职称考试卫生统计学重点学习笔记
卫生统计学知识点整理
卫生统计学知识点整理1.数据类型:卫生统计学包括两种主要类型的数据,即定量数据和定性数据。
定量数据是数值型数据,如身高、体重等,可以使用各种统计方法进行分析。
定性数据是非数值型数据,如性别、职业等,可以使用描述性统计方法进行分析。
2.数据收集方法:卫生统计学使用多种方法收集数据,其中包括调查、观察、实验和文献研究等。
调查是最常用的数据收集方法,通过设计问卷或面对面访谈等手段收集信息。
观察是观察和记录事件或行为,以获取相关数据。
实验是通过对照组和干预组进行比较来确定原因和效果的方法。
文献研究是通过分析已有的文献、报告和统计数据来获取相关信息。
3.数据描述和总结:在数据收集完成后,卫生统计学需要对数据进行描述和总结。
这包括计算各种统计指标,如平均数、中位数、众数和标准差等,以了解数据的分布和变异程度。
4.假设检验:卫生统计学中常用的方法之一是假设检验,用于判断一些变量是否与其他变量有显著关联或差异。
假设检验基于统计学原理,通过计算样本数据与预期数据之间的差异,评估是否拒绝或接受一些假设。
5.相关分析:相关分析是研究两个或多个变量之间关系的统计方法。
它可以确定变量之间的相关性大小和方向,并计算相关系数来度量相关性的强弱。
6.回归分析:回归分析是用来预测和解释一个或多个因变量与一个或多个自变量之间关系的方法。
它可以估计自变量对因变量的影响程度,并评估其统计显著性。
7.生存分析:生存分析是研究个体在一定时间内生存或发生一些事件的概率的统计方法。
它通常用于研究疾病的生存率和治疗效果。
8.抽样方法:抽样方法是在卫生调查中常用的一种方法,它可以通过选择一部分样本来代表整体群体。
常见的抽样方法包括随机抽样、系统抽样、分层抽样和整群抽样等。
9.统计软件:卫生统计学使用各种统计软件来进行数据分析和统计计算。
常用的统计软件包括SPSS、SAS、R和STATA等,它们提供了丰富的统计功能和图形展示方式。
10.数据伦理:卫生统计学中数据伦理是一个重要的问题,主要涉及数据的保密性、隐私保护和知情同意等方面。
卫生统计学笔记整理
卫生统计学笔记整理第1章绪论1、卫生统计学的概念:2、统计工作的基本步骤:3、卫生统计学的几个基本概念(attention:资料的分类)第2章调查研究设计1、调查研究的特点:2、调查研究的类型,按调查抽样比例划分.第3章实验设计1、实验设计的特点.2、实验设计的三要素四原则。
3、常用的实验设计方案:(attention:正确区别完全随机设计和配对设计)第4章定量资料的统计描述1、频数表的编制步骤和频数表的用途2、集中趋势的描述。
(P55知识点4-2)3、离散趋势的描述。
(P58知识点4-3)4、正态分布的特征5、制定医学参考值范围第5章定性资料的统计描述1、相对数是对定性资料进行统计描述的一类指标。
2、常用相对数(率、构成比、相对比)的定义3、应用相对数需要注意的问题[知识点5-3] P694、标准化法的意义和基本思想5、标准化率的计算方法与注意事项[知识点5-5] P74补充:1、该方法便于比较,但不能反映实际情况。
2、并非所有资料都可以计算标准化率,若各组间出现交叉,不宜用该方法。
3、两样本做标准化率后应做假设检验第6章总体均数和总体率的估计1、抽样误差的概念。
2、标准误的概念。
[知识点6-2] P793、t分布(了解)(一)t分布的概念与计算公式(二)t分布的特征与t界值表4、可信区间的概念。
5、总体均数的估计方法:[知识点6-3] P83第7章假设检验1、假设检验的基本思想及基本步骤[知识点7-1] P922、Ⅰ型错误与Ⅱ型错误。
[知识点7-2] P933、单侧检验与双侧检验区分。
[知识点7-3] P954、假设检验应该注意的问题。
[知识点7-3] P97第8章 t检验第一节样本与总体均数的比较1.检验步骤2.[知识点8-1] P1003.当样本数量n≧50或总体均数已知时用z检验[知识点8-2] P102第二节配对设计均数的比较1.检验步骤2.[知识点8-3] P103第三节两样本均数的比较1.检验步骤2.z检验的适用条件第9章方差分析第一节方差分析的基本思想和应用条件(1)总变异、组间变异、组内变异的定义与公式(2)条件:符合定量资料,具有独立性正态分布方差齐性的特征,多样本(3或3个以上)间的比较第二节完全随机设计的方差分析(1)检验步骤(2)注意事项:[知识点9-2] P120第四节多个样本均数的两两比较1.q检验适用范围:当方差分析得出结论拒绝H0接受H1假设时需进行q检验2.掌握检验步骤第10章 X2检验第一节2x2表的X2 检验(一)完全随机设计X2 检验1.检验步骤及公式2.注意事项:[知识点10-2] p141(二)配对设计X2 检验1.检验步骤及公式2.[知识点10-3] p142第二节RⅹC表的X2 检验1.注意事项:[10-4] p143第11章非参数检验适用条件:(1)总体分布形式未知或分布类型不明(2)偏态分布的资料(3)等级资料不能精确测定,只能以严重程度优劣等级次序先后等表示(4)不满足参数检验条件资料各组方差明显不齐(5)数据的一端或两端为不确定数值的资料、等级资料(6)[知识点11-1] p153第一节秩和检验1.检验步骤:详读p154 (2)(3)3.第二节两样本比较的秩和检验1.掌握编秩的方法2.注意条件详看p157的3第12章双变量关联性分析第一节直线相关1、直线相关的概念:又称简单相关,是用来描述具有直线关系的两变量x、y相互关系的统计方法,要求两变量均来自双变量正态分布的随机变量,且两变量不分主次,处于同等地位。
卫生统计学知识点汇总
卫生统计学知识点汇总卫生统计学知识点汇总卫生统计学是一门研究如何收集、整理、分析和解释与人类健康相关的统计数据的学科。
以下是一些卫生统计学的知识点汇总:1. 健康指标和健康统计数据卫生统计学研究的核心是健康指标和健康统计数据。
健康指标是用来衡量人类健康状况的指标,如死亡率、发病率、存活率等。
健康统计数据是指收集和整理的与人类健康相关的数据信息。
2. 健康调查和流行病学研究卫生统计学包括健康调查和流行病学研究。
健康调查是通过问卷调查、面访和体检等方式,对人群的健康状况进行评估和监测。
流行病学研究是研究疾病在人群中分布、发生和传播规律的学科。
3. 死因统计学死因统计学是研究人口死亡原因及其统计方法的学科。
通过对死亡证明和其他相关资料的分析,可以得到不同死因的死亡率和死因结构,为公共卫生和医疗健康政策制定提供依据。
4. 卫生服务利用统计卫生服务利用统计研究人群对卫生服务的需求,以及卫生服务的提供情况。
包括统计各类卫生机构的数量、位置和服务范围,以及人群对卫生服务的需求和利用情况。
5. 卫生经济学指标卫生经济学指标是研究卫生经济学相关问题的统计指标。
包括卫生资源投入和产出指标,如医疗卫生总费用、卫生人力资源和医疗服务产出等。
6. 因素分析和回归分析因素分析是研究多个相关变量之间关系的统计方法,可以用于探索影响健康的各种因素。
回归分析是通过建立数学模型,研究一个或多个自变量对因变量的影响程度和方向。
7. 卫生统计学软件与工具卫生统计学的研究除了基本的统计学知识外,还需要掌握一些卫生统计学软件和工具的使用。
如SPSS、R、EpiInfo等数据处理和分析软件。
以上是一些卫生统计学的知识点汇总,这门学科涵盖了众多的知识领域,为研究人类健康提供了重要的数据支持和决策依据。
《卫生统计学》考试重点复习资料
卫生统计学Statistics第一章绪论统计学:是一门通过收集、分析、解释、表达数据,目的是求得可靠的结果。
总体:根据研究目的确定的同质(大同小异)的观察单位的全体。
分为目标总体和研究总体。
样本:从总体中随机抽取部分观察单位,其测量结果的集合称为样本(sample)。
样本应具有代表性。
所谓有代表性的样本,是指用随机抽样方法获得的样本。
抽样:从研究总体中抽取少量有代表性的个体。
变量:表现出个体变异性的任何特征或属性。
分定型变量和定量变量。
定型变量:1)分类变量或名义变量:最简单的是二分类变量。
0-1变量也常称为假变量或哑变量。
2)有序变量或等级变量。
定量变量:分离散型变量和连续型变量。
变量只能由高级向低级转化:定量→有序→分类→二值。
常见的三种资料类型1)计量或测量或数值资料,如身高、体重等。
2)计数资料或分类资料,如性别、血型等。
3)等级资料,如尿蛋白含量-、+、++、+++、…第一章定量变量的统计描述此章节x即为样本均数(X拔)1.离散型定量变量的取值是不连续的。
累计频数为该组及前面各组的频数之和。
累计频率表示各组累计频数在总例数中所占的比例。
可用直条图表达。
2.编制频数表的步骤与要点步骤:1确定极差2确定组数3确定各组段的上下限4列表要点(注意事项)1)制表是为了揭示数据的分布特征,故分组不宜过粗或过细。
2)为计算方便,组段下限一般取较整齐的数值3)第一组段应包含最小值,最后一个组段应包含最大值。
3.频率分布表(图)的用途1)描述变量的分布类型2)揭示变量的分布特征3)便于发现某些离群值或极端值4)便于进一步计算统计指标和统计分析。
4.描述平均水平的统计指标算术均数(mean):描述一组数据在数量上的平均水平。
总体均数用μ表示,样本均数用X表示。
适用于服从对称分布变量的平均水平描述,这时均数位于分布的中心,能反应全部观察值的平均水平。
分:直接法和频率表法。
即所有变量值加和除以总数n或所有频数f k乘以组中值X0k后求和再除以总数n。
卫生统计学知识点(笔记)
第一章绪论1.统计学(statistics)是一门处理数据中变异性的科学与艺术,内容包括收集、分析、解释和表达数据,目的是求得可靠的结果。
2.▲总体(population)用来表示大同小异的对象全体,例如一个国家的所有成年人;某地的所有小学生。
可分为目标总体和研究总体。
若试图对某个总体下结论,这个总体便称为目标总体(target population);资料常来源于目标总体中的一个部分,它称为研究总体(study population)。
需要谨慎的是,就研究总体所下的结论未必适用于目标总体。
3.▲样本(sample)是指从研究总体中抽取的一部分有代表性的个体。
获取样本的过程称为抽样(sampling)。
抽样研究的目的是用样本数据推断总体的特征。
需要注意的是,统计学的结论从来就不是完全肯定或完全否定的,能不能成功地达到从样本推断总体的目的,关键是抽样的方法、样本的代表性和推断的技术。
4.▲同质(homogeneity)是指同一总体中个体的主要性质相同。
5.▲变异(variation)是指同质的个体之间存在的差异。
6.▲变量的类型二分类变量分类变量或名义变量定性变量多分类变量变量有序变量或等级变量定量变量离散型变量连续型变量变量的转化:只能由“高级”向“低级”转化,即由信息量多的向信息量少的类型转化,如:定量有序分类二值7.▲参数(parameter)是反映总体特征的指标,参数的大小是客观存在的,是一个常数,不会发生变化,然而往往是未知的,需要通过样本资料来估计,如总体均数μ,总体标准差σ。
8.▲统计量(statistic)又称样本统计量,是反映样本特征的指标,是由观察资料计算出来的,如样本均数 X,样本标准差S。
统计学的任务就是依据样本统计量来推断总体参数。
9.▲概率与频率的区别:概率是参数,频率是统计量;频率总是围绕概率上下波动。
当某事件发生的概率≤0.05时,即P≤0.05,统计学习惯上称该事件为小概率事件。
卫生统计学重点总结
第一章绪论1.卫生统计学的概念P1卫生统计学是应用概率论和数理统计学的基本原理和方法,研究居民卫生情况以及卫生服务领域中数据的收集、整理和分析的一门科学。
2.卫生(医学)统计学的主要步骤P3设计;收集资料;整理资料;分析资料3.(选择、判断)卫生统计学的基本概念P4同质(homogeneity):统计学中,若某些观察对象具有相同的特征或属性,称之为同质或具有同质性。
变异(variation):将同质个体的某项特征或属性的观察值或测量值之间的差异称为变异。
总体(population):是根据研究目的确定的的所有观察单位某种特征或属性的观察值或测量值的集合。
样本(sample):是从总体中随机抽取的具有代表性的部分观察单位的集合。
样本中包含的观察单位个数称为样本含量。
参数(parameter):反映总体特征的指标称为参数,一般是未知的,常用希腊字母表示。
统计量(statistic):根据样本观察值计算出来的指标称为统计量,常用拉丁字母表示。
变量(variable):每个观察单位的某项特征或属性称为变量。
抽样研究(sampling research):从总体中随机抽取样本,通过样本信息推断总体特征的研究方法称为抽样研究。
抽样误差(sampling error):由随机抽样造成的样本统计量与总体参数之间、样本统计量之间的差异称为抽样误差。
资料(data):变量值的集合称之为资料。
★4.资料的分类P4(1)定量资料:亦称计量资料,其变量值是定量的,表现为数值大小,一般有度、量、衡单位。
(2)定性资料:亦称分类资料,其观察值是定性的,表现为互不相容的类别或属性,一般无度、量、衡单位。
可进一步细分为两种资料:1)计数资料:指将观察单位按某种类别或属性进行分组,清点各组观察单位数所得的资料。
包括:①二项分类资料;②无序多项分类资料2)等级资料:亦称有序多分类资料,是将观察单位按某特征或属性的程度或等级顺序分组,清点各组观察单位数所得的资料。
卫生统计学重点笔记
医师资格考试蓝宝书-预防医学医学统计学方法第一节基本概念和基本步骤(非常重要)一、统计工作的基本步骤设计(最关键、决定成败)、搜集资料、整理资料、分析资料。
总体:根据研究目的决定的同质研究对象的全体,确切地说,是性质相同的所有观察单位某一变量值的集合。
总体的指标为参数。
实际工作中,经常是从总体中随机抽取一定数量的个体,作为样本,用样本信息来推断总体特征。
样本的指标为统计量。
由于总体中存在个体变异,抽样研究中所抽取的样本,只包含总体中一部分个体,这种由抽样引起的差异称为抽样误差。
抽样误差愈小,用样本推断总体的精确度愈高;反之,其精确度愈低。
某事件发生的可能性大小称为概率,用P表示,在0~1之间,0和1为肯定不发生和肯定发生,介于之间为偶然事件,<0.05或0.01为小概率事件。
二、变量的分类变量:观察单位的特征,分数值变量和分类变量。
第二节数值变量数据的统计描述(重要考点)一、描述计量资料的集中趋势的指标有1.均数均数是算术均数的简称,适用于正态或近似正态分布。
2.几何均数适用于等比资料,尤其是对数正态分布的计量资料。
对数正态分布即原始数据呈偏态分布,经对数变换后(用原始数据的对数值lgX代替X)服从正态分布,观察值不能为0,同时有正和负。
3.中位数一组按大小顺序排列的观察值中位次居中的数值。
可用于描述任何分布,特别是偏态分布资料的集中位置,以及分布不明或分布末端无确定数据资料的中心位置。
不能求均数和几何均数,但可求中位数。
百分位数是个界值,将全部观察值分为两部分,有X%比小,剩下的比大,可用于计算正常值范围。
二、描述计量资料的离散趋势的指标1.全距和四分位数间距。
2.方差和标准差最为常用,适于正态分布,既考虑了离均差(观察值和总体均数之差),又考虑了观察值个数,方差使原来的单位变成了平方,所以开方为标准差。
均为数值越小,观察值的变异度越小。
3.变异系数多组间单位不同或均数相差较大的情况。
变异系数计算公式为:CV=s/X×100%,公式中s为样本标准差,X为样本均数。
卫生统计学的重点归纳
卫生统计学的重点归纳卫生统计学的重点归纳一、卫生统计学的定义卫生统计学是以统计理论和方法为基础,应用数学、物理、化学、计算机等学科技术,研究卫生和医疗问题的数据分析方法。
它以收集,处理,分析和解释卫生和医疗等领域的统计数据为基础,以定量分析和定性分析卫生数据,研究卫生和应用流行病学方法,识别患病危险因素,以及制定卫生与医疗保健的政策与措施,为医学和公共卫生提供科学依据的一门学科。
二、卫生统计学的基本原理(1)基本理论卫生统计学的基本理论包括:(1)数理统计学:数理统计学是以统计学的数据处理方法为工具,探讨多变量间相互关系的学科;(2)社会科学统计学:社会科学统计学是以统计学的方法为工具,研究社会判断和实证研究的学科;(3)中国统计学:中国统计学是以中国传统的统计学理论和方法为基础,研究社会发展进程中社会变迁的学科;(4)应用统计学:应用统计学是以统计学的方法来解决实际问题,如实验设计与分析、生态学分析、经济学分析等。
(2)基本方法卫生统计学的基本方法包括:(1)分类法:分类法是按照实际问题的性质,将被研究对象进行科学的定性分类;(2)测度法:测度法是按照实际问题的性质,将被研究对象进行科学的定量测度;(3)统计方法:统计方法是利用统计技术处理数据,以处理、描述、分析和预测实证问题;(4)流行病学方法:流行病学方法是指在全面调查的基础上,利用统计技术,研究病因、流行病学及其预防控制等方面的方法。
三、卫生统计学的应用1、卫生统计学用于事件分析。
事件分析包括:病原体检测、医疗并发症监测、病因研究、新药研发、疾病控制等研究;2、卫生统计学用于政策分析,为卫生政策、医疗政策、公共卫生政策的制订、实施和评价,提供科学依据;3、卫生统计学用于质量控制。
对质量控制体系中的质量指标进行定量分析、定性分析和评价;4、卫生统计学用于教育考试。
有助于改进教育评价,提高客观能力,开发判断及决策技能;5、卫生统计学用于职业卫生领域,可以指导职业卫生政策的制定和促进各种职业病的预防。
卫生统计学复习笔记
卫生统计学复习笔记一、概述1、卫生统计学的概念(熟练掌握)统计学是研究数据的收集、整理和分析的一门科学,帮助人们分析所占有的信息,达到去伪存真、去粗取精、正确认识世界的一种重要手段。
卫生统计学是应用数统计学的原理与方法研究居民健康状况以及卫生服务领域中数据的收集、整理和分析的一门科学。
由此看出:统计学是处理资料中变异性的科学和艺术,是在收集、归类、分析和解释大量数据的过程中获取可靠结果的一门学科.这里强调了“过程”,但在实际工作中,许多人往往是忽略了设计、收集和归类(整理),到了分析数据时才想到统计学,此时难免发生“悔之晚矣”的憾事。
作为统计学的应用者应充分认识到这一点。
卫生统计学的内容(了解):1)健康统计:医学人口统计、疾病统计和生长发育统计等;2)卫生服务统计:包括卫生资源利用、医疗卫生服务的需求、医疗保健体制改革等方面的统计学问题。
2、卫生统计学的工作步骤(熟练掌握)统计学对统计工作的全过程起指导作用,任何统计工作和统计研究的全过程都可分为以下四个步骤:1)、设计:在进行统计工作和研究工作之前必须有一个周密的设计.设计是在广泛查阅文献、全面了解现状、充分征询意见的基础上,对将要进行的研究工作所做的全面设想。
其内容包括:明确研究目的和研究假说,确定观察对象、观察单位、样本含量和抽样方法,拟定研究方案、预期分析指标、误差控制措施、进度与费用等。
设计是整个研究工作中最关键的一环,也是指导以后工作的依据2)、收集资料:遵循统计学原理采取必要措施得到准确可靠的原始资料.及时、准确、完整是收集统计资料的基本原则。
卫生工作中的统计资料主要来自以下三个方面:①统计报表:是由国家统一设计,有关医疗卫生机构定期逐级上报,提供居民健康状况和医疗卫生机构工作的主要数据,是制定卫生工作计划与措施、检查与总结工作的依据。
如法定传染病报表,职业病报表,医院工作报表等。
②经常性工作记录:如卫生监测记录、健康检查记录等。
《卫生统计学》考试重点复习资料
②权衡两类错误的危害以确定α的大小。 ③正确理解 P 值的意义,如果 P<α,宜说差异“有统计学意义”。
第八章 方差分析
名词解释
总变异:样本中全部实验单位差异称为总变异。其大小可以用全部观察值的均方(方差)表 示。 组间变异:各处理组样本均数之间的差异,受处理因素的影响,这种变异称为组间变异,其 大小可用组间均方表示。 组内变异: 各处理组内部观察值大小不等,这种变异称为组内变异,可用组内均方表示。 随机区组设计:事先将全部受试对象按自然属性分为若干区组,原则是各区组内的受试对象 的特征相同或相近,且受试对象数与处理因素的水平数相等。然后再将每个区组内的观察对 象随机地分配到各处理组,这种设计叫做随机区组设计。
构成比
某一组成部分的观察单 位数 同一事物各组成部分的 观察单位总数
100 %
③比又称相对比,是 A、B 两个有关指标之比,说明两者的对比水平,常以倍数或百分数表
示,其公式为:相对比=甲指标 / 乙指标(或 100%)
甲乙两个指标可以是绝对数、相对数或平均数等。
应用相对数时应注意哪些问题?
答:应用相对数时应注意的问题有:
相对数:是两个有联系的指标之比,是分类变量常用的描述性统计指标,常用相对数有率、
构成比、比等。
标准化法:是常用于内部构成不同的两个或多个率比较的一种方法。标准化法的基本思想就
是指定一个统一“标准”(标准人口构成比或标准人口数),按指定“标准”计算调整率,使
之具备可比性以后再比较,以消除由于内部构成不同对总率比较带来的影响。
料间的相对水平。 3) 报告比较结果时必须说明所选用的“标准”和理由。 4) 两样本标准化率是样本值,存在抽样误差。当样本含量较小时,还应作假设检验。
卫生统计学知识点整理(一)
卫生统计学考点整理(一)2017年11月24日一、绪论:1、什么是卫生统计学:卫生统计学是运用数理统计的基本原理和方法对预防医学和公共卫生领域中的科学研究进行设计,以及研究资料的收集、整理和分析的一门应用科室。
2、卫生统计学的基本内容包括哪些?①卫生统计学的基本理论和方法,包括研究设计和数据分析中的统计理论和方法。
②健康统计,包括医学人口统计、疾病统计和生长发育统计等。
③卫生服务统计,包括卫生资源、医疗卫生服务的需求和利用、医疗保健制度和管理等的统计问题。
3、什么是计量资料?用度量衡的方法测定每个观察单位的某项研究指标量的大小,所得到的数据(即测量值)成为计量资料(计量资料含有单位)4、什么是计数资料?将全体观察单位按照某种性质或类别进行分组,然后分别清点各组中的例数,这样得到的数据成为计数资料(也称分类资料)(不含单位)5、什么是等级资料?将全体观察单位按照某种性质的不同程度分为若干组,分别清点各组中观察单位的个数。
6、什么是总体?根据研究目的的确定的同质观察单位的全体。
(是同质的所有观察单位某种变量值的集合)7、什么是同质?研究对象具有相同的背景、条件、属性统计学所研究的对象是以同质为基础,具有变8、什么是变异?同一性质的事物,其个体观察值(变量值)之间的差异。
异的事物或现象。
9、什么是样本?从总体中随机抽取具有代表性的一部分个体,其测量值(或观察值)的集体成为样本。
10、什么是抽样研究?对从所研究的总体中随机抽取有代表性的一部分个体构成的样本进行研究。
11、抽样研究的目的是什么?通过用样本资料计算的指标去推论总体。
12、什么是参数?参数是指总体指标。
(如:总体均数μ、总体率π、总体标准差σ等)13、什么是统计量?统计量是指样本指标。
(如:样本均数、样本率p、样本标准差S等)14、什么是统计描述?用统计图或计算统计指标的方法表达一个指定群体的某种现象或特征15、什么是统计推断?根据样本资料的特性对总体的特性作估计或者推论的方法。
卫生统计学重点笔记
医师资历测验蓝宝书-预防医学医学统计学办法第一节根本概念和根本步调(异常重要)一.统计工作的根本步调设计(最症结.决议成败).汇集材料.整顿材料.剖析材料.总体:依据研讨目标决议的同质研讨对象的全部,确实地说,是性质雷同的所有不雅察单位某一变量值的聚集.总体的指标为参数.现实工作中,经常是从总体中随机抽取必定命量的个别,作为样本,用样本信息来揣摸总体特点.样本的指标为统计量.因为总体中消失个别变异,抽样研讨中所抽取的样本,只包含总体中一部分个别,这种由抽样引起的差别称为抽样误差.抽样误差愈小,用样本揣摸总体的精确度愈高;反之,其精确度愈低.小概率事宜.二.变量的分类变量:不雅察单位的特点,分数值变量和分类变量.第二节数值变量数据的统计描写(重要考点)一.描写计量材料的分散趋向的指标有1.均数均数是算术均数的简称,实用于正态或近似正态散布.2.几何均数实用于等比材料,尤其是对数正态散布的计量材料.对数正态散布即原始数据呈偏态散布,经对数变换后(用原始数据的对数值lgX代替X)屈服正态散布,不雅察值不克不及为0,同时有正和负.3.中位数一组按大小次序分列的不雅察值中位次居中的数值.可用于描写任何散布,特殊是偏态散布材料的分散地位,以及散布不明或散布末尾无肯定命据材料的中间地位.不克不及求均数和几何均数,但可求中位数.百分位数是个界值,将全部不雅察值分为两部分,有X%比小,剩下的比大,可用于盘算正常值规模.二.描写计量材料的离散趋向的指标1.全距和四分位数间距.2.方差和尺度差最为经常运用,适于正态散布,既斟酌了离均差(不雅察值和总体均数之差),又斟酌了不雅察值个数,方差使本来的单位变成了平方,所以开方为尺度差.均为数值越小,不雅察值的变异度越小.3.变异系数多组间单位不合或均数相差较大的情形.变异系数盘算公式为:CV=s/X×100%,公式中s为样本尺度差,X为样本均数.三.尺度差的运用暗示不雅察值的变异程度(或离散程度).在两组(或几组)材料均数邻近.器量单位雷同的前提下,尺度差大,暗示不雅察值的变异度大,即各不雅察值离均数较远,均数的代表性较差;反之,暗示各不雅察值多分散在均数四周,均数的代表性较好.(常考!)四.医学参考值的盘算办法,单双侧问题,医学为95%医学参考值是斧正常人体或动物体的各类心理常数,因为消失变异,各类数据不但因人而异,并且统一小我还会随机体表里情形的转变而转变,因而须要肯定其摇动的规模,即正常值规模.医学参考值的盘算公式:①正态散布材料95%医学参考值:X±1.96s(双侧);X X-1.645s(单侧),s为尺度差.②百分位数法P和P(双侧);P5或P95(单侧).第三节数值变量数据的统计揣摸(重要考点)一.尺度误,尺度误与尺度差和样本含量的关系尺度差和尺度误的差别.样本尺度误等于样本尺度差除以根号下样本含量.尺度误与尺度差成正比;与样本含量的平方根成反比.是以.为削减抽样误差,应尽可能包管足够大的样本含量.样本尺度差与样本尺度误是既有接洽又有区此外两个统计量,二者的接洽是公式:二者的差别在于:样本尺度差是反应样本中各不雅测值X1,X2,……,X n变异程度大小的一个指标,它的大小说清楚明了对该样本代表性的强弱.样本尺度误是样本平均数1,2,……的尺度差,它是抽样误差的估量值,其大小说清楚明了样本间变异程度的大小及精确性的高下.(控制!)二.t散布和尺度正态u散布关系均以0为中间阁下两侧完整对称的散布,只是t散布曲线顶端较u散布低,两头翘.(v逐渐增大,t散布逐渐逼近u散布).正态散布的特色:①以均数为中间阁下两侧完整对称散布;②两个参数,均数u(地位参数)和s(变异参数);③对称均数的两正面积相等.三.总体均数的估量样本统计量推算总体均数有两个重要方面:区间估量和假设磨练.样本均数估量总体均数称点估量.总体均数区间估量(可托区间)的概念:按必定的可托度估量未知总体均数地点规模.其统计上习习用95%(或99%)可托区间暗示总体均数μ有95%(或99%)的可能在某一规模.可托区间的两个要素,一为精确度,反应在可托度1-α的大小,即区间包含总体均数的概率大小,当然愈接近1愈好;二是精度,反应在区间的长度,当然长度愈小愈好.在样本例数肯定的情形下,二者是抵触的,须要统筹.总体均数可托区间的盘算办法:1.当n小按t散布的道理用式盘算可托区间为:X±tαv S X/2,2.当n足够大因n足够大时,t散布逼近μ散布,按正态散布道理.用式估量可托区间为:X±μα/2SX可托区间与医学参考值规模的差别:二者的意义和算法不合.四.假设磨练的步调1.树立假设:H0(无效,两样本代表的总体均数雷同),H1(备择,两样本来自不合总体),当谢绝H0就接收H1,不谢绝就不接收H1.2.肯定明显性程度:区分精确率和小概率事宜的尺度,平日取α=0.05.3.盘算统计量:依据材料类型和剖析目标选择恰当的公式盘算.4.肯定概率P值:将盘算得到的t值或u值查界值表得到P 值和α值比较.5.做出揣摸结论.|t|值.P值与统计结论五.两均数的假设磨练(常考!)1.样本均数与总体均数比较 u磨练和t磨练用于样本均数与总体均数的比较.理论上请求样本来自正态散布总体现实中,只要样本例数n较大,或n小但总体尺度差σ已知,就选用u磨练.n 较小且σ未知时,用于t磨练.两样本均数比较时还请求两总体方差等.以算得的统计量t,按表所示关系作断定.2.配对材料的比较在医学研讨中,经常运用配对设计.配对设计重要有四种情形:①统一受试对象处理前后的数据;②统一受试对象两个部位的数据;③统一样品用两种办法(仪器等)磨练的成果;④配对的两个受试对象分离接收两种处理后的数据.情形①的目标是揣摸其处理有无感化;情形②.③.④的目标是揣摸两种处理(办法等)的成果有无不同.v=对子数-1;如处理前后或两法无不同,则其差数d的总体均数应为0,可看作样本均数d和总体均数0的比较.d为差数的均数;d S 为差数均数的尺度误,S d 为差数的尺度差;n 为对子数.因盘算的统计量是t,按表所示关系作断定.3.完整随机设计的两样本均数的比较 亦称成组比较.目标是揣摸两样本各自代表的总体均数μ1与μ2是否相等.依据样本含量n 的大小,分u 磨练与t 磨练.t 磨练用于两样本含量n 1.n 2较小时,且请求两总体方差相等,即方差齐.若被磨练的两样本方差相差明显则需用t ′磨练.u 磨练:两样本量足够大,n>50.21X X S -=)(21212C n n n n S + v =(n 1-1)+(n 2-1)=n 1+n 2-2 式中21X X S -,为两样本均数之差的尺度误,Sc 2为归并估量方差(combined estimate variance ).算得的统计量为t,按表所示关系做出断定.4.Ⅰ型错误和Ⅱ型错误 弃真,谢绝精确的H 0为Ⅰ型错误α暗示,若明显性程度α定为0.05,则犯Ⅰ型错误的概率0.05;接收错误的H 0为Ⅱ型错误,概率用β暗示,β值的大小很难确实估量.当样本含量一准时,两者反比,增大n,当α一准时,可削减β.1-β称为磨练效能或掌控度,其统计意义是若两总体确有不同,按α水准能检出其差此外才能.客不雅现实谢绝H 0 不谢绝H 0H 0成立 Ⅰ型错误(α) 揣摸精确1-αH 0不成立揣摸精确(1-β) Ⅱ型错误(β)5.假设磨练留意事项 包管组间可比性;依据研讨目标.材料类型和设计类型选用恰当的磨练办法,熟习各类磨练办法的运用前提;“明显与否”是统计学术语,为“有无统计学意义”,不克不及懂得为“不同是不是大”;结论不克不及绝对化.第四节 分类变量材料的统计描写(一般考点)相对数是两个有接洽关系事物数据之比.经常运用的相对数指标有构成比.率.相比较等.一.构成比暗示事物内部各个构成部分所占的比重,平日以100为例基数,故又称为百分比.其公式如下: 构成比=个体数总和事物内部各构成部分的的个体数事物内部某一构成部分×100% 该式可用符号表达如下: 构成比=⋯⋯+++C B A A ×100% 构成比有两个特色:(1)各构成部分的相对数之和为100%.(2)某一部分所占比重增大,其他部分会响应地削减.二.率用以解释某种现象产生的频率或强度,故又称频率指标,以100,1000,10000或100000为比例基数(K )均可,原则上以成果至少保存一位整数为宜,其盘算公式为:率和构成比不合之处:率的大小仅取决于某种现象的产生数和可能产生该现象的总数,不受其他指标的影响,并且各率之和一般不为1. 率=可能发生某现象的总数某现象实际发生例数×K 该式亦可用符号表达如下 阳性率=)()()(-+++A A A ×K (若算阴性率则分子为A (-))式中A (+)为阳性人数,A (-)为阴性人数.三.相比较暗示有关事物指标之比较,常以百分数和倍数暗示,其公式为:相比较:甲指标/乙指标(或×100%)或用符号暗示为:A/B ×K四.留意事项①构成比和率的不合,不克不及以比代率;②盘算相对数时,不雅察例数不宜过小;③率的比较留意可比性,特殊是混淆身分的问题,有的话,可用尺度化法和分层剖析清除;④不雅察单位不合的几个率的平均率不等于几个率的算术均数;⑤样本率或构成比的比较应做假设磨练.第五节 分类变量材料的统计揣摸(异常重要)一.率的抽样误差用抽样办法进行研讨时,必定消失抽样误差.率的抽样误差大小可用率的尺度误来暗示,盘算公式如下:σp=n π)π(1+式中:σp为率的尺度误,π为总体阳性率,n为样本含量.因为现实工作中很难知道总体阳性率π,故一般采取样本率P来代替,而上式就变成S p=n P)P(1-二.总体率的可托区间因为样本率与总体率之间消失着抽样误差,所以也需依据样本率来推算总体率地点的规模,依据样本含量n和样本率P的大小不合,分离采取下列两种办法:(一)正态近似法(常考!)当样本含量n足够大,且样本率P和(1-P)均不太小,如nP 或n(1-P)均≥5时,样本率的散布近似正态散布.则总体率的可托区间可由下列公式估量:总体率(π)的95%可托区间:p±p总体率(π)的99%可托区间:p±p(二)查表法当样本含量n较小,如n≤50,特殊是P接近0或1时,则按二项散布道理肯定总体率的可托区间,其盘算较繁,读者可依据样本含量n和阳性数x参照专用统计学介绍的二项散布中95%可托限表.三.u磨练(异常重要!)当样本含量n 足够大,且样本率P 和(1-P )均不太小,如nP 或n (1-P )均≥5时,样本率的散布近似正态散布.样本率和总体率之间.两个样本率之间差别的断定可用u 磨练.1.样本率和总体率的比较公式 u=|P-π|/σP =|P-π|/n π)/π(1-;2.两样本率比较公式 u=|P 1-P 2|/Sp 1-P 2=|P 1-P 2|/)1/)(1/(121n n p p c c +-也可用χ2磨练,两者相等.四.χ2磨练(异常重要!)可用于两个及两个以上率或构成比的比较;两分类变量相干关系剖析.其数据构成,必定是互相对峙的两组数据,四格表材料自由度v 永久=1.四格表χ2磨练各类公式实用前提,n>40且每个格子T>5,可用根本公式或专用公式,不必校订.根本公式:χ2=∑(A-T )2/T专用公式:χ2=∑(ad-bc )2n/(a+b )(c+d )(a+c )(b+d )只要有一个格子T 在1~5之间,需校订.校订公式:根本公式:χ2=∑(|A-T |-0.5)2/T专用公式:χ2=∑(|ad-bc |-n/2)2n/(a+b )(c+d )(a+c )(b+d )n<40或T<1,用确实概率法.五.行×列表χ2磨练当行数或列数超出2时,称为行×列表.行×列表χ2磨练是对多个样本率(或构成比)的磨练.实用前提:一般以为行×列表中不宜有1/5以上格子的理论数小于5,或有小于1的理论数.1.当理论数太小可采纳下列办法处理①增长样本含量以增大理论数;②删去上述理论数太小的行和列;③将太小理论数地点组与性质邻近的组归并,使从新盘算的理论数增大.因为后两法可能会损掉信息,伤害样本的随机性,不合的归并方法有可能影响揣摸结论,故不宜作通例办法.别的,不克不及把不合性质的现实数归并,如研讨血型时,不克不及把不合的血型材料归并.2.如磨练成果谢绝磨练假设,只能以为各总体率或总体构成比之间总的来说有不同,但不克不及解释它们彼此之间都有不同,或某两者间有不同.3.关于单向有序行列表的统计处理在比较遍地理组的效应有无不同时,宜用秩和磨练法,如作χ2磨练只解释遍地理组的效应在构成比上有无差别.六.配对计数材料的χ2磨练统一样品用两种办法处理,不雅察阳性和阴性个数.断定两种处理办法是否雷同.当b+c>40时,χ2=(b-c)2/b+c;b+c<40时,校订公式:χ2=(|b-c|-1)2/b+c第六节直线相干和回归(一般考点)一.直线相干剖析的用处.相干系数及其意义相干剖析是研讨事物或现象之间有无关系.关系的偏向和亲密程度.相干系数:是定量暗示两个变量(X,Y)之间线性关系的偏向和亲密程度的指标,用r暗示,r=lxy/lxxlxy,其值在-1至+1间,r 没有单位.r呈正值,两变量间呈正相干,即两者的变更趋向是同向的,r=1时为完整正相干;如r呈负值,两变量呈负相干,即两者的变更趋向是反向的,r=-1时为完整负相干.r的绝对值越接近1,两变量间线性相干越亲密;越接近于0,相干越不亲密.当r=0时,解释X和Y两个变量之间无直线关系.二.直线回归剖析的感化.回归系数及其意义直线回归剖析的义务在于找出两个变量有依存关系的直线方程,以肯定一条最接近于各实测点的直线,使各实测点与该线的纵向距离的平方和为最小.这个方程称为直线回归方程,据此方程描写的直线就是回归直线.直线同归方程式的一般表达式Y=a+bX式中a为回归直线在Y轴上的截距,即a>0暗示直线与Y轴的交点在原点上方,<0在原点下方,a=0过原点.b为样本回归系数,即回归直线的斜率,暗示当X变动一个单位时,Y平均变动b个单位.b>0:暗示Y随X增大而增大b<0:暗示Y随X增大而削减b=0:暗示Y不随X变更而变更第七节统计表和统计图(重要考点)一.统计表原则:构造简略.层次分明.内容安插合理.重点凸起.数据精确.1.标题简洁表达表的中间内容,地位在表的上方.2.标目有横标和纵标目,横标目平日位于表内左侧;纵标目列在表内上方,其表达成果与主辞呼应.3.线条力图简洁,一般为三线表.4.用阿拉伯数暗示,如很多据或暂缺材料,也可用“-”或“…”来暗示.5.备注一般不列入表内,解释在表下.内容分列:一般按事物产生频率大小次序来分列,比较光鲜,重点凸起.二.统计图1.线图(line diagram)(常考!)材料性质:实用于持续变量材料.剖析目标:用线段的起落表达某事物的动态(差值)变更.2.半对数线图(semilogarithmic line graph)材料性质:实用于持续变量材料.剖析目标:用线段的起落表达事物的成长速度变更趋向.3.直方图(histogram)材料性质:实用于数值变量,持续性材料的频数表材料.剖析目标:直方图是以直方面积表达各组段的频数或频率.4.直条图(bar chart)材料性质:实用于彼此自力的材料.剖析目标:直条图是用等宽直条的和长短来暗示各统计量的大小,进行比较.5.百分条图(percentchart)材料性质:构成比.剖析目标:用长条各段的长度(面积)表达内部构成比.6.圆形图(circulargraph)(常考!)材料性质:构成比.剖析目标:用圆的扇形面积表达内部构成比.7.散点图(scatterdiagram)材料性质:双变量材料.剖析目标:用点的密集度和趋向表达两变量间的相干关系.8.统计地图(statistical map)材料性质:地区性材料.剖析目标:用不合纹线或色彩代表指标高下,解释地域散布.。
卫生统计学重点整理-预防医学
1.卫生统计学:是应用概率论和数理统计学的基本原理和方法,研究居民卫生状况以及卫生服务领域中数据的收集、整理和分析的一门科学。
2.同质(homogeneity):在统计学中,若某些观察对象具有相同的特征或属性称为同质的。
否则称为异质(heterogeneity)的或者间杂的。
3.变异(variation):同质事物之间的差别称为变异。
[没有个体变异,就没有统计学!]4.总体(population):根据研究目的所确定的同质观察单位的全体。
5.样本(sample):是从总体中随机抽取的具有代表性的部分观察单位的集合。
6.样本含量(sample size):样本中包含的观察单位个数。
7.参数(parameter):反映总体特征的指标。
特点:未知、唯一,希腊字母表示,如总体均数、总体率等。
8.统计量(statistic):根据样本观察值计算出来的指标。
特点:已知、不唯一,拉丁字母表示,如样本均数、样本率等。
9.变量(variable):研究者需要对每个观察单位的某项特征或属性进行观察或测量,这种特征或属性称为变量。
10.变量值(value of variable):变量的观察值或测量值称为变量值或观察值(observed value)。
11.资料(data):变量值的集合称之为资料。
12.定量资料(quantitative data):变量值是定量的,表现为数值大小。
特点:一般有度、量、衡单位,一般属连续性资料。
13.定性资料(qualitative data):观察值是定性的,表现为互不相容的类别或属性。
特点:一般无度、量、衡单位,一般属于离散型资料。
可进一步分为计数资料和等级资料。
14.计数资料(count data):将观察单位按某种类别或属性进行分组,清点各组观察单位数所得的资料。
可进一步分为二项分类资料和无序多项分类资料。
15.等级资料(ordinal data):将观察单位按照某种特质或属性的程度或等级顺序分组,清点各组观察单位所得的资料。
医学统计学重点终极笔记
医学统计学重点终极笔记Medical Statistics【Introduction】医学统计工作的内容⒈实验设计:最关键、最重要⒉收集资料:最基础[原始资料] 实验数据,现场调查资料,医疗卫生工作记录、报告、报表质量控制:精度和偏倚⒊整理资料:资料的逻辑、一致性检查,原始数据的加工(频数分布表)⒋分析资料:统计描述(表、图、离散趋势、集中趋势)和统计推断资料的类型⑴计量资料:定量方法测定数值大小所得的资料⑵计数资料:按性质或类别分组,然后计数⑶等级分组资料:具有计数资料的特性,又有半定量的性质(“+ , -”表示)变异:不同个体在相同环境下,对外界环境因素发生的不同反应,即个体差异总体:同质的个体所构成的全体。
[同质性,大量性,差异性]样本:从总体中抽取部分个体的过程称为抽样,所抽得的部分是样本。
样本包含的个体数目称为样本含量样本的特征:⑴代表性⑵随机性⑶可靠性*抽样的要求:代表性,随机性,可靠性,可比性完全随机设计:将受试对象随机分配到各处理组或对照组中,或分别从不同总体中随机抽样进行研究。
可为两样本或多样本得比较,但样本含量不宜相差太大。
随机区组设计:也称配伍设计,是配对设计的扩展。
配对设计的每一“对子”中的受试对象分别随机分到两个处理组中,而配伍组设计中的每个“配伍组”,包含多个受试对象,要将它们分别随机分到各处理组中。
误差:泛指观测值与真实值之差,以及样本统计量与总体参数之差⑴系统误差:在收集资料过程中,由于仪器调整、试剂校验、医生对疗效的掌握等因素,造成观察结果倾向性的偏大活偏小。
要尽量查明原因,必须克服。
⑵随机测量误差:在收集资料过程中,即使系统误差已经避免,由于各种偶然因素的影响造成对同一对象多次测定的结果不完全一致。
譬如操作员技术、电压、环境温度的差异。
没有固定的倾向,时高时低;应采取措施加以控制。
⑶抽样误差:由抽样不同引起的样本均数与总体均数之间的差异。
原因是个体之间存在变异,抽样时只能抽取总体的一部分作为样本。
(完整word版)卫生统计学知识点汇总
(完整word版)卫⽣统计学知识点汇总1、卫⽣统计学是应⽤概率论和数理统计学的基本原理和⽅法,研究居民卫⽣状况以及卫⽣服务领域中数据的收集、整理和分析的⼀门科学,是卫⽣及其相关领域研究中不可缺少的分析问题和解决问题的重要⼯具。
2、统计⼯作的基本步骤:①设计;②收集资料;③整理资料;④分析资料3、分析资料是根据研究⽬的计算有关指标描述数据的基本特征,选择适当统计⽅法对资料进⾏分析,阐明事物的内在联系和规律的过程。
统计分析包括:①统计描述:是指选⽤统计指标、统计表或统计图等对资料的数量特征及其分布规律进⾏测定和描述②统计推断:是指选择恰当的统计⽅法由已知的样本信息推断总体的特征,包括参数估计和假设检验4、(1)①同质:在统计学中,若某些观察对象具有相同的特征或属性,我们就称之为同质,或具有同质性②变异:我们将同质个体的某项特征或属性的观察值或测量值之间的差异称为变异(2)①总体:根据研究⽬的确定的同质观察单位的全体,更确切地说,是同质的所有观察单位某种特征或属性的观察值或测量值的集合。
若总体明确了特定的时间和空间范围且包含有限个观察单位,称为有限总体。
若总体没有特定的时间和空间范围的限制,且包含的观察单位个数是⽆限的或⼏乎是不可能准确计数的,称该总体为⽆限总体②样本:从总体中随机抽取的具有代表性的部分观察单位的集合(3)①参数:反映总体特征的指标称为参数②统计量:根据样本观察值计算出来的指标称为统计量(4)①变量:确定总体之后,研究者需要对每个观察单位的某项特征或属性进⾏观察或测量,这种特征或属性称为变量。
变量的观察值或测量值称为变量值或观察值②资料:变量值的集合称为资料。
资料可分为定量资料(⼜称计量资料)和定性资料(⼜称分类资料)两类。
定性资料⼜可分为计数资料和等级资料(5)①抽样研究:从总体中随机抽取样本,通过样本信息推断总体特征的研究⽅法称为抽样研究②抽样误差:由随机抽样造成的样本统计量与总体参数之间、样本统计量之间的差异称为抽样误差产⽣抽样误差的根源在于个体变异,由于个体变异是普遍存在的,因此在抽样研究中抽样误差是不可避免的,但它具有⼀定的规律性,可以⽤统计学⽅法估计其⼤⼩(6)概率:随机事件发⽣可能性⼤⼩的数值度量当某事件发⽣的概率P≤0.05时,统计学中习惯上称该事件为⼩概率事件,表⽰在⼀次实验或观察中该事件发⽣的可能性很⼩,可以视为很可能不发⽣。
卫生统计学重点笔记
医师资格考试蓝宝书—预防医学医学统计学方法第一节基本概念和基本步骤(非常重要)一、统计工作的基本步骤设计(最关键、决定成败)、搜集资料、整理资料、分析资料。
总体:根据研究目的决定的同质研究对象的全体,确切地说,是性质相同的所有观察单位某一变量值的集合.总体的指标为参数。
实际工作中,经常是从总体中随机抽取一定数量的个体,作为样本,用样本信息来推断总体特征。
样本的指标为统计量.由于总体中存在个体变异,抽样研究中所抽取的样本,只包含总体中一部分个体,这种由抽样引起的差异称为抽样误差。
抽样误差愈小,用样本推断总体的精确度愈高;反之,其精确度愈低.某事件发生的可能性大小称为概率,用P表示,在0~1之间,0和1为肯定不发生和肯定发生,介于之间为偶然事件,〈0.05或0.01为小概率事件。
二、变量的分类变量:观察单位的特征,分数值变量和分类变量。
第二节数值变量数据的统计描述(重要考点)一、描述计量资料的集中趋势的指标有1.均数均数是算术均数的简称,适用于正态或近似正态分布。
2。
几何均数适用于等比资料,尤其是对数正态分布的计量资料。
对数正态分布即原始数据呈偏态分布,经对数变换后(用原始数据的对数值lgX代替X)服从正态分布,观察值不能为0,同时有正和负。
3。
中位数一组按大小顺序排列的观察值中位次居中的数值。
可用于描述任何分布,特别是偏态分布资料的集中位置,以及分布不明或分布末端无确定数据资料的中心位置。
不能求均数和几何均数,但可求中位数。
百分位数是个界值,将全部观察值分为两部分,有X%比小,剩下的比大,可用于计算正常值范围。
二、描述计量资料的离散趋势的指标1。
全距和四分位数间距.2。
方差和标准差最为常用,适于正态分布,既考虑了离均差(观察值和总体均数之差),又考虑了观察值个数,方差使原来的单位变成了平方,所以开方为标准差。
均为数值越小,观察值的变异度越小.3.变异系数多组间单位不同或均数相差较大的情况.变异系数计算公式为:CV=s/X ×100%,公式中s为样本标准差,X为样本均数.三、标准差的应用表示观察值的变异程度(或离散程度)。
卫生统计学知识点(笔记)
第一章绪论1.统计学(statistics)是一门处理数据中变异性的科学与艺术,内容包括收集、分析、解释和表达数据,目的是求得可靠的结果。
2.▲总体(population)用来表示大同小异的对象全体,例如一个国家的所有成年人;某地的所有小学生。
可分为目标总体和研究总体。
若试图对某个总体下结论,这个总体便称为目标总体(target population);资料常来源于目标总体中的一个部分,它称为研究总体(study population)。
需要谨慎的是,就研究总体所下的结论未必适用于目标总体。
3.▲样本(sample)是指从研究总体中抽取的一部分有代表性的个体。
获取样本的过程称为抽样(sampling)。
抽样研究的目的是用样本数据推断总体的特征。
需要注意的是,统计学的结论从来就不是完全肯定或完全否定的,能不能成功地达到从样本推断总体的目的,关键是抽样的方法、样本的代表性和推断的技术。
4.▲同质(homogeneity)是指同一总体中个体的主要性质相同。
5.▲变异(variation)是指同质的个体之间存在的差异。
6.▲变量的类型二分类变量分类变量或名义变量定性变量多分类变量变量有序变量或等级变量定量变量离散型变量连续型变量变量的转化:只能由“高级”向“低级”转化,即由信息量多的向信息量少的类型转化,如:定量有序分类二值7.▲参数(parameter)是反映总体特征的指标,参数的大小是客观存在的,是一个常数,不会发生变化,然而往往是未知的,需要通过样本资料来估计,如总体均数μ,总体标准差σ。
8.▲统计量(statistic)又称样本统计量,是反映样本特征的指标,是由观察资料计算出来的,如样本均数 X,样本标准差S。
统计学的任务就是依据样本统计量来推断总体参数。
9.▲概率与频率的区别:概率是参数,频率是统计量;频率总是围绕概率上下波动。
当某事件发生的概率≤0.05时,即P≤0.05,统计学习惯上称该事件为小概率事件。
职称考试卫生统计学重点学习笔记.
卫生统计学第一章统计学的基本内容第一节医学统计学的含义1、医学统计学定义医学统计学(statistics)作为一门学科的定义是:关于医学数据收集、表达和分析的普遍原理和方法。
2、医学统计学研究方法:通过大量重复观察,发现不确定的医学现象背后隐藏的统计学规律。
3、医学统计推论的基础:在一定条件下,不确定的医学现象发生可能性,即概率。
第二节、统计学的几个重要概念一.资料的类型1、计量资料(数值变量):对每一观察对象用定量的方法,测定某项指标所得的资料。
一般有度量衡单位,每个对象之间有量的区别。
2、计数资料(分类变量):对观察对象按属性或类型分组计数所得的资料。
每个对象之间没有量的差异,只有质的不同。
3、等级资料(有序分类变量):对观察对象按属性或类型分组计数,但各属性或类型之间又有程度的差别。
注意:不同类型的资料采用的统计分析方法不同;三类资料类型可以相互转化。
二、总体根据研究目的所确定的同质的所有观察对象某项变量值的集合1、有限总体:只包括在确定时间、空间范围内的有限个观察对象。
2、无限总体:没有时间、空间范围的限制,观察对象的数量是不确定的,无限的三、样本从总体中随机抽取部分观察对象,其某项变量值的集合。
从总体中随机抽取样本的目的是: 用样本信息来推断总体特征。
四、随机事件可以发生也可以不发生,可以这样发生也可以那样发生的事件。
亦称偶然事件。
五、概率描述随机事件发生可能性大小的数值,记作P,其取值范围0≤P≤1,一般用小数表示。
P=0,事件不可能发生必然事件(随机事件的特例);P=1,事件必然发生;P→0,事件发生的可能性愈小;P→1,事件发生的可能性愈大六、小概率事件习惯上将P≤0.05或P≤0.01 的随机事件称小概率事件。
表示某事件发生的可能性很小。
七、参数和统计量参数:总体指标,如总体均数、总体率,一般用希腊字母表示统计量:样本指标,如样本均数、样本率,一般用拉丁字母表示八、学习医学统计学的方法1、重点掌握“四基”:基本知识、基本概念、基本原理和基本方法;2、重视统计方法在实际中应用,重视实习和综合训练;注意学习每种统计方法的应用范围、应用条件,大多数公式只要求了解其意义和使用方法,不用记忆和探究数理推导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
卫生统计学第一章统计学的基本内容第一节医学统计学的含义1、医学统计学定义医学统计学(statistics)作为一门学科的定义是:关于医学数据收集、表达和分析的普遍原理和方法。
2、医学统计学研究方法:通过大量重复观察,发现不确定的医学现象背后隐藏的统计学规律。
3、医学统计推论的基础:在一定条件下,不确定的医学现象发生可能性,即概率。
第二节、统计学的几个重要概念一.资料的类型1、计量资料(数值变量):对每一观察对象用定量的方法,测定某项指标所得的资料。
一般有度量衡单位,每个对象之间有量的区别。
2、计数资料(分类变量):对观察对象按属性或类型分组计数所得的资料。
每个对象之间没有量的差异,只有质的不同。
3、等级资料(有序分类变量):对观察对象按属性或类型分组计数,但各属性或类型之间又有程度的差别。
注意:不同类型的资料采用的统计分析方法不同;三类资料类型可以相互转化。
二、总体根据研究目的所确定的同质的所有观察对象某项变量值的集合1、有限总体:只包括在确定时间、空间范围内的有限个观察对象。
2、无限总体:没有时间、空间范围的限制,观察对象的数量是不确定的,无限的三、样本从总体中随机抽取部分观察对象,其某项变量值的集合。
从总体中随机抽取样本的目的是: 用样本信息来推断总体特征。
四、随机事件可以发生也可以不发生,可以这样发生也可以那样发生的事件。
亦称偶然事件。
五、概率描述随机事件发生可能性大小的数值,记作P,其取值范围0≤P≤1,一般用小数表示。
P=0,事件不可能发生必然事件(随机事件的特例);P=1,事件必然发生;P→0,事件发生的可能性愈小;P→1,事件发生的可能性愈大六、小概率事件习惯上将P≤0.05或P≤0.01 的随机事件称小概率事件。
表示某事件发生的可能性很小。
七、参数和统计量参数:总体指标,如总体均数、总体率,一般用希腊字母表示统计量:样本指标,如样本均数、样本率,一般用拉丁字母表示八、学习医学统计学的方法1、重点掌握“四基”:基本知识、基本概念、基本原理和基本方法;2、重视统计方法在实际中应用,重视实习和综合训练;注意学习每种统计方法的应用范围、应用条件,大多数公式只要求了解其意义和使用方法,不用记忆和探究数理推导。
第三节统计工作的基本步骤统计设计收集资料整理资料分析资料一、统计设计1、调查设计2、实验设计(详见第十三章)二、收集资料资料来源(1)统计报表(2)日常医疗工作原始记录和报告卡(3)专题调查三、整理资料1.目的将收集的原始资料系统化、条理化,便于进一步计算和分析2.整理分组方式(1)性质分组(2)数量分组四、分析资料1、统计描述2、统计推断第四节统计图表一、统计表1、统计表的作用代替冗长的文字叙述,便于计算、分析和对比。
2、统计表的结构1)标题2)标目横标目(主语):说明表各横行数字的涵义,通常列在表的左侧纵标目(谓语):说明表各纵栏数字的涵义主语和谓语连贯起来能读成一句完整而通顺的话3、统计表的种类:1)简单表:只按单一变量分组2)组合表:按两个或两个以上变量分组某地1980年男、女HBsAg阳性率━━━━━━━━━━━━━━━━性别调查数阳性数阳性率(%)────────────────男4234 303 7.16女4530 181 4.00──────────────合计8764 484 5.52━━━━━━━━━━━━━━━━4、列表原则:重点突出,简单明了;主谓分明,层次分明5、统计表的基本要求:1)标题:概括地说明表的内容,必要时注明资料的时间和地点,写在表上方。
常见的缺点:过于简略,甚至不写标题;或过于繁琐;或标题不确切。
2)标目:文字简明扼要,有单位的标目要注明单位。
常见的缺点:标目过多,层次不清3)线条:不宜过多,除上面的顶线,下面的底线,纵标目与合计之间的横线外,其余线条一般均省去。
表的左上角不宜有斜线。
4)数字:A、数字一律用阿拉伯数字表示B、同一指标的小数位数应一致,位次对齐C、表内不宜留空格,暂缺或未记录,用“…”表示,无数字,用“—”表示,数字为0,填写D、绝对数太小而无法计算指标,则用“…”代替。
5)备注:一般不列入表内,必要时可用“*”号标出,写在表的下面。
二、统计图1、统计图作用:通过点、线、面等形式表达统计资料,直观地反映事物之间的数量关系。
但需注意,由于统计图对数量的表达较粗糙,不便于作深入细致的分析,一般需附相应的统计表。
2、常见统计图种类:条图、百分条图,圆图,线图,半对数线图,直方图,散点图3、制图的基本要求:1)按资料的性质和分析目的,选用适合的图形2)要有标题,扼要说明资料的内容,必要时注明时间、地点,一般写在图的下面。
3)横轴尺度从左到右,纵轴尺度从下而上,数量一律由小到大。
横轴与纵轴坐标长度比例一般为5:74)比较不同事物,用不同线条或颜色表示,并附上图例说明。
4、常见统计图适用范围及其绘制要点1)条图:(1)适用范围:相互独立的资料,常用形式:单式和复式(2)绘制要点:A.用等宽的直条的长短反映各指标的数量大小。
B.纵轴的尺度必须从0开始。
C.各直条之间的间隙应相等,一般将比较的指标按大小顺序排列。
2)百分条图:(1)适用范围:构成比资料(2)绘制要点:A.将长条全长为100%,B.将各百分构成比在长条上分割若干段,C.各段按大小顺序排列。
3)圆图(1)适用范围:构成比资料(2)绘制要点:A.将圆面积为100%,B.将各百分构成比乘以3.6度,变为圆心角度数,C.在圆上绘出各扇型面积D.各扇型面积按大小顺序排列。
4)普通线图(1)适用范围:连续性资料(2)绘制要点:A.纵横轴均用算术尺度,B.纵横轴尺度比一般为5:7C.相邻两点用直线连接。
(3)意义:反映事物的变化趋势。
5)半对数线图(1)适用范围:连续性资料(2)绘制要点:A.横轴用算术尺度,纵轴用对数尺度,B.纵横轴尺度比一般为5:7C.相邻两点用直线连接。
(3)意义:反映事物的变化速度。
6)直方图(1)适用范围:计量的频数表资料(2)绘制要点:A.横轴表示被观察事物,纵轴表示频数或频率,B.用等宽的矩形面积表示各组段的频数或频率7)散点图:(1)适用范围:双变量资料(2)分析目的:用点的密度程度和趋势表示两变量间的相关关系(3)绘制要点(见第五章)第二章数值变量(计量)资料的统计分析第一节计量资料的统计描述一、计量资料的频数分布(一)频数表的编制1、求极差(全距)R=最大值-最小值=132.5-108.2=24.32、求组距(i)i=极差/组数=24.3/10=2.4≌23、分组段原则:第一组段包括最小值,最后组段包括最大值。
每一组段都有上限和下限上限:组段的终点(最大值)下限:组段的起点(最小值)4、列表划记(二)频数分布的特征1、集中趋势:数据向某一数值集中的倾向2、离散趋势:数据的数值大小不等的倾向(三)频数分布的类型1、对称分布: 集中位置在中间,左右两侧频数大体对称2、偏态分布:(1)正偏态:集中位置偏向数值小的一侧;(2)负偏态:集中位置偏向数值大的一侧(四)频数表的用途:1、揭示资料的分布特征和分布类型2、便于进一步计算指标和统计分析3、便于发现特大或特小的可疑值二、集中趋势的描述(一)常用平均数的种类:1、算术均数(简称均数)2、几何均数3、中位数(二)算术均数(均数)样本均数用X表示,总体均数用μ表示1、适用范围:对称分布,尤其是正态分布的资料2、计算方法:(1)直接法X=∑X / n(2)加权法适用于频数表资料X=∑fX / ∑f其中X=组中值=(上限+下限)/ 2f=频数(三)几何均数(简记为G)1、适用范围:(1)等比级数资料,如血清滴度资料(2)对数正态分布资料2、计算方法:(1)直接法G=log-1(∑logX/n)(2)加权法G=log-1(∑flogX/∑f)(四)中位数(简记M)1、中位数的定义:中位数: 将一组观察值从小到大按顺序排列,位次居中的观察值就是中位数。
在全部观察值中,大于和小于中位数的观察值的个数相等。
2、中位数的适用范围:(1)偏态分布资料(2)分布不明资料(3)分布末端无确定值资料(开口资料)理论上,中位数可用于任何分布的计量资料,但实际应用中常用于偏态分布,特别是开口资料。
在对称分布资料中,M=X3、计算方法:(1)直接法:适用于观察数少资料n为奇数时,M=X(n+1)/2n为偶数时,M=(Xn/2+X(n/2+1))/2(2)频数表法:适用于频数表资料步骤:①从小到大计算累计频数和累计频数;②确定中位数所在组段;③计算中位数MM=LM+iM/fM(n/2-∑fL)LM=M所在组段的下限iM=M所在组段的组距fM=M所在组段的频数∑fL=小于L各组段的累计频数M在8~组段L=8i=4fX=48∑fL=26n=108M=L+i/fX(n/2-∑fL)=10.33(五)小结:常用平均数的意义及其应用场合平均数意义应用场合─────────────────────────均数平均数量水平最适用于对称分布,特别是正态分布几何均数平均增(减)倍数等比资料或对数正态分布中位数位次居中的观察值(1)偏态分布,(2)分布不明,(3)分布末端无确定水平三离散趋势的描述甲组26, 28, 30, 32, 34. X甲=30乙组24, 27, 30, 33, 36. X乙=30丙组26, 29, 30, 31, 34. X丙=30(一)反映离散程度的常用指标:1、极差2、四分位数间距3、方差4、标准差5、变异系数(二)极差(全距)R1、计算公式:R=最大值-最小值2、意义:R愈大,离散度愈大,R愈小,离散度愈小。
3、优点:计算简单,意义明了4、缺点:(1)不能反映每一个观察值的变异;(2)样本例数越大,R可能越大;(3)R抽样误差大,不稳定。
(三)四分位数间距(简记Q)1.百分位数(记作PX)(1)定义:将一组观察值从小到大按顺序排列,一个百分位数将全部观察值分为两部分,理论上有x%的观察值比它小,有(100-x)%的观察值比它大。
P50分位数也就是中位数。
(2)计算步骤与公式①从小到大计算累计频数和累计频数;②确定百分位数所在组段;③计算百分位数PxPx=L+i/fx(n.x%-∑fL)L=Px所在组段的下限i=Px所在组段的组距fx=Px所在组段的频数∑fL=小于L各组段的累计频数如计算P25P25 在8~组段L25=8,i25=4 ,f25=48,∑fL=108,n=108P25=L25+i25/f25(n.25%-∑fL)=8.083计算P75P75 在12~组段L75=12,i25=25 ,f75=4,∑fL=74,n=108P75=L75+i75/f75(n.75%-∑fL)=13.1202. 四分位数间距(1)计算公式:P25: 下四分位数简记QLP75: 上四分位数简记QU四分位数间距Q=QU-QL=13.120-8.083=5.037(2)意义:中间一半观察值的极差,与R 意义相似。