八年级数学下 实数(1)

合集下载

八年级《数学实数》练习题(含答案)

八年级《数学实数》练习题(含答案)

《实数》单元测试题1、()26-的算术平方根是__________。

2、ππ-+-43= _____________。

3、2的平方根是__________。

4、实数a ,b ,c 在数轴上的对应点如图所示 化简cb c b a a ---++2=________________。

5、若m 、n 互为相反数,则n m +-5=_________。

6、若2)2(1-+-n m =0,则m =________,n =_________。

7、若a a -=2,则a______0。

8、12-的相反数是_________。

9、38-=________,38-=_________。

10、绝对值小于π的整数有__________________________。

一、 选择题:(本题共10小题,每小题3分,共30分) 11、代数式12+x,x ,y ,2)1(-m ,33x中一定是正数的有( )。

A 、1个B 、2个C 、3个D 、4个 12、若73-x 有意义,则x 的取值范围是( )。

A 、x >37-B 、x ≥ 37- C 、x >37 D 、x ≥3713、若x ,y 都是实数,且42112=+-+-y x x ,则xy 的值( )。

A 、0B 、21C 、2D 、不能确定 14、下列说法中,错误的是( )。

A 、4的算术平方根是2 B 、81的平方根是±3C 、8的立方根是±2 D、立方根等于-1的实数是-1 15、64的立方根是( )。

A 、±4B 、4C 、-4D 、1616、已知04)3(2=-+-b a ,则ba3的值是( )。

A 、 41B 、- 41C 、433 D 、4317、计算33841627-+-+的值是( )。

A 、1B 、±1C 、2D 、718、有一个数的相反数、平方根、立方根都等于它本身,这个数是( )。

A 、-1 B 、1 C 、0 D 、±1 19、下列命题中,正确的是( )。

八年级数学 实数

八年级数学 实数

一、基础测试1.算术平方根:如果一个正数x 等于a ,即x 2=a ,那么这个x 正数就叫做a 的算术平方根,记作 ,0的算术平方根是 。

2.平方根:如果一个数x 的 等于a ,即x 2=a 那么这个数a 就叫做x 的平方根(也叫做二次方根式),正数a 的平方根记作 .一个正数有 平方根,它们 ;0的平方根是 ;负数 平方根. 特别提醒:负数没有平方根和算术平方根.3.立方根:如果一个数x 的 等于a ,即x 3= a ,那么这个数x 就叫做a 的立方根,记作 .正数的立方根是 ,0的立方根是 ,负数的立方根是 。

4、实数的分类_________⎧⎧⎧⎫⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩⎨⎬⎪⎪⎪⎪⎧⎪⎪⎪⎨⎨⎪⎪⎭⎩⎩⎪⎪⎪⎪⎫⎧⎨⎬⎪⎩⎪⎭⎩______整数____________有限小数或循环小数______实数负分数____________________________________________5.实数与数轴:实数与数轴上的点______________对应.6.实数的相反数、倒数、绝对值:实数a 的相反数为______;若a,b 互为相反数,则a+b=______;非零实数a 的倒数为_____(a ≠0);若a ,b 互为倒数,则ab=________。

7.______(0)||______(0)a a a ≥⎧=⎨<⎩ 8. 数轴上两个点表示的数,______边的总比___边的大;正数_____0,负数_____0,正数___负数;两个负数比较大小,绝对值大的反而____。

9.实数和有理数一样,可以进行加、减、乘、除、乘方运算,而且有理数的运算法则与运算律对实数仍然适用._______(0,_______(0,0).a b a b =≥≥=≥>二、专题讲解:专题1 平方根、算术平方根、立方根的概念若a ≥0,则a的平方根是a;若a<0,则a 没有平方根和算术平方根;若a 为任意实数,则a【例1______【例2】327 的平方根是_________【例3】下列各式属于最简二次根式的是( ) A【例4】(2010山东德州)下列计算正确的是(A)020=(B)331-=- (C) (D)【例5】(2010A .3B .3-C .3±D . 9 专题2 实数的有关概念无理数即无限不循环小数,初中主要学习了四类:含π的数,如:12,2ππ等,开方开不尽010 001…等;某些三角函数,如sin60o ,cos45 o等。

八年级数学《实数(1)》学案

八年级数学《实数(1)》学案

课题:2.5实数(1) 学案一 学习目标:1、知道无理数是客观存在的,了解无理数和实数的概念,能对实数按要求进行分类,同时会判断一个数是有理数还是无理数。

2、知道实数和数轴上的点一一对应。

3、经历用有理数估算2的探索过程,从中感受“逼近”的数学思想,发展数感,激发学生的探索创新精神。

二、重点与难点重点:正确理解实数的概念,如何对无理数的判断。

难点:理解实数的概念三、前置学习1、根据学习目标,预习课本p57页。

完成自学检测: ①2是有理数吗?在直角边均为1直角三角形中,斜边大于直角边,可知 2大于1,三角形中两边之和大于第三边,可知 2<2,所以 <2< , 而在1与22不是一个分数,因为1与2所以2既不是整数,也不是分数,即2不是有理数,是一个无限不循环小数。

无限不循环小数统称为 .三.典型例题例:1.如果a 2==7,,那么a 是有理数吗?2,带根号的数是无理数吗?3.你能在数轴上描出3的大致位置吗?4.数轴上的点与有理数是一一对应吗?四 巩固练习:1、把下列各数填入相应的集合内: 722、38-、0、16、3∏、-5、3.14、-0.1010010001… 0.13131313…-2 有理数集合{ }无理数集合{ }正实数集合{ }负实数集合{ }2、判断正误,若不对,请说明理由,并加以改正。

⑴无理数都是无限小数; ⑵带根号的数不一定是无理数;⑶无限小数都是无理数; ⑷数轴上的点表示有理数;⑸不带根号的数一定是有理数。

3、以数轴的单位长线段为边作一正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A ,则点A 表示的数是( ).A. 211 B.1.4 C.3 D. 24、如42-x +x 24-=0,则实数x= 。

5、一个数x 满足|x|=-x ,那么这个数是( )A 有理数B 无理数C 正实数D 非正实数6、满足-2<X <5的整数有五.拓展延伸:1.完成下列填空⑴=_____,⑵=_____, ⑶=____,⑷=_____, ⑸=_____,⑹231⎪⎭⎫ ⎝⎛-=_____,根据计算结果,回答:⑴a 吗?你发现其中的规律了吗?请你用自己的语言描述出来.。

青岛版八年级数学下册《有序实数对与坐标平面上的点的关系》课件

青岛版八年级数学下册《有序实数对与坐标平面上的点的关系》课件

在数轴上,如何确定一个点的位置呢?
例如:
A
-3 -2
-1
0
1
2
B
3
4
A点记作-2,B点记作3.也就是说,
在直线上一般用一个数据就可以表示一个点的位置。
y
在平面内,两条互相垂直且有
公共原点的数轴组成平面直角坐标
系,如图所示。
5
4
3
2
1
O 1 2 3 4 5 6
水平方向的数轴称为x轴或横轴,垂直方向的数
们分别用直角坐标系中的点表示出来吗?你是怎样表示的?
(3)如果P是直角坐标系中任意一点,怎样写出这个点的坐标呢?
这个点的横、纵坐标都是实数吗?
(4)通过上面的讨论,你认为有序实数对与直角坐标系中的点应
当具有什么关系?
一、有序实数对与直角坐标系中的点的关系
把有序有理数对扩充到有序实数对后,每一
个有序实数对都可以用直角坐标系中唯一的一个
长为2,由勾股定理,得
DB= 2 − 2 = 22 − 12 = 3。
所以,点B的坐标为(-1, 3)。
例2 在直角坐标系中,已知点A( 2, 3)。
(1)分别作出与点A关于y轴成轴对称的点B,关于x
轴成轴对称的点D,并写出它们的坐标;
(2)如果A,B,D是矩形的三个顶点,写出第四个顶
点C的坐标;
(2)依次连接A,B,C,D,E,F,A,得到什么图形?
(3)在平面直角坐标系中,点与实数对之间有何关系?
y
B
C
【解】(1)如图所示。
(2)轴对称图形。
1
(3)在平面直角坐标系中, A
点来表示.反之,直角坐标系中的每一个点都表示

(人教版)八年级数学下册课后习题与答案

(人教版)八年级数学下册课后习题与答案

习题16.11、当a 是怎样的实数时,下列各式在实数范围内有意义?(1(2(3(4. 解析:(1)由a +2≥0,得a ≥-2; (2)由3-a ≥0,得a ≤3; (3)由5a ≥0,得a ≥0; (4)由2a +1≥0,得12a -≥.2、计算:(1)2;(2)2(;(3)2;(4)2;(5;(6)2(-;(7(8).解析:(1)25=;(2)222((1)0.2=-⨯=;(3)227=;(4)2225125=⨯=;(510==;(6)222((7)14-=-⨯=;(723==;(8)25==-.3、用代数式表示:(1)面积为S 的圆的半径;(2)面积为S 且两条邻边的比为2︰3的长方形的长和宽.解析:(1)设半径为r (r>0),由2r S r π==,得;(2)设两条邻边长为2x ,3x (x>0),则有2x ·3x=S ,得x =所以两条邻边长为4、利用2(0)a a =≥,把下列非负数分别写成一个非负数的平方的形式: (1)9;(2)5;(3)2.5;(4)0.25;(5)12;(6)0.解析:(1)9=32;(2)5=2;(3)2.5=2;(4)0.25=0.52;(5)212=;(6)0=02.5、半径为r cm 的圆的面积是,半径为2cm 和3cm 的两个圆的面积之和.求r 的值.解析:222223,13,0,r r r r πππππ=⨯+⨯∴=>∴=.6、△ABC 的面积为12,AB 边上的高是AB 边长的4倍.求AB 的长.7、当x 是怎样的实数时,下列各式在实数范围内有意义?(1(2(3(4 答案:(1)x 为任意实数;(2)x 为任意实数;(3)x >0;(4)x >-1.8、小球从离地面为h (单位:m )的高处自由下落,落到地面所用的时间为t (单位:s ).经过实验,发现h 与t 2成正比例关系,而且当h=20时,t=2.试用h 表示t ,并分别求当h=10和h=25时,小球落地所用的时间.答案:h=5t 29、(1n 所有可能的值;(2n 的最小值. 答案:(1)2,9,14,17,18;(2)6.因为24n=22×6×n n 是6.10、一个圆柱体的高为10,体积为V .求它的底面半径r (用含V 的代数式表示),并分别求当V=5π,10π和20π时,底面半径r 的大小.答案:2r =习题16.21、计算:(1(2(;(3(4答案:(1)(2)-(3)(4)2、计算:(1(2;(3(4答案:(1)32;(2)(3(43、化简:(1(2(3(4答案:(1)14;(2)(3)37;(4.4、化简:(1)2;(2(3;(4;(5(6.答案:(1;(2)2(3)30;(4)3;(5)(6).5、根据下列条件求代数式2b a-的值;(1)a=1,b=10,c=-15;(2)a=2,b=-8,c=5.答案:(1)5-+(26、设长方形的面积为S,相邻两边分别为a,b.(1)已知a=b=S;(2)已知a=,b=,求S.答案:(1);(2)240.7、设正方形的面积为S,边长为a.(1)已知S=50,求a;(2)已知S=242,求a.答案:(1)(2).8、计算:(1(2(3;(4答案:(1)1.2;(2)32;(3)13;(4)15.9 1.414≈的近似值.答案:0.707,2.828.10、设长方形的面积为S,相邻两边长分别为a,b.已知S a==,求b.11、已知长方体的体积V=h=S.答案:263.12、如图,从一个大正方形中裁去面积为15cm 2和24cm 2的两个小正方形,求留下部分的面积.答案:210cm .13、用计算器计算:(19919⨯+(29999199⨯+;(39999991999⨯+(49999999919999⨯+.观察上面几题的结果,你能发现什么规律?用你发现的规律直接写出下题的结果:9999999991999________.n n n ⨯+=个个个答案:(1)10;(2)100;(3)1000;(4)10000.01000n 个.习题16.31、下列计算是否正确?为什么? (1235=(2)2222+=(3)3223=;(418894321-==-=. 答案:(123不能合并; (2)不正确,22 (3)不正确,32222=(4)不正确,222==2、计算:(1);(2(3(4)3a答案:(1)(2(3)(4)17a3、计算:(1(2(3)-;(4)1324-.答案:(1)0;(2(3)(4)4、计算:(1);(2);(3)2;(4)答案:(1)6+(2)-6;(3)95+(4)43+5、已知5 2.236≈,求154545545-+的近似值(结果保留小数点后两位). 答案:7.83.6、已知31,31x y =+=-,求下列各式的值: (1)x 2+2xy +y 2;(2)x 2-y 2. 答案:(1)12;(2)43.7、如图,在Rt △ABC 中,∠C=90°,CB=CA=a .求AB 的长.2a .8、已知110a a+=1a a -的值.答案:6.9、在下列各方程后面的括号内分别给出了一组数,从中找出方程的解: (1)2x 2-6=0,(3,6,3,6);(2)2(x +5)2=24,(523,523,523,523)+--+--. 答案:(1)3(2)235±.复习题161、当x 是怎样的实数时,下列各式在实数范围内有意义? (13x + (221x -;(3(4答案:(1)x ≥-3;(2)12x >;(3)23x <;(4)x ≠1.2、化简:(1 (2; (3 (4(5 (6答案:(1)(2);(3)3;(4)3a (5)(6)6a .3、计算:(1)-;(2)(3);(4)(5)2;(6)2.答案:(1;(2(3)6;(4)2-;(5)35+;(6)5-4、正方形的边长为a cm ,它的面积与长为96cm ,宽为12cm 的长方形的面积相等.求a 的值.答案:5、已知1x =-,求代数式x 2+5x -6的值.答案:5.6、已知2x =-2(7(2x x ++的值.答案:23+.7、电流通过导线时会产生热量,电流I (单位:A )、导线电阻R (单位:Ω)、通电时间t (单位:s )与产生的热量Q (单位:J )满足Q=I 2Rt .已知导线的电阻为5Ω,1s 时间导线产生30J 的热量,求电流I 的值(结果保留小数点后两位).答案:2.45A .8、已知n 是正整数,189n 是整数,求n 的最小值.答案:21. 9、(1)把一个圆心为点O ,半径为r 的圆的面积四等分.请你尽可能多地设想各种分割方法. (2)如图,以点O 为圆心的三个同心圆把以OA 为半径的大圆O 的面积四等分.求这三个圆的半径OB ,OC ,OD 的长.答案:(1)例如,相互垂直的直径将圆的面积四等分; (2)设OA=r ,则12OD r =,2OC =,3OB =.10、判断下列各式是否成立:2233442;33;44.33881515=== 类比上述式子,再写出几个同类型的式子.你能看出其中的规律吗?用字母表示这一规律,并给出证明.答案:2211n n n nn n +=--32211n n n n n +=--,再两边开平方即可.习题17.11、设直角三角形的两条直角边长分别为a和b,斜边长为c.(1)已知a=12,b=5,求c;(2)已知a=3,c=4,求b;(3)已知c=10,b=9,求a.答案:(1)13;(2)7;(3)19.2、一木杆在离地面3m处折断,木杆顶端落在离木杆底端4m处.木杆折断之前有多高?答案:8m.3、如图,一个圆锥的高AO=2.4,底面半径OB=0.7.AB的长是多少?答案:2.5.4、已知长方形零件尺寸(单位:mm)如图,求两孔中心的距离(结果保留小数点后一位).5、如图,要从电线杆离地面5m处向地面拉一条长7m的钢缆.求地面钢缆固定点A到电线杆底部B的距离(结果保留小数点后一位).答案:4.9m.6、在数轴上作出表示20的点.答案:略.7、在△ABC中,∠C=90°,AB=c.(1)如果∠A=30°,求BC,AC;(2)如果∠A=45°,求BC,AC.答案:(1)12BC c=,32AC c=;(2)22BC c=,22AC c=.8、在△ABC中,∠C=90°,AC=2.1,BC=2.8.求:(1)△ABC的面积;(2)斜边AB;(3)高CD.答案:(1)2.94;(2)3.5;(3)1.68.9、已知一个三角形工件尺寸(单位:mm)如图,计算高l的长(结果取整数).10、有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.水的深度与这根芦苇的长度分别是多少?答案:12尺,13尺.11、如图,在Rt△ABC中,∠C=90°,∠A=30°,AC=2.求斜边AB的长.答案:43 3.12、有5个边长为1的正方形,排列形式如图.请把它们分割后拼接成一个大正方形.答案:分割方法和拼接方法分别如图(1)和图(2)所示.13、如图,分别以等腰Rt△ACD的边AD,AC,CD为直径画半圆.求证:所得两个月形图案AGCE 和DHCF的面积之和(图中阴影部分)等于Rt△ACD的面积.答案:2211()228AEC AC S AC ππ==半圆,218CFD S CD π=半圆,218ACD S AD π=半圆.因为∠ACD=90°,根据勾股定理得AC 2+CD 2=AD 2,所以S 半圆AEC +S 半圆CFD =S 半圆ACD ,S 阴影=S △ACD + S 半圆AEC +S 半圆CFD -S 半圆ACD , 即S 阴影=S △ACD .14、如图,△ACB 和△ECD 都是等腰直角三角形,△ACB 的顶点A 在△ECD 的斜边DE 上.求证:AE 2+AD 2=2AC 2.证明:证法1:如图(1),连接BD .∵△ECD 和△ACB 都为等腰直角三角形, ∴EC=CD ,AC=CB ,∠ECD=∠ACB=90°. ∴∠ECA=∠DCB . ∴△ACE ≌△DCB .∴AE=DB ,∠CDB=∠E=45°. 又∠EDC=45°, ∴∠ADB=90°.在Rt △ADB 中,AD 2+DB 2=AB 2,得AD 2+AE 2=AC 2+CB 2, 即AE 2+AD 2=2AC 2.证法2:如图(2),作AF ⊥EC ,AG ⊥CD ,由条件可知,AG=FC .在Rt△AFC中,根据勾股定理得AF2+FC2=AC2.∴AF2+AG2=AC2.在等腰Rt△AFE和等腰Rt△AGD中,由勾股定理得AF2+FE2=AE2,AG2+GD2=AD2.又AF=FE,AG=GD,∴2AF2=AE2,2AG2=AD2.而2AF2+2AG2=2AC2,∴AE2+AD2=2AC2.习题17.21、判断由线段a,b,c组成的三角形是不是直角三角形:(1)a=7,b=24,c=25;(2)a=b=4,c=5;(3)54a=,b=1,34c=;(4)a=40,b=50,c=60.答案:(1)是;(2)是;(3)是;(4)不是.2、下列各命题都成立,写出它们的逆命题.这些逆命题成立吗?(1)同旁内角互补,两直线平行;(2)如果两个角是直角,那么它们相等;(3)全等三角形的对应边相等;(4)如果两个实数相等,那么它们的平方相等.答案:(1)两直线平行,同旁内角互补.成立.(2)如果两个角相等,那么这两个角是直角.不成立.(3)三条边对应相等的三角形全等.成立.(4)如果两个实数的平方相等,那么这两个实数相等.不成立.3、小明向东走80m后,沿另一方向又走了60m,再沿第三个方向走100m回到原地.小明向东走80m后是向哪个方向走的?答案:向北或向南.4、在△ABC中,AB=13,BC=10,BC边上的中线AD=12.求AC.答案:13.5、如图,在四边形ABCD中,AB=3,BC=4,CD=12,AD=13,∠B=90°.求四边形ABCD的面积.答案:36.6、如图,在正方形ABCD中,E是BC的中点,F是CD上一点,且14CF CD.求证∠AEF=90°.答案:设AB=4k,则BE=CE=2k,CF=k,DF=3k.∵∠B=90°,∴AE2=(4k)2+(2k)2=20k2.同理,EF2=5k2,AF2=25k2.∴AE2+EF2=AF2.根据勾股定理的逆定理,△AEF为直角三角形.∴∠AEF=90°.7、我们知道3,4,5是一组勾股数,那么3k,4k,5k(k是正整数)也是一组勾股数吗?一般地,如果a,b,c是一组勾股数,那么ak,bk,ck(k是正整数)也是一组勾股数吗?答案:因为(3k)2+(4k)2=9k2+16k2=25k2=(5k)2,所以3k,4k,5k(k是正整数)为勾股数.如果a,b,c为勾股数,即a2+b2=c2,那么(ak)2+(bk)2=a2k2+b2k2=(a2+b2)k2=c2k2=(ck)2.因此,ak,bk,ck(k是正整数)也是勾股数.复习题171、两人从同一地点同时出发,一人以20 m/min的速度向北直行,一人以30m/min的速度向东直行.10min后他们相距多远(结果取整数)?答案:361m.2、如图,过圆锥的顶点S和底面圆的圆心O的平面截圆锥得截面△SAB,其中SA=SB,AB是圆锥底面圆O的直径.已知SA=7cm,AB=4cm,求截面△SAB的面积.65cm.答案:23、如图,车床齿轮箱壳要钻两个圆孔,两孔中心的距离是134mm,两孔中心的水平距离是77mm.计算两孔中心的垂直距离(结果保留小数点后一位).答案:109.7mm.4、如图,要修一个育苗棚,棚的横截面是直角三角形,棚宽a=3m,高b=1.5m,长d=10m.求覆盖在顶上的塑料薄膜需多少平方米(结果保留小数点后一位).答案:33.5m 2.5、一个三角形三边的比为1:3:2,这个三角形是直角三角形吗?答案:设这个三角形三边为k ,3k ,2k ,其中k >0.由于2222(3)4(2)k k k k +==,根据勾股定理的逆定理,这个三角形是直角三角形.6、下列各命题都成立,写出它们的逆命题.这些逆命题成立吗? (1)两条直线平行,同位角相等;(2)如果两个实数都是正数,那么它们的积是正数; (3)等边三角形是锐角三角形;(4)线段垂直平分线上的点到这条线段两个端点的距离相等. 答案:(1)同位角相等,两直线平行.成立.(2)如果两个实数的积是正数,那么这两个实数是正数.不成立. (3)锐角三角形是等边三角形.不成立.(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.成立.7、已知直角三角形的两条直角边的长分别为231+和231-,求斜边c 的长..26答案:كىتىلانائ8、如图,在△ABC 中,AB=AC=BC ,高AD=h .求AB .答案:233h .9、如图,每个小正方形的边长都为1. (1)求四边形ABCD 的面积与周长; (2)∠BCD 是直角吗?答案:(1)14.5,351726++; (2)由20BC =,5CD =,BD=5,可得BC 2+CD 2=BD 2.根据勾股定理的逆定理,△BCD是直角三角形,因此∠BCD 是直角.10、一根竹子高1丈,折断后竹子顶端落在离竹子底端3尺处.折断处离地面的高度是多少?(这是我国古代数学著作《九章算术》中的一个问题.其中的丈、尺是长度单位,1丈=10尺.)答案:4.55尺.11、古希腊的哲学家柏拉图曾指出,如果m 表示大于1的整数,a=2m ,b=m 2-1,c=m 2+1,那么a ,b ,c 为勾股数.你认为对吗?如果对,你能利用这个结论得出一些勾股数吗?答案:因为a 2+b 2=(2m )2+(m 2-1)2=4m 2+m 4-2m 2+1=m 4+2m 2+1=(m 2+1)2=c 2, 所以a ,b ,c 为勾股数.用m=2,3,4等大于1的整数代入2m ,m 2-1,m 2+1,得4,3,5;6,8,10;8,15,17;等等.12、如图,圆柱的底面半径为6cm ,高为10cm ,蚂蚁在圆柱表面爬行,从点A 爬到点B 的最短路程是多少厘米(结果保留小数点后一位)?答案:21.3cm .13、一根70cm 的木棒,要放在长、宽、高分别是50cm ,40cm ,30cm 的长方体木箱中,能放进去吗?答案:能.14、设直角三角形的两条直角边长及斜边上的高分别为a ,b 及h .求证:222111a b h+=.答案:由直角三角形的面积公式,得221122ab h a b =+,等式两边平方得a 2b 2=h 2(a 2+b 2),等式两边再同除以a 2b 2c 2,得222111h a b=+,即222111abh+=.习题18.11、如果四边形ABCD 是平行四边形,AB=6,且AB 的长是□ABCD 周长的316,那么BC 的长是多少?答案:10.2、如图,在一束平行光线中插入一张对边平行的纸板.如果光线与纸板右下方所成的∠1是72°15′,那么光线与纸板左上方所成的∠2是多少度?为什么?答案:72°15′,平行四边形的对角相等.3、如图,□ABCD的对角线AC,BD相交于点O,且AC+BD=36,AB=11.求△OCD的周长.答案:29.4、如图,在□ABCD中,点E,F分别在BC,AD上,且AF=CE.求证:四边形AECF是平行四边形.答案:提示:利用AF CE.5、如图,□ABCD的对角线AC,BD相交于点O,且E,F,G,H分别是AO,BO,CO,DO的中点.求证:四边形EFGH是平行四边形.答案:提示:利用四边形EFGH的对角线互相平分.6、如图,四边形AEFD和EBCF都是平行四边形.求证:四边形ABCD是平行四边形.答案:提示:利用AD=EF=BC.7、如图,直线l1∥l2,△ABC与△DBC的面积相等吗?为什么?你还能画出一些与△ABC面积相等的三角形吗?答案:相等.提示:在直线l1上任取一点P,△PBC的面积与△ABC的面积相等(同底等高).8、如图,□OABC的顶点O,A,C的坐标分别是(0,0),(a,0),(b,c).求顶点B的坐标.答案:B(a+b,c).9、如图,在梯形ABCD中,AB∥DC.(1)已知∠A=∠B,求证AD=BC;(2)已知AD=BC,求证∠A=∠B.答案:提示:过点C作CE∥AD,交AB于点E,可得四边形AECD为平行四边形.10、如图,四边形ABCD是平行四边形,∠ABC=70°,BE平分∠ABC且交AD于点E,DF∥BE 且交BC于点F.求∠1的大小.答案:35°.11、如图,A′B′∥BA,B′C′∥CB,C′A′∥AC,∠ABC与∠B′有什么关系?线段AB′与线段AC′呢?为什么?答案:由四边形ABCB′是平行四边形,可知∠ABC=∠B′,AB′=BC;再由四边形C′BCA是平行四边形,可知C′A=BC.从而AB′=AC′.12、如图,在四边形ABCD中,AD=12,DO=OB=5,AC=26,∠ADB=90°.求BC的长和四边形ABCD的面积.答案:因为AD=12,DO=5,利用勾股定理可得AO=13,从而四边形ABCD的对角线互相平分,它是一个平行四边形.所以BC=AD=12,四边形ABCD的面积为120.13、如图,由六个全等的正三角形拼成的图中,有多少个平行四边形?为什么?答案:6个,利用对边相等的四边形是平行四边形.14、如图,用硬纸板剪一个平行四边形,作出它的对角线的交点O,用大头针把一根平放在平行四边形上的直细木条固定在点O处,并使细木条可以绕点O转动.拨动细木条,使它随意停留在任意位置.观察几次拨动的结果,你发现了什么?证明你的发现.答案:设木条与□ABCD的边AD,BC分别交于点E,F,可以发现OE=OF,AE=CF,DE=BF,△AOE≌△COF,△DOE≌△BOF等.利用平行四边形的性质可以证明上述结论.15、如图,在□ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB.图中哪两个平行四边形面积相等?为什么?答案:□AEPH与□PGCF面积相等.利用△ABD与△CDB,△PHD与△DFP,△BEP与△PGB 分别全等,从而□AEPH与□PGCF面积相等.习题18.21、如图,四边形ABCD是平行四边形,对角线AC,BD相交于点O,且∠1=∠2.它是一个矩形吗?为什么?答案:是.利用∠1=∠2,可知BO=CO,从而BD=AC,□ABCD的对角线相等,它是一个矩形.2、求证:四个角都相等的四边形是矩形.答案:由于四边形的内角和为360°,四个角又都相等,所以它的四个角都是直角.因此这个四边形是矩形.3、一个木匠要制作矩形的踏板.他在一个对边平行的长木板上分别沿与长边垂直的方向锯了两次,就能得到矩形踏板.为什么?答案:能.这时他得到的是一个角为直角的平行四边形,即矩形.4、在Rt△ABC中,∠C=90°,AB=2AC.求∠A,∠B的度数.答案:∠A=60°,∠B=30°.5、如图,四边形ABCD是菱形,∠ACD=30°,BD=6.求:(1)∠BAD,∠ABC的度数;(2)AB,AC的长.AC答案:(1)∠BAD=60°,∠ABC=120°;(2)AB=6,36、如图,AE∥BF,AC平分∠BAD,且交BF于点C,BD平分∠ABC,且交AE于点D,连接CD.求证:四边形ABCD是菱形.答案:提示:由∠ABD=∠DBC=∠ADB,可知AB=AD,同理可得AB=BC.从而AD BC,四边形ABCD是一组邻边相等的平行四边形,它是菱形.7、如图,把一个长方形的纸片对折两次,然后剪下一个角.要得到一个正方形,剪口与折痕应成多少度的角?答案:45°.8、如图,为了做一个无盖纸盒,小明先在一块矩形硬纸板的四角画出四个相同的正方形,用剪刀剪下.然后把纸板的四边沿虚线折起,并用胶带粘好,一个无盖纸盒就做成了.纸盒的底面是什么形状?为什么?答案:矩形,它的四个角都是直角.9、如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,∠ACD=3∠BCD,E是斜边AB的中点.∠ECD是多少度?为什么?答案:45°.提示:∠BCD=∠EAC=∠ECA=22.5°.10、如图,四边形ABCD是菱形,点M,N分别在AB,AD上,且BM=DN,MG∥AD,NF∥AB;点F,G分别在BC,CD上,MG与NF相交于点E.求证:四边形AMEN,EFCG都是菱形.答案:提示:四边形AMEN,EFCG都是一组邻边相等的平行四边形.11、如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于点H.求DH的长.答案:DH=4.8.提示:由AB·DH=2AO·OD=2S△ABD可得.12、(1)如下图(1),四边形OBCD是矩形,O,B,D三点的坐标分别是(0,0),(b,0),(0,d).求点C的坐标.(2)如下图(2),四边形ABCD是菱形,C,D两点的坐标分别是(c,0),(0,d),点A,B在坐标轴上.求A,B两点的坐标.(3)如下图(3),四边形OBCD是正方形,O,D两点的坐标分别是(0,0),(0,d).求B,C 两点的坐标.答案:(1)C(b,d);(2)A(-c,0),B(0,-d);(3)B(d,0),C(d,d).13、如图,E,F,M,N分别是正方形ABCD四条边上的点,且AE=BF=CM=DN.试判断四边形EFMN是什么图形,并证明你的结论.答案:正方形.提示:△BFE ≌△CMF ≌△DNM ≌△AEN ,证明四边形EFMN 的四条边相等,四个角都是直角.14、如图,将等腰三角形纸片ABC 沿底边BC 上的高AD 剪成两个三角形.用这两个三角形你能拼成多少种平行四边形?试一试,分别求出它们的对角线的长.答案:3种.可以分别以AD ,AB (AC ),BD (CD )为四边形的一条对角线,得到3种平行四边形,它们的对角线长分别为h ,22224(3)n h n m ++或;m ,m ;n ,22224(3)n h h m ++或.15、如图,四边形ABCD 是正方形.G 是BC 上的任意一点,DE ⊥AG 于点E ,BF ∥DE ,且交AG 于点F .求证:AF -BF=EF .答案:提示:由△ADE ≌△BAF ,可得AE=BF ,从而AF -BF=EF .16、如图,在△ABC 中,BD ,CE 分别是边AC ,AB 上的中线,BD 与CE 相交于点O .BO 与OD的长度有什么关系?BC边上的中线是否一定过点O?为什么?答案:BO=2OD,BC边上的中线一定过点O.利用四边形EMND是平行四边形,可知BO=2OD;设BC边上的中线和BD相交于点O′,可知BO′=2O′D,从而O与O′重合.17、如图是一块正方形草地,要在上面修建两条交叉的小路,使得这两条小路将草地分成的四部分面积相等,你有多少种方法?并与你的同学交流一下.答案:分法有无数种.只要保持两条小路互相垂直,并且都过正方形的中心即可.复习题181、选择题.(1)若平行四边形中两个内角的度数比为1︰2,则其中较小的内角是().A.90°B.60°C.120°D.45°(2)若菱形的周长为8,高为1,则菱形两邻角的度数比为().A.3︰1 B.4︰1 C.5︰1 D.6︰1(3)如图,在正方形ABCD的外侧,作等边三角形ADE,则∠AEB为()A.10°B.15°C.20°D.125°答案:(1)B;(2)C;(3)B.2、如图,将□ABCD的对角线BD向两个方向延长,分别至点E和点F,且使BE=DF.求证:四边形AECF是平行四边形.答案:提示:连接AC,利用对角线互相平分的四边形是平行四边形.3、矩形对角线组成的对顶角中,有一组是两个50°的角.对角线与各边组成的角是多少度?答案:65°和25°.4、如图,你能用一根绳子检查一个书架的侧边是否和上、下底都垂直吗?为什么?答案:可以.通过测量对边以及对角线是否分别相等来检验.5、如图,矩形ABCD的对角线AC,BD相交于点O,且DE∥AC,CE∥BD.求证:四边形OCED 是菱形.答案:提示:一组邻边相等的平行四边形是菱形.6、如图,E,F,G,H分别是正方形ABCD各边的中点.四边形EFGH是什么四边形?为什么?答案:正方形.提示:证明四边形EFGH四边相等、四个角都是直角.7、如图,四边形ABCD是平行四边形,BE∥DF,且分别交对角线AC于点E,F,连接ED,BF.求证∠1=∠2.答案:由△ABE≌△CDF,可知BE=DF.又BE∥DF,所以四边形BFDE是平行四边形.所以DE∥BF,从而∠1=∠2.8、如图,ABCD是一个正方形花园,E,F是它的两个门,且DE=CF.要修建两条路BE和AF,这两条路等长吗?它们有什么位置关系?为什么?答案:由△ABE≌△DAF可知,BE和AF等长,并且互相垂直.9、我们把顺次连接任意一个四边形各边中点所得的四边形叫做中点四边形.(1)任意四边形的中点四边形是什么形状?为什么?(2)任意平行四边形的中点四边形是什么形状?为什么?(3)任意矩形、菱形和正方形的中点四边形分别是什么形状?为什么?答案:(1)平行四边形,利用三角形中位线定理可证一组对边平行且相等,或两组对边分别平行;(2)平行四边形;(3)菱形、矩形、正方形.10、如果一个四边形是轴对称图形,并且有两条互相垂直的对称轴,它一定是菱形吗?一定是正方形吗?答案:一定是菱形,不一定是正方形.11、用纸板剪成的两个全等三角形能够拼成什么四边形?要想拼成一个矩形,需要两个什么样的全等三角形?要想拼成菱形或正方形呢?动手剪拼一下,并说明理由.答案:平行四边形;要拼成一个矩形,需要两个全等的直角三角形;要拼成一个菱形,需要两个全等的等腰三角形;要拼成一个正方形,需要两个全等的等腰直角三角形.12、如图,过□ABCD的对角线AC的中点O作两条互相垂直的直线,分别交AB,BC,CD,DA 于E,F,G,H四点,连接EF,FG,GH,HE.试判断四边形EFGH的形状,并说明理由.答案:菱形.提示:先证明△AOE≌△COG,△AOH≌△COF,可得OE=OG,OF=OH,所以四边形EFGH是平行四边形.又EG⊥FH,从而□EFGH是菱形.13、如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=26cm.点P从点A出发,以1cm/s的速度向点D运动;点Q从点C同时出发,以3cm/s的速度向点B运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.从运动开始,使PQ∥CD和PQ=CD,分别需经过多少时间?为什么?答案:6s;6s或7s.提示:设经过t s,四边形PQCD成为平行四边形,根据PD=QC,可列方程24-t=3t,解得t=6.若PQ=CD,则四边形PQCD为平行四边形或梯形(腰相等),为平行四边形时有t=6;为梯形(腰相等)时,有QC=PD+2(BC-AD),可列方程3t=24-t+4,解得t=7.14、如图,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.求证AE=EF.答案:提示:证明△AGE≌△ECF.15、求证:平行四边形两条对角线的平方和等于四条边的平方和.答案:提示:如图,在□ABCD中,设AD=a,AB=b,BD=m,AC=n,DE=h,AE=x,则分别有h2=a2-x2①,h2=n2-(b+x)2②,h2=m2-(b-x)2③,由①×2=②+③,化简可得m2+n2=2a2+2b2.习题19.11、购买一些铅笔,单价为0.2元/支,总价y元随铅笔支数x变化.指出其中的常量与变量,自变量与函数,并写出表示函数与自变量关系的式子.答案:常量0.2,变量x,y,自变量x,函数y,y=0.2x.2、一个三角形的底边长为5,高h可以任意伸缩.写出面积S随h变化的解析式,并指出其中的常量与变量,自变量与函数,以及自变量的取值范围.答案:常量5,变量h,S,自变量h(h>0),函数S,52hS .3、在计算器上按下面的程序操作:填表:x 1 3 -4 0 101 -5.2y显示的计算结果y是输入数值x的函数吗?为什么?答案:7,11,-3,5,207,-5.4,y是x的函数,符合函数定义.4、下列式子中的y是x的函数吗?为什么?(1)y=3x-5;(2)21xyx-=-;(3)1y x=-.请再举出一些函数的例子.答案:y是x的函数,符合函数定义.例子略.5、分别对上一题中的各函数解析式进行讨论:(1)自变量x在什么范围内取值时函数解析式有意义?(2)当x=5时对应的函数值是多少?答案:(1)y=3x-5,x可为任意实数;21xyx-=-,x≠1;1y x=-,x≥1.(2)y=3x-5,x=5,y=10;21xyx-=-,x=5,34y=;1y x=-,x=5,y=2.6、画出函数y=0.5x的图象,并指出自变量x的取值范围.答案:自变量x的取值范围是全体实数.7、下列各曲线中哪些表示y是x的函数?答案:图(1)(2)(3)中y是x的函数,图(4)中y不是x的函数.8、“漏壶”是一种古代计时器.在它内部盛一定量的水,水从壶下的小孔漏出.壶内壁有刻度,人们根据壶中水面的位置计算时间.用x表示漏水时间,y表示壶底到水面的高度.下列哪个图象适合表示y与x的对应关系?(不考虑水量变化对压力的影响.)答案:图(2).9、下面的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中x表示时间,y表示张强离家的距离.根据图象回答下列问题:(1)体育场离张强家多远?张强从家到体育场用了多少时间?(2)体育场离文具店多远?(3)张强在文具店停留了多少时间?(4)张强从文具店回家的平均速度是多少?答案:(1)2.5km,15min;(2)1km;(3)20min;(4)3km/min 70.10、某种活期储蓄的月利率是0.06%,存入100元本金.求本息和y(本金与利息的和,单位:元)随所存月数x变化的函数解析式,并计算存期为4个月时的本息和.答案:y=100+0.06x,100.24元.11、正方形边长为3.若边长增加x,则面积增加y.求y随x变化的函数解析式,指出自变量与函数,并以表格形式表示当x等于1,2,3,4时y的值.答案:y=x2+6x,自变量x,函数y,x 1 2 3 4y 7 16 27 4012、甲、乙两车沿直路同向行驶,车速分别为20m/s和25m/s.现甲车在乙车前500m处,设x s (0≤x≤100)后两车相距y m.用解析式和图象表示y与x的对应关系.答案:y=500-5x(0≤x≤100).13、甲、乙两车从A城出发前往B城.在整个行程中,汽车离开A城的距离y与时刻t的对应关系如下图所示.(1)A,B两城相距多远?(2)哪辆车先出发?哪辆车先到B城?(3)甲、乙两车的平均速度分别为多少?(4)你还能从图中得到哪些信息?答案:(1)300km;(2)甲先出发,乙先到达;(3)甲60km/h,乙100km/h;(4)6:00~7:30甲在乙前,7:30乙追上甲,7:30~9:00乙在甲前.14、在同一直角坐标系中分别画出函数y=x与1yx的图象.利用这两个图象回答:(1)x取什么值时,x比1x大?(2)x取什么值时,x比1x小?答案:(1)-1<x<0或x>1;(2)x<-1或0<x<1.15、四边形有两条对角线,五边形、六边形分别有多少条对角线?n边形呢?多边形对角线的条数是边数的函数吗?答案:五边形有5条对角线,六边形有9条对角线,n边形有(3)2n n条对角线,多边形对角线的条数是边数的函数.习题19.21、一列火车以90km/h的速度匀速前进.求它的行驶路程s(单位:km)关于行驶时间t(单位:h)的函数解析式,并画出函数图象.答案:s=90t(t≥0).图象略.2、函数y=-5x的图象在第__________象限内,经过点(0,__________)与点(1,__________),y随x的增大而__________.答案:二,四,0,-5,减小.3、一个弹簧不挂重物时长12 cm,挂上重物后伸长的长度与所挂重物的质量成正比.如果挂上1 kg 的物体后,弹簧伸长2 cm.求弹簧总长y(单位:cm)关于所挂物体质量x(单位:kg)的函数解析式.答案:y=12+2x(0≤x≤m,m是弹簧能承受物体的最大质量).4、分别画出下列函数的图象:(1)y=4x;(2)y=4x+1;(3)y=-4x+1;(4)y=-4x-1.答案:(1)(2)(3)(4)5、在同一直角坐标系中,画出函数y=2x+4与y=-2x+4的图象,并指出每个函数中当x增大时y如何变化.答案:y=2x+4随x增大而增大,y=-2x+4随x增大而减小.6、已知一次函数y=kx+b,当x=2时y的值为4,当x=-2时y的值为-2,求k与b.答案:32k=,b=1.7、已知一次函数的图象经过点(-4,9)和点(6,3),求这个函数的解析式.答案:33355y x=-+.8、当自变量x取何值时,函数512y x=+与y=5x+17的值相等?这个函数值是多少?答案:325x=-,y=-15.9、点P(x,y)在第一象限,且x+y=8,点A的坐标为(6,0).设△OPA的面积为S.(1)用含x的式子表示S,写出x的取值范围,画出函数S的图象.(2)当点P的横坐标为5时,△OPA的面积为多少?(3)△OPA的面积能大于24吗?为什么?答案:(1)S=-3x+24(0<x<8);(2)9;(3)不能大于24,因为0<x<8,所以0<S=-3x+24<24.10、不画图象,仅从函数解析式能否看出直线y=3x+4与y=3x-4具有什么样的位置关系?答案:平行.11、从A 地向B 地打长途电话,通话时间不超过3min 收费2.4元,超过3min 后每分加收1元.写出通话费用y (单位:元)关于通话时间x (单位:min )的函数解析式.有10元钱时,打一次电话最多可以通话多长时间?(本题中x 取整数,不足1min 的通话时间按1min 计费.)答案: 2.4, 03,0.6, 3.x y x x <⎧=⎨->⎩≤由函数解析式得x=10.6.由不足1min 的通话时间要按1min 计算可知,有10元钱最多通话10min .12、(1)当b >0时,函数y=x +b 的图象经过哪几个象限? (2)当b <0时,函数y=-x +b 的图象经过哪几个象限? (3)当k >0时,函数y=kx +1的图象经过哪几个象限? (4)当k <0时,函数y=kx +1的图象经过哪几个象限? 答案:(1)第一、二、三象限; (2)第二、三、四象限; (3)第一、二、三象限; (4)第一、二、四象限.13、在同一直角坐标系中,画出函数512y x =+和y=5x +17的图象.并结合图象比较这两个函数的函数值的大小关系.答案:当325x <-时,51517;2y x y x =+>=+ 325,1517;52x y x y x =-=+==+当时325,1517.52x y x y x >-=+<=+当时14、图中的折线表示一骑车人离家的距离y 与时间x 的关系.骑车人9:00离开家,15:00回家.请。

八年级数学实数计算专项训练(含参考答案)

八年级数学实数计算专项训练(含参考答案)

八年级数学实数计算专项训练练习1 平方根与算术平方根(1)1. 求下列各数的平方根:(1)100; (2)0.0081; (3)499; (4)169.2. 求下列各数的平方根与算术平方根:(1)(-6)2; (2) 0; (3)-3; (4)163. 求下列各式的值: (1)225; (2)4936-; (3)121144±.4. 求下列各式中的x :(1)02592=-x ; (2)36)12(42=-x ;(2)81162=x ; (4)025)2(2=--x .5. 计算:(1)169144+; (2)1691971•(3)04.025÷练习2 平方根与算术平方根(2)1. 填空:(1)=121 ; (2)=-256 ; (3)=43 ; (4)=-412 . 2.求下列各数的平方根与算术平方根: (1)196; (2)(-3)2; (3)49151; (4)0.5625.3.求下列各数的算术平方根,并用符号表示出来:(1)7.12; (2)(-3.5)2; (3)3.25; (4)412.4. 求下列各式的值: (1)0004.0-; (2)256169±; (3)818±; (4)2)8(-.5. 求下列各式中的x :(1)025692=-x ; (2)25)12(42=-x ;(3)822=x ; (4)126942-=x练习3 立方根1. 求下列各数的立方根:(1)-27; (2)-0.125; (3)27102; (4)729;2. 求下列各式的值:(1)3512-; (2)38729; (3)3008.0-;(4)31292⨯⨯; (5)31000-; (6)364--.3. 计算:(1)33512729+-; (2)333001.01251241027.0-+--.4. 求下列各式中的x : (1) 08273=-x ; (2)54)32(413=+x ;(3)81)1(33=-x ; (4)216)2(3-=+-x .练习4 平方根与立方根1. 求下列各数的平方根: (1)169; (2)9100; (3)2)5(-; (4)412.2. 求下列各数的立方根: (1)125; (2)2764; (3)81-; (4)2)8(-.3. 求下列各式中的x :(1)81162=x ; (2)11253=x ;(2)81631)14(2=-+x ; (4)64)3(273-=-x .练习5 实数的混合运算(Ⅰ)1. 计算:(1)9125833-+--; (2)222)3(2)32()6(----+-;(3)0332019)279(8)1(+++-; (4)3220183)21()1(---+--;(5)23)6(216-+-; (6)31081412+-+-π;(7)130)31(27)14.3()2(--++-+--π; (8)230)3(27)2(12149--+--+π.练习6 实数混合运算(Ⅱ)1. 计算:(1)81)1()21(01--+-; (2)3322782+---;(3)2)71(27)1(130-+-⨯--π; (4)28)5()2()41(3021÷--⨯-+--.2.求下列各式中的x :(1)2764)9(3-=-x ; (2)0121)3(312=-+x ;(3)0216)1(83=--x ; (4)048)43(312=--x .练习7 实数混合运算(Ⅲ)1. 计算:(1)03)2019(4)8(π+++-; (2)20193)1(829-+-+-+; (3)3008.01003631-⨯; (4))281(12151322-+--;(5)13)31(98-+--; (6)2)21(40)3(2-+----π;(7)02)33()1(93-+--+-; (8)148)3(432-----+;(9)230)1.0(27213-+-⎪⎭⎫ ⎝⎛-+-π; (10)3221691)21(--+---.练习8 实数的混合运算(Ⅳ)1. 求下列各式中的x :(1)822=x ; (2)81253=x ;(3)12)1(312=-x ; (4)064)1(273=++x .2.计算:(1))41(28)2009(30-+-+-; (2)0312)8(24)3(-⨯-+--;(3)032)2()2(641-⨯--+-; (4)9)21(3)4(2)4()3(27823333-⨯-+-⨯---.练习9 二次根式(Ⅰ)1.求下列各式的值: (1)32; (2)250; (3)3248; (4)203. 2.计算: (1)169144964⨯; (2)40219031⨯;(3)271032121÷-; (4)227818⨯÷; (5)1.1337.2⨯; (6)5232232⨯÷;(7))2223(18⨯-÷; (8)213827÷⨯.3.已知0276433=-++b a ,求b b a )(-的立方根。

第7章 实数 复习课件 2021--2022学年青岛版八年级数学下册

第7章 实数 复习课件  2021--2022学年青岛版八年级数学下册

4、立方根的性质:
①一个正数有一个正的立方根;
②0的立方根是0;
③一个负数有一个负的立方根。
5、开立方:
求一个数的立方根的运算叫开立方。
1.下列说法正确有( C )
5
25
2
⑴5是25的算术平方根;⑵

√ 6 是 36 的一个平方根; ⑶ 4
的平方根是-4;⑷
√ 0的平方根与算术平方根都是0。
cm,则另一条直角边的长是( C )
A. 4cm B.4 3 cm C.6cm
D.6 3 cm
2.△ABC中,AB=15,AC=13,高AD=12,则△ABC的
周长为( C

A.42 B.32 C.42 或 32 D.37 或 33
A
B
C
D
A
B
D
C
3.一架25分米长的梯子,斜立在一竖直的墙
上,这时梯足距离墙底端7分米.如果梯子的顶
4 17 5 4 17 5
2
2
4.0 17 4.5 4.0 17 4.5
2
2
1、与数轴上的点是一一对应关系的是( D )
A.有理数 B.无理数 C.整数 D.实数
16 ,
2、下列各数中3.14,π,0.161161116……, 3 5,
22
,
7
A.3个
4、如果一个正数的两个平方根为 2a 7 和 a 1
(2a-7)+(a+1)=0
9
则这个正数是_____
9
5.若 m n 2 2 n 3,则m ____
n
n-2≥0
2-n≥0
∴n=2 ∴m=2

初中数学实数知识点(1)

初中数学实数知识点(1)

初中数学实数知识点(1)一、选择题1.如图,已知x 2=3,那么在数轴上与实数x 对应的点可能是( )A .P 1B .P 4C .P 2或P 3D .P 1或P 4【答案】D【解析】试题解析:∵x 2=3,∴3根据实数在数轴上表示的方法可得对应的点为P 1或P 4.故选D .2.规定用符号[]n 表示一个实数的小数部分,例如:[]3.50.5,22 1.⎡⎦=⎤⎣=按照此规定, 101⎡⎤⎣⎦的值为( )A 101B 103C 104D 101+ 【答案】B【解析】【分析】根据310<410的小数部分,根据用符号[n]表示一个实数的小数部分,可得答案.【详解】解:由3104,得410+1<5. 1010103-,故选:B .【点睛】本题考查了估算无理数的大小,利用了无理数减去整数部分就是小数部分.3.一个自然数的算术平方根是x ,则它后面一个自然数的算术平方根是( ). A .x +1B .x 2+1C 1xD 21x +【答案】D【解析】一个自然数的算术平方根是x ,则这个自然数是2,x 则它后面一个数的算术平方根是.故选D.4.在-3.5,227,0,2π,0.161161116…(相邻两个6之间依次多一个1)中,无理数有( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】 有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数,据此判断出无理数有哪些即可.【详解】∵-3.5是有限小数,,∴-3.5、 ∵227=22÷7=3.142857&&是循环小数, ∴227是有理数; ∵0是整数,∴0是有理数;∵2π,,0.161161116…都是无限不循环小数,∴2π,,0.161161116…都是无理数,∴无理数有3个:2π,,0.161161116…. 故选C .【点睛】 此题主要考查了无理数和有理数的特征和区别,要熟练掌握,解答此题的关键是要明确:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数.5.下列说法:①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③负数没有立方根;④16的平方根是±4;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,其中错误的是( )A .0个B .1个C .2个D .3个【答案】D【详解】①实数和数轴上的点是一一对应的,正确;②无理数是开方开不尽的数,错误;③负数没有立方根,错误;④16的平方根是±4,用式子表示是±16=±4,错误;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,正确.错误的一共有3个,故选D.6.如图,数轴上的点P表示的数可能是()-A5B.5C.-3.8 D.10【答案】B【解析】【分析】【详解】-5 2.2≈,所以P点表示的数是57.给出下列说法:①﹣0.064的立方根是±0.4;②﹣9的平方根是±3;3a-=﹣3a;④0.01的立方根是0.00001,其中正确的个数是()A.1个B.2个C.3个D.4个【答案】A【解析】【分析】利用平方根和立方根的定义解答即可.【详解】①﹣0.064的立方根是﹣0.4,故原说法错误;②﹣9没有平方根,故原说法错误;3a-3a④0.000001的立方根是0.01,故原说法错误,其中正确的个数是1个,故选:A.【点睛】此题考查平方根和立方根的定义,熟记定义是解题的关键.8.16的算术平方根是()A.±4 B.-4 C.4 D.±8【解析】【分析】根据算术平方根的定义求解即可求得答案.【详解】24=16Q,∴的算术平方根是4.16所以C选项是正确的.【点睛】此题主要考查了算术平方根的定义,解决本题的关键是明确一个正数的算术平方根就是其正的平方根.9.的值应在()A.2.5和3之间B.3和3.5之间C.3.5和4之间D.4和4.5之间【答案】C【解析】【分析】直接利用二次根式乘法运算法则化简,进而估算无理数的大小即可.【详解】==∵3.52=12.25,42=16,12.25<13.5<16,∴3.5 4.故选:C.【点睛】本题考查了估算无理数的大小,正确进行二次根式的运算是解题的关键.10.下列说法正确的是()A.任何数的平方根有两个B.只有正数才有平方根C.负数既没有平方根,也没有立方根D.一个非负数的平方根的平方就是它本身【答案】D【解析】A、O的平方根只有一个即0,故A错误;B、0也有平方根,故B错误;C、负数是有立方根的,比如-1的立方根为-1,故C错误;D 、非负数的平方根的平方即为本身,故D 正确;故选D .11.设2a =.则a 在两个相邻整数之间,那么这两个整数是( ) A .1和2B .2和3C .3和4D .4和5 【答案】C【解析】【分析】<<56<<,进而可得出a 的范围,即可求得答案.【详解】<<∴56<<∴52262-<<-,即324<<,∴a 在3和4之间,故选:C .【点睛】此题主要考查了估算无理数的大小,利用完全平方数和算术平方根对无理数的大小进行估算是解题的关键.12.若30,a -=则+a b 的值是( )A .2B 、1C 、0D 、1-【答案】B【解析】试题分析:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B .考点:1.非负数的性质:算术平方根;2.非负数的性质:绝对值.13.1的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间【答案】C【解析】【分析】根据被开方数越大算术平方根越大,可得答案.【详解】∵34,∴41<5.故选C .本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出34是解题的关键,又利用了不等式的性质.14.下列说法:①“明天降雨的概率是50%”表示明天有半天都在降雨;②无理数是开方开不尽的数;③若a 为实数,则0a <是不可能事件;④16的平方根是4±4=±;其中正确的个数有( )A .1个B .2个C .3个D .4个【答案】A【解析】【分析】①根据概率的定义即可判断;②根据无理数的概念即可判断;③根据不可能事件的概念即可判断;④根据平方根的表示方法即可判断.【详解】①“明天降雨的概率是50%”表示明天有50%的可能会降雨,而不是半天都在降雨,故错误;②无理数是无限不循环小数,不只包含开方开不尽的数,故错误;③若根据绝对值的非负性可知0a ≥,所以0a <是不可能事件,故正确;④16的平方根是4±,用式子表示是4±,故错误;综上,正确的只有③,故选:A .【点睛】本题主要考查概率,无理数的概念,绝对值的非负性,平方根的形式,掌握概率,无理数的概念,绝对值的非负性,平方根的形式是解题的关键.15.用“☆”定义一种新运算:对于任意有理数x 和y ,21x y a x ay =++☆(a 为常数),如:2223231231a a a a =⋅+⋅+=++☆.若123=☆,则48☆的值为( )A .7B .8C .9D .10 【答案】C【分析】先根据123=☆计算出a 的值,进而再计算48☆的值即可.【详解】因为212a 2a 13=++=☆,所以2a 2a 2+=,则()224a 8a 14a 2a 1421948=++=++=⨯+=☆,故选:C .【点睛】此题考查了定义新运算以及代数式求值.熟练运用整体代入思想是解本题的关键.16.在数轴上标注了四段范围,如图,则表示8的点落在( )A .段①B .段②C .段③D .段④【答案】C【解析】试题分析:2.62=6.76;2.72=7.29;2.82=7.84;2.92=8.41.∵ 7.84<8<8.41,∴2.82<8<2.92,∴2.88<2.9,8③段上.故选C考点:实数与数轴的关系17.估计262值应在( ) A .3到4之间B .4到5之间C .5到6之间D .6到7之间 【答案】A【解析】【分析】先根据二次根式乘法法则进行计算,得到一个二次根式后再利用夹逼法对二次根式进行估算即可得解.【详解】 解:226122=∵91216<< 91216<<∴3124<<∴估计226⨯值应在3到4之间. 故选:A【点睛】 本题考查了二次根式的乘法、无理数的估算,熟练掌握相关知识点是解决问题的关键.18.下列命题中,真命题的个数有( )①带根号的数都是无理数; ②立方根等于它本身的数有两个,是0和1;③0.01是0.1的算术平方根; ④有且只有一条直线与已知直线垂直A .0个B .1个C .2个D .3个【答案】A【解析】【分析】开方开不尽的数为无理数;立方根等于本身的有±1和0;算术平方根指的是正数;在同一平面内,过定点有且只有一条直线与已知直线垂直.【详解】仅当开方开不尽时,这个数才是无理数,①错误;立方根等于本身的有:±1和0,②错误;19.14的算术平方根为( ) A .116 B .12± C .12- D .12【答案】D【解析】【分析】根据算术平方根的定义求解即可.【详解】∵21()2=14, ∴14的算术平方根是12, 故选:D .【点睛】本题考查了算术平方根的定义,熟记概念是解题的关键.20.如图,数轴上A ,B 两点表示的数分别为-1和3,点B 关于点A 的对称点为C ,则点C 所表示的数为( )A.B.C.D.【答案】A【解析】【分析】由于A,B两点表示的数分别为-1OC的长度,根据C在原点的左侧,进而可求出C的坐标.【详解】∵对称的两点到对称中心的距离相等,∴CA=AB,,∴C点在原点左侧,∴C表示的数为:故选A.【点睛】本题主要考查了求数轴上两点之间的距离,同时也利用对称点的性质及利用数形结合思想解决问题.。

4.3 实数(第1课时)(课件)八年级数学上册(苏科版)

4.3  实数(第1课时)(课件)八年级数学上册(苏科版)

(2)分数(如− 、 、 )


(3)无理数(如 、 、 )
这些点没有“填满”数轴
这些点没有“填满”数轴
再添加像π、0.1010010001⋯这样的无理数
数轴上所有表示有理数、无理数的点把数轴“填满”了
概念学习
实数的概念:
有理数和无理数统称为实数.
即实数可分为有理数和无理数.
A.无理数都是无限小数
B.无限小数都是无理数
C.带根号的数都是无理数
D.无理数与数轴上的点是一一对应的
2. 和数轴上的点一一对应的是
( D )
A.整数
C.无理数
B.有理数
D.实数
新知巩固
3.关于 ,下列说法正确的是( D )A.是整数
C.是有理数
B.是分数
D.是无理数
4. 下列各数中无理数有 ( B )
活动二 画图 在方格纸中分别画出长度为 、 、 ⋯ ⋯的线段.



数学实验室
活动三 用图
(1)按如图所示的方法画下去,想一想所画出的图形形状.
(2)分别求出图中线段a1、a2、a3、a4、a5、⋯ ⋯的长.
a2=
a1=
a3=
1
a5=
a4=
(3)在数轴上分别标出表示数a1、a2、a3、a4、
小组讨论、交流,说说自己的想法.
数学实验室
活动一 读图 如图,方格纸中的小正方形边长为1,求出下列线段的长:
(1) 线段AB的长是________.

A
(2) 线段AC的长是________.

(3) 线段DE的长是________.

B
C
D

北师大版初中八年级数学下册单元复习课 第二章实数

北师大版初中八年级数学下册单元复习课 第二章实数
天真的希伯索斯无意中向别人谈到了他的发现,结果被杀害.但根号 2 很快 就引起了数学思想的大革命.科学史上把这件事称为“第一次数学危机”.希伯索 斯为根号 2 殉难留下的教训是:科学是没有止境的,谁为科学划定禁区,谁就变 成科学的敌人,最终被科学所埋葬.
【阅读收获】 通过阅读了解了无理数的发现过程,希伯索斯因为发现了什么而被杀害?
一个正数的平方根有两个,它们互为相反数,记作± a ;其中正的那一个叫作算
术平方根,记作 a .
2.区别开平方运算和开立方运算
开平方 开立方
正数
两个平方根,互为相 反数
一个立方根,是正数
0
负数
一个平方根,是0 没有平方根
一个立方根,是0 一个立方根,是负数
二次根式的运算 掌握二次根式的加、减、乘、除运算.还要明确怎样算能够条理清楚、步骤 简洁.类比整式乘法解决较简单的混合运算问题,能够解决较简单的条件求值问 题.
答:希伯索斯发现,边长为 1 的正方形,它的对角线(根号 2)却不能用整数之比来 表达.
A.-1 B.14
C.0 D.- 2
3.(2020·绥化中考)化简| 2 -3|的结果正确的是( D )
A. 2 -3 B.- 2 -3 C. 2 +3 D.3- 2
4.(2020·黔东南州中考)实数 2 10 介于( C )
A.4 和 5 之间 B.5 和 6 之间 C.6 和 7 之间 D.7 和 8 之间 5.(2020·遂宁中考)下列各数 3.141 592 6, 9 ,
开方运算
掌握开平方和开立方运算,明白它们之间的联系.考点主要集中在平方根和
算术平方根的概念区分、求值等方面.
1.(2020·攀枝花中考)下列说法中正确的是( C )

八年级数学第二章《实数》教案

八年级数学第二章《实数》教案

八年级数学第二章《实数》教案一、课题名称 §2.6 实数(一)课型新授课二、教学目标1、 解实数的不同分类法,并能在具体问题中将实数进行正确分类。

2、 握实数范围内相反数、倒数、绝对值的意义,并会求一个实数的相反数、倒数、绝对值。

3、了解实数和数轴上的点的一一对应关系。

三、教学重点、难点重点是实数的分类。

①会表示一个实数的相反数、倒数、绝对值。

②能在数轴上做出一个与一个无理数相对应的点。

四、教学手段现代课堂教学手段五、教学方法探究、讨论、对比六、教学过程教学内容教学活动教学建议教学评价复习提问:有理数、无理数的意义实数的分类1、完成课本44页有理数、无理数集合。

有理数2、实数无理数3、实数和有理数一样也由正负之分正实引导学生回忆此内容为本节课的学习打下基础。

学生独立完成后同位交流。

熟记教师举例说明学生回忆的过程让学生举例说明对有些数如√4/9需进行说明采用对比的方式进行说明关注学生的识别能力和理解能力和交流的积极性。

关注学生对0的特性的理解。

数实数 0负实数练一练:P46 随堂练习1。

补加:(4)在实数范围内,如果一个数不是有理数则一定是无理数。

(5)在实数范围内,如果一个数不是正数则一定是负数。

(6)0是最小的实数。

习题 2.8 1.三、实数范围内的相反数、倒数、绝对值的意义⒈实数范围内,相反数、倒数、绝对值的意义和有力数范围内的完全一样。

并引导学生填空学生讨论交流学生先独立完成,再讨论交流。

(强调0的特殊性和实数的分类)。

通过对比的方式引入并举例说明。

重点放在学生说理上从复习入手指出并通过例题和习题加深认识。

关注学生对实数的理解。

关注学生对实数相反数、倒数、绝对值的意义的理解。

P46 随堂练习2。

加:-√64/125 P45想一想学生独立完成教师巡视发现问题及时解决。

学生讨论交流这一部分涉及到了字母表示数的内容,是个难点,可以通过前面所讨论过具体一个数的相反数、倒数、绝对关注学生七、练习设计四、实数与数轴上的点的对应关系1、复习有理数与数轴的关系并提问数轴上的点都表示有理数吗?3、 议一议:P45(1)结论:每一个实数都可以用数轴上的一个点来表示。

实数(一)

实数(一)

金牌数学八年级下册专题系列之 实数(一)1.无理数: .2.平方根: . 表示方法: .★3.算术平方根: . 平方根的性质: .4.立方根: . 表示方法: .立方根的性质: .5.估算确定无理数的大小: .题型一:简单运算例1. =+yx y -x ( ) A.=+y x y -x y x y x y x ++)-)(( =y x -B.=+y x y -x y x y x y x ++)-)((=y x +C.=+y x y -x y x y x y x y x y x -)-)(()-)(-(=+ D.=+y x y -x y x y x y x y x y x +=+)-)(()-)(-(拓展变式练习1.下列计算中,正确的是( ) A. 3+2=5 B.2222=+ C.632=∙ D. (3+23)(3-23)=-32.已知3-4-b 3-a a =+,则( )A. a=3,b=4B. a ≥3,b ≥ 4C.a 为任意实数,b=4D.a ≥3,b=43.若a 和a -都有意义,则a 的值是( ).A.0≥aB.0≤aC.0=aD.0≠a题型二:中考题库例2.某数的平方根是2a-3和3a-22,则这个数是拓展变式练习1.一个正方体的体积变为原来的27倍,则它的棱长变为原来的____倍。

2.若一正数的平方根是2a-1与-a+2,则a=1.(2013 陕西)已知,a 、b 互为倒数,c 、d 互为相反数,求13+++-d c ab 的值。

2.(2014 北京)已知a =2,b =4,c =-2,且a acb b x 242-+-=,求x 的值;一、选择 1. 81的算数平方根是3,用数学式子可以表示为( ) A.981= B.381= C.381= D.381±=±2.下列说法中正确的是( )A.a 2≥0B.| a |>0C.a >0D.a 中的a >03.下列实数,44,π-π-,3.14159 ,38.0,532,02)(中无理数有( )A.2个 B.3个 C.4个 D.5个 4.2723-= ( ) A.32- B.32- C.36- D.2-二、填空题1.估计23的值为 (误差小于0.1)2.-0.125的立方根是3.20112012232-3)()(+∙=4.已知:x-2的立方根是则y x y y +=++,04-5x5.算术平方根等于它本身的数是 ;立方根等于它本身的数是 。

冀教版八年级数学 14.3 实 数(学习、上课课件)

冀教版八年级数学  14.3 实 数(学习、上课课件)

2. .
3 2
3
-4.201,3.101 001 000 1…(每相邻两个1之间0的个
数逐次加1).
有理数:{
…};
无理数:{
…};
整数:{
…};
分数:{
…};
正实数:{
…};
负实数:{
…}.
感悟新知
知2-练
解题秘方:根据有理数、无理数等概念进行
分类时,应注意先把一些数进
行化简再判断.
感悟新知
知1-讲
特别警示
1. 无理数都是无限小数,但无限小数不一定是
无理数,只有无限不循环小数才是无理数.例

如: 0. 3是无限小数,但不是无理数.
2. 某些数的平方根或立方根是无理数,但带根
号的数不一定都是无理数 .例如 4 ,
不是无理数.

27 就
感悟新知
知1-讲
2. 三种常见形式
(1)开方开不尽而得到的数,如 3 ,
2
3
感悟新知
2-1. 把下列各数分别填到相应的横线上:
-3.141.
44 π
27 , , ,0.21,0,-3 2,
7 3
0.202 002 000 200 002…(每相邻两个2之间0的个数逐
次加1).
3
..
44
·
·
27,
,0.2
1
(1)正有理数:_________________

7
3
(2)负无理数: __________________;
- 2
3
(3)负实数: ______________________.
-3.141 519 26,- 2

八年级数学实数的运算

八年级数学实数的运算
d (不计空气阻力)(精确到0.01) 5
100 4.47
200 6.32
500
1000
10.00 14.14
(2)如果共下降1000米,则前一个500米与后一 个500米所用的时间分别是多少?
探究题: (1)计算: (精确到0.01)
1 2 ____, 2 1 _____
2 3 ____, 3 2 _____
(2)能计算下题吗?
1 2 2 3 3 4
总 结
实数的运算法则
实数的运算律
=-2.464101615≈-2.464
例ห้องสมุดไป่ตู้:计算
2 9 2 5 2



解:原式= 2 (9 2 =
5 4)
2 (5 2 5)
10 2 2 5
=
=
10 4 5
=18.94427191≈18.94
1.跳伞运动员跳离飞机,在未打开降落伞前,下降的高 度d(米)与下降的时间t(秒)之间 有关系式: t 计算填表(1): 下降高 度d 下降时 间t
(1) 先算乘方和开方; (2)再算乘除,最后算加; (3)如果遇到括号, 则先进行
括号里的运算
例1
计算:
( 1)
8 9(精确到0.001)
3
(2) 9 2(4
3)
(结果保留4个有效数字)
解:(1) 8 3 9 = 0.748343301≈0.748 (2)9 2(4
3) = 9 8 2 3 = 1 2 3
实数和有理数一样,也可以进行加、 减、乘、除、乘方运算。 而且有理数的运算法则与运算律对实数仍然成立。 1.交换律 : 加法 a+b=b+a 乘法a×b=b×a 2.结合律: 加法(a+b)+c=a+(b+c) 乘法(a×b)×c=a×(b×c) 3.分配律: a×(b+c)=a×b+a×c

八年级数学实数教案

八年级数学实数教案

八年级数学实数教案一节数学课不但要把该节的内容让学生能够接受,更重要的是启发学生去思考,引导学生从抽象的理论到实践的过程,对于方法的探索采用从特殊到一般的思想,下面是小编给大家整理的八年级数学实数教案5篇,希望大家能有所收获!八年级数学实数教案1一、教材分析1、教材的地位和作用本节课是北师大版实验教科书八年级上册第二章《实数》的第六节内容。

在本节之前学生已学习了平方根、立方根,认识了无理数,了解了无理数是客观存在的,从而将有理数扩充到实数范围,使学生对数认识进一步深入。

中学阶段有关数的问题多是在实数范围内进行讨论的,同时实数内容也是今后学习一元二次方程、函数的基础。

2、教学目标:(根据新课程标准的要求,结合本节教材的特点,以及八年级学生的认知规律,我制定如下目标)。

知识技能:(1)了解无理数和实数的概念以及实数的分类。

(2)知道实数与数轴上的点具有一一对应关系。

数学思考:(1)经历对实数进行分类的过程,发展学生的分类意识。

(2)经历从有理数逐步扩充到实数的过程,了解人类对数的认识是不断发展的。

解决问题:通过无理数的引入,使学生对数的认识由有理数扩充到实数。

情感态度:(1)通过了解数系扩充体会数系扩充对人类发展的作用。

(2)敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题。

3、教学重点、难点重点:了解实数意义,能对实数进行分类,明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数。

难点:用数轴上的点来表示无理数。

二、学情分析在学习本节课前,学生已掌握对一个非负数开平方和对一个数开立方运算。

课本对学生掌握实数要求不高。

只要求学生了解无理数和实数的意义。

但实数的知识却贯穿中学数学始终,所以我们只能逐步加深学生对实数的认识。

本节主要引导学生熟知实数的概念和意义,为后面学习打下基础。

三、教法学法分析:教法分析:根据本节课的教学内容和学生的实际水平,我采用的是引导发现法、类比法和多媒体辅助教学。

湘教版八年级数学第3章《实数》知识清单

湘教版八年级数学第3章《实数》知识清单

实数知识点总结3.1平方根知识点1 平方根及其性质1、定义如果有一个数x,使得x²=a,那么我们把x叫作a的一个平方根,或者二次方根.这就是说,若x²=a,则x是a的一个平方根。

表示方法:一个非负数a的平方根记作±√a,读作“正、负根号a”,其中a叫作被开方数。

例:49的平方根是±7,表示方法:±√49 = ±7 .2.平方根的性质:(1)一个正数有两个平方根,它们互为相反数;(2)0的平方根是0;(3)负数没有平方根。

3.开平方:求一个非负数的平方根的运算,叫作开平方。

常用平方数(熟记)12=1 22=4 32=9 42=16 52=2562=36 72=49 82=64 92=81 102=100112=121 122=144 132=169 142=196 152=225162=256 172=289 182=324 192=361 202=400 302=900 402=1600 502=2500 602=3600 702=4900 802=6400 152=225 252=625 352=1225 452=2025 552=3025 652=4225 752=5625 852=7225 952=9025知识点2 算术平方根及其性质1.定义:正数a的正平方根叫作a的算术平方根.规定:0的算术平方根是0.表示方法:非负数a的算术平方根记作√a,读作“根号a”.特别解读:√a(1)算术平方根√a具有双重非负性:①根号内的数a是非负数,即a≥0;②算术平方根√a是非负数,即√a≥0(2)算术平方根是它本身的数只有0和1 .2.性质:(1)正数的算术平方根是一个正数;(2)0的算术平方根是0;(3)负数没有算术平方根.(4)根号内的数越大,对应的算术平方根也越大.提分必记特别提醒◆求一个正数的算术平方根与求一个正数的平方刚好是互逆的两个运算.◆任何一个数的平方都是非负数,所以求算术平方根时,根号内的数必须是非负数.3.平方根与算术平方根的区别与联系:总结:根号求根一定坑,先算根号是关键.算术平方根与平方根区别:数量和符号.知识点3无理数定义:无限不循环小数叫作无理数判断标准:小数位数无限,小数部分的数字不循环2.三种常见形式(1)开方开不尽的数,如√3, √5,…;(2)含有π的一类数,如2π,π+1,…;3.无理数与有理数的区别;(1)有理数是有限小数或无限循环小数,而无理数是无限不循环小数;2)所有的有理数都可以写成分数的形式(整数可以看成分母为1的分数),而无理数不能写成分数的形式。

(八年级数学)第十三章 实数(一)——平方根

(八年级数学)第十三章 实数(一)——平方根

(八上数学)第十三章 实数(一)——平方根班别 姓名 学号一、学习目标:明确什么是平方根,什么是算术平方根,能正确地求出一个数的平方根。

二、新课学习(一)什么叫做平方根?探索一什么数的平方等于9?2() =9,2() =9什么数的平方等于16?2() =16,2() =16,什么数的平方等于49?2() =49,2() =49什么数的平方等于121? 2() =121,2() =121总结:一般地,如果一个数的平方等于a ,那么这个数叫做a的 或 . 用数学式子表述为:若2x =a ,则x 是a 的平方根。

在以上式子中,∵ 2() =9,∴9的平方根是 和 ,∵ 2() =16,∴16的平方根是 和 ,∵ 2() =7,∴7的平方根是 和 ,∵ 2() =3,∴3的平方根是 和 。

平方根的特点结论一:一个正数的平方根有 个,它们互为 数。

探索二2() =0结论二:0的平方根有 个,是 ;探索三2() =-4,2() =-9,2() =-16,结论三:负数 平方根(填“有”或“没有” )诵读一次:一个正数的平方根有 个,它们互为 数; 0的平方根有 个,是 ;负数 平方根(二)算术平方根:一个正数有两个平方根,一正一负,其中 叫做算术平方根。

如:81的算术平方根是 ,规定:0的算术平方根是0思考:算术平方根可能为负吗?一个数的算术平方根一定是正数,对吗?(三)如何表示一个数的平方根,算数平方根,负的平方根(1) “25的平方根”可以表示为± ,“25的算数平方根”可以表示为, ,“25的负的平方根”可以表示为-。

(2)小结:正数a 的平方根可以用 表示;正数a 的算术平方根可以用 表示;正数a 的负的平方根可以用 表示。

(3a 可以是什么数?如:9的平方根可以表示为 2的算术平方根可以表示为:16的负的平方根可以表示为:(四)如何求一个数的平方根,算数平方根,负的平方根例:求下列各数的平方根,算数平方根,负的平方根254, 0,8 解:1)∵ 2() =4,2() =4∴±4=± , +4= , -4= (4的平方根) (4的算数平方根) (4的负的平方根)(2)∵ 2() 2()∴±0.09=± , +0.09= , -0.09=(3)∵ 2() =254,2() =254 ∴ ,(4)∵ 2() =0,∴ 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.3 实数〔一〕导学案
【学习目标】
1、了解无理数、实数的概念,能对实数按要求进行分类。

2、知道实数的相反数、倒数、绝对值。

【学习重点】了解无理数、实数的概念
【学习难点】实数的概念及分类,实数的相反数、倒数、绝对值
【学习过程】
一、学前准备
1 什么叫有理数?什么叫无理数?
二、探索思考
阅读课本P116—120
知识点一实数分类
实数怎样分类呢?模仿有理数的分类请你给实数分类。

知识点二:实数相反数.绝对值
① 什么叫实数相反数? 22与a 的相反数是_____,实数〔a+b 〕的相反数是_____,实数〔a-b 〕的相反数是_______.
②什么叫实数绝对值?
数轴上一个实数表示的点离开原点的距离叫这个实数的绝对值。

如:
三.当堂反应
1.A 一个正实数的绝对值等于______, B 一个负实数的绝对值等于________
C 零的绝对值等于________,
D 什么数的绝对值等于本身?
E 什么数的绝对值等于它的相反数?
F 互为相反数的两个实数的绝对值有什么关系?
2、把以下各数填入相应的集合内
,,64,5,93
π-43-,0,39-,3,0.13, 〔1〕有理数集合:〔2〕无理数集合:
〔3〕整数集合: 〔5〕分数集合:
〔6〕实数集合:
3、假设实数a 满足1-=a a
,那么〔 〕 A 、0 a B 、0 a C 、0≥a D 、0≤a
4、以下说法正确的选项是〔 〕.
A.无限小数都是无理数
B.带根号的数都是无理数
C.无理数是无限小数
D.无理数是开方开不尽的数
5、和数轴上的点一一对应的是〔 〕
A 整数
B 有理数
C 无理数
D 实数
6、绝对值等于5的数是,x -的相反数是,38-的相反数是;12-的相反数是_________________,绝对值是.
.. •6.0 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅
3 ,那么这个实数是
7、如果一个实数的绝对值是7
四、课堂小结本节课你学到了那些知识?
五、学习反思。

相关文档
最新文档