由(I)线性表示,但可由(II)线性表示.证 如果m α可由(I)线性表示,那么12,,,m ααα就可以用(I)线性表示,又β可由向量12,,,m ααα线性表示,则β可由(I)线性表示,此与假设矛盾.故m α不能由(I)线性表示.由于β可由向量12,,,m ααα线性表示,故存在数1,,,m k k 使得1122.m m k k k βααα=+++(*)其中的0.m k ≠否则, 0,m k =将有112211.m m k k k βααα--=+++于是β可由121,,,m ααα-线性表示,与假设矛盾.故必有0.m k ≠由上面的(*),得1121211,m m m m mmk k k k k k k αβααα-=---- 即m α可由(II)线性表示.10.判定下列向量是线性相关,还是线性无关? (1)12(3,2,0),(1,2,1).αα==-123123(2)(1,1,1,1),(1,1,2,1),(3,1,0,1).(3)(2,1,3),(3,1,1),(1,1,2).αααααα=-=--===-=-解 (1)线性无关.因为两个向量线性相关,必对应分量成比例. (2) 用123,,ααα做行向量组成矩阵,把矩阵用初等行变换化成阶梯形,非零行的行数如果小于向量数,则线性相关,等于行数,则线性无关.111111111121023231010232--⎛⎫⎛⎫ ⎪ ⎪--→-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭ 11110232,()2 3.0000r A -⎛⎫⎪→--=< ⎪⎪⎝⎭线性相关.(3)213112112311213017112311045112017,() 3.0023r A --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-→→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭-⎛⎫⎪→-= ⎪⎪⎝⎭线性无关.11.已知向量组123(,2,1),(2,,0),(1,1,1).a a ααα===-试求a 为何值时,向量组123,,ααα线性相关?线性无关?解 向量个数等于向量维数时,如果有字母出现,可考虑用相应行列式是否等于零,判断线性相关和线性无关.1221111111202002211121021111022003(2)(3)0.2, 3.a a a a a a a a aa a a a --=-=-+--+--=-+--=+-==-=2a =-或3时线性相关,否则线性无关.12.证明定理2.4:n 个n 维向量11112122122212(,,,),(,,,),,(,,,),n n n n n nn a a a a a a a a a ααα===线性相关的充分必要条件是行列式111212122120.n n n n nna a a a a a a a a =证 方程1122n n x x x o ααα+++=相当于齐次线性方程组1112121121222211220,0,0.n n n n n n nn n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩(注意j x 的系数是第j 个向量的分量,而第i 个方程的系数是各个向量的第i 个分量)而此方程组有非零解的充分必要条件是行列式1121111121122222122212120.n n n n nnnnn n nna a a a a a a a a a a a a a a a a a ==13.证明定理2.5: 定理 n +1个n 维向量线性相关. 证明 n +1个n 维向量都有线性表示121122(,,,),1,, 1.i i i in i i in n a a a a a a i n αεεε==+++=+1n +个向量用n 个向量线性表示,根据定理“若s 个向量用t个向量线性表示,s t >,则前面s 个向量向量必定线性相关”,(11)i i n α≤≤+线性相关. 14.如果向量组1,,s αα线性无关,试证向量组12sααα+++线性无关.证法一 第一个向量组记作I,第二个向量组记作II.II 显然可用I 线性表示,又111()()i i i ααααα-=++-++,I 可用II 线性表示,I~II,(II)(I).r r s ==II 的秩等于其向量个数,故II 线性无关. 证法二. 用PPT 文件中的下例中的方法.15.已知向量组123,,ααα线性无关,设1123(1)3,m βααα=-++21233123(1),(1)(1).m m m βαααβααα=+++=--++-试问当m 为何值时,向量组123,,βββ线性无关,?线性相关?解 由13题证法二得一般结论:当s 个向量的向量组I 可用s 个线性无关向量的向量组II 表示时,向量组I 线性相关的充分必要条件是表示对应的矩阵的行列式等于零.于是考察m 满足的方程 1311110.111m m m m -+=---- 13100111m m m m ----- 2123(4)(2)(2)0.0,2, 2.m m m m m m m m =--+=-+====-当0m =或2m =或2m =-时,123,,βββ线性相关,当0m =且2m =且2m =-时, 123,,βββ线性无关.16.已知向量123,,βββ可由向量组123,,ααα: (1)试把向量组123,,ααα由向量组123,,βββ线性表示. (2)这两个向量组是否等价. 解112321233123112112223223313313112223313,(1),(2).(3)11(1)(2),2,,2211(2)(3),2,,2211(1)(3),2,.2211,2211,2211.22βαααβαααβααααββαββαββαββαββαββαββαββαββ=-+⎧⎪=+-⎨⎪=-++⎩+=+=++=+=++=+=+⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩17.设n 维向量组11(1,0,0,,0),(1,1,0,,0),,(1,1,1,,1)n ααα===.试证:向量组12,,,n ααα与n 维单位向量组12,,,n εεε等价.证 已经知道12,,,n εεε线性无关,根据14题, 12,,,n ααα线性无关,1n +个n 维向量12,,,,n i αααε线性相关, 12,,,n ααα线性无关,故i ε可用12,,,n ααα线性表示, 已知12,,,n ααα可用线性表示,故两个向量组等价.18.证明:如果n 维基本单位向量组12,,,n εεε可以用n 维向量组12,,,n ααα线性表示,则向量组12,,,n ααα线性无关.证 向量组12,,,n εεε可以用n 维向量组12,,,n ααα线性表示,12,,,n ααα也可以用12,,,n εεε线性表示,二者等价,它们的秩相同, 12,,,n εεε线性无关,其秩为n ,故12,,,n ααα的秩为n ,从而12,,,n ααα线性无关.19.设向量组12,,,s ααα的秩为r ,证明: 12,,,s ααα中任意r 个线性无关的向量都是它的一个极大线性无关组. 证 不妨设12,,,r ααα是12,,,s ααα的一个线性无关向量组.任取i α,向量组12,,,,r i αααα线性相关,因否则, 12(,,,)s r ααα1,r ≥+与假设矛盾. 12,,,,r i αααα线性相关,而12,,,r ααα线性无关,故i α用12,,,r ααα线性表示.故12,,,r ααα是12,,,s ααα的一个极大线性无关组.20.已知向量组123(I):,,;ααα1234(II):,,,αααα和1235(III):,,,.αααα如果各向量组的秩分别为(I)(II)3,(III) 4.r r r ===证明向量组12354,,,ααααα-的秩为4.证 (I)的秩是3,等于向量个数,表明(I)线性无关,(II)的秩是3,其部分组线性无关,说明4α是(I)的线性组合.(III)的秩是4,表明(III)线性无关,从而5α不是(I)的线性组合,结合4α是(I)的线性组合,得54αα-不是(I)的线性组合,否则5544()αααα=-+将是(I)的线性组合,矛盾.由于(I)线性无关, 54αα-又不是(I)的线性组合,故12354,,,ααααα-线性无关,从而其秩为4.21.如果向量组12,,,s ααα可以由向量组12,,,t βββ线性表示.证明1212(,,,)(,,,).s t r r αααβββ≤证 设12(,,,),t r l βββ=并且12,,,l βββ是其极大线性无关组.设12(,,,),s r m ααα=并且12,,,m ααα是其极大线性无关组.12,,,m ααα可以由向量组12,,,l βββ线性表示, 12,,,mααα线性无关,故,.m l ≤因为如果m l >,根据有关定理将有线性相关. 22.证明121212121212(1)(,,,)(,,,,,,,);(2)(,,,)(,,,,,,,).s s t t s t r r r r ααααααββββββαααβββ≤≤证 (1) 12,,,s ααα可用1212,,,,,,,)s t αααβββ线性表示,由上题得(1).(2)的证明雷同.23.判断下述命题是否正确.如果命题成立,请简述理由,否则请举出反例.(1)若存在全为零的数120,s k k k ====使得11220,s s k k k ααα+++=则向量12,,,s ααα线性无关.错误.对于全为零的数120,s k k k ====总有11220,s s k k k ααα+++=岂不任何向量组都线性无关.正确说法是若11220,s s k k k ααα+++=必有120.s k k k ====(2)如果向量组12,,,s ααα线性相关,则其任一部分组也线性相关.错误 如(1,1),(2,2)线性相关,但(1,1)线性无关.正确说法是如果向量组12,,,s ααα线性无关,则其任一部分组也线性无关.(3) 如果向量组12,,,s ααα线性相关,则其任一向量都可以由其余向量线性表示.错误 例如(0,0),(1,1)线性相关,(11)不能用(0,0)线性表示.正确说法是:如果向量组12,,,s ααα线性相关,则其中某一向量可以由其余向量线性表示. (4) 向量组12,,,s ααα线性无关的成分必要条件是其中任一向量都不能由其余1s -个向量线性表示. 正确. 证明如下. 如果12,,,s ααα线性无关,而某一向量,不妨设可以由其余s α可以由其余1s -个向量线性表示,即存在数121,,,,s k k k -使得112211,s s s k k k αααα--=+++,于是112211(1)0,s s s k k k αααα---++++=10,-≠12,,,s ααα线性相关,矛盾.如果12,,,s ααα中任一向量都不能由其余1s -个向量线性表示,则12,,,s ααα线性无关,否则如果12,,,s ααα线性相关,则存在不全为零的数12,,,,s k k k 不妨设0s k ≠,使得1122110,s s s s k k k k αααα--++++=于是112211(/)(/)(/)0.s s s s s s k k k k k k αααα--=-+-++-=(5)如果两个向量组等价,则它们含有的向量数相同.错误.例如(1,1)和(2,2),(3,3)等价,但含有的向量数分别为1和2. (6)如果12(,,,)s r r ααα=,则12,,,s ααα中任意r 个向量都线性无关.错误.例如向量组(1,1),(0,0)的秩为1,但(0,0)作为一个线性组,线性相关.正确说法是: 如果12(,,,)s r r ααα=,则12,,,s ααα中存在r 个向量线性无关,并且其余向量都可以由它们线性表示. (7) 如果12(,,,)s r r ααα=,则12,,,s ααα中任意1r +个向量都线性相关.正确. 因为如果12,,,s ααα中存在1r +个向量线性无关,12,,,s ααα的秩将大于或等于1r +.(8) 如果12(,,,)s r s ααα=,则向量组12,,,s ααα中任意部分都线性无关. 正确. 因为12(,,,)s r s ααα=表明12,,,s ααα线性无关,如果一个部分组线性相关,整个组将线性相关,矛盾. 24.把下列矩阵化为等价标准形,并且求矩阵的秩.21211211(1).42000000() 1.123123123(2)3120570152310150571231231200150150100018001001100010001r A ⎛⎫⎛⎫⎛⎫⎛⎫→→→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪→--→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪→→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎛⎫ ⎪→ ⎝⎭.() 3.23111111(3)11230501121201001001.() 2.0011111111112032102501(4)1361202501426430220111111025010r A r A =⎪⎪---⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪-→→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫ ⎪→= ⎪ ⎪⎝⎭⎛⎫⎛⎫ ⎪ ⎪----⎪ ⎪→ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭---→111110250100000010000700000001111111011015/201/20100200100001000000000000⎛⎫⎛⎫ ⎪ ⎪---⎪ ⎪→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫ ⎪⎪- ⎪ ⎪→→⎪ ⎪⎪⎪⎝⎭⎝⎭10013100000100201000.() 3.00100001000000000000r A ⎛⎫⎛⎫⎪⎪- ⎪ ⎪→→= ⎪ ⎪ ⎪⎪⎝⎭⎝⎭25.已知矩阵33021430.1562A ⎛⎫⎪=-- ⎪ ⎪--⎝⎭(1)计算A 的所有三阶子式; (2)利用(1)的结果求矩阵A 的秩.解 > D1:=det([[3,3,0],[-1,-4,3],[1,-5,6]]);D2:=det([[3,3,2],[-1,-4,0],[1,-5,-2]]);D3:=det([[3,0,2],[-1,3,0],[1,6,-2]]); D4:=det([[3,0,2],[-4,3,0],[-5,6,-2]]);:= D10:= D236 := D3-36 := D4-36(2)根据(1),() 3.r A =26.把下列矩阵化成阶梯形矩阵,求矩阵的秩.1121011210(1)206010222115252044421121002221.() 2.00000r A --⎛⎫⎛⎫ ⎪ ⎪→- ⎪ ⎪⎪ ⎪---⎝⎭⎝⎭-⎛⎫⎪→-= ⎪ ⎪⎝⎭2121111102111221211(2)2542925429331183311811102111020341303413066380021200212002121110203413.()00212000r A --⎛⎫⎛⎫⎪⎪-- ⎪ ⎪→ ⎪ ⎪----⎪⎪----⎝⎭⎝⎭--⎛⎫⎛⎫⎪⎪---- ⎪ ⎪→→⎪ ⎪---⎪⎪--⎝⎭⎝⎭-⎛⎫⎪-- ⎪→= ⎪-⎪⎝⎭3.27.求下面向量组的一个极大无关组,并且把其余向量用此极大无关组线性表示.123(1)(1,2,5),(3,2,1),(3,10,17).ααα=-=-=-解 用向量123,,ααα为行向量组成矩阵,旁边标上向量记号,对矩阵做出等行变换,把它化成阶梯形,并且注意用旁边的向量记号表示对应的初等行变换.最后的零行给出相应的线性表示,再结合秩确定一个极大无关组.12311221332121123(1)(1,2,5),(3,2,1),(3,10,17).1251253210816331017081612508163() 2.00032r A ααααααααααααααααα=-=-=---⎛⎫⎛⎫ ⎪ ⎪-→-- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭-⎛⎫⎪→--= ⎪ ⎪-+⎝⎭12331232,32.o αααααα-+==-+12,αα线性无关,并且31232ααα=-+.1234(2)(1,1,0,4),(2,1,5,6),(1,1,2,0),(3,0,7,14).αααα=-==--=解 以所给向量作为列向量组成矩阵,对于矩阵进行初等行变换,这样做不改变列向量的线性关系,即如果原来有关系112233440,k k k k αααα+++=则初等行行变换后所得列向量123,,,s αααα''''仍保持关系 112233440.k k k k αααα''''+++= 反之亦然.注意前后两个等式的系数是同样的.121312131213111003301010527052705274601402420121121312131001010101010101.00220011001100220000000⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪-- ⎪ ⎪ ⎪→→ ⎪ ⎪ ⎪--- ⎪⎪ ⎪---⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪→→→ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭于是()3,r A =,并且123,,ααα线性无关, 4123.αααα=+-28.求下列齐次线性方程组的一个基础解系,并且用此基础解系表示方程组的一般解.123412341240,(1)20,30.x x x x x x x x x x x +-+=⎧⎪-+-=⎨⎪++=⎩> A:=[[1,1,-1,1],[1,-1,2,-1],[3,1,0,1]]: b:=[0,0,0]:linsolve(A,b,'r',c);[],,,c 1- - 3c 1c 2-2c 1c 2基础解系12(1,3,2,0),(0,1,0,1).ηη=--=-一般解1122.c c ηηη=+12341234123420,(2)24530,4817110.x x x x x x x x x x x x ---=⎧⎪-++=⎨⎪-++=⎩ > A:=[[1,-2,-1,-1],[2,-4,5,3],[4,-8,17,11]]:b:=[0,0,0]: linsolve(A,b);⎡⎣⎢⎢⎤⎦⎥⎥,,, - 2_t 125_t 2_t 1_t 2-75_t 2基础解系:12[2,1,0,0],[2,0,5,7].ηη==--一般解1122,c c ηηη=+12,c c 为任意常数.⎡⎣⎢⎢⎤⎦⎥⎥,,, - 2_t 125_t 2_t 1_t 2-75_t 21234512345123451234520,20,(3)333340,455570.x x x x x x x x x x x x x x x x x x x x +--+=⎧⎪-++-=⎪⎨+--+=⎪⎪+--+=⎩> > A:=[[2,1,-1,-1,1],[1,-1,1,1,-2],[3,3,-3,-3,4],[4,5,-5,-5,7]]:b:=[0,0,0,0]:linsolve(A,b,'r',c);⎡⎣⎢⎢⎤⎦⎥⎥,,,,13c 3 + - c 1c 253c 3c 1c 2c 3基础解系123(0,1,1,0,0),(0,1,0,1,0),(1,5,0,0,3),ηηη===-一般解112233c c c ηηηη=++29.判断下列线性方程组是否有解.若方程组有解,试求其解[在有无穷多解时,用基础解系表示其一般解].123124234124244,24,(1)321,33 3.x x x x x x x x x x x x --=⎧⎪---=⎪⎨++=⎪⎪++=-⎩A:=[[2,-4,-1,0],[-1,-2,0,-1],[0,3,1,2],[3,1,0,3]]: b:=[4,4,1,-3]: rankxsh:=rank(A);rankzg:=rank([op(A),b]); linsolve(A,b);:= rankxsh 3 := rankzg 4方程无解.12341341231342434,3,(2)31,773 3.x x x x x x x x x x x x x -+-=-⎧⎪+-=⎪⎨++=⎪⎪+-=⎩Maple 解> A:=[[2,-1,4,-3],[1,0,1,-1],[3,1,1,0],[7,0,7,-3]]: b:=[-4,-3,1,3]:linsolve(A,b,'r',c);[],,, - 3c 1- + 82c 1c 16特解:0η=[3, −8,0,6],导出组基本解系:η=(−1,2,1,0) . 一般解0.c ηηη=+12345123452345123451,3235,(3)2262,54337.x x x x x x x x x x x x x x x x x x x ++++=-⎧⎪+++-=-⎪⎨+++=⎪⎪+++-=-⎩Maple 解> A:=[[1,1,1,1,1],[3,2,1,1,-3],[0,1,2,2,6],[5,4,3,3,-1]]:b:=[-1,-5,2,-7]:linsolve(A,b,'r',c);[],,,,- + + + 3c 1c 25c 3 - - - 22c 12c 26c 3c 1c 2c 3特殊解0η=[−3,2,0,0,0],导出组:1η=[1, −2,1,0,0],2η=[1, −2,0,1,0],3η=[5, −6,0,0,1].1234123412341342352,22,(4)5,323 4.x x x x x x x x x x x x x x x x +--=-⎧⎪+-+=-⎪⎨+++=⎪⎪+++=⎩ Maple 解> A:=[[2,3,-1,-5],[1,2,-1,1],[1,1,1,1],[3,1,2,3]]:b:=[-2,-2,5,4]:linsolve(A,b,'r',c);[],,,-335030.已知线性方程组123412341213412342231,3613,3151,51012.x x x x x x x x x x k x x x x x x k +++=⎧⎪+++=⎪⎨--+=⎪⎪--+=⎩ 当12,k k 取何值时,方程组无解?有唯一解?有无穷多解?在方程有无穷多解的情况下,试求其一般解.Maple 解1111112311231123136102*********1504660466151012061292431123012166(2)0, 2.00220001kk k k k k --==---------------=-=-==-+-12k ≠时方程有唯一解. 12k =时,2222112311123113613024223121530486015101206129111231112310121101211024300001206129100001k k k k ⎛⎫⎛⎫⎪ ⎪- ⎪ ⎪→ ⎪ ⎪---- ⎪ ⎪-----⎝⎭⎝⎭⎛⎫⎛⎫⎪ ⎪-- ⎪ ⎪→→ ⎪ ⎪--- ⎪ ⎪----⎝⎭⎝⎭21k ≠时无解. 21k =时,12341123111205012110120300012000120000000000100088,01203.32,00012 2.000x x x x -⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪→ ⎪ ⎪-- ⎪ ⎪⎝⎭⎝⎭-⎛⎫=-⎧ ⎪⎪⎪→=-⎨ ⎪⎪= ⎪⎩⎝⎭特解0γ=(-8,3,0,2),导出组基础解系η=(0,-2,1,0),一般解0.c γγη=+c 为任意常数.31.设有三维向量2123(1,1,1),(1,1,1),(1,1,1),(0,,).T T T T αλαλαλβλλ=+=+=+=问λ为何值时(1)β可由123,,ααα线性表示,且表达式是唯一的. (2) (1)β可由123,,ααα线性表示,但表达式不是唯一的. (3) (β不能由123,,ααα线性表示. 解 对应线性方程组的系数行列式212111111111(3)111111111111(3)00(3)0,0, 3.00λλλλλλλλλλλλλ++=++++=+=+===-0λ≠且3λ≠-时(1)成立.0λ=时对应线性方程组的增广矩阵1110111011100000.11100000⎛⎫⎛⎫ ⎪ ⎪→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭此时出现情形(2).3λ=-时对应线性方程组的增广矩阵2110211012131213.11290009--⎛⎫⎛⎫ ⎪ ⎪--→-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭此时(3)成立. 32.证明:线性方程组121232343454515,,,,x x a x x a x x a x x a x x a -=⎧⎪-=⎪⎪-=⎨⎪-=⎪⎪-=⎩ 有解的充分必要条件是510.i i a ==∑证设方程有解,各个方程相加得510.i i a ==∑设条件510.i i a ==∑满足.对于增广矩阵进行行初等变换令112233445123423434411000110000110001100001100011000011000111000100000010001010010010100011000000a a a a a a a a a a a a a a a a a a a --⎛⎫⎛⎫⎪ ⎪-- ⎪ ⎪ ⎪ ⎪-→-⎪⎪-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭-+++⎛⎫⎪-++ ⎪⎪→-+⎪- ⎪ ⎪⎝⎭令5x c =得112342234334445,,,,.x a a a a c x a a a c x a a c x a c x c =++++=+++=++=+=前四个方程显然满足,而第五个方程51123412345()().x x c a a a a c a a a a a -=-++++=-+++=33.证明:如果线性方程组11112211211222221122n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩的系数矩阵()ij n n A a ⨯=与矩阵1221121222212120n n n n nn n na a ab a a a b C a a a b bb b ⎛⎫⎪ ⎪⎪=⎪ ⎪ ⎪⎝⎭的秩相等,则此线性方程组有解.证 设系数矩阵A 的秩为r ,前不妨设r 个列向量线性无关,C 的前r 列也线性无关,C 的秩为r ,故C 的最后一列的列下列可以用前r个列向量线性表示,于是向量12(,,,)T n b b b 可以用A 的前r 个向量线性表示,从而可以用C 的列向量线性表示,即方程组有解. 34.设齐次方程组111122121122221122000n n n n n n nn n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩的系数矩阵()ij n n A a ⨯=的秩为1n -.试证此方程的一般解为12,()i i in A Ac c A η⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭为任意常数其中(1)ij A j n ≤≤是ij a 的代数余子式,且至少有一个0.ij A ≠ 证 由于系数矩阵的秩为1,r -故系数行列式为0.由于系数矩阵的秩为1r -,必存在一个1n -阶代数余子式不等于0.由于至少有一个0,ij A ≠112(,,,).T i i in A A A o η=≠再证1η是齐次方程组的一个解.把1η代入第k 个方程得10,nkj ij ki j a A D δ===∑D 为系数行列式,其值为0. 35.设线性方程组23112131231222322313233323142434x a x a x a x a x a x a x a x a x a x a x a x a ⎧++=⎪++=⎪⎨++=⎪⎪++=⎩ (1)证明:若1234,,,a a a a 两两不等,则此线性方程组无解.(2)设1324,(0),a a k a a k k ====-≠且已知12,ββ是该方程的两个解,其中12(1,1,1),(1,1,1)T T ββ=-=-.求此方程组的全部解.(1)增广矩阵为范德蒙行列式,当1234,,,a a a a 两两不等时其值非0,故增广矩阵的秩等于4,但系数矩阵的秩最大为3,故方程组无解. (2)当1324,(0)a a k a a k k ====-≠时,方程组的增广矩阵为232323232323233111110000100010********0000,()() 2.kk k k k k k k k kk k k k kkk k k k k k k k r A r A ⎛⎫⎛⎫⎪⎪---- ⎪ ⎪→ ⎪ ⎪⎪ ⎪---⎝⎭⎝⎭⎛⎫ ⎪-- ⎪→ ⎪ ⎪⎝⎭≠==12(1,1,1),(1,1,1)T T ββ=-=-是解,表明方程有一个特解01(1,1,1),ηβ==-基础解系含有321n r -=-=个解向量21(1,1,1)(1,1,1)(2,0,2)2(1,0,1),T T ηββ'=-=---=-=-取基础解系(1,0,1).η=-一般解0.c γηη=+。

小学数学 第二章一元线性方程组Linear Equations英语双语练习题

小学数学 第二章一元线性方程组Linear Equations英语双语练习题

Maths Chapter 2 Linear Equations in One Variablewith Answers数学第二章一元线性方程组及其解答Linear Equations in One VariableClass 8 Maths一元线性方程组1. Which of the following is not a linear equation in one variable?1.下列哪项不是一个变量的线性方程?a) 33 b) 33(x+y) c) 33x d) 33yAnswer/Explanation回答/解释Answer: (b) Explanation: In 33(x+y), x and y are two variables.答:(b)说明:在33(x+y)中,x和y是两个变量。

2. The solution of 2x-3=7 is:2.2x-3=7的解为:a) 5 b) 7 c) 12 d) 11Answer/Explanation回答/解释答:(a)说明:2x-3=72x=7+3=10x=10/2 = 5x=10/2 = 53. The solution of 2y + 9 = 4 is:3.2y+9=4的解为:a) 9/2 b) 4/9 c) -⅖d) -5/2 Answer/Explanation回答/解释答:(d)说明:2y+9=42y = 4-9 = -5y=-5/24. The solution of y/5 = 10 is:4.y/5=10的解为:a) 15 b) 10 c) 50 d) 5Answer/Explanation回答/解释答:(c)说明:y/5=10y=5×10 = 505. What should be added to -7/3 to get 3/7?5.应该在-7/3后加什么才能得到3/7?a) 21/58 b) 58/21 c) 47/21 d) 50/21Answer/Explanation回答/解释Answer: (b) Explanation: Let the number be x答案:(b)说明:让数字是x-7/3+x = 3/7-7/3+x = 3/7x=3/7+7/3 = (9+49)/21 = 58/21x=3/7+7/3 = (9+49)/21 = 58/216. The perimeter of rectangle is 20cm. If the length of rectangle is 6cm, then its breadth will be:6.矩形周长20cm。

线性方程组的解法例题线性方程组的解法

线性方程组的解法例题线性方程组的解法

线性方程组的解法例题线性方程组的解法第二章线性方程组的解法n阶线性方程组的一般形式为:a11x1,a12x2, ,a1nxn b1 ax,ax, ,ax b 2112222nn2(2.0.1)an1x1,an2x2, ,annxn bnAx b用矩阵表示为: 其中A称为系数矩阵,x称为解向量,b称为常数向量(简称方程组自由项),它们分别为:x1 b1 a11a12a1nx b aa2122a2n x 2 b 21,, Axn bn an1an2ann如果矩阵A非奇异,即A的行列式值det(A) 0,则根据克莱姆(Cramer)规则,方程组有唯一解:Di,i 1,2, ,n xi D其中D det(A),Di表示D中等i列换b后所得的行列式值。

但克莱姆规则不适用于求解线性代数方程组,因为计算工作量大得难以容忍。

实际用于求解线性代数方程组的计算方法主要有两种:一是消去法,它属于直接解法;二是迭代解法。

消去法的优点是可以预先估计计算工作量,并且根据消去法的基本原理,可以得到矩阵运算(如矩阵求逆等)的求解方法。

但是,由于实际计算过程总存在有误差,由消去法得到的结果并不是绝对精确的,存在数值计算的稳定性问题。

迭代解法的优点是简单,便于编制计算机程序。

在迭代解法中,必须考虑迭收敛速度快慢的问题。

?2.1 线性方程组的直接计算求解线性代数方程组的直接解法主要是消去法(或称消元2法)。

消去法的基本思想是通过初等行变换:将一个方程乘以某个常数,以及将两个方程相加或相减,减少方程中的未知数数目,最终使每个方程中含一个未知数,从而得到所需要的解。

2.1.1 三角形方程组的计算对下三角形方程组:a11x1 b1ax,ax b 2112222(2.1.1)an1x1,an2x2, ,annxn bn可以通过前代的方法求解:先从第1个方程求出x1,代入第2个方程求出x2,依次类推,可以逐次前代求出所有xi(i 1,2, ,n),计算公式如下:b1x1 a11i~1bi~ aij xj(2.1.2)j 13xi , i 2, 3, , n aii对上三角形方程组:a11x1,a12x2, ,a1nxn b1ax, ,ax b 2222nn2annxn bn(2.1.3)可以通过回代的方法求解:先从第n个方程求出xn,代入第n~1个方程求出xn~1,依次类推,可以逐次回代求出所有xi(i n,n~1, ,1),计算公式如下:bnxn annnbi~ aij xj(2.1.4)j i,1xi , i n~1, n~2, , 1 aii2n 前代法和回代法的计算量都是次四则运算。

线性代数第二章习题答案

线性代数第二章习题答案

习 题 2-11.由6名选手参加乒乓球比赛,成绩如下:选手1胜选手2、4、5、6而负于选手3;选手2胜选手4、5、6而负于选手1、3;选手3胜选手1、2、4而负于选手5、6;选手4胜选手5、6而负于选手1、2、3;选手5胜选手3、6而负于选手1、2、4;选手6胜选手2而负于选手1、3、4、5.若胜一场得1分,负一场得0分,使用矩阵表示输赢状况,并排序.解: ⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛000010100100110000001011111000111010654321654321,选手按胜多负少排序为:6,5,4,3,2,1. 2.设矩阵⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛+-=2521,03231z x y x B A ,已知B A =,求z y x ,,. 解:由于B A =得⎪⎩⎪⎨⎧=-=+=-0253223z x y x ,解得:⎪⎩⎪⎨⎧===211z y x 。

习 题 2-21.设⎪⎪⎭⎫⎝⎛=0112A ,⎪⎪⎭⎫ ⎝⎛-=4021B ,求 (1)B A 52-; (2)BA AB -; (3)22B A -.解:(1)⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛=-202892001050224402150112252B A ;(2)⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-2592041021820112402140210112BA AB ;(3)⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=-152441606112254021402101120112B A 22.2.已知⎪⎪⎪⎭⎫ ⎝⎛--=230412301321A ,⎪⎪⎪⎭⎫ ⎝⎛---=052110351234B ,求B A 23-. 解:⎪⎪⎪⎭⎫ ⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛--=0521103512342230412301321323B -A ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎭⎫ ⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛--=61941016151055011010422061024686901236903963 3.设⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎭⎫ ⎝⎛=101012121234,432112122121B A ,求(1)B A -3; (2)B A 32+; (3)若X 满足B X A =-,求X ;(4)若Y 满足()()O Y B Y A =-+-22,求Y .解:(1)⎪⎪⎪⎭⎫⎝⎛-----⎪⎪⎪⎭⎫ ⎝⎛=-10101212123443211212212133B A ⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-----⎪⎪⎪⎭⎫ ⎝⎛=13973282851311010121212341296336366363;(2)⎪⎪⎪⎭⎫⎝⎛----+⎪⎪⎪⎭⎫ ⎝⎛=+1010121212343432112122121232B A ⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫⎝⎛----+⎪⎪⎪⎭⎫ ⎝⎛=561252527813143030363636912864224244242;(3)由B X A =-得,⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫⎝⎛-----⎪⎪⎪⎭⎫ ⎝⎛=-=533104041113101012121234432112122121B A X ;(4)由()()O Y B Y A =-+-22得,⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=+=223232340342231031033112020335532)(32B A Y 。

《线性代数》第二章参考答案+详解

《线性代数》第二章参考答案+详解
k ( k 1) 2
k 0
k 2 1 0 k k 1 0 1 0 0 k
k 1 0 0
( k 1) k 1
k 1 0
k 1 ( k 1 ) k 1 k 1
所以(AB)2A22ABB2 (3) (AB)(AB)A2B2 吗? 解: (AB)(AB)A2B2
2 A B 0 0 5 2 0 5 0 2 1 6 9 2 因为 A B 2
2 ( A B)( A B) 2
2 0 1 0

3 8 1 0 2 8 A2 B2 4 11 3 4 1 7
故(AB)(AB)A2B2
5 举反列说明下列命题是错误的 (1) 若 A20 则 A0
0 解: 取 A 0 1 则 A20 但 A0 0
(2)
2 1 设 a 1 ,b 2 ,A abT , 3 4
T
求 A100 .
2 解: b a 1 2 4 1 8 . 3

A100 (abT )100 a (bT a )( bT a )bT a (bT a )bT 2 99 a (b a ) b 1 8 1 2 4 3 4 8 2 99 8 1 2 4 . 3 6 12
2 2 a11x12 a22 x2 a33 x3 2a12 x1x2 2a13 x1x3 2a23 x2 x3
1 1 1 1 2 3 2 设 A 1 1 1 B 1 2 4 求 3AB2A 及 ATB 1 1 1 0 5 1 1 1 1 1 2 3 1 1 1 解: 3AB 2 A 31 1 1 1 2 4 21 1 1 1 1 1 0 5 1 1 1 1 0 5 8 1 1 1 2 13 22 3 0 5 6 21 1 1 2 17 20 2 9 0 1 1 1 4 29 2 1 1 1 1 2 3 0 5 8 A B 1 1 1 1 2 4 0 5 6 1 1 1 0 5 1 2 9 0

线性代数第二章习题解答

线性代数第二章习题解答

线性代数第二章习题解习题一A 组1.计算下列二阶行列式 (1)521-12= (2)012896= (3)2222ba ab b a b a-= (4)11112322--=++-x x x x x x2.计算下列三阶行列式(1)132213321=1+8+27-6-6-6=18 (2)5598413111=(3)7140053101-=- (4)000000=d c b a3. 当k 取何值时,10143k kk -=0.解:10143kkk -0)3(0)(02-----++=k k , 得 0342=+-k k , 所以 1=k 或 3=k 。

4.求下列排列的逆序数.解:(1) 512110)51324(=++++=τ. (2) 8142010)426315(=+++++=τ. (3) 21123456)7654321(=+++++=τ. (4) 1340423000)36715284(=+++++++=τ.5.下列各元素乘积是否是五阶行列式 ij a 中一项?如果是,该项应取什么符号? 解:(2) 不是. 因为 5145332211a a a a a 中有俩个元素在第一列. (3) 是. 对应项为534531*********)1(a a a a a )(τ-1021)24153(+++=τ 所以该项应取负号。

6.选择i , j 使j i a a a a a 54234213成为五阶行列式 ij a 中带有负号的项解: 当 )5,1(),(=j i 时, 30102)31425(=+++=τ, 是奇排列.当 )1,5(),(=j i 时, 81232)35421(=+++=τ, 是偶排列. 所以 i = 1, j = 5.8.利用行列式性质计算下列行列式.解: (1)111212321-23043032123121----+-+-r r r r 620043032132-=--+-r r(2)6217213424435431014327427246-621721100044354320003274271000123c c c ++621721144354323274271103=.62110014431002327100110323c c +-621114431232711105=31212rr r r +-+-294002111032711105--=294105⨯(3)1111111111111111---820000200002011114,3,21-=---=+-i r r i(4) 1502321353140422-----15023213531402112-----=11203840553002112234413121-----+++r r r r r r11205100046100211223424-----+-+-r r r r 7130051000461002112242------+-r r 7130012004610211)5(2-----=02700120046100211)5(2743----+r r 27002100641020111043---↔c c 270-=.(5)y y x x -+-+1111111111111111y y y x x x c c c c --+-+-11011010110123412y y x x r r r r --+-+-00011000010124321 y y x x--=000110001010122320001000010101y x yy x xr r =--+(6)d c b a c b a b a a d c b a c b a b a a d c b a c b a b a a d c b a ++++++++++++++++++3610363234232cb a b a ac b a b a a cb a b a a dc b a i r r i 36103630234232004,3,21+++++++++=+-b a a b a ac b a b a ad c b a r r r r 373002000324232++++++-+-44300020003a ab a a cb a b a a dc b a r r =+++++-9.用行列式性质证明:(1) 333332222211111c c b kb a c c b kb a c c b kb a ++++++=333222111c b a c b a c b a证明: 333332222211111c c b kb a c c b kb a c c b kb a ++++++33332222111123c b kb a c b kb a c b kb a c c ++++-33322211112c b a c b a c b a c kc +-. (2) efcf bfde cdbdaeac ab---=abcdef 4 证明: ef cfbf de cd bdaeac ab---d c b e c b e c b abf ---的公因子提取各行111111111---abfbce 的公因子提取各列202001113121-++abcdef r r r r 20002011123--↔abcdef r r abcdef 4=. (3) yy x x ++++1111111111111111y x xy y x 222222++=证明: y y x x ++++1111111111111111=yy x x +++++++1110111101111011111y y x +++=1111111111111111 y y x x ++++111011*********y y x 0000000001111=y y x x +++++++110101101011101101 y y xx y y xxy +++++++=1010011001010101000000011101112yy x x y xx xy xy +++++=10001001001001100110011011022 y y x x y x x xy +++=100010010010000110011011022=+++=)1(2222y y x y x xy 222222y x y x xy ++. 10.解下列方程:(1)0913251323222321122=--x x解: 由2243212240005132320321129132513232223211x x r r r r x x ----+-+---22314000131032032112x x r r ------+-22221240001310332003211x x x r r x -------+2222340003320013103211x x x r r ------↔)4)(32(22x x ---= 得 0)4)(32(22=---x x 所以 2=x 或 2-=x .(2)0011101101110=x x xx解: 由=++++=+01110110122224,3,20111011011101x x x x x x x i r r x x x x i 0111011011111)2(x x xx + 111011*********)2(413121-------++-+-+-x x x x x x r r r xr r r xx xx x x x r r -------++10011010101111)2(43x x x x x x x x x x x x x x x r r x ------+=----+----++-100)1(0010101111)2(100)1)(1(10010101111)2()1(32xx xx x x ----⨯-+=1)1(1011)2(=})1(){1)(2(22x x x x -+-+2)2)(2(x x x -+-= 得 0)2)(2(2=-+x x x , 所以 021==x x ,23=x , 24-=x . 15. 用克莱姆法则解下列线性方程组:(1)⎩⎨⎧=+=+2731322121x x x x解:由系数行列式57332==D 172311==D 123122==D5111==D D x , 5122==D D x . (3) ⎪⎩⎪⎨⎧=+-=+-=+-445222725 1243321321321x x x x x x x x x解: 由系数行列式 638701702112452181211245272524331212313=--+-+----+-+----=r r r r r r r r D=--+-+---=41143786220124454722224131211c c c c D 63126002312545322442722521331212=---+-+-=r r r r D189107017703112452148131124522225143312123133=--+-+---+-+----=r r r r r r r r D得 111==D D x , 222==D Dx ,333==DD x .16.判断下列齐次方程组是否有非零解:(1) ⎪⎪⎩⎪⎪⎨⎧=+-+=-+-=++--=+-+0320508307934321432143214321x x x x x x x x x x x x x x x x解:由系数行列式3211151118137931------=D 47208144022198079313413121------+-+-+r r rr r r 0472814422198=-----= (第一、二行对应元素成比例) 此齐次方程组有非零解.(2). ⎪⎪⎩⎪⎪⎨⎧=-++=+++=-++=+-0302430332022432143214321421x x x x x x x x x x x x x x x解:由系数行列式3015111104)1(2301511122)1(30015011313210221131214331321022********---+----=----+-+----=+rr r r r r D0131114≠=---=此齐次方程组只有唯一的非零解.17. 若齐次线性方程组 ⎩⎨⎧=-+=+-0)2(504)3(y x y x λλ 有非零解.则λ取何值?解:由系数行列式 )2)(7(14520)2)(3(25432+-=--=---=--=λλλλλλλλD其齐次线性方程组有非零解,则 7=λ 或 2-=λ.习题二A 组1.计算下列矩阵的乘积.(1) ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-2312521131.解: ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-2312521131⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛⨯+⨯⨯+-⨯⨯-+⨯⨯-+-⨯⨯+⨯⨯+-⨯=12111577251253)2(22)1(113)1()2(1231133)2(1. (2)()0111132=⎪⎪⎪⎭⎫ ⎝⎛---(3) ⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛-35002103531152112401321214.解: ⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-35002103531152112401321214⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫⎝⎛=10316665350021161167923. (4)()⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321333231232221131211321x x x a a a a a a a a a x x x解:()⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321333231232221131211321x x x a a a a a a a a a x x x =233322222111x a x a x a +++212112)(x x a a ++313113)(x x a a ++323223)(x x a a + 2. 计算下列各矩阵:(1) 52423⎪⎪⎭⎫ ⎝⎛--. 解: 52423⎪⎪⎭⎫ ⎝⎛--22423⎪⎪⎭⎫ ⎝⎛--=22423⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--2423⎪⎪⎭⎫ ⎝⎛--=4421⎪⎪⎭⎫ ⎝⎛--4421⎪⎪⎭⎫ ⎝⎛--2423 ⎪⎪⎭⎫ ⎝⎛--=81267⎪⎪⎭⎫ ⎝⎛--2423⎪⎪⎭⎫ ⎝⎛-=8423.(2)2210013112⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡ 解: 2210013112⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡433349447 (3) n⎪⎪⎭⎫ ⎝⎛1011.解: n ⎪⎪⎭⎫ ⎝⎛1011n⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=00101001=nn n nn n n ⎪⎪⎭⎫⎝⎛++⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛--0010001010012)1(001010011001221+⎪⎪⎭⎫⎝⎛=1001⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛101000n n , 其中 20010⎪⎪⎭⎫ ⎝⎛ =⎪⎪⎭⎫ ⎝⎛=30010⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=00000010n. (4) n⎪⎪⎪⎭⎫ ⎝⎛λλλ001001 解: n⎪⎪⎪⎭⎫ ⎝⎛λλλ001001=n ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛000100010000000λλλn⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=000100010100010001λ⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=---- 222110001000101000100012)1(000100010100010001100010001n n n n n n n n n λλλ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=-0000002)1(0000000000000002n nn n n n n n n n λλλλλλ⎪⎪⎪⎪⎪⎭⎫⎝⎛-=-nn nn nnn n n n λλλλλλ0002)1(1其中 ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛0000001000001000102,⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛==⎪⎪⎪⎭⎫ ⎝⎛0000000000001000100001000103n. 5. 证明:对任意n m ⨯矩阵A ,A A T与TAA 都是对称方阵;而当A 为n 阶对称方阵时,则对任意n 阶方阵C ,AC C T 为对称方阵.证明: (1)A A T为n 阶方阵, 又A A A A T T T =)( A A T∴为n 阶对称方阵同理TAA 为m 阶对称方阵(2)AC C T为n 阶方阵, A 为n 阶对称方阵 A A T=∴ 又 AC C AC C T T T =)(AC C T∴为n 阶对称方阵6.设C B A ,,均为n 阶方阵.证明:如果CA A C AB E B +=+=, 则.E C B =-解: 由已知 E B A E E AB B =-=-)(, 则 B A E =--1)(.且 A CA C =- 即 A A E C =-)(, 则 AB A E A C =-=-1)(. 得 E AB B C B =-=-.8.(3)⎪⎪⎪⎭⎫ ⎝⎛--=122341213A解:25=A 1011=A 521=A 531-=A712-=A 122-=A 1132=A 613-=A 823-=A 1333=A⎪⎪⎪⎭⎫⎝⎛-----=-1386111755102511A9. 解下列矩阵方程: (1) ⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫⎝⎛23123512X 解: 由 ⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛-251335121,得 ⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-1161923122513231235121X .(3) ⎪⎪⎪⎭⎫⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X 解: 由 ⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛=--01010000102110234110000101001010000102110234110000101011X⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---=201431012010100001021341102, 即 ⎪⎪⎪⎭⎫⎝⎛---=201431012X .11. 设 B A AB A -=⎪⎪⎪⎭⎫ ⎝⎛--=2,011002100, 求.B解: 由已知 ,2)(,2A B E A A B AB =+=+因 01622)(3≠-===+=+A A B E A B E A1)(-+E A 存在, 则 A E A B 2)(1⋅+=-由 ()⎪⎪⎪⎭⎫⎝⎛----−→−++-⎪⎪⎪⎭⎫ ⎝⎛----=+22240420001021010120220042001110121012,3121r r r r A E A⎪⎪⎪⎭⎫ ⎝⎛----−−→−++-⎪⎪⎪⎭⎫ ⎝⎛-----−→−+--31322211310001000121626404200200210101321231332r r r r r r r所以 ⎪⎪⎪⎭⎫ ⎝⎛----=⋅+=-31322211132)(1A E AB .12.设B A ,均为n 阶方阵,E 为n 阶单位阵,证明: (1) 若,AB B A =+ 则E A -可逆;(2) 若O E A A =+-432 则E A -可逆,并求-1)(E A -. 解: (1)由已知 E E B A AB =+--, 即E E B E A E E B E B A =--=---))((,)()(,所以 E A -可逆,且E B E A -=--1)(. (2)由已知 E E A E A A E E A AE AA 2)(2)(,222-=----=+--,,2))(2(E E A E A -=-- 所以 E A -可逆,且A E E A E A 21)2(211--=--=-)(. 14.设⎪⎪⎪⎪⎪⎭⎫⎝⎛---=1100210000230012A , 求 4,AA 及1-A . 解: 33111212312=⨯=---=A ,由⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛7-48-7-11-2197168-56-9723-1-244,, 所以 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=7400870000971680056974A . 由⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛112-13111-21231223-1-2-1-1,, 所以 ⎪⎪⎪⎪⎪⎭⎫⎝⎛=31310032-3100002300121-A . 15. 用初等变换把下列矩阵化为标准形:(1) ⎪⎪⎪⎭⎫⎝⎛=02-112321-1A解: ⎪⎪⎪⎭⎫ ⎝⎛=02-112321-1A ⎪⎪⎪⎭⎫ ⎝⎛-+-+⎪⎪⎪⎭⎫-- ⎝⎛+-+-100010001)1(1001101012-1-05-5021-133********r r r r r r r r r16.求下列各矩阵的秩:(2)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=61331311405133312A ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----↔3312311405136133141r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛-----+-+-+-152970275313018348061331243413121r r r r r r⎪⎪⎪⎪⎪⎭⎫⎝⎛-----+-152970275313035106133124r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛-------+-+-66001212003510613317134232r r r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛-------→1212006600351061331⎪⎪⎪⎪⎪⎭⎫⎝⎛-----→00006600351061331 所以3)(=A R 17.设⎪⎪⎪⎭⎫ ⎝⎛=110101011A ,⎪⎪⎪⎭⎫⎝⎛=a a a B 111211,且矩阵AB 的秩为2,求a解:因为2)(=AB R ,所以B A AB ==0 又因为0≠A , 所以0=B 即01=+-a 1=⇒a。

线性方程组习题解答

线性方程组习题解答

习题33-1.求下列齐次线性方程组的通解:(1)⎪⎩⎪⎨⎧=--=--=+-087305302z y x z y x z y x .解 对系数矩阵施行行初等变换,得⎪⎪⎪⎭⎫ ⎝⎛-----−→−⎪⎪⎪⎭⎫ ⎝⎛-----=1440720211873153211A)(000720211阶梯形矩阵B =⎪⎪⎪⎭⎫ ⎝⎛-−→−⎪⎪⎪⎭⎫ ⎝⎛-−→−0002720211)(000271021101行最简形矩阵C =⎪⎪⎪⎪⎭⎫ ⎝⎛−→−, 与原方程组同解的齐次线性方程组为⎪⎪⎩⎪⎪⎨⎧=+=+0270211z y z x , 即⎪⎪⎩⎪⎪⎨⎧-=-=z y z x 27211(其中z 是自由未知量), 令1=z ,得到方程组的一个基础解系T)1,27,211(--=ξ, 所以,方程组的通解为,)1,27,211(Tk k --=ξk 为任意常数. (2)⎪⎩⎪⎨⎧=+++=+++=++++086530543207224321432154321x x x x x x x x x x x x x .解 对系数矩阵施行行初等变换,得⎪⎪⎪⎭⎫ ⎝⎛--−→−⎪⎪⎪⎭⎫ ⎝⎛=21202014101072211086530543272211A)(7000014101072211阶梯形矩阵B =⎪⎪⎪⎭⎫ ⎝⎛-−→−⎪⎪⎪⎭⎫ ⎝⎛-−→−70000141010211201)(100000101001201行最简形矩阵C =⎪⎪⎪⎭⎫ ⎝⎛−→−,与原方程组同解的齐次线性方程组为⎪⎩⎪⎨⎧==+=++0002542431x x x x x x , 即⎪⎩⎪⎨⎧=-=--=02542431x x x x x x (其中43,x x 是自由未知量), 令34(,)T x x =(1,0)T ,(0,1)T,得到方程组的一个基础解系T )0,0,1,0,2(1-=ξ,T )0,1,0,1,1(2--=ξ,所以,方程组的通解为=+2211ξξk k T T k k )0,1,0,1,1()0,0,1,0,2(21--+-,21,k k 为任意常数.(3)⎪⎪⎩⎪⎪⎨⎧=-+-+=-++-=-+-=--+0742420436240203543215432143215421x x x x x x x x x x x x x x x x x x .解 对系数矩阵施行行初等变换,得11031112104263424247A --⎛⎫ ⎪--⎪= ⎪-- ⎪ ⎪--⎝⎭11031022210003100000--⎛⎫⎪- ⎪−−→⎪- ⎪⎪⎝⎭)(阶梯形矩阵B =)(0000031100065011067011行最简形矩阵C =⎪⎪⎪⎪⎪⎭⎫⎝⎛----−→−,与原方程组同解的齐次线性方程组为⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=--=-+03106506754532531x x x x x x x x , 即⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+-=54532531316567x x x x x x x x (其中53,x x 是自由未知量), 令=T x x ),(53(1,0)T ,(0,1)T,得到方程组的一个基础解系T )0,0,1,1,1(1-=ξ,T )1,31,0,65,67(2=ξ,所以,方程组的通解为=+2211ξξk k T T k k )1,31,0,65,67()0,0,1,1,1(21+-,21,k k 为任意常数.3-2.当λ取何值时,方程组⎪⎩⎪⎨⎧=-+=+-=++z z y x y z y x x z y x λλλ6774334 有非零解?解 原方程组等价于⎪⎩⎪⎨⎧=+-+=++-=++-0)6(707)4(303)4(z y x z y x z y x λλλ, 上述齐次线性方程组有非零解的充分必要条件是它的系数行列式0671743134=-----λλλ,即0)756(2=-+λλλ,从而当0=λ和2123±-=λ时方程组有非零解.3-3.求解下列非齐次线性方程组:(1)⎪⎩⎪⎨⎧=++--=-+-=++-5521212432143214321x x x x x x x x x x x x .解 对增广矩阵A 施行行初等变换⎪⎪⎪⎭⎫ ⎝⎛-----=551211112111121A ⎪⎪⎪⎭⎫ ⎝⎛-−→−000001100011121B =,因为()()r A r A =,所以方程组有解,继续施行行初等变换B ⎪⎪⎪⎭⎫⎝⎛-−→−000001100000121C =, 与原方程组同解的齐次线性方程组为⎩⎨⎧==+-124321x x x x , 即⎩⎨⎧=-=124321x x x x (其中32,x x 为自由未知量), 令TT x x )0,0(),(32=,得到非齐次方程组的一个解T )1,0,0,0(0=η,对应的齐次方程组(即导出方程组)为⎩⎨⎧=-=024321x x x x (其中32,x x 为自由未知量), 令T x x ),(32(1,0)T =,(0,1)T,得到对应齐次方程组的一个基础解系T )0,0,1,2(1=ξ,T )0,1,0,1(2-=ξ,方程组的通解为0112212(0,0,0,1)(2,1,0,0)(1,0,1,0)T T T k k k k ηηξξ=++=++-,其中21,k k 为任意常数.(2)⎪⎪⎩⎪⎪⎨⎧=+--=+--=+--=-+-810957245332231324321432143214321x x x x x x x x x x x x x x x x .解 对增广矩阵A 施行行初等变换⎪⎪⎪⎪⎪⎭⎫⎝⎛--------=810957245113322311312A ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----−→−000000000039131024511B =, 因为()()r A r A =,所以方程组有解,继续施行行初等变换B ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----−→−000000000039131015801C =, 与原方程组同解的齐次线性方程组为⎩⎨⎧-=-+-=-+3913158432431x x x x x x , 即⎩⎨⎧+--=+--=4324319133581x x x x x x (其中43,x x 为自由未知量), 令34(,)(0,0)T Tx x =,得到非齐次方程组的一个解T )0,0,3,1(0--=η,对应的齐次方程组(即导出方程组)为⎩⎨⎧+-=+-=43243191358x x x x x x (其中43,x x 为自由未知量),令34(,)T x x =(1,0)T ,(0,1)T,得到对应齐次方程组的一个基础解系T )0,1,13,8(1--=ξ,T )1,0,9,5(2-=ξ,方程组的通解为0112212(1,3,0,0)(8,13,1,0)(5,9,0,1)T T T k k k k ηηξξ=++=--+--+-,其中21,k k 为任意常数.(3)⎪⎪⎩⎪⎪⎨⎧=++=-+=-+-=-+10013212213321321321321x x x x x x x x x x x x .解 对增广矩阵A 施行行初等变换⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---−→−⎪⎪⎪⎪⎪⎭⎫⎝⎛----=101400201034101311100111132112121311A ⎪⎪⎪⎪⎪⎭⎫⎝⎛----→⎪⎪⎪⎪⎪⎭⎫⎝⎛----−→−96000540034101311101400540034101311,因为3)(4)(=≠=A r A r ,所以方程组无解.3-4.讨论下述线性方程组中,λ取何值时有解、无解、有惟一解?并在有解时求出其解.⎪⎩⎪⎨⎧=++++=+-+=+++3)3()1(3)1(2)3(321321321x x x x x x x x x λλλλλλλλ. 解 方程组的系数行列式为231211(1)3(1)3A λλλλλλλλ+=-=-++.(1)当0A ≠时,即01λλ≠≠且时,方程组有惟一解. (2)当0A =时,即01λλ=或=时, (i) 当0λ=时,原方程组为12323133200333x x x x x x x ++=⎧⎪-+=⎨⎪+=⎩, 显然无解.(ii) 当1λ=时,原方程组为⎪⎩⎪⎨⎧=++=+=++346112432131321x x x x x x x x , 对该方程组的增广矩阵A 施行行初等变换412110111011012361430000A ⎛⎫⎛⎫⎪ ⎪=→-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,因为()()23r A r A ==<,所以方程组有无穷多组解, 与原方程组同解的方程组为1323123x x x x +=⎧⎨-=-⎩, 即1323132x x x x =-⎧⎨=-+⎩(其中3x 为自由未知量), 令30x =,得到非齐次方程组的一个解0(1,3,0)T η=-,对应的齐次方程组(即导出方程组)为13232x x x x =-⎧⎨=⎩(其中3x 为自由未知量), 令31x =,得到对应齐次方程组的一个基础解系(1,2,1)T ξ=-,方程组的通解为0(1,3,0)(1,2,1)T T k k ηηξ=+=-+-,其中k 为任意常数.3-5.写出一个以1222341001x c c -⎛⎫⎛⎫⎪ ⎪- ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭为通解的齐次线性方程组.解 由已知,1(2,3,1,0)T ξ=-和2(2,4,0,1)Tξ=-是齐次线性方程组AX O =的基础解系,即齐次线性方程组AX O =的基础解系所含解向量的个数为2,而未知数的个数为4,所以齐次线性方程组AX O =的系数矩阵A 的秩为422-=,故可设系数矩阵1112131421222324a a a a A a a a a ⎛⎫=⎪⎝⎭, 由AX O =可知()111121314,,,a a a a α=和()221222324,,,a a a a α=满足方程组()12342234,,,1001x x x x O -⎛⎫ ⎪-⎪= ⎪ ⎪⎝⎭, 即方程组123124230240x x x x x x -+=⎧⎨-++=⎩的线性无关的两个解即为12,αα,方程组的系数矩阵2310204324010111-⎛⎫⎛⎫→ ⎪ ⎪-⎝⎭⎝⎭,该方程组等价于134234243x x x x x x =--⎧⎨=--⎩(其中43,x x 为自由未知量), 令34(,)T x x =(1,0)T ,(0,1)T,得到该齐次方程组的一个基础解系1(2,1,1,0)T α=--,23(,1,0,1)2T ξ=--,故要求的齐次线性方程组为AX O =,其中211031012A --⎛⎫⎪= ⎪--⎝⎭,即12312420302x x x x x x --+=⎧⎪⎨--+=⎪⎩. 3-6.设线性方程组⎪⎩⎪⎨⎧=+++=++0022111212111n mn m m n n x a x a x a x a x a x a, 的解都是02211=+++n n x b x b x b 的解,试证Tn b b b ),,,(21 =β是向量组T n a a a ),,,(112111 =α,T n a a a ),,,(222212 =α,,),,,(21mn m m m a a a =α的线性组合.证 把该线性方程组记为(*),由已知,方程组(*)的解都是02211=+++n n x b x b x b 的解,所以方程组(*)与方程组111122111221122000n n m m mn n n n a x a x a x a x a x a x b x b x b x ++=⎧⎪⎪⎨+++=⎪⎪+++=⎩, 同解,从而有相同的基础解系,于是二者有相同的秩,则它们系数矩阵的行向量组12,,,m ααα和12,,,,m αααβ的秩相同,故β可由12,,,m ααα线性表示.3-7.试证明:()()r AB r B =的充分必要条件是齐次线性方程组O ABX =的解都是O BX =的解.证 必要性.因为()()r AB r B =,只须证O ABX =与O BX =的基础解系相同.O ABX =与O BX =的基础解系都含有()n r B -个线性无关的解向量.又因为O BX =的解都是O ABX =得解.所以O BX =的基础解系也是O ABX =的基础解系.即O ABX =与O BX =有完全相同的解.所以O ABX =的解都是O BX =的解.充分性.因O ABX =的解都是O BX =的解,而O BX =的解都是ABX O =的解,故O ABX =与O BX =有完全相同的解,则基础解系也完全相同,故()()n r AB n r B -=-,所以()()r AB r B =.3-8.证明()1r A =的充分必要条件是存在非零列向量a 及非零行向量Tb ,使T A ab =.证 充分性.若存在列向量12m a a a a ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭及行向量()12T n b b b b =,其中,i j a b 不全为零1,,i m =,1,,j n =,则有()1111212212221212n n T n m m m m n a a b a b a b aa b a b a b A ab b b b a a b a b a b ⎛⎫⎛⎫⎪⎪ ⎪ ⎪=== ⎪ ⎪ ⎪⎪⎝⎭⎝⎭, 显然矩阵A 的各行元素对应成比例,所以()1r A =.必要性.若()1r A =,则A 经过一系列的初等变换可化为标准形100000000D ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭, 而矩阵D 可以表示为()100100001,0,,0000D ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则存在可逆矩阵P ,Q 使得1P AQ D -=,从而()11101,0,,00A PDQ P Q --⎛⎫ ⎪ ⎪== ⎪ ⎪⎝⎭,其中1,P Q -均可逆,记100a P ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭, ()11,0,,0T b Q -=,又因为P 可逆,则P 至少有一行元素不全为零,故列向量a 的分量不全为零,同理,因为1Q -可逆,所以行向量Tb 的分量不全为零.因此,存在非零列向量a 及非零行向量Tb ,使TA ab =.补充题B3-1.设A 是m n ⨯矩阵,AX O =是非其次线性方程组AX b =所对应齐次线性方程组,则下列结论正确的是( D ).(A ) 若AX O =仅有零解,则AX B =有惟一解; (B ) 若AX O =有非零解,则AX B =有无穷多个解; (C ) 若AX B =有无穷多个解,则AX O =仅有零解;(D ) 若AX B =有无穷多个解,则AX O =有非零解.B3-2.设A 为n 阶实矩阵,T A 是A 的转置矩阵,则对于线性方程组 (ⅰ)AX O =; (ⅱ)TA AX O =,必有( D ). (A )(Ⅱ)的解是(Ⅰ)的解,(Ⅰ)的解也是(Ⅱ)的解; (B )(Ⅱ)的解是(Ⅰ)的解,但(Ⅰ)的解不是(Ⅱ)的解; (C )(Ⅰ)的解不是(Ⅱ)的解,(Ⅱ)的解也不是(Ⅰ)的解; (D)(Ⅰ)的解是(Ⅱ)的解,但(Ⅱ)的解不是(Ⅰ)的解.B3-3.设线性方程组AX B =有n 个未知量,m 个方程组,且()r A r =,则此方程组( A ).(A)r m =时,有解; (B)r n =时,有惟一解;(C)m n =时,有惟一解; (D)r n <时,有无穷多解.B3-4.讨论λ取何值时,下述方程组有解,并求解:⎪⎩⎪⎨⎧=++=++=++21λλλλλz y x z y x z y x . 解 (法一)方程组的系数行列式21111(1)(2)11A λλλλλ==-+,(1)当0A ≠时,即12λλ≠≠-且时,方程组有惟一解211(1),,222x y z λλλλλ++=-==+++.(2)当0A =时,即12λλ-=或=时 (i) 当λ=1时,原方程组为1x y z ++=,因为()()1r A r A ==,所以方程组有无穷多组解,其通解为0112212(1,0,0)(1,1,0)(1,0,1)T T T k k k k ηηξξ=++=+-+-,其中21,k k 为任意常数. (ii) 当λ=-2时,原方程组为212224x y z x y z x y z -++=⎧⎪-+=-⎨⎪+-=⎩, 对该方程组的增广矩阵A 施行行初等变换2111112412120112112400015A --⎛⎫⎛⎫ ⎪ ⎪=--→- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,因为()2()3r A r A =≠=,所以方程组无解.解 (法二)对该方程组的增广矩阵A 施行行初等变换2211111111111111A λλλλλλλλλλ⎛⎫⎛⎫ ⎪⎪=→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭2223110110111λλλλλλλλλ⎛⎫⎪→--- ⎪ ⎪---⎝⎭22223110110021λλλλλλλλλλλ⎛⎫ ⎪→--- ⎪⎪--+--⎝⎭2221101100(1)(2)(1)(1)B λλλλλλλλλλ⎛⎫ ⎪→---= ⎪ ⎪-+-+⎝⎭,(1)当 12λλ≠≠-且时, ()()3r A r A ==,方程组有惟一解211(1),,222x y z λλλλλ++=-==+++.(2) 当λ=1时, ()()1r A r A ==,方程组有无穷多组解,其通解为0112212(1,0,0)(1,1,0)(1,0,1)T T T k k k k ηηξξ=++=+-+-,其中21,k k 为任意常数.(3) 当λ=-2时,由B 知,()2()3r A r A =≠=,所以方程组无解.B3-5.若321,,ηηη是某齐次线性方程组的一个基础解系,证明:122331,,ηηηηηη+++也是该方程组的一个基础解系.证 设有三个数123,,k k k 使得112223331()()()0k k k ηηηηηη+++++=,则有131122233()()()0k k k k k k ηηη+++++=,因为321,,ηηη是某齐次线性方程组的一个基础解系,所以321,,ηηη线性无关,故131223000k k k k k k +=⎧⎪+=⎨⎪+=⎩, 该方程组的系数行列式10111020011=≠, 所以该方程组只有零解.即1230k k k ===.即122331,,ηηηηηη+++线性无关. 又由齐次线性方程组的性质知122331,,ηηηηηη+++都是方程组的解.所以122331,,ηηηηηη+++构成方程组的一个基础解系.B3-6.设四元非齐次线性方程组的系数矩阵的秩为3,已知321,,ξξξ是它的三个解向量,且⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=54321ξ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=+432132ξξ,求该方程组的通解.解 因为4,3n r ==,故原方程组的导出组的基础解系含有1n r -=个解向量,所以只须找出其导出组的一个非零解向量即可. 由解的性质知,1213,ξξξξ--均为导出组的解,所以1213123()()2()ξξξξξξξ-+-=-+为导出组的解,即123342()56ηξξξ⎛⎫⎪ ⎪=-+= ⎪ ⎪⎝⎭,为导出组的解.故原方程组的通解为123344556k k ξξη⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=+=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,k 为任意常数.B3-7. 设*ξ是非齐次线性方程组B AX =的一个解,r n -ηηη,,,21 是它对应的齐次线性方程组的一个基础解系,证明:(1),*ξr n -ηηη,,,21 线性无关;(2)r n -+++ηξηξηξξ*2*1**,,,, 线性无关.证(1) 反证法.设,*ξr n -ηηη,,,21 线性相关,由r n -ηηη,,,21 是对应的齐次线性方程组的一个基础解系知r n -ηηη,,,21 线性无关,故*ξ可由r n -ηηη,,,21 线性表示,即*ξ是对应的齐次线性方程组的解,与题设矛盾.故,*ξr n -ηηη,,,21 线性无关.证(2) 反证法.设r n -+++ηξηξηξξ*2*1**,,,, 线性相关,则存在不全为零的数012,,,,n r k k k k -,使得****01122()()()0n r n r k k k k ξξηξηξη--+++++++=,即*0121122()0n r n r n r k k k k k k k ξηηη---++++++++=,由(1)知,,*ξr n -ηηη,,,21 线性无关,则0120n r k k k k -++++=,10k =,20k =,...,0n r k -=,从而00k =,这与012,,,,n r k k k k -不全为零矛盾,故r n -+++ηξηξηξξ*2*1**,,,, 线性无关.B3-8.设线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a22112222212*********, 的系数矩阵的秩等于矩阵⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛02121222221111211nn nn n n n n b b b b a a a b a a a b a a a 的秩,试证这个方程组有解.证 令111212122212n n n n nn a a a aa a A a a a ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭, 11121121222212n n n n nn n a a a b a a a b A a a a b ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭, 11121121222212120n n n n nn n na a ab a a a b B a a a b b b b ⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭, 因为A 比A 多一列,B 比A 多一行,故()()()r A r A r B ≤≤,而由题设()()r A r B =,所以()()r A r A =,所以原方程组有解.B-9.设A 是n 阶方阵,*A 是A 的伴随矩阵,证明:⎪⎩⎪⎨⎧-<-===*1,01,1,n r n r n r n r A A A A 当当当. 证 若A r n =,因为0A ≠,而**AA A A A E ==,1*0n A A-=≠,故A r n *=.若1A r n =-,因为0A =,所以*AA A E O ==,又因为A AA A r r r n **≥+-,而0AA r *=,所以1A r *≤;又因为1A r n =-,所以至少有一个代数余子式0ij A ≠,从而1A r *≥,故1A r *=.若1A r n <-,则A 的任一个代数余子式0ij A =,故*0A =,所以0A r *=.B3-10.设A 是m n ⨯阶方阵,证明:AX AY =,且A r n =,则X Y =. 证 因为AX AY =,所以()A X Y O -=,又因为A r n =,所以方程组()A X Y O -=只有零解,即X Y O -=,所以X Y =.。

高等数学 线性代数 习题答案第二章

高等数学 线性代数 习题答案第二章

第二章习题2-11. 证明:若lim n →∞x n =a ,则对任何自然数k ,有lim n →∞x n +k =a .证:由lim n n x a →∞=,知0ε∀>,1N ∃,当1n N >时,有n x a ε-<取1N N k =-,有0ε∀>,N ∃,设n N >时(此时1n k N +>)有n k x a ε+-<由数列极限的定义得 lim n k x x a +→∞=.2. 证明:若lim n →∞x n =a ,则lim n →∞∣x n ∣=|a|.考察数列x n =(-1)n ,说明上述结论反之不成立.证:lim 0,,.使当时,有n x n x aN n N x a εε→∞=∴∀>∃>-<而 n n x a x a -≤- 于是0ε∀>,,使当时,有N n N ∃>n n x a x a ε-≤-< 即 n x a ε-<由数列极限的定义得 lim n n x a →∞=考察数列 (1)nn x =-,知lim n n x →∞不存在,而1n x =,lim 1n n x →∞=,所以前面所证结论反之不成立。

3. 证明:lim n →∞x n =0的充要条件是lim n →∞∣x n ∣=0.证:必要性由2题已证,下面证明充分性。

即证若lim 0n n x →∞=,则lim 0n n x →∞=,由lim 0n n x →∞=知,0ε∀>,N ∃,设当n N >时,有0 0n n n x x x εεε-<<-<即即由数列极限的定义可得 lim 0n n x →∞=4. 利用夹逼定理证明:(1) lim n →∞222111(1)(2)n n n ⎛⎫+++ ⎪+⎝⎭ =0; (2) lim n →∞2!n =0. 证:(1)因为222222111112(1)(2)n n n n n n n n n n++≤+++≤≤=+而且 21lim0n n →∞=,2lim 0n n→∞=, 所以由夹逼定理,得222111lim 0(1)(2)n n n n →∞⎛⎫+++= ⎪+⎝⎭ . (2)因为22222240!1231n n n n n<=<- ,而且4lim 0n n →∞=, 所以,由夹逼定理得2lim 0!nn n →∞= 5. 利用单调有界数列收敛准则证明下列数列的极限存在. (1) x 1>0,x n +1=13()2n nx x +,n =1,2,…; (2) x 1x n +1,n =1,2,…;(3) 设x n 单调递增,y n 单调递减,且lim n →∞(x n -y n )=0,证明x n 和y n 的极限均存在.证:(1)由10x >及13()2n n nx x x =+知,有0n x >(1,2,n = )即数列{}n x 有下界。

线性代数第二章习题及解答

线性代数第二章习题及解答

··· ··· .. . ···
∗ ∗ . . .
2 a2 n1 + · · · + ann

(1)
(2)
2 2 由 A2 = 0 得到 a2 0 i1 + ai2 + · · · + ain = 0, i = 1, 2, . . . , n 于是 aij = ( ) 1 2 2 cos θ sin θ 8. 设 A = ,B = , C = 2 1 −2 − sin θ cos θ 2 −2 1
证明:|A−1 | =
|A| = ±1
1 |A|
注意到 A−1 的元素为正数所以其行列式必为整数, 即
1 |A|
为正数, 于是只有
若 |A| = ±1, 由于 A−1 = 整数.
A∗ |A|
注意到 Aij 为整数,于是 A∗ 的元素必为整数,则 A−1 的元素为
1 3 0 0 0
0 2

20 −1 −1 0 , P AP = 0 1 0 求 A 0 0 2 1 2 520 0 0 解:P AP −1 P AP −1 · · · P AP −1 = P A20 P −1 = 0 1 0 20 0 0 220 520 0 0 2 · 520 − 1 1 − 220 2 · 520 − 221 20 20 那么 A20 = P −1 2 · 520 − 221 0 1 0 P = 2 · 5 − 2 2 − 2 0 0 20 −520 + 1 −1 + 220 −520 + 221 19. 设 A, B, A + B 可逆, 证明 (A−1 + B −1 )−1 = A(A + B )−1 B

数学课程线性方程组练习题及答案

数学课程线性方程组练习题及答案

数学课程线性方程组练习题及答案1. 练习题1.1 求解下列线性方程组:(1)3x + 2y = 72x - y = 4(2)2x + y - z = 6x - 3y + 2z = 43x - 2y - z = 1(3)x - 2y + z = 32x + y - 2z = -53x - y + 3z = 72. 答案(1)解:首先,我们可以通过消元法来求解该线性方程组。

将第二个方程的两边乘以2,得到2(2x - y) = 2(4),化简得4x - 2y = 8。

将这个结果与第一个方程相加,得到(3x + 2y) + (4x - 2y) = 7 + 8,化简得7x = 15,所以 x = 15/7。

接下来,将求得的 x 值代入任意一个方程(如第一个方程)中,可以得到:3(15/7) + 2y = 7,化简得2y = 7 - 45/7,化简得2y = -14/7,所以 y = -7/7。

因此,该线性方程组的解为 x = 15/7,y = -1。

(2)解:同样使用消元法求解该线性方程组。

将第二个方程的两边乘以2,得到2(x - 3y + 2z) = 2(4),化简得2x - 6y + 4z = 8。

将第三个方程的两边乘以3,得到3(3x - 2y - z) = 3(1),化简得9x - 6y - 3z = 3。

现在我们有以下三个方程:2x + y - z = 62x - 6y + 4z = 89x - 6y - 3z = 3将第一个方程中的 z 用第二个方程中的 z 的代数式表示,得到 z = 2x + y - 6。

将这个结果代入第三个方程中,可以得到:9x - 6y - 3(2x + y - 6) = 3,化简得3x - 3y = 15,所以 x - y = 5。

我们可以再次将 x - y = 5 代入第一个方程,得到:2x + y - (2x + 5) = 6,化简得 y = 11。

将求得的 y 值代入 x - y = 5,可以解得 x = 16。

线性代数第二章答案

线性代数第二章答案

第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换. 解 由已知:⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x ,故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y , ⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x , ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y ,求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换. 解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A T B .解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503, ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T .4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134;解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫ ⎝⎛=49635.(2)⎪⎪⎭⎫ ⎝⎛123)321(;解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛;解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫ ⎝⎛---=632142.(4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ;解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876.(5)⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ; 解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x =(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问:(1)AB =BA 吗? 解 AB ≠BA . 因为⎪⎭⎫⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(2)(A +B )2=A 2+2AB +B 2吗? 解 (A +B )2≠A 2+2AB +B 2. 因为⎪⎭⎫⎝⎛=+5222B A ,⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148,但⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610,所以(A +B )2≠A 2+2AB +B 2. (3)(A +B )(A -B )=A 2-B 2吗? 解 (A +B )(A -B )≠A 2-B 2. 因为⎪⎭⎫⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A ,而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A , 故(A +B )(A -B )≠A 2-B 2.6. 举反列说明下列命题是错误的:(也可参考书上的答案) (1)若A 2=0, 则A =0; 解 取⎪⎭⎫⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y . 解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y ,则AX =AY , 且A ≠0, 但X ≠Y . 7. 设⎪⎭⎫⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k . 解⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k .8. 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求A k .解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ,⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A ,⎪⎪⎭⎫ ⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=545345450050105λλλλλλA A A ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=kA kk kk k kk k k k λλλλλλ02)1(121----⎪⎪⎪⎭⎫ . 用数学归纳法证明: 当k =2时, 显然成立. 假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121. (也可提取公因式,变成书上的答案)9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵. 证明 因为A T =A , 所以(B T AB )T =B T (B T A )T =B T A T B =B T AB , 从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA . 证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以 (AB )T =(BA )T =A T B T =AB , 即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB )T =AB , 所以 AB =(AB )T =B T A T =BA .11. 求下列矩阵的逆矩阵: (1)⎪⎭⎫ ⎝⎛5221; 解⎪⎭⎫ ⎝⎛=5221A . |A |=1, 故A -1存在. 因为⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A ,故*||11A A A =-⎪⎭⎫ ⎝⎛--=1225.(2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ;解 ⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A . |A |=1≠0, 故A -1存在. 因为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A ,所以*||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos .(3)⎪⎪⎭⎫⎝⎛---145243121;解⎪⎪⎭⎫⎝⎛---=145243121A . |A |=2≠0, 故A -1存在. 因为⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A ,所以*||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012. (4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n ≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 .12. 解下列矩阵方程: (1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛12643152X ;解⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232.(2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311111012112X ;解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X ⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫⎝⎛---=32538122. (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ; 解11110210132141--⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X .解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012.13. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x ,故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x , 从而有 ⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x ,故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有 ⎪⎩⎪⎨⎧===305321x x x .14. 设A k =O (k 为正整数), 证明(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 因为A k =O , 所以E -A k =E . 又因为 E -A k =(E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1), 所以 (E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E , 由定理2推论知(E -A )可逆, 且 (E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A )-1(E -A ). 另一方面, 由A k =O , 有E =(E -A )+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k ) =(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 故 (E -A )-1(E -A )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 两端同时右乘(E -A )-1, 就有(E -A )-1(E -A )=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E )-1. 证明 由A 2-A -2E =O 得 A 2-A =2E , 即A (A -E )=2E , 或E E A A =-⋅)(21, 由定理2推论知A 可逆, 且)(211E A A -=-. 由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E )(A -3E )=-4E , 或E A E E A =-⋅+)3(41)2(由定理2推论知(A +2E )可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A |=2,即 |A ||A -E |=2, 故 |A |≠0,所以A 可逆, 而A +2E =A 2, |A +2E |=|A 2|=|A |2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A (A -E )=2E ⇒A -1A (A -E )=2A -1E ⇒)(211E A A -=-, 又由 A 2-A -2E =O ⇒(A +2E )A -3(A +2E )=-4E ⇒ (A +2E )(A -3E )=-4 E ,所以 (A +2E )-1(A +2E )(A -3E )=-4(A +2 E )-1,)3(41)2(1A E E A -=+-.16. 设A 为3阶矩阵, 21||=A , 求|(2A )-1-5A *|.解 因为*||11A A A =-, 所以|||521||*5)2(|111----=-A A A A A |2521|11---=A A=|-2A -1|=(-2)3|A -1|=-8|A |-1=-8⨯2=-16.17. 设矩阵A 可逆, 证明其伴随阵A *也可逆, 且(A *)-1=(A -1)*. 证明 由*||11A A A =-, 得A *=|A |A -1, 所以当A 可逆时, 有 |A *|=|A |n |A -1|=|A |n -1≠0, 从而A *也可逆.因为A *=|A |A -1, 所以 (A *)-1=|A |-1A . 又*)(||)*(||1111---==A A A A A , 所以 (A *)-1=|A |-1A =|A |-1|A |(A -1)*=(A -1)*.18. 设n 阶矩阵A 的伴随矩阵为A *, 证明: (1)若|A |=0, 则|A *|=0; (2)|A *|=|A |n -1. 证明(1)用反证法证明. 假设|A *|≠0, 则有A *(A *)-1=E , 由此得 A =A A *(A *)-1=|A |E (A *)-1=O ,所以A *=O , 这与|A *|≠0矛盾,故当|A |=0时, 有|A *|=0. (2)由于*||11A A A =-, 则AA *=|A |E , 取行列式得到 |A ||A *|=|A |n . 若|A |≠0, 则|A *|=|A |n -1;若|A |=0, 由(1)知|A *|=0, 此时命题也成立. 因此|A *|=|A |n -1.19. 设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B , 求B .解 由AB =A +2E 可得(A -2E )B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫⎝⎛-=011321330.20. 设⎪⎪⎭⎫⎝⎛=101020101A , 且AB +E =A 2+B , 求B .解 由AB +E =A 2+B 得 (A -E )B =A 2-E , 即 (A -E )B =(A -E )(A +E ).因为01001010100||≠-==-E A , 所以(A -E )可逆, 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B .21. 设A =diag(1, -2, 1), A *BA =2BA -8E , 求B . 解 由A *BA =2BA -8E 得 (A *-2E )BA =-8E , B =-8(A *-2E )-1A -1 =-8[A (A *-2E )]-1 =-8(AA *-2A )-1 =-8(|A |E -2A )-1 =-8(-2E -2A )-1 =4(E +A )-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(diag 4-= =2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B . 解 由|A *|=|A |3=8, 得|A |=2. 由ABA -1=BA -1+3E 得 AB =B +3A ,B =3(A -E )-1A =3[A (E -A -1)]-1A11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-1030060600600006603001010010000161.23. 设P -1AP =Λ, 其中⎪⎭⎫⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11.解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A =P Λ11P -1. |P |=3,⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛-=Λ11111120 012001,故⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731.24. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511,求ϕ(A )=A 8(5E -6A +A 2). 解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A )=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ⎪⎪⎭⎫⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=1111111114.25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B )B -1=B -1+A -1=A -1+B -1,而A -1(A +B )B -1是三个可逆矩阵的乘积, 所以A -1(A +B )B -1可逆, 即A -1+B -1可逆. (A -1+B -1)-1=[A -1(A +B )B -1]-1=B (A +B )-1A .26. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121. 解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B ,则⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ,而⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A ,⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A , 所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫⎝⎛---=9000340042102521, 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫⎝⎛---=9000340042102521. (最后一行的-9也可除以-1变成9,从而变成书上的答案)27. 取⎪⎭⎫⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠. 解4100120021010*********0021010010110100101==--=--=D C B A , 而01111|||||||| ==D C B A , 故 |||||||| D C B A D C B A ≠.28. 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A , 求|A 8|及A 4. 解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A , 则⎪⎭⎫ ⎝⎛=21A O O A A ,故 8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A ,1682818281810||||||||||===A A A A A .⎪⎪⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A .29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求 (1)1-⎪⎭⎫⎝⎛O B A O ;解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n E BC O BC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C O C O C A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111. (2)1-⎪⎭⎫ ⎝⎛B C O A .解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321.由此得 ⎪⎩⎪⎨⎧=+=+==s nE BD CD O BD CD OAD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A .30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025;解 设⎪⎭⎫⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001. 解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A BC O A ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=411212458103161210021210001.第五章 相似矩阵及二次型1. 试用施密特法把下列向量组正交化:(1)⎪⎪⎭⎫⎝⎛=931421111) , ,(321a a a ;解 根据施密特正交化方法,⎪⎪⎭⎫ ⎝⎛==11111a b , ⎪⎪⎭⎫ ⎝⎛-=-=101],[],[1112122b b b a b a b ,⎪⎪⎭⎫ ⎝⎛-=--=12131],[],[],[],[222321113133b b b a b b b b a b a b .(2)⎪⎪⎪⎭⎫ ⎝⎛---=011101110111) , ,(321a a a .解 根据施密特正交化方法,⎪⎪⎪⎭⎫ ⎝⎛-==110111a b ,⎪⎪⎪⎭⎫ ⎝⎛-=-=123131],[],[1112122b b b a b a b ,⎪⎪⎪⎭⎫ ⎝⎛-=--=433151],[],[],[],[222321113133b b b a b b b b a b a b . 2. 下列矩阵是不是正交阵:(1)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---121312112131211;解 此矩阵的第一个行向量非单位向量, 故不是正交阵.(2)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------979494949198949891.解 该方阵每一个行向量均是单位向量, 且两两正交, 故为正交阵.3. 设x 为n 维列向量, x T x =1, 令H =E -2xx T , 证明H 是对称的正交阵. 证明 因为H T =(E -2xx T )T =E -2(xx T )T =E -2(xx T )T =E -2(x T )T x T =E -2xx T , 所以H 是对称矩阵. 因为H T H =HH =(E -2xx T )(E -2xx T ) =E -2xx T -2xx T +(2xx T )(2xx T ) =E -4xx T +4x (x T x )x T =E -4xx T +4xx T =E , 所以H 是正交矩阵.4. 设A 与B 都是n 阶正交阵, 证明AB 也是正交阵. 证明 因为A , B 是n 阶正交阵, 故A -1=A T , B -1=B T ,(AB )T (AB )=B T A T AB =B -1A -1AB =E ,故AB 也是正交阵.5. 求下列矩阵的特征值和特征向量:(1)⎪⎪⎭⎫ ⎝⎛----201335212;解 3)1(201335212||+-=-------=-λλλλλE A ,故A 的特征值为λ=-1(三重). 对于特征值λ=-1, 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=+000110101101325213~E A ,得方程(A +E )x =0的基础解系p 1=(1, 1, -1)T , 向量p 1就是对应于特征值λ=-1的特征值向量.(2)⎪⎪⎭⎫⎝⎛633312321;解 )9)(1(633312321||-+-=---=-λλλλλλλE A ,故A 的特征值为λ1=0, λ2=-1, λ3=9. 对于特征值λ1=0, 由⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=000110321633312321~A ,得方程A x =0的基础解系p 1=(-1, -1, 1)T , 向量p 1是对应于特征值λ1=0的特征值向量. 对于特征值λ2=-1, 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=+000100322733322322~E A ,得方程(A +E )x =0的基础解系p 2=(-1, 1, 0)T , 向量p 2就是对应于特征值λ2=-1的特征值向量. 对于特征值λ3=9, 由⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛---=-00021101113333823289~E A , 得方程(A -9E )x =0的基础解系p 3=(1/2, 1/2, 1)T , 向量p 3就是对应于特征值λ3=9的特征值向量.(3)⎪⎪⎪⎭⎫⎝⎛0001001001001000.(和书后答案不同,以书后为主,但解题步骤可以参考) 解 22)1()1(01010010100||+-=----=-λλλλλλλE A , 故A 的特征值为λ1=λ2=-1, λ3=λ4=1. 对于特征值λ1=λ2=-1, 由⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛=+00000000011010011001011001101001~E A , 得方程(A +E )x =0的基础解系p 1=(1, 0, 0, -1)T , p 2=(0, 1, -1, 0)T , 向量p 1和p 2是对应于特征值λ1=λ2=-1的线性无关特征值向量.对于特征值λ3=λ4=1, 由⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫⎝⎛----=-00000000011010011001011001101001~E A , 得方程(A -E )x =0的基础解系p 3=(1, 0, 0, 1)T , p 4=(0, 1, 1, 0)T , 向量p 3和p 4是对应于特征值λ3=λ4=1的线性无关特征值向量.6. 设A 为n 阶矩阵, 证明A T 与A 的特征值相同. 证明 因为|A T -λE |=|(A -λE )T |=|A -λE |T =|A -λE |,所以A T 与A 的特征多项式相同, 从而A T 与A 的特征值相同.7. 设n 阶矩阵A 、B 满足R (A )+R (B )<n , 证明A 与B 有公共的特征值, 有公共的特征向量.证明 设R (A )=r , R (B )=t , 则r +t <n .若a 1, a 2, ⋅⋅⋅, a n -r 是齐次方程组A x =0的基础解系, 显然它们是A 的对应于特征值λ=0的线性无关的特征向量.类似地, 设b 1, b 2, ⋅⋅⋅, b n -t 是齐次方程组B x =0的基础解系, 则它们是B 的对应于特征值λ=0的线性无关的特征向量.由于(n -r )+(n -t )=n +(n -r -t )>n , 故a 1, a 2, ⋅⋅⋅, a n -r , b 1, b 2, ⋅⋅⋅, b n -t 必线性相关. 于是有不全为0的数k 1, k 2, ⋅⋅⋅, k n -r , l 1, l 2, ⋅⋅⋅, l n -t , 使k 1a 1+k 2a 2+ ⋅⋅⋅ +k n -r a n -r +l 1b 1+l 2b 2+ ⋅⋅⋅ +l n -r b n -r =0.记 γ=k 1a 1+k 2a 2+ ⋅⋅⋅ +k n -r a n -r =-(l 1b 1+l 2b 2+ ⋅⋅⋅ +l n -r b n -r ), 则k 1, k 2, ⋅⋅⋅, k n -r 不全为0, 否则l 1, l 2, ⋅⋅⋅, l n -t 不全为0, 而l 1b 1+l 2b 2+ ⋅⋅⋅ +l n -r b n -r =0,与b 1, b 2, ⋅⋅⋅, b n -t 线性无关相矛盾.因此, γ≠0, γ是A 的也是B 的关于λ=0的特征向量, 所以A 与B 有公共的特征值, 有公共的特征向量.8. 设A 2-3A +2E =O , 证明A 的特征值只能取1或2.证明设λ是A的任意一个特征值,x是A的对应于λ的特征向量,则(A2-3A+2E)x=λ2x-3λx+2x=(λ2-3λ+2)x=0.因为x≠0,所以λ2-3λ+2=0,即λ是方程λ2-3λ+2=0的根,也就是说λ=1或λ=2.9.设A为正交阵,且|A|=-1,证明λ=-1是A的特征值.证明因为A为正交矩阵,所以A的特征值为-1或1.(需要说明)因为|A|等于所有特征值之积,又|A|=-1,所以必有奇数个特征值为-1,即λ=-1是A的特征值.10.设λ≠0是m阶矩阵A m⨯n B n⨯m的特征值,证明λ也是n阶矩阵BA的特征值.证明设x是AB的对应于λ≠0的特征向量,则有(AB)x=λx,于是B(AB)x=B(λx),或BA(B x)=λ(B x),从而λ是BA的特征值,且B x是BA的对应于λ的特征向量.11.已知3阶矩阵A的特征值为1, 2, 3,求|A3-5A2+7A|.解令ϕ(λ)=λ3-5λ2+7λ,则ϕ(1)=3,ϕ(2)=2,ϕ(3)=3是ϕ(A)的特征值,故|A3-5A2+7A|=|ϕ(A)|=ϕ(1)⋅ϕ(2)⋅ϕ(3)=3⨯2⨯3=18.12.已知3阶矩阵A的特征值为1, 2,-3,求|A*+3A+2E|.解因为|A|=1⨯2⨯(-3)=-6≠0,所以A可逆,故A*=|A|A-1=-6A-1,A*+3A+2E=-6A-1+3A+2E.令ϕ(λ)=-6λ-1+3λ+2,则ϕ(1)=-1,ϕ(2)=5,ϕ(-3)=-5是ϕ(A)的特征值,故|A*+3A+2E|=|-6A-1+3A+2E|=|ϕ(A)|=ϕ(1)⋅ϕ(2)⋅ϕ(-3)=-1⨯5⨯(-5)=25.13.设A、B都是n阶矩阵,且A可逆,证明AB与BA相似.证明 取P =A , 则P -1ABP =A -1ABA =BA ,即AB 与BA 相似.14. 设矩阵⎪⎪⎭⎫⎝⎛=50413102x A 可相似对角化, 求x .解 由)6()1(50413102||2---=---=-λλλλλλx E A ,得A 的特征值为λ1=6, λ2=λ3=1.因为A 可相似对角化, 所以对于λ2=λ3=1, 齐次线性方程组(A -E )x =0有两个线性无关的解, 因此R (A -E )=1. 由⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-00030010140403101)(~x x E A r知当x =3时R (A -E )=1, 即x =3为所求.15. 已知p =(1, 1, -1)T 是矩阵⎪⎪⎭⎫⎝⎛---=2135212b a A 的一个特征向量.(1)求参数a , b 及特征向量p 所对应的特征值; 解 设λ是特征向量p 所对应的特征值, 则(A -λE )p =0, 即⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛------0001112135212λλλb a ,解之得λ=-1, a =-3, b =0.(2)问A 能不能相似对角化?并说明理由. 解 由3)1(201335212||--=-------=-λλλλλE A ,得A 的特征值为λ1=λ2=λ3=1. 由⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛----=-00011010111325211~r b E A知R (A -E )=2, 所以齐次线性方程组(A -E )x =0的基础解系只有一个解向量. 因此A 不能相似对角化.16. 试求一个正交的相似变换矩阵, 将下列对称阵化为对角阵:(1)⎪⎪⎭⎫⎝⎛----020212022;解 将所给矩阵记为A . 由λλλλ-------=-20212022E A =(1-λ)(λ-4)(λ+2),得矩阵A 的特征值为λ1=-2, λ2=1, λ3=4. 对于λ1=-2, 解方程(A +2E )x =0, 即0220232024321=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----x x x , 得特征向量(1, 2, 2)T , 单位化得T)32 ,32 ,31(1=p .对于λ2=1, 解方程(A -E )x =0, 即0120202021321=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-----x x x ,得特征向量(2, 1, -2)T , 单位化得T )32 ,31 ,32(2-=p .对于λ3=4, 解方程(A -4E )x =0, 即0420232022321=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-------x x x , 得特征向量(2, -2, 1)T , 单位化得T )31 ,32 ,32(3-=p . 于是有正交阵P =(p 1, p 2, p 3), 使P -1AP =diag(-2, 1, 4).(2)⎪⎪⎭⎫ ⎝⎛----542452222. (和书后答案不同,以书后答案为准,解题步骤可以参考)解 将所给矩阵记为A . 由λλλλ-------=-542452222E A =-(λ-1)2(λ-10),得矩阵A 的特征值为λ1=λ2=1, λ3=10. 对于λ1=λ2=1, 解方程(A -E )x =0, 即⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----000442442221321x x x , 得线性无关特征向量(-2, 1, 0)T 和(2, 0, 1)T , 将它们正交化、单位化得T 0) 1, ,2(511-=p , T 5) ,4 ,2(5312=p .对于λ3=10, 解方程(A -10E )x =0, 即⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-------000542452228321x x x , 得特征向量(-1, -2, 2)T , 单位化得T )2 ,2 ,1(313--=p .于是有正交阵P =(p 1, p 2, p 3), 使P -1AP =diag(1, 1, 10).17. 设矩阵⎪⎪⎭⎫⎝⎛------=12422421x A 与⎪⎪⎭⎫ ⎝⎛-=Λy 45相似, 求x , y ; 并求一个正交阵P , 使P -1AP =Λ.解 已知相似矩阵有相同的特征值, 显然λ=5, λ=-4, λ=y 是Λ的特征值, 故它们也是A 的特征值. 因为λ=-4是A 的特征值, 所以0)4(9524242425|4|=-=---+---=+x x E A ,解之得x =4.已知相似矩阵的行列式相同, 因为100124242421||-=-------=A , y y2045||-=-=Λ,所以-20y =-100, y =5.对于λ=5, 解方程(A -5E )x =0, 得两个线性无关的特征向量(1, 0, -1)T , (1, -2, 0)T . 将它们正交化、单位化得T )1 ,0 ,1(211-=p , T )1 ,4 ,1(2312-=p .对于λ=-4, 解方程(A +4E )x =0, 得特征向量(2, 1, 2)T , 单位化得T )2 ,1 ,2(313=p .于是有正交矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=23132212343102313221P , 使P -1AP =Λ. 18. 设3阶方阵A 的特征值为λ1=2, λ2=-2, λ3=1; 对应的特征向量依次为p 1=(0, 1, 1)T ,p 2=(1, 1, 1)T , p 3=(1, 1, 0)T , 求A .解 令P =(p 1, p 2, p 3), 则P -1AP =diag(2, -2, 1)=Λ, A =P ΛP -1. 因为⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛=--11011101101111111011P ,所以⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=Λ=-1101110111000200020111111101P P A ⎪⎪⎪⎭⎫⎝⎛------=244354332. 19. 设3阶对称阵A 的特征值为λ1=1, λ2=-1, λ3=0; 对应λ1、λ2的特征向量依次为p 1=(1, 2, 2)T , p 2=(2, 1, -2)T , 求A .解 设⎪⎪⎭⎫⎝⎛=653542321x x x x x x x x x A , 则A p 1=2p 1, A p 2=-2p 2, 即 ⎪⎩⎪⎨⎧=++=++=++222222122653542321x x x x x x x x x , ---① ⎪⎩⎪⎨⎧=-+-=-+-=-+222122222653542321x x x x x x x x x . ---② 再由特征值的性质, 有x 1+x 4+x 6=λ1+λ2+λ3=0. ---③由①②③解得612131x x --=, 6221x x =, 634132x x -=,642131x x -=, 654132x x +=. 令x 6=0, 得311-=x , x 2=0, 323=x , 314=x , 325=x .因此⎪⎪⎭⎫ ⎝⎛-=022********A . 20. 设3阶对称矩阵A 的特征值λ1=6, λ2=3, λ3=3, 与特征值λ1=6对应的特征向量为p 1=(1, 1, 1)T , 求A .解 设⎪⎪⎭⎫⎝⎛=653542321x x x x x x x x x A .因为λ1=6对应的特征向量为p 1=(1, 1, 1)T , 所以有⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛1116111A , 即⎪⎩⎪⎨⎧=++=++=++666653542321x x x x x x x x x ---①. λ2=λ3=3是A 的二重特征值, 根据实对称矩阵的性质定理知R (A -3E )=1. 利用①可推出⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛---=-331113333653542653542321~x x x x x x x x x x x x x x x E A .因为R (A -3E )=1, 所以x 2=x 4-3=x 5且x 3=x 5=x 6-3, 解之得x 2=x 3=x 5=1, x 1=x 4=x 6=4.因此⎪⎪⎭⎫⎝⎛=411141114A .21. 设a =(a 1, a 2, ⋅⋅⋅, a n )T , a 1≠0, A =aa T .(1)证明λ=0是A 的n -1重特征值;证明 设λ是A 的任意一个特征值, x 是A 的对应于λ的特征向量, 则有 A x =λx ,λ2x =A 2x =aa T aa T x =a T a A x =λa T ax , 于是可得λ2=λa T a , 从而λ=0或λ=a T a .设λ1, λ2, ⋅ ⋅ ⋅, λn 是A 的所有特征值, 因为A =aa T 的主对角线性上的元素为a 12, a 22, ⋅ ⋅ ⋅, a n 2, 所以a 12+a 22+ ⋅ ⋅ ⋅ +a n 2=a T a =λ1+λ2+ ⋅ ⋅ ⋅ +λn ,这说明在λ1, λ2, ⋅ ⋅ ⋅, λn 中有且只有一个等于a T a , 而其余n -1个全为0, 即λ=0是A 的n -1重特征值.(2)求A 的非零特征值及n 个线性无关的特征向量. 解 设λ1=a T a , λ2= ⋅ ⋅ ⋅ =λn =0.因为A a =aa T a =(a T a )a =λ1a , 所以p 1=a 是对应于λ1=a T a 的特征向量.对于λ2= ⋅ ⋅ ⋅ =λn =0, 解方程A x =0, 即aa T x =0. 因为a ≠0, 所以a T x =0, 即a 1x 1+a 2x 2+ ⋅ ⋅ ⋅ +a n x n =0, 其线性无关解为p 2=(-a 2, a 1, 0, ⋅⋅⋅, 0)T , p 3=(-a 3, 0, a 1, ⋅⋅⋅, 0)T ,⋅ ⋅ ⋅,p n =(-a n , 0, 0, ⋅⋅⋅, a 1)T . 因此n 个线性无关特征向量构成的矩阵为⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-=⋅⋅⋅112212100), , ,(a a a aa a a nn n p p p . 22. 设⎪⎪⎭⎫⎝⎛-=340430241A , 求A 100. 解 由)5)(5)(1(340430241||+---=----=-λλλλλλλE A ,得A 的特征值为λ1=1, λ2=5, λ3=-5.对于λ1=1, 解方程(A -E )x =0, 得特征向量p 1=(1, 0, 0)T . 对于λ1=5, 解方程(A -5E )x =0, 得特征向量p 2=(2, 1, 2)T . 对于λ1=-5, 解方程(A +5E )x =0, 得特征向量p 3=(1, -2, 1)T . 令P =(p 1, p 2, p 3), 则P -1AP =diag(1, 5, -5)=Λ,A =P ΛP -1, A 100=P Λ100P -1. 因为Λ100=diag(1, 5100, 5100),⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛-=--1202105055112021012111P ,所以⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=12021050555112021012151100100100A ⎪⎪⎭⎫⎝⎛-=1001001005000501501.23. 在某国, 每年有比例为p 的农村居民移居城镇, 有比例为q 的城镇居民移居农村, 假设该国总人口数不变, 且上述人口迁移的规律也不变. 把n 年后农村人口和城镇人口占总人口的比例依次记为x n 和y n (x n +y n =1).(1)求关系式⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++n n n n y x A y x 11中的矩阵A ;解 由题意知x n +1=x n +qy n -px n =(1-p )x n +qy n , y n +1=y n +px n -qy n = px n +(1-q )y n , 可用矩阵表示为⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛++n n n n y x q p q p y x 1111,因此⎪⎭⎫⎝⎛--=q p q p A 11.(2)设目前农村人口与城镇人口相等, 即⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛5.05.000y x , 求⎪⎭⎫ ⎝⎛n n y x .解 由⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++n n n n y x A y x 11可知⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛00y x A y x n n n . 由)1)(1(11||q p q p qp E A ++--=----=-λλλλλ,得A 的特征值为λ1=1, λ2=r , 其中r =1-p -q .对于λ1=1, 解方程(A -E )x =0, 得特征向量p 1=(q , p )T . 对于λ1=r , 解方程(A -rE )x =0, 得特征向量p 2=(-1, 1)T . 令⎪⎭⎫⎝⎛-==11) ,(21p q P p p , 则 P -1AP =diag(1, r )=Λ, A =P ΛP -1, A n =P Λn P -1. 于是11100111-⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=p q r p q A n n⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+=q p r p q q p n 11001111 ⎪⎭⎫ ⎝⎛+--++=n n n n qr p pr p qr q pr q q p 1, ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+--++=⎪⎭⎫ ⎝⎛5.05.01n n n n n n qr p pr p qr q pr q q p y x ⎪⎭⎫ ⎝⎛-+-++=n n r p q p r q p q q p )(2)(2)(21.24. (1)设⎪⎭⎫ ⎝⎛--=3223A , 求ϕ(A )=A 10-5A 9; 解 由)5)(1(3223||--=----=-λλλλλE A ,得A 的特征值为λ1=1, λ2=5.对于λ1=1, 解方程(A -E )x =0, 得单位特征向量T )1 ,1(21. 对于λ1=5, 解方程(A -5E )x =0, 得单位特征向量T )1 ,1(21-.于是有正交矩阵⎪⎭⎫ ⎝⎛-=111121P , 使得P -1AP =diag(1, 5)=Λ,从而A =P ΛP -1, A k =P Λk P -1. 因此 ϕ(A )=P ϕ(Λ)P -1=P (Λ10-5Λ9)P -1 =P [diag(1, 510)-5diag(1, 59)]P -1 =P diag(-4, 0)P -1⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=1111210004111121⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛----=111122222. (2)设⎪⎪⎭⎫⎝⎛=122221212A , 求ϕ(A )=A 10-6A 9+5A 8.解 求得正交矩阵为⎪⎪⎪⎭⎫ ⎝⎛---=20223123161P , 使得P -1AP =diag(-1, 1, 5)=Λ, A =P ΛP -1. 于是 ϕ(A )=P ϕ(Λ)P -1=P (Λ10-6Λ9+5Λ8)P -1 =P [Λ8(Λ-E )(Λ-5E )]P -1=P diag(1, 1, 58)diag(-2, 0, 4)diag(-6, -4, 0)P -1 =P diag(12, 0, 0)P -1⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---=222033211001220223123161⎪⎪⎭⎫⎝⎛----=4222112112.25. 用矩阵记号表示下列二次型: (1) f =x 2+4xy +4y 2+2xz +z 2+4yz ; 解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=z y x z y x f 121242121) , ,(.(2) f =x 2+y 2-7z 2-2xy -4xz -4yz ; 解⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-------=z y x z y x f 722211211) , ,(.(3) f =x 12+x 22+x 32+x 42-2x 1x 2+4x 1x 3-2x 1x 4+6x 2x 3-4x 2x 4.解⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛------=432143211021013223111211) , , ,(x x x x x x x x f . 26. 写出下列二次型的矩阵: (1)x x x ⎪⎭⎫ ⎝⎛=1312)(T f ;解 二次型的矩阵为⎪⎪⎭⎫⎝⎛=1222A . (2)x x x ⎪⎪⎭⎫⎝⎛=987654321)(Tf .解 二次型的矩阵为⎪⎪⎪⎭⎫⎝⎛=975753531A .27. 求一个正交变换将下列二次型化成标准形: (1) f =2x 12+3x 22+3x 33+4x 2x 3;解 二次型的矩阵为⎪⎪⎭⎫⎝⎛=320230002A . 由)1)(5)(2(320230002λλλλλλλ---=---=-E A ,得A 的特征值为λ1=2, λ2=5, λ3=1. 当λ1=2时, 解方程(A -2E )x =0, 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=-0001002101202100002~E A ,得特征向量(1, 0, 0)T . 取p 1=(1, 0, 0)T . 当λ2=5时, 解方程(A -5E )x =0, 由⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-0001100012202200035~E A ,得特征向量(0, 1, 1)T . 取T )21 ,21,0(2=p .当λ3=1时, 解方程(A -E )x =0, 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=-000110001220220001~E A ,得特征向量(0, -1, 1)T . 取T )21 ,21 ,0(3-=p .于是有正交矩阵T =(p 1, p 2, p 3)和正交变换x =T y , 使f =2y 12+5y 22+y 32.(2) f =x 12+x 22+x 32+x 42+2x 1x 2-2x 1x 4-2x 2x 3+2x 3x 4.解 二次型矩阵为⎪⎪⎪⎭⎫⎝⎛----=1101111001111011A . 由2)1)(3)(1(1101111001111011--+=--------=-λλλλλλλλE A ,得A 的特征值为λ1=-1, λ2=3, λ3=λ4=1.当λ1=-1时, 可得单位特征向量T )21 ,21 ,21 ,21(1--=p .当λ2=3时, 可得单位特征向量T )21 ,21 ,21 ,21(2--=p . 当λ3=λ4=1时, 可得线性无关的单位特征向量T )0 ,21 ,0 ,21(3=p , T )21 ,0 ,21 ,0(4=p .于是有正交矩阵T =( p 1, p 2, p 3, p 4)和正交变换x =T y , 使f =-y 12+3y 22+y 32+y 42.28. 求一个正交变换把二次曲面的方程3x 2+5y 2+5z 2+4xy -4xz -10yz =1化成标准方程.解 二次型的矩阵为⎪⎪⎭⎫⎝⎛----=552552223A .由)11)(2(552552223||---=-------=-λλλλλλλE A , 得A 的特征值为λ1=2,λ2=11, λ3=0, .对于λ1=2, 解方程(A -2E )x =0, 得特征向量(4, -1, 1)T , 单位化得)231 ,231 ,234(1-=p .对于λ2=11, 解方程(A -11E )x =0, 得特征向量(1, 2, -2)T , 单位化得)32 ,32 ,31(2-=p .对于λ3=0, 解方程A x =0, 得特征向量(0, 1, 1)T , 单位化得)21 ,21,0(3=p . 于是有正交矩阵P =(p 1, p 2, p 3), 使P -1AP =diag(2, 11, 0), 从而有正交变换⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛w v u z y x 21322312132231031234,使原二次方程变为标准方程2u 2+11v 2=1.29. 明: 二次型f =x T A x 在||x ||=1时的最大值为矩阵A 的最大特征值. 证明 A 为实对称矩阵, 则有一正交矩阵T , 使得TAT -1=diag(λ1, λ2, ⋅ ⋅ ⋅, λn )=Λ成立, 其中λ1, λ2, ⋅ ⋅ ⋅, λn 为A 的特征值, 不妨设λ1最大. 作正交变换y =T x , 即x =T T y , 注意到T -1=T T , 有 f =x T A x =y T TAT T y =y T Λy =λ1y 12+λ2y 22+ ⋅ ⋅ ⋅ +λn y n 2. 因为y =T x 正交变换, 所以当||x ||=1时, 有||y ||=||x ||=1, 即y 12+y 22+ ⋅ ⋅ ⋅ +y n 2=1.因此f =λ1y 12+λ2y 22+ ⋅ ⋅ ⋅ +λn y n 2≤λ1,又当y 1=1, y 2=y 3=⋅ ⋅ ⋅=y n =0时f =λ1, 所以f max =λ1.30. 用配方法化下列二次形成规范形, 并写出所用变换的矩阵. (1) f (x 1, x 2, x 3)=x 12+3x 22+5x 32+2x 1x 2-4x 1x 3; 解 f (x 1, x 2, x 3)=x 12+3x 22+5x 32+2x 1x 2-4x 1x 3 =(x 1+x 2-2x 3)2+4x 2x 3+2x 22+x 32 =(x 1+x 2-2x 3)2-2x 22+(2x 2+x 3)2.令 ⎪⎩⎪⎨⎧+==-+=323223211222x x y x y x x x y , 即⎪⎪⎩⎪⎪⎨⎧+-==+-=323223211221225y y x y x y y y x , 二次型化为规范形f =y 12-y 22+y 32,所用的变换矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛--=12002102251C .(2) f (x 1, x 2, x 3)=x 12+2x 32+2x 1x 3+2x 2x 3; 解 f (x 1, x 2, x 3)=x 12+2x 32+2x 1x 3+2x 2x 3 =(x 1+x 3)2+x 32+2x 2x 3; =(x 1+x 3)2-x 22+(x 2+x 3)2.令 ⎪⎩⎪⎨⎧+==+=32322311x x y x y x x y , 即⎪⎩⎪⎨⎧+-==-+=323223211y y x y x y y y x ,二次型化为规范形f =y 12-y 22+y 32,所用的变换矩阵为⎪⎪⎭⎫⎝⎛--=110010111C .(3) f (x 1, x 2, x 3)=2x 12+x 22+4x 32+2x 1x 2-2x 2x 3. 解 f (x 1, x 2, x 3)=2x 12+x 22+4x 32+2x 1x 2-2x 2x 3.3223222212421)21(2x x x x x x -+++= 232322212)2(21)21(2x x x x x +-++=. 令 ⎪⎪⎩⎪⎪⎨⎧=-=+=333222112)2(21)21(2x y x x y x x y , 即⎪⎪⎩⎪⎪⎨⎧=+=--=33322321121222212121y x y y x y y y x , 二次型化为规范形f =y 12+y 22+y 32,所用的变换矩阵为⎪⎪⎭⎫ ⎝⎛--=10022011121C . 31. 设f =x 12+x 22+5x 32+2ax 1x 2-2x 1x 3+4x 2x 3为正定二次型, 求a .解 二次型的矩阵为⎪⎪⎭⎫⎝⎛--=5212111a a A , 其主子式为 a 11=1, 2111a a a -=, )45(5212111+-=--a a a a . 因为f 为正主二次型, 所以必有1-a 2>0且-a (5a +4)>0, 解之得054<<-a .32. 判别下列二次型的正定性:(1) f =-2x 12-6x 22-4x 32+2x 1x 2+2x 1x 3;。

第二章 线性方程组数值解法范文

第二章  线性方程组数值解法范文

第二章 线性方程组数值解法A 直接方法1. 考虑方程组:(a) 用高斯消去法解此方程组(用四位小数计算),(b) 用列主元消去法解上述方程组并且与(a)比较结果。

2. (a) 设A 是对称阵且,经过高斯消去法一步后,A 约化为证明A 2是对称矩阵。

(b)用高斯消去法解对称方程组:4. 设A 为n 阶非奇异矩阵且有分解式A=LU ,其中L 为单位下三角阵,U 为上三角阵,求证A 的所有顺序主子式均不为零。

5. 由高斯消去法说明当时,则A=LU ,其中L 为单位下三角阵,U为上三角阵。

6. 设A 为n 阶矩阵,如果称A 为对角优势阵。

证明:若A是对角优势阵,经过高斯消去法一步后,A 具有形式。

7. 设A 是对称正定矩阵,经过高斯消去法一步后,A 约化为,其中证明 (1)A 的对角元素(2)A 2是对称正定矩阵;(3) (4)A 的绝对值最大的元素必在对角线上; (5)⎪⎪⎩⎪⎪⎨⎧-=+++=+++=+++=+++;2557.03927.02786.04002.01784.0;4240.00643.03781.01920.03645.0;1550.01129.04015.03872.02246.0;4043.02943.03678.01234.04096.04321432143214321x x x x x x x x x x x x x x x x 011≠a ⎥⎦⎤⎢⎣⎡21110A a a T ⎪⎩⎪⎨⎧-=++-=++=-+.8621.02147.14759.08468.0;7321.14759.08423.13475.0;4127.08468.03475.06428.0321321321x x x x x x x x x )1,,2,1(0-=≠∆n i i ),,,2,1(||||1n i a a nij j ij ii =>∑≠=⎥⎦⎤⎢⎣⎡21110A a a T ⎥⎦⎤⎢⎣⎡21110A a a T ;)(,)(1)2(2-==n ij n ij a A a A );,,2,1(0n i a ii=>);,,2,1(,)(n i a a ii n n=≤|;|max ||max ,2)2(,2ij nj i ij nj i a a ≤≤≤≤≤(6)从(2),(3),(5)推出,如果,则对所有k8. 设为指标为k 的初等下三角阵,即(除第k 列对角元下元素外,和单位阵I 相同) 求证当时,也是一个指标为k 的初等下三角阵,其中为初等排列阵。

线性方程组练习带答案

线性方程组练习带答案

1.讨论a ,b 取什么值时,下面方程组有解,对有解的情形,求出一般解。

答案:a =0,b =2有解;其他无解。

(-2,3,0,0)’+k1(1,2,1,0)’+k2(1,1,0,1)’2.设A 是数域F 上的m ×n 矩阵,b 是F 上m 维非零列向量,η是线性方程组AX b =的一个解,12,,,s ξξξ是对应的齐次线性方程组0AX =的一个根底解系。

求证:12,,,,s ηηξηξηξ+++线性无关。

2‘.设*η是非齐次线性方程组AX b =的一个解,,,,12n r ξξξ-是对应的齐次线性方程组的一个根底解系,证明:〔1〕*η,,,,12n r ξξξ-线性无关,〔2〕*η,***,,12n r ξηξηξη+++-线性无关,〔3〕非齐次线性方程组AX b =的任一个解可表示为*1122x k k k k n r n r ηηηη=+++--〔其中1η=*1ξη+,,*n r n r ηξη=+--且112k k k n r ++=-〕。

3.设向量组123,,ααα线性无关,向量1β可由123,,ααα线性表示,而向量2β不能由123,,ααα线性表示,那么对于任意常数k ,必有〔 〕A(A) 12312,,,k αααββ+线性无关; 〔B 〕12312,,,k αααββ+线性相关;( C) 12312,,,k αααββ+线性无关; (D) 12312,,,k αααββ+线性相关4.12,ββ是非齐次线性方程组Ax b =的两个不同的解,12,αα是0Ax =的根底解系,12,k k 为任意常数,那么方程组Ax b =的通解必是〔 B 〕〔A 〕1211212();2k k ββααα-+++ 〔B 〕1211212();2k k ββααα+++- (C)1211212();2k k ββαββ-+++ (D)1211212().2k k ββαββ+++- 5.设线性方程组(Ⅰ)的导出组(Ⅱ)必有下面 (A)(A) 当(Ⅰ)只有唯一解,那么(Ⅱ)只有零解(B) (Ⅰ)有解B 的充分必要是(Ⅱ)有解(C) (Ⅰ)有非零解,那么(Ⅱ)有无穷多解(D) (Ⅱ)有非零解,那么(Ⅰ)有无穷多解6.试就k 的取值情况讨论以下线性方程组的解,并在有无穷的解时求出通解:1〕k 不为0且 不等于2时,有唯一解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 线性方程组习题解答习题2.1解下列线性方程组(1)⎪⎩⎪⎨⎧=++=++=-+.053,12,1321321321x x x x x x x x x解:对方程组的增广矩阵作初等行变换⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛-300002101111342002101111015311211111 由最后一行可得原方程组无解.(2)⎪⎪⎩⎪⎪⎨⎧-=-+-=+-=-+=-+.153,22,132,3321321321321x x x x x x x x x x x x解:对方程组的增广矩阵作初等行变换⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------→⎪⎪⎪⎪⎪⎭⎫⎝⎛------0000210030102001000021003010501100001050051103111102205230511031111513212113123111原方程组有唯一解.2,3,2321===x x x(3)⎪⎩⎪⎨⎧=-++=--+=-++.165105,8362,42432143214321x x x x x x x x x x x x解:对方程组的增广矩阵作初等行变换⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛-----→⎪⎪⎪⎭⎫ ⎝⎛----10100310203102140400013204112116511058316241121⎪⎪⎪⎪⎭⎫ ⎝⎛-→10100232101000001 方程组有无穷多解,其通解为⎪⎪⎩⎪⎪⎨⎧==+==,,1,223,04321c x x c x x 其中c 为任意数.(4)⎪⎩⎪⎨⎧=+--=-+-=+--.032,03,0432143214321x x x x x x x x x x x x解 对方程组系数矩阵作初等行变换⎪⎪⎪⎭⎫⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎭⎫ ⎝⎛------000021001011210042001111321131111111 方程组的通解为⎪⎪⎩⎪⎪⎨⎧===+=,,2,,242312211c x c x c x c c x 其中21,c c 为任意数.习题2.21.用初等行变换将下列矩阵化成阶梯形矩阵,并求它们的秩.(1)⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛-21110042220010251413027245310251102517245341302⎪⎪⎪⎭⎫ ⎝⎛--→0000021110010251秩为2.⎪⎪⎪⎪⎪⎭⎫⎝⎛-→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00000100117500104111750030000016000104111750101305004522000104111373104018174188701041)2(秩为3.⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00000000006310052010410013618600189300631005210410016128650281332063100520104100177326543214321631005201041001)3(秩为3.2.求下列各方程组的系数矩阵和增广矩阵的秩.(1)⎪⎪⎩⎪⎪⎨⎧=-+=-+=-+=-+.8852,9934,7532,1278321321321321x x x x x x x x x x x x解 对增广矩阵作初等行变换⎪⎪⎪⎪⎪⎭⎫⎝⎛-→⎪⎪⎪⎪⎪⎭⎫⎝⎛---→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----000011001191012781770077001191012781132042101191012781132051301791301278188529934753212781系数矩阵与增广矩阵秩均为3.(2)⎪⎪⎩⎪⎪⎨⎧-=++=-+-=++=+++.14,432,152,1224214314314321x x x x x x x x x x x x x解 对增广矩阵作初等行变换⎪⎪⎪⎪⎪⎭⎫⎝⎛-----→⎪⎪⎪⎪⎪⎭⎫⎝⎛------→⎪⎪⎪⎪⎪⎭⎫⎝⎛--------→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---3400056200313201221122200562003132012211222002512031320122111411413021510212211系数矩阵与增广矩阵的秩均为4.习题2.31.解下列各非齐次线性方程组.(1)⎪⎩⎪⎨⎧=+-=-+=+-.3,053,32321321321x x x x x x x x x解 对方程组增广矩阵作初等行变换⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎭⎫ ⎝⎛-----→⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛---340031103111311098403111311205133111311105133112 ⎪⎪⎪⎭⎫ ⎝⎛--→4/31004/150100001 原方程组有唯一解43,415,0321-=-==x x x . (2)⎪⎩⎪⎨⎧=++--=-+-=++-.52,12,12432143214321x x x x x x x x x x x x解 由第一个方程和第三个方程可得原方程组无解(3)⎪⎪⎩⎪⎪⎨⎧=++-=++-=++-=++-.149132,21111784,72463,735424321432143214321x x x x x x x x x x x x x x x x解 对方程组增广矩阵作初等行变换⎪⎪⎪⎪⎪⎭⎫⎝⎛----------→⎪⎪⎪⎪⎪⎭⎫⎝⎛----→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----211521003525350035253500149132173542211117847246314913211491321211117847246373542 ⎪⎪⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-→000000000017/510017/20210000000000757001491321因此原方程组有无穷多解,其通解为⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==++=,,751,,7221242312211c x c x c x c c x 其中21,c c 为任意数.2.解下列各齐次线性方程组(1)⎪⎩⎪⎨⎧=+-=-+=+-.33,053,022321321321x x x x x x x x x解 对方程组系数矩阵作初等行变换⎪⎪⎪⎭⎫⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛---5001440311122513311311513122 系数矩阵秩为3,原方程组只有零解.即解为.0,0,0321===x x x(2)⎪⎩⎪⎨⎧=+-+=-+-=+-+.0111353,0333,04523432143214321x x x x x x x x x x x x解 对方程组系数矩阵作初等行变换化为行简化阶梯形得⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎭⎫ ⎝⎛----00003/73/8109/29/10100003/73/8103/23/10378307830452311135333134523原方程组的一般解为⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=+-=,,,3738,92912413212211c x c x c c x c c x 其中21,c c 为任意数. (3)⎪⎪⎩⎪⎪⎨⎧=+-=--=+-=+-.0,0,0,05416521642531x x x x x x x x x x x x x解 对方程组系数矩阵作初等行变换化为行简化阶梯形得⎪⎪⎪⎪⎪⎭⎫⎝⎛----→⎪⎪⎪⎪⎪⎭⎫⎝⎛----→⎪⎪⎪⎪⎪⎭⎫⎝⎛----001100201100101010010101001100100110101010010101011001110011101010010101⎪⎪⎪⎪⎪⎭⎫⎝⎛---→⎪⎪⎪⎪⎪⎭⎫⎝⎛---→10000000110000101001100120000201100101010010101 原方程组的通解为⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=====-=,0,,,,,625141312211x c x c x c x c x c c x 其中21,c c 为任意数.3.某工厂为两家企业加工3种零件,现3种零部件各有,1,2,3t t t 两家企业需要3种部件分别为t 4和t 2.用)3,2,1;2,1(==j i x ij 表示第i 家企业需要第j 种部件的数量,试列出ij x 所满足的方程组,并求解. 解 根据题意可得ij x 所满足的方程组为⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+=++=++12324231322122111232221131211x x x x x x x x x x x x ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛000000021110001100100201001011100011100100201001030010012111000000000011001002010010300100121110004000111其通解为.2,1,2,123222123132212232211x x x x x x x x x x --=-=-=++=4.当a 为何值时,方程组⎪⎩⎪⎨⎧=++++=+-+=+++3)3()1(3,)1(,2)3(321321321x a ax x a a x x a ax a x x x a (1)有唯一解.(2)有无穷多解.(3)无解?解法一:系数行列式为)1(33332333323130103)1(311213222222-=-+----=-+--+---=-+---+--=++-+a a aa aaa a a a a a a a a a a a a a a a a a (1)当,0≠a 且1≠a 时,方程组有唯一解.(2)当时1=a ,原方程组为⎪⎩⎪⎨⎧=++=+=++.346,1,12432131321x x x x x x x x 增广矩阵作初等行变换化为阶梯形⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎭⎫ ⎝⎛000032101101321011013210341611011214 方程组有无穷多解,其通解为⎪⎩⎪⎨⎧=+-=-=,,23,1321c x c x c x 其中c 为任意数. (3)当0=a 时,原方程组为 增广矩阵作初等行变换化为阶梯形⎪⎪⎪⎭⎫⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛-300001100213311001100213330301100213 因此方程组无解.解法二:对方程组的增广矩阵作初等行变换化为阶梯形.⎪⎪⎪⎪⎭⎫ ⎝⎛-----+-→⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎭⎫ ⎝⎛++-+a a a a aa a a a a a a a a a a a a a a aa a 331103133001233323311012333)1(3112132⎪⎪⎪⎭⎫ ⎝⎛----+--+-⎪⎪⎪⎭⎫ ⎝⎛-----+-→a a a a a ar r a a a a a a a a a 33110361100123)2(331103330012322232⎪⎪⎪⎭⎫⎝⎛----+--→)1)(39()1(003611001232222a a a a a a a (1)当,0≠a 且1≠a 时,系数矩阵与增广矩阵的秩都为3,方程组有唯一解. (2)当0=a 时,系数矩阵的秩为2,增广矩阵的秩为3,方程组无解.(3)当1=a 时,系数矩阵与增广矩阵的秩都为2,方程组有无穷多解.此时增广矩阵化为⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛-000032101101000032103303000032100113其通解为⎪⎩⎪⎨⎧=+-=-=,,23,1321c x c x c x 其中c 为任意数. 5.问当b a ,为何值时,方程组⎪⎪⎩⎪⎪⎨⎧=++-=++-=++=++bx x x ax x x x x x x x x 321321321321453,7,132,632 (1)有唯一解.(2)有无穷多解.(3)无解? 解:对方程组增广矩阵作初等行变换化为阶梯形得⎪⎪⎪⎪⎪⎭⎫⎝⎛-+--→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--500002001351207015000020013516321185101331013510632145371111326321b a b a b a b a (1)当5,2=-≠b a 时方程组有唯一解,其解为0,13,20321==-=x x x . (2)当5,2=-=b a 时方程组有无穷多解,其通解为⎪⎩⎪⎨⎧=-=+-=,,513,720321c x c x c x 其中c 为任意数. (3)当5≠b 时,方程组无解.总复习题2(A )1.填空题(1)非齐次线性方程组(系数矩阵为n m ⨯矩阵A ,增广矩阵为B )有唯一解的充分必要条件是n B r A r ==)()(.(2)线性方程组无解,系数矩阵为A ,且,3)(=A r 则增广矩阵的秩为=),(b A r 4 . (3)若n x x x ,,,21 取任意数都是齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++0,,0,0221122221211212111n mn m m nn n n x a x a x a x a x a x a x a x a x a 的解,则系数矩阵A 的秩=)(A r 0 .(4)若矩阵⎪⎪⎪⎭⎫⎝⎛-=20224312a A 的秩为2,则=a 2 .方法一:⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛-=20011031211064031220224312a a a A .方法二:显然A 取1,2两行以及1,2两列的2阶子式不为0,要使A 的秩为2,则024812282224312||=-=+--=-=a a a A . 2.选择题(1)方程组⎩⎨⎧=+=+,0,02121x x x x λλ当=λ( C )时,方程组仅有零解.A.1-B. 1C. 2D.任意实数要使齐次线性方程组只有零解,则系数矩阵的秩为2,当1±=λ时秩为1.(2)当=k ( A )时,方程组⎪⎩⎪⎨⎧--=--=+=-+)4)(3()2)(1(2242332321k k x k k x x x x x 无解.A. 2B. 3C. 4D. 5(3)A 为n m ⨯矩阵,,)(n m A r <=下列结论正确的是( B ,D ) A.以A 为系数矩阵的齐次线性方程组仅有零解 B.以A 为系数矩阵的齐次线性方程组有非零解 C.以A 为系数矩阵的非齐次线性方程组仅有一解 D.以A 为系数矩阵的非齐次线性方程组有无穷多解系数矩阵的秩等于行数,增广矩阵的秩也等于行数,而且秩小于未知数的个数,因此有无穷多解.(4)对于非齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212*********,,,以下结论中,(B )不正确.A.若方程组无解,则系数行列式D=0B.若方程组有解,则系数行列式0≠DC.若方程组有解,则方程组或者有唯一解或者有无穷多解D.系数行列式0≠D 是方程组有唯一解的充分必要条件 (5)A 为n m ⨯矩阵,,)(r A r =下列结论中正确的是( B )A.n r =时,以A 为系数矩阵的非齐次线性方程组有唯一解B.n m r ==时,以A 为系数矩阵的非齐次线性方程组有唯一解C.n r <时,以A 为系数矩阵的非齐次线性方程组有无穷多解D.n m =时,以A 为系数矩阵的非齐次线性方程组有解非齐次线性方程组有解的充要条件是系数矩阵的秩等于增广矩阵的秩,当n r =时,若n m >,有可能增广矩阵为1+n .因此A,C 不正确,当n m =时,系数矩阵与增广矩阵秩未必相等.D 也不正确.(6)已知非齐次线性方程组的系数行列式为零,则( D ).A.方程组有无穷多解B.方程组无解C.方程组有唯一解或无穷多解D.方程组可能无解,也可能有无穷多解(B )1.用矩阵消元法解下列方程组(1)⎪⎩⎪⎨⎧=++--=-+-=++-.552,12,12432143214321x x x x x x x x x x x x解:对方程组增广矩阵作初等行变换得⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛-----000001100000121440002200011121551************ 方程组有无穷多解,其通解为⎩⎨⎧=-=124321x x x x ,其中32,x x 为自由未知量. (2)⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++=-++=-++=+++=-++.2255,123,1222,132,13243214321432143214321x x x x x x x x x x x x x x x x x x x x解:对方程组增广矩阵作初等行变换得⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛------→⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-------------→⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---00000291200156001351011321361350228401142013510113212125511123112221113211321 ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----→00000010006/101006/100106/100010000001000156001351015701方程组有唯一解.0,614321====x x x x(3)⎪⎪⎩⎪⎪⎨⎧=++-=+-+=-+-=+-+.0327,01613114,02332,075434321432143214321x x x x x x x x x x x x x x x x解:对方程组系数矩阵作初等行变换化为阶梯形得⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----605751020191702019170987131272019170233298713127161311423327543⎪⎪⎪⎪⎪⎭⎫⎝⎛--→0000000017/2017/191017/1317/301 方程组有无穷多解,通解为⎪⎩⎪⎨⎧-=-=432431172017191713173x x x x x x ,43,x x 为自由未知数.(4)⎪⎪⎩⎪⎪⎨⎧=+--=+-+-=+-+=-+-.03724,0347,0532,02534321432143214321x x x x x x x x x x x x x x x x解:对方程组系数矩阵作初等行变换化为阶梯形得⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------152326071116002103471152326071116071317034713724347115322153⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----→100072100021034711529007210002103471 方程组只有零解. 2.对方程组⎪⎪⎩⎪⎪⎨⎧=-+++=+++=-+++=++++,3345,3622,323,15432154325432154321b x x x x x x x x x a x x x x x x x x x x b a ,为何值时,方程组有解.在方程组有解时,求其解.解:对方程组增广矩阵作初等行变换得⎪⎪⎪⎪⎪⎭⎫⎝⎛-----→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----------→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--20000003622102511015622103622103622101111111334536221031123111111b a b a b a 当2,0==b a 时,方程组有解,其通解为54354325431,,,6223,52x x x x x x x x x x x ⎩⎨⎧---=+++-=为自由未知量. 3.d c b a ,,,满足什么条件时,方程组⎪⎪⎩⎪⎪⎨⎧=--+=+--=-+-=+++0,0,0,04321432143214321ax bx cx dx bx ax dx cx cx dx ax bx dx cx bx ax 只有零解?解:要使方程组只有零解,则系数矩阵秩为4,即系数行列式不为零.利用矩阵乘积的行列式等于行列式的积有⎪⎪⎪⎪⎪⎭⎫⎝⎛------⎪⎪⎪⎪⎪⎭⎫⎝⎛------=------=a b cdb a d cc d a b d cb aa b cd b a d cc d a bd c b a a b cdb a dc cd a b dc b a D 2222222222222222220000000000d c b a dc b ad c b a d c b a ++++++++++++=42222)(d c b a +++=.而D 中4a 的系数为负,故22222)(d c b a D +++-=.在实数范围内,当d c b a ,,,至少一个不为零时,方程组只有零解.4.问μλ,取何值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++02,0,0321321321x x x x x x x x x μμλ有非零解?解:当且仅当系数矩阵秩小于3,即系数行列式为零时,方程组有非零解.)1(0011111211111--===λμμμλμμλD因此当,0=μ或1=λ时方程组有非零解.5.问λ取何值时,齐次线性方程组⎪⎩⎪⎨⎧=-++=+-+=+--0)1(,0)3(2,042)1(321321321x x x x x x x x x λλλ有非零解?解:当且仅当系数行列式为零时,该方程组有非零解.)2)(3(001121232311111324212+--=--++---=----=λλλλλλλλλλλλD .因此当230-===λλλ或或时,方程组有非零解.(C )1.设方程组⎪⎩⎪⎨⎧=+++=+++=+++.,743,8234343212432114321b x x x x b x x x x b x x x x 证明此方程组对任意实数321,,b b b 都有解. 证明:对方程组增广矩阵作初等行变换得⎪⎪⎪⎭⎫⎝⎛-+---→⎪⎪⎪⎭⎫ ⎝⎛-----→⎪⎪⎪⎭⎫ ⎝⎛321323313233217840034210111144210342101111111171438234b b b b b b b b b b b b b b 系数矩阵与增广矩阵的秩均为3,因此方程组对任意实数321,,b b b 都有解. 2.下图为一物流平衡图,其中1x 表示从站A 流向站B 的货物吨数,4x 表示从站B 流向站D 的货物吨数,20表示从站D 流向站C 的货物吨数等.如果要求在每一站流入吨数与流出吨数相等,问54321,,,,x x x x x 应如何选择?ABCDX 1X 2X 3X 4X 5 20解:根据题意可得⎪⎪⎩⎪⎪⎨⎧=-=+=--=-+2020005342541321x x x x x x x x x x选取54,x x 为自由未知量得,.20,20,5342541x x x x x x x +=-=+=3.投入产出模型 设甲,乙,丙3个部门组成一个经济系统.各部门生产满足系统内部和外部的需求,同时也消耗系统内部各部门的产品,如下表所示直接消耗系数表表中,甲部门那一行的0.4表示生产该部门的1元钱产品需消耗甲部门的产品0.4元,同样0.3表示生产甲部门1元钱的产品需消耗乙部门的产品0.3元,其余类似.(第二行乙消耗丙为0.2,否则丙生产出的将在系统内部全部消耗完) (1)求321,,y y y 与321,,x x x 的关系.(2)当321,,y y y 分别为40亿元,24亿元,16亿元时,求321,,x x x 及321,,z z z . 解:(1)根据题意可得⎪⎩⎪⎨⎧+--=-+-=--=.6.01.03.0,2.05.02.0,2.03.06.0321232123211x x x y x x x y x x x y (2)当321,,y y y 分别为40亿元,24亿元,16亿元时,可解得321,,x x x 分别为 232亿元,212亿元和178亿元.2.233.02.04.011111=---=x x x x z 亿元,类似可得2.211.022==x z 亿元6.352.033==x z 亿元.。

相关文档
最新文档