八年级数学上册 三角形全等之类比探究(习题及答案)(人教版)

合集下载

人教版_部编版八年级数学上册第十二章第二节三角形全等的判定考试复习题(含答案) (44)

人教版_部编版八年级数学上册第十二章第二节三角形全等的判定考试复习题(含答案) (44)

人教版_部编版八年级数学上册第十二章第二节三角形全等的判定考试复习题(含答案)如图,在四边形ABCD 中,AB AD =,BC CD =,90ABC ADC ∠=∠=︒,12MAN BAD ∠=∠.(1)如图(1),将MAN ∠绕着A 点旋转,它的两边分别交边BC 、CD 于M 、N ,试判断这一过程中线段BM 、DN 和MN 之间有怎样的数量关系?直接写出结论,不用证明;(2)如图(2),将MAN ∠绕着A 点旋转,它的两边分别交边BC 、CD 的延长线于M 、N ,试判断这一过程中线段BM 、DN 和MN 之间有怎样的数量关系?并证明你的结论;(3)如图(3),将MAN ∠绕着A 点旋转,它的两边分别交边BC 、CD 的反向延长线于M 、N ,试判断这一过程中线段BM 、DN 和MN 之间有怎样的数量关系?直接写出结论,不用证明.【答案】(1)详见解析;(2)MN BM DN =-,证明见解析;(3)MN DN BM =-.【解析】 【分析】(1)延长MB 到G ,使BG DN =,连接AG ,易证ABG ≌ADN △,可得AG AN =,BG DN =,∠=∠NAD BAG ,再根据12MAN BAD ∠=∠,可得∠=∠MAG MAN ,易证AMG ≌AMN ,等量代换可得MN BM DN =+.(2)在BM 上截取BG ,使BG DN =,连接AG ,易证ADN △≌ABG ,可得AN AG =,NAD GAB ∠=∠,所以12MAN NAD BAM DAB ∠=∠+∠=∠,可得MAN MAG ∠=∠,易证MAN △≌MAG △,等量代换即可得出MN BM DN =-.(3)在DC 上截取DF=BM ,易证△ABM ≌△ANF ,可得AF AM =,∠=∠DAF MAB ,根据12∠=∠+∠=∠MAN NAB BAM DAB ,等量代换可得12∠+∠=∠NAB DAF DAB ,可得∠=∠FAN MAN ,即可证明△FAN ≌△MAN ,得到=FN MN ,等量代换可得MN BM DN =-. 【详解】(1)如图(1),延长MB 到G ,使BG DN =,连接AG . ∵90ABG ABC ADC ∠=∠=∠=︒,AB AD =, 在△ABG 与△AND 中,BG DN NDA GBA AG AD =⎧⎪∠=∠⎨⎪=⎩∴ABG ≌ADN △(SAS ).∴AG AN =,BG DN =,∠=∠NAD BAG .∵12MAN BAD ∠=∠, ∴12∠+∠=∠-∠=∠NAD MAB BAD MAN BAD∴12∠+∠=∠+∠=∠=∠NAD MAB BAG MAB GAM BAD .∴GAM MAN ∠=∠.又AM AM =,∴在△AMG 与△AMN 中,AG AN MAG NAM AM AM =⎧⎪∠=∠⎨⎪=⎩AMG ≌AMN (SAS ). ∴MG MN =.∵MG BM BG =+.∴MN BM DN =+.(1) (2) (3) (2)MN BM DN =-.证明:如图(2),在BM 上截取BG ,使BG DN =,连接AG . ∵90ABC ADC ∠=∠=︒,AD AB =, ∴在△ABG 与△AND 中,BG DN NDA GBA AG AD =⎧⎪∠=∠⎨⎪=⎩∴ABG ≌ADN △(SAS ). ∴AN AG =,NAD GAB ∠=∠,∴12MAN NAD BAM DAB ∠=∠+∠=∠.∴12MAG BAD ∠=∠.∴MAN MAG ∠=∠. ∴在△AMG 与△AMN 中,AG AN MAG NAM AM AM =⎧⎪∠=∠⎨⎪=⎩∴AMG ≌AMN (SAS ). ∴MN MG =. ∴MN BM DN =-. (3)MN DN BM =-.证明:如图(3),在DC 上截取DF=BM , ∵90ABC ADC ∠=∠=︒,AD AB =, ∴在△ABM 与△ANF 中,BM DF ABM ADF AB AD =⎧⎪∠=∠⎨⎪=⎩∴△ABM ≌△ANF (SAS ). ∴AF AM =,∠=∠DAF MAB ,∴12∠=∠+∠=∠MAN NAB BAM DAB ,∴12∠+∠=∠NAB DAF DAB ,∴()12∠=∠-∠+∠=∠FAN DAB NAB DAF DAB∴∠=∠FAN MAN . ∴在△FAN 与△MAN 中,AF AM FAN NAM AN AN =⎧⎪∠=∠⎨⎪=⎩∴△FAN ≌△MAN (SAS ), ∴=FN MN . ∵=-FN DN DF ∴MN BM DN =-. 【点睛】本题考查截长补短的辅助线的做法,并且这道题属于类比探究题型,只要把第一问做出来,那么后面几问跟第一问的辅助线,证明思路都比较相似,如果实在没有思路的话可类比第一问证得哪两个三角形全等,在第二问中也找到这样的三角形即可.32.如图,在正方形ABCD 中,点E 、F 分别在AD 、CD 边上,且AE DF =,联结BE 、AF .求证:AF BE =.【答案】详见解析 【解析】 【分析】根据正方形的性质可得AB=AD ,∠BAE=∠D=90°,再根据已知条件AE DF =可证ABE △≌DAF △,即可得出AF BE =.【详解】解:∵四边形ABCD 是正方形, ∴AB DA =,90BAE ADF ∠=∠=︒. 在ABE △与DAF △中,AB DA BAE ADF AE DF =⎧⎪∠=∠⎨⎪=⎩, ∴ABE △≌DAF △(SAS ). ∴AF BE =. 【点睛】本题考查正方形的性质,熟练掌握正方形四边相等,四角相等都等于90°是解题关键.33.如图,已知ABC △.(1)请你在BC 边上分别取两点D ,E (BC 的中点 除外),联结AD 、AE ,写出使此图中只存在两对面积相等的三角形的相应条件,并表示出面积相等的三角形;(2)请你根据使(l )成立的相应条件,证明AB AC AD AE +>+. 【答案】(1)详见解析;(2)详见解析. 【解析】 【分析】(1)根据图中只存在两对面积相等的三角形,可得出在BC 上选取的点不能使三等分点,只能是BD CE DE =≠,这样的话就存在△ABD 和△AEC面积相等,两个三角形再加上一个公共的三角形也就是△ADE 就可以得到△ABE 和△ABE 面积相等,即满足条件.(2)分别过点D 、B 作CA 、EA 的平行线,两线相交于F 点,DF 与AB 交于点G .可得到ACE FDB ∠=∠,AEC FBD ∠=∠,易证AEC ≌FBD ,可得到AC FD =,AE FB =;在AGD △中根据三角形三边关系可得AG DG AD +>,在BFG 中根据三边关系可得,BG FG FB +>,两个式子合并可得AB FD AD FB +>+,即可得到AB AC AD AE +>+.【详解】(1)如图(1),相应的条件就应该是BD CE DE =≠, 设点A 到直线BC 的距离是h ,则可得到12ABDSBD h =,12ACES EC h =, ∵BD=CE ∴ABDACESS=;又∵ABEABDADES SS=+,ADCAECADESSS=+,∴ABEADCSS=;此时此图中只存在两对面积相等的三角形,分别是:△ABD 和△AEC 面积相等,△ABE 和△ADC 面积相等.(1) (2)(2)如图(2),分别过点D 、B 作CA 、EA 的平行线,两线相交于F 点,DF 与AB 交于点G .∴ACE FDB ∠=∠,AEC FBD ∠=∠. 在AEC 和FBD 中,又CE BD =,∴AEC ≌FBD .∴AC FD =,AE FB =. 在AGD △中,AG DG AD +>,在BFG 中,BG FG FB +>,即AB FD AD FB +>+. ∴AB AC AD AE +>+. 【点睛】本题考查了(1)两个三角形等底同高面积相等的情况,如果在一个较大的三角形一边上选取两条相等的线段,再与另一个顶点组成的两个三角形面积一定相等;(2)通过作已知直线的平行线构造全等三角形,将要证明的线段间的关系进行等量代换,可证出结论.34.已知AE AB ⊥,DA AC ⊥,AE AB =,AD AC =.直线MN 过点A ,交DE 、BC 于点M 、N .(1)若AM 是EAD 中线,求证:AN BC ⊥; (2)若AN BC ⊥,求证:EM DM =. 【答案】(1)详见解析;(2)详见解析. 【解析】 【分析】(1)延长AM 至F ,使MF AM =,易证EMF △≌DMA △,可得DAM F ∠=∠,EF AD =,再根据AD AC =可得EF AC =,再利用∠BAC 、∠BAE 、∠EAD 和∠DAC 四个角和为360°,可得180BAC DAE ∠=︒-∠,利用△AEF 的内角和可得180AEF DAE ∠=︒-,可得BAC AEF ∠=∠,即可证明ABC △≌EAF △,最后利用等角的余角相等的等量代换以及△ABN 的内角和为180°可得出结论.(2)过点E 作EF AD ∥交AM 的延长线于F ,则F DAM ∠=∠,根据DA AC ⊥,可得90DAM CAN ∠+∠=︒;AN BC ⊥,可得90CAN C ∠+∠=︒,等量代换得出F DAM C ∠=∠=∠.根据周角等于360°,可得180BAC DAE ∠=︒-∠;根据三角形内角和可得180∠=︒-∠AEF DAE ,可得BAC AEF ∠=∠,则可证明ABC △≌EAF △(AAS ),得到EF AC =;易证EFM △≌DAM △,即可得到EM DM =.【详解】解:(1)如图,延长AM 至F ,使MF AM =,∵AM 是EAD 中线,∴EM DM =.在EMF △和DMA △中,EM DMEMF AMD MF AM =⎧⎪∠=∠⎨⎪=⎩,∴EMF △≌DMA △(SAS ).∴DAM F ∠=∠,EF AD =. ∵AD AC =,∴EF AC =.∵AE AB ⊥,DA AC ⊥,∴360902180BAC DAE DAE ∠=︒-︒⨯-∠=︒-∠. ∵180180180AEF F EAM DAM EAM DAE ∠=︒-∠-∠=︒-∠-∠=︒-, ∴BAC AEF ∠=∠.在ABC △和EAF △中,EF ACBAC AEF AB AE =⎧⎪∠=∠⎨⎪=⎩,∴ABC △≌EAF △(SAS ).∴EAF B ∠=∠.∵AE AB ⊥,∴90EAF BAN ∠+∠=︒.∴90B BAN ∠+∠=︒.在ABN 中,()1801809090ANB B BAN ∠=︒-∠+∠=︒-︒=︒,∴AN BC ⊥. (2)如图,过点E 作EF AD ∥交AM 的延长线于F ,则F DAM ∠=∠,∵DA AC ⊥,∴90DAM CAN ∠+∠=︒.∵AN BC ⊥,∴90CAN C ∠+∠=︒.∴F DAM C ∠=∠=∠.∵AE AB ⊥,DA AC ⊥,∴360902180BAC DAE DAE ∠=︒-︒⨯-∠=︒-∠. ∵180180180AEF F EAM DAM EAM DAE ∠=︒-∠-∠=︒-∠-∠=︒-∠, ∴BAC AEF ∠=∠.在ABC △和EAF △中,BAC AEFF C AB AE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ABC △≌EAF △(AAS ).∴EF AC =. ∵AD AC =,∴EF AD =.在EFM △和DAM △中,F DAM EMF DMA EF AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴EFM △≌DAM △(AAS ).∴EM DM =.【点睛】本题考查三角形全等以及角度之间的等量代换,第(1)题通过“倍长中线”这一辅助线做法,构造全等三角形,从而得出角相等,在遇到有中线的题目,并且题中没有全等三角形,那么我们就可以通过延长中线,或者经过中点的线段,构造全等三角形;第(2)题是通过构造平行线,进而得到角相等,构造全等三角形,然后再根据角之间的等量代换,常见的就是等角的余角相等、等角的补角相等,当直角比较多的地方都可以想到这种方法.35.如图,在ABC △中,AC BC =,90ACB ∠=︒,D 是AC 上的一点,且AE BD ⊥的延长线交于E ,又BD 平分ABC ∠,求证:12AE BD =.【答案】详见解析【解析】【分析】延长AE ,BC 交于点F ,根据在Rt △BEF 中,∠EBF+∠F=90°,在Rt △ACF中∠FAC+∠F=90°,可得∠EBF=∠FAC ,进而可证ACF ≌BCD,可得AF BD =,易证ABE △≌FBE ,可得AE EF =,即12AE AF =,所以12AE BD =. 【详解】解:延长AE ,BC 交于点F ,∵90EAD ADE ∠+∠=︒,90BDC CBD ∠+∠=︒,ADE BDC ∠=∠,∴EAD CBD ∠=∠.∵在ACF 和BCD 中,90EAD CBD AC BC ACF BCD ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴ACF ≌BCD (ASA ).∴AF BD =.∵在ABE △和FBE 中,90ABE FBE BE BE AEB FEB ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴ABE △≌FBE (ASA ).∴AE EF =,即12AE AF =. ∴12AE BD =. 【点睛】本题考查全等三角形证明中与等腰三角形三线合一相关的辅助线,如果一个题目中一条线段既是高线又是角平分线,那么我们可以将这个高线和角平分线所在的三角形补全,即可证得等腰三角形,就可以利用这些条件构造全等.36.如图,AD BC ∥,12∠=∠,34∠=∠,直线DC 过点E 交AD 于D ,交BC 于点C .求证:AD BC AB +=.【答案】详见解析【解析】【分析】在线段AB 上取AF AD =,连接EF ,易证ADE ≌AFE △,可得D AFE ∠=∠,因为AD BC ∥得,∠D+∠C=180°,再根据邻补角∠AFE+∠BFE=180°,可得∠BFE=∠C ,可证CBE △≌FBE ,可得BC=BF ,再进行等量代换即可得出答案.【详解】解:在线段AB 上取AF AD =,连接EF ,在ADE 与AFE △中,12AF AD AE AE =⎧⎪∠=∠⎨⎪=⎩, ∴ADE ≌AFE △(SAS ).∴D AFE ∠=∠.由AD CB 又可得180C D ∠+∠=︒,∴180AFE C ∠+∠=︒.又180BFE AFE ∠+∠=︒,∴C BFE ∠=∠.在CBE △与FBE 中,34C BFE BE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴CBE △≌FBE (AAS ).∴BF BC =.∵AB BF AF =+,∴AB AD BC =+.【点睛】本题考查全等三角形证明中辅助线其中一种截长补短的方法,在遇到两条线段和等于第三条线段的时候可用截长补短构造全等三角形,即在较长的线段上截取某条较短线段长度,或者延长一条较短线段长度使之等于另一条线段长度.37.如图,在ABC △和A B C '''中,AC A C ''=,'AB A B '=,D 、D 分别为BC 、B C ''的中点,且AD A D ''=,求证:ABC △≌A B C '''.【答案】详见解析【解析】【分析】分别延长AD 、A D ''到E ,E ',使得AD DE =,A D D E ''''=,连接BE 、B E '', 易证ACD ≌EBD △,ACD '''△≌E B D '''△,可得到AC EB =,A C EB ''''=. 易证ABE △≌A B E '''△,可得BAD B A D '''∠=∠.再证明ABD △≌A B D '''△.可得BD B D ''=,BC B C ''=,即可证得ABC △≌A B C '''.【详解】解:如图,分别延长AD 、A D ''到E ,E ',使得AD DE =,A D D E ''''=, 连接BE 、B E '',在△ACD 与△EDB 中AD DE ADC BDE CD BD =⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△EDB (SAS )同理可证A C D E B D ≅'''''',∴AC=EB ,A C E B ='''';在△ABE 与A B E '''中,AB A B BE B E AE A E '''''=⎧'⎪=⎨⎪=⎩∴△ABE A B E '≅''(SSS )∴BAD B A D '''∠=∠,'E E ∠=∠∴'''DAC D A C ∠=∠,∵∠BAC=∠BAD+∠DAC ,B A C B A D D'A'C'∠∠∠'''''+'=,∴BAC B A C ∠∠'''=;在△ABC 与A'B'C'中B AC AB A B BAC AC A C '''''''=⎧⎪∠=∠⎨⎪=⎩∴△ABC A'B'C'≅(SAS )【点睛】本题考查全等三角形的证明,在证明全等但条件不够的时候可以考虑做辅助线,并且本题有中点,所以考虑倍长中线的辅助线做法是本题的解题关键.38.如图,在ABC △中,CD 是C ∠的角平分线,2A B ∠=∠,求证:BC AC AD =+.【答案】详见解析【解析】【分析】在BC 上取一点E 使得CE AC =,易证ACD ≌ECD ,可得2DEC A B ∠=∠=∠,再根据三角形的外角可得2B BDE DEC B ∠+∠=∠=∠,所以B BDE ∠=∠,可得DE BE =,通过等量代换可得出BC AC AD =+.【详解】解:如图,在BC 上找到E 点,使得CE AC =,在ACD 和ECD 中,AC CE ACD ECD CD CD =⎧⎪∠=∠⎨⎪=⎩, ∴ACD ≌ECD (SAS ).∴DE AD =.∵2A B ∠=∠,B BDE DEC A ∠+∠=∠=∠,∴B BDE ∠=∠.∴DE BE =.∵BC BE CE =+,∴BC DE AC AD AC =+=+【点睛】本题考查利用截长补短的辅助线结合全等解题;本题的解题关键是看到三条线段之间和或者差的关系,要利用截长方法在较长线段上截取与其中一条较短线段相等的线段,构造全等三角形,或者利用补短的方法,将其中一条较短线段延长,构造全等三角形.39.如图,已知ABC △,AC BC <,请用尺规作图在BA 上取一点P ,使得PA PC BA +=.【答案】详见解析.【解析】【分析】作线段BC 的垂直平分线MN ,直线MN 交AB 于点P ,连接PC ,点P 即为所求.【详解】解:如图点P 即为所求.理由:MN 垂直平分线段BC ,PC PB ∴=,PC PA PB PA AB ∴+=+=.【点睛】本题考查作图-复杂作图,线段的垂直平分线的性质等知识,解题的关键在于灵活运用所学知识解决问题,属于中考常考题型.40.如图,AB BC ⊥,AB BC =,点D 在BC 上.以D 为直角顶点作等腰直角三角形ADE ,则当D 从B 运动到C 的过程中,探求点E 的运动轨迹.【答案】线段.【解析】【分析】过点E 作EF BC ⊥交直线BC 于点F ,根据D 点在B 点,BC 中点以及C 点时,得出E 点所在位置,进而得出E 点在一条直线上,进而得出答案.【详解】如图所示:过点E 作EF BC ⊥交直线BC 于点F ,当点D 与点B 重合时,点E 与点C 重合,当点D 在BC 中点时,∵90ADB EDF ∠+∠=︒,90ADB DAB ∠+∠=︒,∴DAB EDF ∠=∠.∵在ADB △和DEF 中,90B F BAD FDE AD DE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴ADB △≌DEF (AAS ).∴BD EF =,AB DF =.∵AB BC =,BD CD =,∴FC CD EF ==.∴45ECF FEC ∠=∠=︒.∵∠ACB=45°,∴∠ECA=90°,当点D 与点C 重合时,∠ECA=90°,∴点E 与另两个点E 都在过点C 且垂直于AC 的一条直线上.综上所述:当D从B运动到C的过程中,点E的运动轨迹是线段.【点睛】此题主要考查了点的轨迹问题,根据已知得出D点在不同位置时E点位置是解题关键.。

八年级数学上册《第十二章 三角形全等的判定》同步练习题及答案(人教版)

八年级数学上册《第十二章 三角形全等的判定》同步练习题及答案(人教版)

八年级数学上册《第十二章三角形全等的判定》同步练习题及答案(人教版) 一、单选题1.如图,AB//DE,AB=DE增加下列一个条件,仍不能判定ΔABC≅ΔDEF的是( )A.∠A=∠D B.BE=CF C.AC=DF D.∠ACB=∠F2.根据下列已知条件,不能判定△ABC≌△DEF的是()A.AB=DE,BC=EF,AC=DF B.AB=DE,BC=EFC.∠A=∠D,∠B=∠E,AB=DE D.AB=DE,BC=EF3.下列命题正确的是()A.两个等边三角形全等B.有两边及一个角对应相等的两个三角形全等C.斜边和一条直角边分别相等的两个直角三角形全等D.有一个锐角相等的两个直角三角形全等4.如图,已知∠ADB=∠BCA=90°,添加下列条件后不能使△ABD≌△BAC的是()A.AD=BC B.AC=BDC.∠DAC=∠CBD D.∠ABD=∠BAC5.如图BD⊥AC,CE⊥AB,垂足分别为D,E,BD与CE交于点O,且OD=OE,下列结论错误的是()A.∠OAB=∠OAC B.AE=ADC.∠B=∠C D.OE垂直平分AB6.如图∠A=∠D=90°,给出下列条件:①AB=DC②OB=OC③∠ABC=∠DCB④∠ABO=∠DCO从中添加一个条件后,能证明△ABC≌△DCB的是()A.①②③B.②③④C.①②④D.①③④7.如图,在△ABC中∠C=90°,D是BC上一点,DE⊥AB于点E,AE=AC连接AD,若BC=8,则BD+DE 等于()A.6 B.7 C.8 D.98.如图,在△ABC和△DBC中∠ACB=∠DBC=90°,E是BC的中点DE⊥AB,垂足为点F,且AB=DE.若BD=8cm,则AC的长为( )A.2cm B.3cm C.4cm D.6cm二、填空题9.如图,点C,F在BE线段上,∠ABC=∠DEF,BC=EF,请你添加一个条件,使得△ABC≌△DEF,你添加的条件是(只需填一个答案即可).10.如图,已知△ABC中,AB=AC,要使△ABD≌ACE,则只需添加一个适当的条件是.(只填一个即可)11.如图,AE平分∠CAD,点B在射线AE上,若使△ABC≌△ABD,则还需添加的一个条件是(只填一个即可).12.如图,已知AD,CE是△ABC的两条高线,AD=CE,∠CAD=25°,则∠OCD=度.13.如图,已知AD//BC,点E为CD上一点,AE,BE分别平分∠DAB,∠CBA若AE=3cm,BE=4cm 则四边形ABCD的面积是.三、解答题14.如图所示,已知在△ABC中∠BAC=90°,AB=AC直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为D,E,求证:DE=BD+CE.15.如图,在ΔABC中,D是BC的中点DE⊥AB,DF⊥AC垂足分别是E,F,BE=CF .求证:AD平分∠BAC .16.如图是一个平分角的仪器,其中AB=AD,BC=DC,将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是∠DAB的平分线,请你说明它的道理.17.如图,已知△ABC中,AB=BC=AC,∠ABC=∠BCA=∠CAB=60°,M、N分别在△ABC的BC、AC边上,且BM=CN,AM、BN交于点Q.求证:∠BQM=60°.18.如图,△ABC与△DCB中,AC与BD交于点E,且AE=DE,∠A=∠D.(1)BE与CE相等吗?请说明理由;(2)若∠BEC=130°,求∠EBC的度数.19.如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF;(2)当AD⊥BC,AE=2,CF=4时,求AC的长.20.已知△ABC和△ADE,AB=AD ∠BAD=∠CAE,∠B=∠D,AD与BC交与点P,点C在DE上.(1)求证:BC=DE(2)若∠B=30°,∠APC=70°①求∠E的度数②求证:CP=CE参考答案1.C2.B3.C4.C5.D6.A7.C8.C9.AB=DE(或∠A=∠D或∠ACB=∠DFE)10.BD=CE11.AC=AD(答案不唯一)12.4013.12cm214.证明:∵BD⊥直线m,CE⊥直线m ∴∠BDA=∠CEA=90°∵∠BAC=90°∴∠BAD+∠CAE=90°∵∠BAD+∠ABD=90°∴∠CAE=∠ABD在△ADB和△CEA中{∠BDA=∠CEA∠ABD=∠CAEAB=AC∴△ADB≌△CEA(AAS)∴BD=AE∴DE=AE+AD=BD+CE.15.证明:∵D是BC的中点∴BD=CD .∵DE⊥AB,DF⊥AC∴∠DEB=∠DFC=90° .在Rt△DEB和Rt△DFC中∴Rt△DEB≅Rt△DFC(HL)∴DE=DF .∵DE⊥AB,DF⊥AC∴点D在∠BAC的平分线上∴AD平分∠BAC . 16.解:在△ACD和△ACB中AD=AB,CD=CB,AC=AC.∴△ACD≌△ACB.∴∠DAC=∠BAC∴AE是∠DAB的平分线. 17.解:在△ABM与△BCN中{AB=BC∠ABM=∠C=60°BM=CN∴△ABM≌△BCN(SAS)∴∠BAM=∠CBN∵∠BQM=∠ABN+∠BAM∴∠BQM=∠ABN+∠CBN=∠ABC=60°.18.(1)解:BE=CE.理由:在△ABE和△DCE中∵∠AEB=∠DEC,∠A=∠D,AE=DE∴△ABE≌△DCE(ASA)∴BE=CE;(2)解:由(1)知BE=CE∴∠EBC=∠ECB∵∠EBC+∠ECB+∠BEC=180°,∠BEC=130°∴∠EBC+∠ECB=50°∴∠EBC=25°.19.(1)证明:∵CF∥AB.∴∠B=∠FCD,∠BED=∠F ∵AD是BC边上的中线,∴BD=CD在△BDE 和△CDF 中∴△BDE ≌△CDF( AAS)(2)解:∵△BDE ≌△CDF∴BE=CF=4,∴AB=AE+BE=2+4=6∵AD ⊥BC ,BD=CD .∴AD 垂直平分BC ,∴AC=AB= 6.20.(1)证明:∵∠BAD =∠CAE∴∠BAD +∠CAP =∠CAE +∠CAP即∠BAC=∠DAE在△ABC 和△ADE 中{∠B =∠DAB =AD ∠BAC =∠DAE∴△ABC ≌△ADE (ASA )∴BC=DE ;(2)解:①∵∠B =30°,∠APC =70° ∴∠BAD=70°-30°=40°∴∠CAE=∠BAD=40°.∵△ABC ≌△ADE∴AC=AE∴∠E=∠ACE= 180∘−40∘2=70∘ ;②∵∠APC =70° ,∠E=∠ACE =70°∴∠APC=∠E=∠ACE =70°.∵△ABC ≌△ADE∴∠ACP=∠E =70°∴∠APC=∠E=∠ACE =∠ACP =70°.在△ACP 和△ACE 中{∠APC =∠E∠ACP =∠ACE AC =AC∴△ACP ≌△ACE (AAS )∴CP=CE.。

人教版八年级数学上册《12.2三角形全等的判定》练习题(附答案)

人教版八年级数学上册《12.2三角形全等的判定》练习题(附答案)

人教版八年级数学上册《12.2三角形全等的判定》练习题(附答案)一选择题1.下列条件不能判定两个直角三角形全等的是( )A. 斜边和一直角边对应相等B. 两个锐角对应相等C. 一锐角和斜边对应相等D. 两条直角边对应相等2.一块三角形玻璃被打碎后店员带着如图所示的一片碎玻璃去重新配一块与原来全等的三角形玻璃能够全等的依据是( )A. ASAB. AASC. SASD. SSS3.如图OD⊥AB于点D OP⊥AC于点P且OD=OP则△AOD与△AOP全等的理由是( )A. SSSB. ASAC. SSAD. HL4.如图为6个边长相等的正方形的组合图形则∠1+∠2+∠3的度数为( )A. 90°B. 135°C. 150°D. 180°5.如图AC是△ABC和△ADC的公共边下列条件中不能判定△ABC≌△ADC的是( )A. AB=AD,∠2=∠1B. AB=AD,∠3=∠4C. ∠2=∠1,∠3=∠4D. ∠2=∠16.如图已知点B、E、C、F在同一直线上且BE=CF,∠ABC=∠DEF那么添加一个条件后.仍无法判定△ABC≌△DEF的是( )A. AC=DFB. AB=DEC. AC//DFD. ∠A=∠D7.如图点C D在AB同侧∠CAB=∠DBA下列条件中不能判定△ABD≌△BAC的是( )A. ∠D=∠CB. BD=ACC. AD=BCD. ∠CAD=∠DBC8.如图D是AB上一点DF交AC于点E,DE=FE,FC//AB若AB=4,CF=3则BD的长是( )A. 0.5B. 1C. 1.5D. 29.如图△ABC中AB=AC,AD是角平分线BE=CF则下列说法中正确的有( )①AD平分∠EDF;②△EBD≌△FCD;③BD=CD;④AD⊥BC.A. 1个B. 2个C. 3个D. 4个10.两组邻边分别相等的四边形叫做“筝形”如图四边形ABCD是一个筝形其中AD=CD AB=CB 在探究筝形的性质时得到如下结论:③四边形ABCD的面积其中正确的结论有.( )A. 0个B. 1个C. 2个D. 3个二填空题11.如图在3×3的正方形网格中∠1+∠2=_______度.12.如图已知AB=AC,EB=EC,AE的延长线交BC于D则图中全等的三角形共有______对.13.如图所示的网格是正方形网格点A,B,C,D均落在格点上则∠BAC+∠ACD=____°.14.如图∠A=∠E,AC⊥BE,AB=EF,BE=10,CF=4则AC=______.15.如图在△ABC和△DEF中点B,F,C,E在同一直线上BF=CE,AB//DE请添加一个条件使△ABC≌△DEF这个添加的条件可以是______(只需写一个不添加辅助线).16.如图在△ABC中高AD和BE交于点H且DH=DC则∠ABC=°.17.如图在四边形ABCD中AB=AD,∠BAD=∠BCD=90∘连接AC若AC=6则四边形ABCD的面积为.18.如图∠C=90°,AC=20,BC=10,AX⊥AC点P和点Q同时从点A出发分别在线段AC和射线AX上运动且AB=PQ当AP=______时以点A,P,Q为顶点的三角形与△ABC全等.19.如图△ABC中AB=AC,AD⊥BC于D点DE⊥AB于点E BF⊥AC于点F,DE=3cm则BF=cm.20.如图所示∠E=∠F=90∘,∠B=∠C,AE=AF结论:①EM=FN②AF//EB③∠FAN=∠EAM④△ACN≌△ABM.其中正确的有______ .三解答题21.如图点A,D,C,F在同一条直线上AD=CF,AB=DE,AB//DE.求证:BC=EF.22.如图点C、F、E、B在一条直线上∠CFD=∠BEA,CE=BF,DF=AE写出CD与AB之间的关系并证明你的结论.23.如图B、C、E三点在同一条直线上AC//DE,AC=CE,∠ACD=∠B.求证:△ABC≌△CDE24.已知:如图在△ABC中BE⊥AC垂足为点E,CD⊥AB垂足为点D且BD=CE.求证:∠ABC=∠ACB.25.如图在△ABC中AB=CB,∠ABC=90°,D为AB延长线上一点点E在BC边上且BE=BD 连接AE,DE,DC.(1)求证:△ABE≌△CBD;(2)若∠CAE=30°求∠BDC的度数.答案和解析1.【答案】B【解析】直角三角形全等的判定方法:HL,SAS,ASA,SSS,AAS做题时要结合已知条件与全等的判定方法逐一验证.【解答】解:A.符合判定HL故本选项正确不符合题意;B.全等三角形的判定必须有边的参与故本选项错误符合题意;C.符合判定AAS故本选项正确不符合题意;D.符合判定SAS故本选项正确不符合题意.故选B.2.【答案】A【解析】本题考查了全等三角形的判定:全等三角形的判定方法中选用哪一种方法取决于题目中的已知条件若已知两边对应相等则找它们的夹角或第三边;若已知两角对应相等则必须再找一组对边对应相等若已知一边一角则找另一组角或找这个角的另一组对应邻边.利用全等三角形判定方法进行判断.【解答】解:这片碎玻璃的两个角和这两个角所夹的边确定从而可根据“ASA”重新配一块与原来全等的三角形玻璃.故选:A.3.【答案】D【解析】本题考查了直角三角形全等的判定的知识点解题关键点是熟练掌握直角三角形全等的判定方法HL.根据直角三角形全等的判别方法HL可证△AOD≌△AOP.【解答】解:∵OD⊥AB且OP⊥AC∴△AOD和△AOP是直角三角形又∵OD=OP且AO=AO∴△AOD≌△AOP(HL).故选D.4.【答案】B【解析】本题考查了全等图形准确识图并判断出全等的三角形是解题的关键标注字母利用“边角边”证明△ABC和△DEA全等根据全等三角形对应角相等可得∠1=∠4从而求出∠1+∠3=90°再判断出∠2=45°进而计算即可得解.【解答】解:如图在△ABC和△DEA中{AB=DE∠ABC=∠DEA=90°BC=EA,∴△ABC≌△DEA(SAS)∴∠1=∠4∵∠3+∠4=90°∴∠1+∠3=90°又∵∠2=45°∴∠1+∠2+∠3=90°+45°=135°.故选B.5.【答案】A【解析】本题考查三角形全等的判定方法判定两个三角形全等的一般方法有:SSS SAS ASA AAS等.利用全等三角形的判定定理:SSS SAS ASA AAS等逐项进行分析即可.判定两个三角形全等时必须有边的参与若有两边一角对应相等时这个角必须是两边的夹角.【解答】解:A.AB=AD∠2=∠1再加上公共边AC=AC不能判定△ABC≌△ADC故此选项符合题意;B.AB=AD∠3=∠4再加上公共边AC=AC可利用SAS判定△ABC≌△ADC故此选项不合题意;C.∠2=∠1∠3=∠4再加上公共边AC=AC可利用ASA判定△ABC≌△ADC故此选项不合题意;D.∠2=∠1∠B=∠D再加上公共边AC=AC可利用AAS判定△ABC≌△ADC故此选项不合题意;故选A.6.【答案】A【解析】解:∵BE=CF∴BE+EC=EC+CF即BC=EF且∠ABC=∠DEF∴当AC=DF时满足SSA无法判定△ABC≌△DEF故A不能;当AB=DE时满足SAS可以判定△ABC≌△DEF故B可以;当AC//DF时可得∠ACB=∠F满足ASA可以判定△ABC≌△DEF故C可以;当∠A=∠D时满足AAS可以判定△ABC≌△DEF故D可以;故选:A.根据全等三角形的判定方法逐项判断即可.本题主要考查全等三角形的判定方法 掌握全等三角形的判定方法是解题的关键 即SSS SAS ASA AAS 和HL .7.【答案】C【解析】本题考查了全等三角形的判定定理的应用 能熟记全等三角形的判定定理是解此题的关键 注意:全等三角形的判定定理有SAS ASA AAS SSS 符合SSA 和AAA 不能推出两三角形全等. 根据图形知道隐含条件BC =BC 根据全等三角形的判定定理逐个判断即可.【解答】解:A 添加条件∠D =∠C 还有已知条件∠CAB =∠DBA BC =BC 符合全等三角形的判定定理AAS 能推出△ABD ≌△BAC 故本选项错误;B 添加条件BD =AC 还有已知条件∠CAB =∠DBA BC =BC 符合全等三角形的判定定理SAS 能推出△ABD ≌△BAC 故本选项错误;C 添加条件AD =BC 还有已知条件∠CAB =∠DBA BC =BC 不符合全等三角形的判定定理 不能推出△ABD ≌△BAC 故本选项正确;D ∵∠CAB =∠DBA ∠CAD =∠DBC∴∠DAB =∠CBA 还有已知条件∠CAB =∠DBA BC =BC 符合全等三角形的判定定理ASA 能推出△ABD ≌△BAC 故本选项错误;故选C .8.【答案】B【解析】解:∵CF//AB∴∠A =∠FCE ∠ADE =∠F∴在△ADE 和△CFE 中{∠A =∠FCE∠ADE =∠F DE =FE∴△ADE ≌△CFE(AAS)∴AD =CF =3∵AB =4∴DB =AB −AD =4−3=1.故选B .根据平行线的性质 得出∠A =∠FCE ∠ADE =∠F 再根据全等三角形的判定证明△ADE ≌△CFE得出AD=CF根据AB=4CF=3即可求线段DB的长.本题考查了全等三角形的性质和判定平行线的性质的应用能判定△ADE≌△FCE是解此题的关键解题时注意运用全等三角形的对应边相等对应角相等.9.【答案】C【解析】解:∵AB=AC AD平分∠BAC∴BD=DC AD⊥BC故③④正确在RT△BDE和RT△CDF中{BE=CFBD=CD∴RT△BDE≌RT△CDF故②正确∵AD⊥BC∴∠ADC=∠CDF=90°∴BC平分∠EDF.故①错误.故选:C.根据等腰三角形的三线合一可以判断③④正确根据HL可以证明RT△BDE≌RT△CDF可以判断②正确由BC平分∠EDF得出①错误故不难得到结论.本题考查全等三角形的判定和性质等腰三角形的性质角平分线的定义等知识解题的关键是等腰三角形三线合一的性质的应用属于中考常考题型.10.【答案】C【解析】此题考查全等三角形的判定和性质关键是根据SSS证明△ABD与全等和利用SAS证明与全等.【解答】解:如图在△ABD与中故①正确;∴∠ADB=∠CDB在与中∴∠AOD=∠COD=90°∴AC⊥DB故②正确;故③错误.故选C.11.【答案】90【解析】本题考查了全等三角形的判定和性质能看懂图形是解题的关键.首先判定两个三角形全等然后根据全等三角形的性质及直角三角形的性质即可判断得出结论.【解答】解:如图所示:∵∠ACB=∠DCE=90°AC=DC BC=EC∴Rt△ACB≌Rt△DCE∴∠2=∠EDC在Rt△DCE中∠1+∠EDC=90°∴∠1+∠2=90°.12.【答案】3【解析】解:①△ABE≌△ACE∵AB=AC EB=EC∴△ABE≌△ACE;②△EBD≌△ECD∵△ABE≌△ACE∴∠ABE=∠ACE∴∠EBD=∠ECD∵EB=EC∴△EBD≌△ECD;③△ABD≌△ACD∵△ABE≌△ACE△EBD≌△ECD∴∠BAD=∠CAD∵∠ABC=∠ABE+∠BED∴∠ABC=∠ACB∵AB=AC∴△ABD≌△ACD∴图中全等的三角形共有3对.在线段AD的两旁猜想所有全等三角形再利用全等三角形的判断方法进行判定三对全等三角形是△ABE≌△ACE△EBD≌△ECD△ABD≌△ACD.本题考查学生观察猜想全等三角形的能力同时也要求会运用全等三角形的几种判断方法进行判断.13.【答案】90【解析】【解答】解:在△DCE和△ABD中∵{CE=BD=1∠E=∠ADB=90°DE=AD=3∴△DCE≌△ABD(SAS)∴∠CDE =∠DAB∵∠CDE +∠ADC =∠ADC +∠DAB =90°∴∠AFD =90°∴∠BAC +∠ACD =90°故【答案】90.【分析】本题网格型问题 考查了三角形全等的性质和判定及直角三角形各角的关系 本题构建全等三角形是关键.证明△DCE ≌△ABD(SAS) 得∠CDE =∠DAB 根据同角的余角相等和三角形的内角和可得结论. 14.【答案】6【解析】本题考查了全等三角形的判定与性质有关知识 由AAS 证明△ABC ≌△EFC 得出对应边相等AC =EC BC =CF =4 求出EC 即可得出AC 的长.【解答】解:∵AC ⊥BE∴∠ACB =∠ECF =90°在△ABC 和△EFC 中{∠ACB =∠ECF ∠A =∠E AB =EF∴△ABC ≌△EFC(AAS)∴AC =EC BC =CF =4∵EC =BE −BC =10−4=6∴AC =EC =6;故答案为6. 15.【答案】AB =ED【解析】解:添加AB =ED∵BF =CE∴BF +FC =CE +FC即BC =EF∵AB//DE∴∠B =∠E在△ABC 和△DEF 中{AB =ED∠B =∠E CB =FE,∴△ABC ≌△DEF(SAS)故【答案】AB =ED .根据等式的性质可得BC =EF 根据平行线的性质可得∠B =∠E 再添加AB =ED 可利用SAS 判定△ABC ≌△DEF .本题考查三角形全等的判定方法 判定两个三角形全等的一般方法有:SSS SAS ASA AAS HL .注意:AAA SSA 不能判定两个三角形全等 判定两个三角形全等时 必须有边的参与 若有两边一角对应相等时 角必须是两边的夹角.16.【答案】45【解析】本题考查了全等三角形的判定与性质 余角的性质 等腰直角三角形 由三角形的高得到∠ADB =∠ADC =∠BEC =90° 结合余角的性质得到∠HBD =∠CAD 易证△HBD ≌△CAD 得到AD =BD 根据等腰直角三角形得到∠ABD =45° 即可得出结论.【解答】解:∵AD ⊥BC BE ⊥AC∴∠ADB =∠ADC =∠BEC =90°∴∠HBD +∠C =∠CAD +∠C =90°∴∠HBD =∠CAD∵在△HBD 和△CAD 中{∠HBD =∠CAD,HDB =∠CDA,DH =DC,∴△HBD ≌△CAD(AAS)∴AD =BD∵∠ADB =90°∴△ABD 为等腰直角三角形∴∠ABD =45° 即∠ABC =45°故答案为45.17.【答案】18【解析】本题考查全等三角形的判定和性质和三角形的面积.过点A 作AE ⊥AC 交CD 的延长线于点E.做出辅助线是解答本题的关键.过点A 作AE ⊥AC 交CD 的延长线于点E 证明△AED ≌△ACB 将四边形ABCD 的面积转化为△ACE 的面积 利用三角形面积公式求解即可.【解答】解:过点A 作AE ⊥AC 交CD 的延长线于点E∵∠EAC =∠BAD =90°∴∠EAD =∠CAB∵∠BAD =∠BCD =90∘∴∠ADC +∠ABC =360°−(∠BAD +∠BCD)=180°又∵∠ADE +∠ADC =180∘∴∠ADE =∠ABC在△AED 与△ACB 中{∠EAD =∠CABAD =AB ∠ADE =∠ABC∴△AED ≌△ACB(ASA)∴AE =AC =6 四边形ABCD 的面积等于△ACE 的面积故S 四边形ABCD =12AC ⋅AE =12×6×6=18.故答案为18. 18.【答案】10或20【解析】解:∵AX ⊥AC∴∠PAQ =90°∴∠C=∠PAQ=90°分两种情况:①当AP=BC=10时在Rt△ABC和Rt△QPA中{AB=PQBC=AP∴Rt△ABC≌Rt△QPA(HL);②当AP=CA=20时在△ABC和△PQA中{AB=PQAP=AC∴Rt△ABC≌Rt△PQA(HL);综上所述:当点P运动到AP=10或20时△ABC与△APQ全等;故【答案】10或20.分两种情况:①当AP=BC=10时;②当AP=CA=20时;由HL证明Rt△ABC≌Rt△PQA(HL);即可得出结果.本题考查了直角三角形全等的判定方法;熟练掌握直角三角形全等的判定方法本题需要分类讨论难度适中.19.【答案】6【解析】本题考查了全等三角形的判定与性质三角形的面积利用面积公式得出等式是解题的关键.先利用HL证明Rt△ADB≌Rt△ADC得出S△ABC=2S△ABD=2×12AB⋅DE=AB⋅DE=3AB又S△ABC=12AC⋅BF将AC=AB代入即可求出BF.【解答】解:在Rt△ADB与Rt△ADC中{AB=ACAD=AD ∴Rt△ADB≌Rt△ADC∴S△ABC=2S△ABD=2×12AB⋅DE=AB⋅DE=3AB∵S△ABC=12AC⋅BF∴12AC⋅BF=3AB ∵AC=AB∴12BF=3cm∴BF=6cm.故【答案】6.20.【答案】①③④【解析】此题考查了全等三角形的性质与判别考查了学生根据图形分析问题解决问题的能力.其中全等三角形的判别方法有:SSS SAS ASA AAS及HL.学生应根据图形及已知的条件选择合适的证明全等的方法.由∠E=∠F=90°∠B=∠C AE=AF利用“AAS”得到△ABE与△ACF全等根据全等三角形的对应边相等且对应角相等即可得到∠EAB与∠FAC相等AE与AF相等AB与AC相等然后在等式∠EAB=∠FAC两边都减去∠MAN得到∠EAM与∠FAN相等然后再由∠E=∠F=90°AE=AF∠EAM=∠FAN利用“ASA”得到△AEM与△AFN全等利用全等三角形的对应边相等对应角相等得到选项①和③正确;然后再∠C=∠B AC=AB∠CAN=∠BAM利用“ASA”得到△ACN与△ABM全等故选项④正确;若选项②正确得到∠F与∠BDN相等且都为90°而∠BDN不一定为90°故②错误.【解答】解:在△ABE和△ACF中∠E=∠F=90°AE=AF∠B=∠C∴△ABE≌△ACF(AAS)∴∠EAB=∠FAC AE=AF AB=AC∴∠EAB−∠MAN=∠FAC−∠NAM即∠EAM=∠FAN在△AEM和△AFN中∠E=∠F=90°AE=AF∠EAM=∠FAN∴△AEM≌△AFN(ASA)∴EM=FN∠FAN=∠EAM故选项①和③正确;在△ACN和△ABM中∠C=∠B∠CAN=∠BAM AC=AB∴△ACN≌△ABM(ASA)故选项④正确;若AF//EB∠F=∠BDN=90°而∠BDN不一定为90°故②错误则正确的选项有:①③④.21.【答案】解:∵AB//DE∴∠A =∠EDF∵AC =AD +DC DF =DC +CF 且AD =CF∴AC =DF在△ABC 和△DEF 中{AB =DE∠A =∠EDF AC =DF∴△ABC ≌△DEF(SAS)∴BC =EF .【解析】先证明AC =DF 再根据SAS 推出△ABC ≌△DEF 便可得结论.本题考查了全等三角形的判定和性质的应用 证明三角形的边相等 往往转化证明三角形的全等. 22.【答案】解:CD//AB CD =AB理由是:∵CE =BF∴CE −EF =BF −EF∴CF =BE在△CFD 和△BEA 中{CF =BE∠CFD =∠BEA DF =AE∴△CFD ≌△BEA(SAS)∴CD =AB ∠C =∠B∴CD//AB .【解析】本题考查了平行线的判定和全等三角形的性质和判定的应用.全等三角形的判定是结合全等三角形的性质证明线段和角对应相等的重要工具.在判定三角形全等时 关键是选择恰当的判定条件. 求出CF =BE 根据SAS 证△CFD ≌△BEA 推出CD =AB ∠C =∠B 根据平行线的判定推出CD//AB .23.【答案】证明:∵AC//DE∴∠ACB =∠E ∠ACD =∠D∵∠ACD =∠B∴∠D =∠B在△ABC 和△EDC 中{∠B =∠D∠ACB =∠E AC =CE∴△ABC ≌△CDE(AAS).【解析】此题主要考查了全等三角形的判定 平行线的性质.首先根据AC//DE 利用平行线的性质可得:∠ACB =∠E ∠ACD =∠D 再根据∠ACD =∠B 证出∠D =∠B 然后根据全等三角形的判定定理AAS 证出△ABC ≌△CDE 即可.24.【答案】证明:∵BE ⊥AC CD ⊥AB∴∠BDC =∠CEB =90°在Rt △BCD 和Rt △CBE 中{BC =CB BD =CE∴Rt △BCD ≌Rt △CBE(HL)∴∠DBC =∠ECB即∠ABC =∠ACB .【解析】本题考查了全等三角形的判定与性质;证明三角形全等是解题的关键.证明Rt △BCD ≌Rt △CBE(HL) 即可得出结论.25.【答案】(1)证明:∵∠ABC =90°∴∠DBC =90°在△ABE 和△CBD 中{AB =CB∠ABE =∠CBD BE =BD∴△ABE ≌△CBD(SAS);(2)解:∵AB =CB ∠ABC =90°∴∠BCA =45°∴∠AEB =∠CAE +∠BCA =30°+45°=75°∵△ABE ≌△CBD∴∠BDC =∠AEB =75°.【解析】(1)由条件可利用SAS证得结论;(2)由等腰直角三角形的性质可先求得∠BCA利用三角形外角的性质可求得∠AEB再利用全等三角形的性质可求得∠BDC.本题主要考查全等三角形的判定和性质掌握全等三角形的判定方法(即SSS SAS ASA AAS和HL)和全等三角形的性质(即全等三角形的对应边相等对应角相等)是解题的关键.。

2023-2024学年人教版八年级数学上册《第十二章 三角形全等的判定》同步练习题附带答案

2023-2024学年人教版八年级数学上册《第十二章 三角形全等的判定》同步练习题附带答案

2023-2024学年人教版八年级数学上册《第十二章三角形全等的判定》同步练习题附带答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.如图,在△ACD与△ABD中∠C=∠B,再添加下列哪个条件,能判定△ADC≌△ADB()A.AC=AB B.AC⊥CD C.DA平分∠BDC D.CD=BD2.如图,一块玻璃碎成三片,小智只带了第③块去玻璃店,就能配一块一模一样的玻璃,你能用三角形的知识解释,这是为什么?()A.ASA B.AAS C.SAS D.SSSBC若ΔABC的面积3.如图,AE垂直于∠ABC的平分线于点D,交BC于点E,CE=13为12,则ΔCDE的面积是()A.2B.3C.4D.64.工人常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分別与点M、N重合,过角尺顶点C作射线OC,由此作法便可得△NOC≅△MOC,共依据是()A.SSS B.SAS C.ASA D.AAS5.如图,在△ABC中∠C=90°,D是AC上一点,DE⊥AB于点E,BE=BC连接BD,若AC=8cm,则AD+DE等于()A.6cm B.7cm C.8cm D.10cm6.如图,为了测出池塘两端A,B间的距离,小铱在地面上取一个可以直接到达A点和B点的点O,连接AO并延长到C,使OC=OA;连接BO并延长到D,使OD=OB,连接CD并和测量出它的长度,小铱认为CD的长度就是A,B间的距离,她是根据△OAB≌△OCD来判断的AB=CD,那么判定这两个三角形全等的依据是().A.SSS B.SAS C.ASA D.AAS7.“又是一年三月三”.在校内劳动课上,小明所在小组的同学们设计了如图所示的风筝框架.已知∠B=∠E,AB=DE,BF=EC,△ABC的周长为24cm,FC=3cm制作该风筝框架需用材料的总长度至少为()A.44cm B.45cm C.46cm D.48cm8.如图,AB⊥BC,EC⊥BC,AD⊥DE,AD=DE,AB=3,BC=8,则CE长为()A.4 B.5 C.8 D.10二、填空题9.如下图,已知AC=AB,要使△ABE≌△ACD.则需添加一个条件.10.数学实践活动课中,老师布置了“测量小口圆柱形瓶底部内径”的探究任务,某学习小组设计了如下方案:如图,用螺丝钉将两根小棒AC,BD的中点O固定,现测得C,D之间的距离为75mm,那么小口圆柱形瓶底部的内径AB=mm.11.如图,在Rt△ABC中∠BAC=90°,AB=AC分别过点B、C作经过点A的直线的垂线段BD、CE,若BD=5厘米,CE=8厘米,则DE的长为.12.如图,△ABC中,AD是中线AC=3,AB=5则AD的取值范围是.13.如图,在四边形ABEF中,AB=4,EF=6,点C是BE上一点,连接AC、CF,若AC=CF,∠B=∠E=∠ACF,则BE的长为.三、解答题14.图1是郝老师制作的风筝,图2是风筝骨架的示意图,其中AB=AC,BD=CD,∠C=23°.求∠B的度数.15.如图,已知在△ABC中,D、E是BC上两点,且∠ADE=∠AED,∠BAD=∠EAC,求证:AB=AC.16.如图,C是AB上一点,点D,E分别在AB两侧AD∥BE,且AD=BC,BE=AC求证:CD=EC.17.如图所示,点O在一块直角三角板ABC上(其中∠ABC=30°),OM⊥AB于点M,ON⊥BC于点N,若OM=ON,求∠ABO度数.18.课间,小明拿着老师的直角三角尺玩,不小心掉到两堆砖块之间,如图所示,已知∠ACB= 90°,AC=BC,AD⊥DE,BE⊥DE.(1)试说明:△ADC≌△CEB;(2)已知DE=35cm,请你帮小明求出砖块的厚度a(每块砖的厚度相同)参考答案1.C2.A3.A4.A5.C6.B7.B8.B9.∠C=∠B (答案不唯一)10.7511.13厘米12.1<AD <413.1014.解:在△ABD 和△ACD 中{AB =AC AD =AD BD =CD ∴△ABD ≌△ACD(SSS) ∴∠B =∠C ∵∠C =23° ∴∠B =23°.15.证明:∵∠ADE =∠AED∴AD =AE ,∠ADB =∠AEC在△ABD 与△ACE 中{∠BAD =∠EAC AD =AE ∠ADB =∠AEC∴△ABD ≌△ACE(ASA)∴AB =AC16.证明:∵AD ∥BE∴∠A =∠B在△ADC 和△BCE 中{AD =BC∠A =∠B AC =BE∴△DAC ≌△CBE∴CD =CE ;17.解:∵OM ⊥AB ,ON ⊥BC ∴∠OMB =∠ONB =90°在Rt △OMB 和Rt △ONB 中{OM =ON OB =OB∴Rt △OMB ≌Rt △ONB(HL)∴∠OBM =∠OBN∵∠ABC =30°∴∠ABO =15°.18.(1)解:∵∠ACB =90°∴∠ACD +∠BCE =90°∵AD ⊥DE∴∠ACD +∠DAC =90°∴∠BCE =∠DAC在△ADC 与△CEB 中{∠ADC =∠BEC =90°∠BCE =∠DACAC =BC∴△ADC ≌△CEB(AAS);(2)解:∵△ADC ≌△CEB∴DC =BE ,AD =CE∴DE =DC +CE =BE +AD =35cm ∵一共有7块砖∴每块砖块的厚度a 为:35÷7=5cm .。

三角形全等之类比探究综合测试(人教版)(含答案)

三角形全等之类比探究综合测试(人教版)(含答案)

学生做题前请先回答以下问题问题1:解决类比探究问题的一般方法:(1)根据题干条件,结合____________先解决第一问;(2)用解决_______的方法类比解决下一问,整体框架照搬.问题2:整体框架照搬包括____________,____________,____________.问题3:“三角形全等”的辅助线:见中线,要________,________之后___________.问题4:当见到线段的______________考虑截长补短,构造全等或等腰转移____、转移____,然后和_________重新组合解决问题.问题5:当见到线段的______________考虑截长补短,截长补短的作用是把_________________________转化成_____________________.以下是问题及答案,请对比参考:问题1:解决类比探究问题的一般方法:(1)根据题干条件,结合先解决第一问;(2)用解决的方法类比解决下一问,整体框架照搬.答:分支条件;第一问.问题2:整体框架照搬包括,,.答:类比字母,类比辅助线,类比思路.问题3:“三角形全等”的辅助线:见中线,要,之后.答:倍长,倍长,证全等.问题4:当见到线段的考虑截长补短,构造全等或等腰转移、转移,然后和重新组合解决问题.答:和差倍分,边,角,已知条件.问题5:当见到线段的考虑截长补短,截长补短的作用是把转化成.答:和差倍分,多条线段间的数量关系,两条线段间的等量关系.三角形全等之类比探究综合测试(人教版)一、单选题(共5道,每道20分)1.八年级数学兴趣小组在学校的“数学长廊”中兴奋地展示了他们小组探究发现的结果,内容如下:如图1,在等边三角形ABC中,在AB,AC边上分别取点M,N,使BM=AN,连接BN,CM交于点O,求∠NOC的度数.下面给出了解题的路线图,如图1-1:①△NAB≌△MBC(SAS);②△NAB≌△AMC(SSA);③△AMC≌△NCB(SAS);④∠2=∠1;⑤BN=CM;⑥∠2=∠1,BN=CM.以上横线处,依次所填正确的是( )A.②⑤B.③⑥C.②⑥D.①④答案:D解题思路:试题难度:三颗星知识点:全等三角形的判定和性质2.(上接第1题)如图2,在正方形ABCD中,在AB,BC边上分别取点M,N,使AM=BN,连接AN,DM交于点O,则∠DON的度数和解题思路正确的是( )A.∠DON=90°,先证明△BNA≌△AMD,再进行转角B.∠DON=90°,先证明△BNA≌△ADO,再进行转角C.∠DON=60°,先证明△BNA≌△ADO,再进行转角D.∠DON=60°,先证明△BNA≌△AMD,再进行转角答案:A解题思路:试题难度:三颗星知识点:全等三角形的判定和性质3.(上接第1,2题)如图3,在正五边形ABCDE中,在AB,BC边上分别取点M,N,使AM=BN,连接AN,EM交于点O,则∠EON=( )A.72°B.90°C.108°D.120°答案:C解题思路:试题难度:三颗星知识点:全等三角形的判定和性质4.如图1,直线AM∥BN,∠MAB与∠NBA的平分线交于点C,过点C作一条直线与两条直线MA,NB分别相交于点D,E.如图1所示,当直线与直线MA垂直时,求证:AB=AD+BE.下面给出了证明的路线图,如图1-1:①△ADC≌△FEC;②△ADC≌△FBC;③AD=BF;④AD=EF;⑤∠1=∠3.以上横线处,依次所填正确的是( )A.③⑥B.①④C.②⑥D.②⑤答案:B解题思路:试题难度:三颗星知识点:全等三角形的判定和性质5.(上接第4题)如图2所示,当直线与直线MA不垂直,且交点D,E在AB的异侧时,则线段AD,BE,AB之间的数量关系和证明思路正确的是( )A.AB=AD+BE,延长AC交BN于点F,使CF=AC,证明AB=BF,△ADC≌△FBCB.AB=AD-BE,延长AC交BN于点F,使CF=AC,证明AB=BF,△ADC≌△FBCC.AB=AD+BE,延长AC交BN于点F,证明AB=BF,△ADC≌△FECD.AB=AD-BE,延长AC交BN于点F,证明AB=BF,△ADC≌△FEC答案:D解题思路:试题难度:三颗星知识点:全等三角形的判定和性质。

部编版人教初中数学八年级上册《三角形全等之类比探究 专题突破讲义(含答案)》最新精品

部编版人教初中数学八年级上册《三角形全等之类比探究 专题突破讲义(含答案)》最新精品

前言:该专题突破讲义由多位一线国家特级教师针对当前最新的热点、考点、重点、难点、知识点,精心编辑而成。

以高质量的专题突破讲义助力考生查漏补缺,在原有基础上更进一步。

(最新精品专题突破讲义)三角形全等之类比探究(讲义)➢知识点睛1.类比探究是一类共性条件与特殊条件相结合,由特殊情形到一般情形(或由简单情形到复杂情形)逐步深入,解决思想方法一脉相承的综合性题目,常以几何综合题为主.2.解决类比探究问题的一般方法:(1)根据题干条件,结合_______________先解决第一问;(2)用解决_______的方法类比解决下一问,整体框架照搬.整体框架照搬包括_________________,________________,____________ _____.3.常见几何特征及做法:见中点,___________________________.➢精讲精练1.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE.(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD BE.(3)当直线MN绕点C旋转到图3的位置时,请直接写出DE,AD,BE之间的数量关系.图1BNECDMA图2ACDEMNB112. 如图1,四边形ABCD 是正方形,AB =BC ,∠B =∠BCD =90°, 点E 是边BC 的中点,∠AEF =90°,EF 交正方形外角∠DCG 的 平分线CF 于点F .(1)求证:AE =EF (提示:在AB 上截取BH =BE ,连接HE ,构造全等三角形,经过推理使问题得到解决).(2)如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其他条件不变,那么结论“AE =EF ”仍然成立吗?说明理由.(3)如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”是否成立?说明理由.GABCDFE 图1E FDC B A G图2E FDBAG图3图3ABC D E MN。

八年级数学上册《第十二章 三角形全等的判定》同步练习题附带答案(人教版)

八年级数学上册《第十二章 三角形全等的判定》同步练习题附带答案(人教版)

八年级数学上册《第十二章 三角形全等的判定》同步练习题附带答案(人教版)一、选择题:1.使两个直角三角形全等的条件是A .一锐角对应相等B .两锐角对应相等C .一条边对应相等D .两条边对应相等2.如图,AD 、BC 相交于点O ,且 12∠=∠ , CAB DBA ∠=∠下列结论中,错误的是( )A .C D ∠=∠B .AC BD = C .OC OB = D .BC AD =3.如图,D 在AB 上,E 在AC 上,且∠B=∠C ,则在下列条件中,无法判定△ABE ≌△ACD 的是( )A .AD=AEB .AB=AC C .BE=CD D .∠AEB=∠ADC4.小明不慎将一块三角形的玻璃摔碎成四块(即图中标有1、2、3、4的四块),如果将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带( )A .第1块B .第2块C .第3块D .第4块5.如图,在ABC 中,BE AC ⊥于点E ,AF 分别交BE ,BC 于点F ,D ,AE BE =若依据“HL ”说明AEF BEC ≌,则下列所添条件合理的是( )A .EF CE =B .AFEC ∠=∠ C .BD AD ⊥ D .AF BC =6.如图,已知AB ∥CD ,AB =CD ,AE =FD ,则图中的全等三角形有( )对.A .4B .3C .2D .17.如图,AD ,BE ,CF 是ABC 的三条中线,以下结论正确的是( )A .2BC AD =B .12AF AB =C .AD CD = D .BE CF = 8.如图,在ABC 中,AD BC ⊥于点D ,BE AC ⊥与点E ,BE 与AD 交于点F ,若5AD BD == CD=3,则AF 的长为( )A .3B .3.5C .2.5D .2二、填空题:9.用尺规做一个角等于已知角的依据是 .10.如图,AE=AD ,请你添加一个条件: 或 ,使△ABE ≌△ACD (图中不再增加其他字母).11.如图,已知△ABC 为等边三角形,点D ,E 分别在边BC ,AC 上,且BD =CE ,若BE 交AD 于点F ,则∠AFE 的大小为 (度).12.如图,在Rt ABC 中90BAC ∠=︒,AB AC =分别过点B 、C 作过点A 的直线的垂线BD 、CE ,若4cm BD =,3cm CE =则DE = cm .13.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD 是一个筝形,其中AD =CD ,AB =CB ,晓明同学在探究筝形的性质时,得到如下结论:①△ABD ≌△CBD ;②AO =CO =12AC ;③AC ⊥BD ;其中,正确的结论有 个.三、解答题:14.如图,已知AB CD =,AD BC ⊥垂足O 是BC 的中点.求证:AO OD =.15.如图,已知在ABC 和DBE 中,12AB DB A D =∠=∠∠=∠,,求证:BC BE =.16.如图,B 、C 、E 三点在同一条直线上,AC ∥DE ,AC=CE ,BC=DE .(1)求证:∠ACD=∠B ;(2)若∠A=40°,求∠BCD 的度数.17.如图,在△ABC 中,AB =AC ,点D 、E 分别在AC 及其延长线上,点B 、F 分别在AE 两侧,连结CF ,已知AD =EC ,BC =DF ,BC ∥DF .(1)求证:△ABC ≌△EFD ;(2)若CE =CF ,FC 平分∠DFE ,求∠A 的度数.18.如图,在ABC 中,D 为AB 上一点,E 为AC 中点,连接DE 并延长至点F ,使得EF ED =,连接CF .(1)求证:CF AB ;(2)若50ABC ∠=︒,连接BE BE ,平分ABC AC ∠,平分BCF ∠,求A ∠的度数.参考答案:1.D 2.C 3.D 4.B 5.D 6.B 7.B 8.D9.SSS10.AB=AC ;∠B=∠C11.6012.713.314.证明:AD BC ⊥90AOB DOC ∴∠=∠=︒ABO ∴与DCO 都是直角三角形点O 是BC 的中点OB OC ∴=在Rt ABO 与Rt DCO 中AB DCOB OC =⎧⎨=⎩()Rt Rt HL ABO DCO ∴≌AO DO ∴=.15.证明:∵12∠=∠∴12ABE ABE ∠+∠=∠+∠即ABC DBE ∠=∠.在ABC 和DBE 中ABC DBEAB DB A D∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ABC DBE ASA ≌∴BC BE =.16.(1)证明:∵AC ∥DE∴∠ACB=∠E ,∠ACD=∠D在△ACB 和△CDB 中AC CEACB E BC DE=⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△CDE∴∠B=∠D∴∠ACD=∠B(2)解:∵△ABC ≌△CDE ∴∠A=∠DCE=40°∴∠BCD=180°﹣∠ECD=140°17.(1)证明:∵AD=EC ∴AC=ED∵BC ∥DF∴∠ACB=∠EDF在△ABC 和△EFD 中BC FDACB EDF AC ED⎧⎪∠∠⎨⎪⎩===∴△ABC ≌△EFD (SAS )(2)解:∵△ABC ≌△EFD ∴AB=EF ,AC=ED∵AB=AC∴ED=EF∴∠EDF=∠EFD∵CE=CF∴∠CEF=∠CFE∵CF 平分∠DFE∴∠EFD=2∠CFE=2∠E∵∠EDF+∠EFD+∠E=180° ∴2∠E+2∠E+∠E=180° ∴∠E=36°∵△ABC ≌△EDF∴∠A=∠E=36°.18.(1)证明:∵E 为AC 中点 ∴AE CE =在ADE 和CFE 中AE CEAED CEF DE EF=⎧⎪∠=∠⎨⎪=⎩∴ADE CFE ≌∴A ECF ∠=∠∴CF AB ;(2)解:由(1)得:A ECF ∠=∠ ∵AC 平分BCF ∠∴ACB ECF ∠=∠∴ACB A ∠=∠∵50ABC ∠=︒∴︒=∠1302A∴︒=∠65A。

人教版_部编版八年级数学上册第十二章第二节三角形全等的判定考试复习题九(含答案) (8)

人教版_部编版八年级数学上册第十二章第二节三角形全等的判定考试复习题九(含答案) (8)

人教版_部编版八年级数学上册第十二章第二节三角形全等的判定考试复习题九(含答案)将含有45°角的直角三角板ABC和直尺如图摆放在桌子上,然后分别过A、B两个顶点向直尺作两条垂线段AD,BE.(1)请写出图中的一对全等三角形并证明;(2)你能发现并证明线段AD,BE,DE之间的关系吗?【答案】(1)△ADC≌△CEB(2)AD=BE+DE【解析】【分析】(1)结论:△ADC≌△CEB.根据AAS证明即可;(2)由三角形全等的性质即可解决问题;【详解】解:(1)结论:△ADC≌△CEB.理由:∵AD⊥CE,BE⊥CE,∴∠ACB=∠ADC=∠CEB=90°,∴∠ACD+∠CAD=90°,∠ACD+∠ECB=90°,∴∠CAD=∠ECB,∵AC=CB,∴△ADC≌△CEB(AAS).(2)结论:AD=BE+DE.理由:∵△ADC≌△CEB,∴AD=CE,CD=BE,∵CE=CD+DE,∴AD=BE+DE.【点睛】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形的全等的条件,属于中考常考题型.72.如图,已知△ABC中,AB=AC=12cm,BC=10cm,点D为AB的中点,如果点P在线段BC上以2cm/s的速度由点B向点C运动,同时,点Q 在线段AC上由点A向点C 以4cm/s的速度运动.若点P、Q两点分别从点B、A同时出发.(1)经过2秒后,求证:∠DPQ=∠C.(2)若△CPQ的周长为18cm,问经过几秒钟后,△CPQ是等腰三角形?【答案】(1)见解析;(2)经过1秒或74秒或85秒时,△CPQ是等腰三角形.【解析】【分析】(1)经过1秒后,PB=2m ,PC=8m ,CQ=6m ,由已知可得BD=PC ,BP=CQ ,∠ABC=∠ACB ,即据SAS 可证得△BPD ≌△CQP ,然后根据全等三角形的性质及三角形外角的性质即可解答;(2)可设点Q 的运动时间为ts △CPQ 是等腰三角形,则可知PB=2tcm ,PC=8-3tcm ,CQ=xtcm ,据(1)同理可得当BD=PC ,BP=CQ 或BD=CQ ,BP=PC 时△CPQ 为等腰三角形,从而求得t 的值.【详解】(1)当P ,Q 两点分别从B ,A 两点同时出发运动2秒时,有BP=2×2=4cm ,AQ=4×2=8cm ,则CP=BC ﹣BP=10﹣4=6cm , CQ=AC ﹣AQ=12﹣8=4cm ,∵D 是AB 的中点,∵BD=12AB=12×12=6cm , ∵BP=CQ ,BD=CP ,又∵∵ABC 中,AB=AC ,∵∵B=∵C ,在∵BPD 和∵CQP 中,BP CQ B C BD CP =⎧⎪∠=∠⎨⎪=⎩, ∵∵BPD ∵∵CQP (SAS)∵∵DPB=∵PQC ,∵∠B+∠PDB=∠DPQ+∠QPC ,∴∵DPQ=∵C ;(2)设当P ,Q 两点同时出发运动t 秒时,有BP=2t,AQ=4t∵t的取值范围为0<t≤3,则CP=10﹣2t,CQ=12﹣4t,∵∵CPQ的周长为18cm,∵PQ=18﹣(10﹣2t)﹣(12﹣4t)=6t﹣4,要使∵CPQ是等腰三角形,则可分为三种情况讨论:∵当CP=CQ时,则有10﹣2t=12﹣4t,解得:t=1.∵当PQ=PC时,则有6t﹣4=10﹣2t,解得:t=74;∵当QP=QC时,则有6t﹣4=12﹣4t,解得:t=85,三种情况均符合t的取值范围.综上所述,经过1秒或74秒或85秒时,∵CPQ是等腰三角形.【点睛】本题主要考查了等腰三角形的性质,全等三角形全等的判定与性质,三角形外角的性质,熟练掌握全等三角形的判定方法是解题的关键,学会用分类讨论的思想思考问题,属于中考常考题型.73.如图,在等腰△ABC中,AC=BC,D在BC上,P是射线AD上一动点.(1)如图①,若∠ACB=90°,AC=8,CD=6,当点P在线段AD上,且△PCD是等腰三角形时,求AP长.(2)如图②,若∠ACB=90°,∠APC=45°,当点P在AD延长线上时,探究PA,PB,PC的数量关系,并说明理由.(3)类比探究:如图③,若∠ACB=120°,∠APC=30°,当点P在AD 延长线上时,请直接写出表示PA,PB,PC的数量关系的等式.【答案】(1)满足条件的AP的值为2.8或4或5;(2)PA﹣PB PC.理由见解析;(3)PA﹣PB PC.理由见解析.【解析】【分析】(1)如图①中,作CH⊥AD于H.利用面积法求出CH,利用勾股定理求出DH,再求出PD,接下来分三种情形解决问题即可;(2)结论:PA﹣PB PC.如图②中,作EC⊥PC交AP于E.只要证明△ACE≌△BCP即可解决问题;(3)结论:PA﹣PB.如图③中,在AP上取一点E,使得∠ECP=∠ACB=120°.只要证明△ACE≌△BCP即可解决问题;【详解】(1)如图①中,作CH⊥AD于H.在Rt△ACD中,AD10,∵12×AC×DC=12×AD×CH,∴CH=245 AC CDAD⨯=,∴DH 185,①当CP=CD,∵CH⊥PD,∴PH=DH=185,∴PD=365,∴PA=AD﹣PD=10﹣365=145.②当CD=DP时,DP=6.AP=10﹣6=4,③当CP=PD时,易证AP=PD=5,综上所述,满足条件的AP的值为2.8或4或5.(2)结论:PA﹣PB PC.理由:如图②中,作EC⊥PC交AP于E.∵∠PCE=90°,∠CPE=45°,∴∠CEP=∠CPE=45°,∴CE=CP,PE PC,∵∠ACB=∠ECP=90°,∴∠ACE=∠BCP,∵CA=CB,∴△ACE≌△BCP,∴AE=PB,∴PA﹣PB=PA﹣EA=PE PC,∴PA﹣PB.(3)结论:PA﹣PB PC.理由:如图③中,在AP上取一点E,使得∠ECP=∠ACB=120°.∵∠CEP=180°﹣120°﹣30°=30°,∴∠CEP=∠CPE,∴CE=CP.作CH⊥PE于H,则PE,∵∠ACB=∠ECP,∴∠ACE=∠BCP,∵CA=CB,∴△ACE≌△BCP,∴AE=PB,∴PA﹣PB=PA﹣EA=PE PC.【点睛】本题考查三角形综合题、等腰三角形的性质、全等三角形的判定和性质、勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.74.如图,△ABC中,∠A=60°,∠C=40°,DE垂直平分BC,连接BD.(1)尺规作图:过点D作AB的垂线,垂足为F.(保留作图痕迹,不写作法)(2)求证:点D到BA,BC的距离相等.【答案】(1)如图所示,DF即为所求,见解析;(2)见解析.【解析】【分析】(1)直接利用过一点作已知直线的垂线作法得出符合题意的图形;(2)根据角平分线的性质解答即可.【详解】(1)如图所示,DF即为所求:(2)∵△ABC中,∠A=60°,∠C=40°,∴∠ABC=80°,∵DE垂直平分BC,∴BD=DC,∴∠DBC=∠C=40°,∴∠ABD=∠DBC=40°,即BD是∠ABC的平分线,∵DF⊥AB,DE⊥BC,∴DF=DE,即点D到BA,BC的距离相等.【点睛】此题主要考查了复杂作图,正确利用角平分线的性质解答是解题关键.75.如图,将△ABC绕点A顺时针旋转得到△ADE(点B,C的对应点分别是D,E),当点E在BC边上时,连接BD,若∠ABC=30°,∠BDE=10°,求∠EAC.【答案】∠EAC=100°.【解析】【分析】由旋转可得,△ABC≌△ADE,进而得出∠ABC=∠ADE=30°,AD=AB,进而得到∠ADB=40°=∠ABD,∠BAD=100°,再根据∠BAC=∠DAE,即可得到∠EAC=∠DAB=100°.【详解】由旋转可得,△ABC≌△ADE,∴∠ABC=∠ADE=30°,AD=AB,∵∠BDE=10°,∴∠ADB=40°=∠ABD,∴∠BAD=100°,又∵△ABC≌△ADE,∴∠BAC=∠DAE,∴∠EAC=∠DAB=100°.【点睛】本题主要考查了旋转的性质,解题时注意:旋转前、后的图形全等.76.已知:在△ABC中,∠ABC=3∠C,∠BAC的平分线AD交BC于D,BE⊥AD于E.(1)如图l,求证:AC﹣AB=2BE.(2)如图2,将∠DCA沿直线AC翻折,交BA的延长线于点M,连接MD交AC于点N;MA=BA,BE=1,AB,求AN的长.【答案】(1)见解析.【解析】【分析】(1)延长BE交AC于F.由AD平分∵BAC得∵1=∵2,再由BE∵AD及公共边AE可证∵AEB∵∵AEF,由全等的性质可知AB=AF,∵3=∵4,BE=FE,则BF=2BE;由三角形外角和可知∵4=∵5+∵C,则∵ABC=∵3+∵5=∵4+∵5=2∵5+∵C,再由∵ABC=3∵C可知∵5=∵C,则CF=BF=2BE,据此即可证明;(2)作AH∵BC于H,AK∵CM于K,易证∵AHB∵∵AKM,据此可证明∵BCA∵∵MCA,可得∵CAB=∵CAM=90 ;再由勾股定理计算可得AE=BE=1,由题干条件及上问证明可得AB=AD,从而得到MD⊥BC,进而得到∵NCD=∵BMD;再通过∵AEB是直角等腰三角形可证明∵MDC也是直角等腰三角形,可证明∵MBD∵∵CND,则可通过计算AC和CN的长度,通过AN=AC﹣CN 进行计算.【详解】解:(1)延长BE交AC于F.∵AD平分∵BAC,∵∵1=∵2.∵BE∵AD,∵∵AEB=AEF=90°.∵∵1=∵2,∵AEB=AEF=90°,AE=AE,∵∵AEB∵∵AEF(ASA)∵AB=AF,∵3=∵4,BE=FE,∵BF=2BE.∵∵4=∵5+∵C,∵∵3=∵5+∵C,∵∵ABC=∵3+∵5,∵∵ABC=∵5+∵C+∵5=2∵5+∵C=3∵C,∵∵5=∵C,∵CF=BF=2BE.∵AC﹣AF=FC,∵AC﹣AB=2BE;(2)作AH∵BC于H,AK∵CM于K,∵∵ACH=∵ACK,∵AH=AK,∵AB=AM,∵∵AHB∵∵AKM,∵∵ABH=∵AMK,∵CB=CM,∵AC=AC,CB=CM,AB=AM,∵∵BCA∵∵MCA,∵∵CAB=∵CAM=90 ,∵BE∵AD,∵∵AEB=90°.∵BE=1,AB,由勾股定理,得∵AE=1,∵AE=BE,∴∵BAE=∵ABE由上问证明可知,∵BAN=∵CAD,∵EBD=∵ACB,∴∵ABD=∵ABE+∵EBD,∵ADB=∵CAD+∵ACB,∴∠ABD=∠ADB,∵AB=AD,∵AM=AB,∵AD=AB=AM,∵∵DBM是直角三角形,∵∵BDM=∵CDM=90°.∵∵MBD+∵NCD=90°,∵MBD+∵BMD=90°,∵∵NCD=∵BMD,∵BE∵AD,AE=BE,∵∵BAE=∵ABE=45°.∵AD平分∵BAC,∵∵BAC=2∵BAD=90°,∵∵ABC+∵ACB=90°.∵∵ABC=3∵ACB,∵∵ACB=22.5°,∵∵BCM=45°,∵∵DMC=45°,∵∵BCM=∵DMC,∵DM=DC.∵∠BDM=∠CDM=90°,DM=DC,∵BMD=∵NCD,∵∵MBD∵∵CND(ASA),∵CN=BM=2AB=,∵AC=2BE+AB=∵AN=AC﹣CN=2.【点睛】本题有一定难度,理清如何通过证明三角形全等一步一步将求解AN长度转化为用AC长度减去CN长度对理解此类题型有较大帮助.77.如图1,在平面直角坐标系中,已知A(m,n),且满足|m﹣2|+(n﹣2)2=0,过A作AB⊥y轴,垂足为B,过A作AC⊥x轴,垂足为C,点D、E 分别是线段AB、AC上的动点,且保持∠DOE=45°.(1)点A的坐标为,∠BOD+∠EOC=;(2)设BD=a,CE=b,DE=c①如图1,连接OA交DE于F,当a=b时,易证△BOD≌△COE(SAS),从而可推出∠BOD=∠EOC=22.5°和OA垂直平分DE,试证明:c=2a;①如图2,当a≠b时,试探究a,b,c之间的数量关系,并说明理由.【答案】(1)(2,2),45°;(2)①证明见解析;②结论:a+b=c.理由见解析.【解析】【分析】(1)利用非负数的性质求出m、n即可解决问题;(2)①想办法证明∠BOD=∠AOD=∠AOE=∠EOC=22.5°,BD=DF,DF=DF,EC=EF即可解决问题;②结论:a+b=c.如图2中,将△EOC绕点O逆时针旋转90°得到△OBM.只要证明△ODM≌△ODE即可解决问题;【详解】(1)∵|m﹣2|+(n﹣2)2=0,又∵|m﹣2|≥0,(n﹣2)2≥0,∴m﹣2=0,n﹣2=0,∴m=n=2,∴A(2,2),∵∠BOC=90°,∠DOE=45°,∴∠BOD+∠EOC=90°﹣45°=45°,故答案为(2,2),45°;(2)①如图1,连接OA交DE于F,当a=b时,∵BD=CE,BO=OC,∠OBD=∠OCE,∴△OBD≌△OCE,∴∠BOD=∠ECC,OD=OE,∵∠AOB=∠AOC=45°,∠BOD+∠EOC=45°,∴∠BOD=∠AOD=∠AOE=∠EOC=22.5°.∴OA垂直平分相等DE,∴DF=FE,∵∠BOD=∠DOF,DB⊥OB,DF⊥OF,∴BD=DF,∵BD=CE,∴DE=DF+EF=BD+EC,∴c=2a.②结论:a+b=c.理由:如图2中,将△EOC绕点O逆时针旋转90°得到△OBM.∵∠DOM=∠DOB+∠BOM=∠DOB+∠EOC=45°,∠DOE=45°,∴∠DOM=∠DOE,∵OD=OD,OM=OE,∴△ODM≌△ODE,∴DE=DM,∵DM=DB+BM=BD+EC,∴DE=BD+EC,∴c=a+b.【点睛】本题考查三角形综合题、非负数的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.78.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC.(1)证明:△ABC≌△ADE;(2)若AC=12,CE经过点D,求四边形ABCD的面积.【答案】(1)证明见解析;(2)72.【解析】【分析】(1)求出∠BAC=∠EAD,根据SAS推出△ABC≌△ADE即可;(2)由△ABC≌△ADE,推出四边形ABCD的面积=三角形ACE的面积,即可得出答案;【详解】(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=∠EAD+∠CAD,∴∠BAC=∠EAD.在△ABC 和△ADE 中,,AB AD BAC EAD AC AE =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△ADE (SAS ).(2)∵△ABC ≌△ADE ,∴S △ABC =S △ADE ,∴S 四边形ABCD 2121272ABC ACD ADE ACD ACE SS S S S ==++⨯===. 【点睛】本题考查了全等三角形的性质和判定,等腰直角三角形的性质和判定,并利用割补法求四边形ABCD 的面积是解此题的关键,难度适中.79.如图,A ,B ,C ,D 是同一条直线上的点,AC =BD ,AE ∥DF ,∠1=∠2.求证:△ABE ≌△DCF .【答案】证明见解析.【解析】【分析】首先利用平行线的性质得出∠A =∠D ,再由AC =BD 得出AB =CD ,进而利用全等三角形的判定定理ASA 即可证明△ABE ≌△DCF .【详解】∵AE ∥DF ,∴∠A =∠D ,∵AC =BD ,∴AB =CD ,在△ABE 和△DCF 中,12,A D AB DC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABE ≌△DCF (ASA ).【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.80.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD 是一个筝形,其中AD =CD ,AB =CB ,小明在探究筝形的性质时,得到如下结论:①AC ⊥BD ;①AO =CO =12AC ;①△ABD ≌△CBD ;①若AC =6,BD =8,则四边形ABCD 的面积等于48;其中正确的结论有_____.(用序号表示)【答案】∵∵∵【解析】【分析】先证明△ABD 与△CBD 全等,再证明△AOD 与△COD 全等即可判断.【详解】在△ABD 与△CBD 中,,AD CD AB BC DB DB =⎧⎪=⎨⎪=⎩∴△ABD ≌△CBD (SSS ),故③正确;∴∠ADB =∠CDB ,在△AOD 与△COD 中,,AD CD ADB CDB OD OD =⎧⎪∠=∠⎨⎪=⎩∴△AOD ≌△COD (SAS ),∴∠AOD =∠COD =90°,AO =OC ,∴AC ⊥DB ,故①②正确;四边形ABCD 的面积 111168242222ADB BDC S S DB OA DB OC AC BD =+=⨯+⨯=⋅=⨯⨯=, 故④错误;故答案为①②③【点睛】此题考查全等三角形的判定和性质,关键是根据SSS 证明△ABD 与△CBD 全等和利用SAS 证明△AOD 与△COD 全等.。

人教版_部编版八年级数学上册第十二章第二节三角形全等的判定考试复习题二(含答案) (57)

人教版_部编版八年级数学上册第十二章第二节三角形全等的判定考试复习题二(含答案) (57)

人教版_部编版八年级数学上册第十二章第二节三角形全等的判定考试复习题二(含答案)如图,已知直线//AB 射线CD ,0100CEB ∠=。

P 是射线EB 上一动点,过点P 作//PQ EC 交射线CD 于点Q ,连结CP 。

作PCF PCQ ∠=∠,交直线AB 于点F ,CG 平分ECF ∠。

(1)若点,,P F G 都在点E 的右侧。

①求PCG ∠的度数;②若040EGC ECG ∠-∠=,求CPQ ∠的度数。

(2)在点P 的运动过程中,是否存在这样的情形,使32EGC EFC ∠=∠,若存在,求出CPQ ∠的度数;若不存在,请说明理由。

【答案】(1)①40°;②60°;(2)60°或15°.【解析】【分析】(1)①根据平行线的性质可知080ECQ ∠=,再结合角平分线的性质可求得1122PCG PCF FCG QCF FCE ∠=∠+∠=∠+∠,进而求解即可. ②根据平行线性质可得QCG EGC ∠=∠,结合已知条件040EGC ECG ∠-∠=且QCG ECG ECQ ∠+∠=∠可求得020EGC GCF FCP ∠=∠=∠=,根据平行线性质进而可求得060CPQ ECP EGC GCF FCP ∠=∠=∠+∠+∠=. (2)根据已知条件设3,2EGC x EFC x ∠=∠=,则GCF x ∠=,分①当点G F 、在点E 的右侧时②当点G F 、在点E 的左侧时两种情况,结合已知条件进行求解即可.【详解】(1)①∵0100CEB ∠=,//AB CD ,∴080ECQ ∠=,∵PCF PCQ ∠=∠,CG 平分ECF ∠, ∴1122PCG PCF FCG QCF FCE ∠=∠+∠=∠+∠ 01402ECQ =∠=②∵//AB CD∴QCG EGC ∠=∠,080QCG ECG ECQ ∠+∠=∠=,∴080EGC ECG ∠+∠=又∵040EGC ECG ∠-∠=,∴0060,20EGC ECG ∠=∠=∴020ECG GCF ∠=∠=()00018040202PCF PCQ ∠=∠=-= ∵//PQ CE ∴060CPQ ECP ∠=∠=(2)设3,2EGC x EFC x ∠=∠=,则GCF x ∠=,①当点G F 、在点E 的右侧时,则ECG PCF PCD x ∠=∠=∠=,∵080ECD ∠=,∴0480x =,解得020x =,∴0360CPQ x ∠==②当点G F 、在点E 的左侧时,则ECG GCF x ∠=∠=,∵01803CGF x ∠=-,080GCQ x ∠=+,∴00180380x x -=+,解得025x =,∴0005080130FCQ ECF ECQ ∠=∠+∠=+= ∴01652PCQ FCQ ∠=∠= ∴000655015CPQ ECP ∠=∠=-=【点睛】此题主要考查平行线的性质和角平分线的性质,解题在于熟练掌握平行线和角平分线的性质运用以及分情况讨论问题.62.如图,已知:OA OB =,OC OD =.(1)请找出图中一对全等的三角形,并说明理由;(2)若90O ︒∠=,25C ︒∠=,求BED ∠的度数.【答案】(1)△OAD ≌△OBC ,证明见解析;(2)∠BED=40°【解析】【分析】(1)由SAS 可以判定△OAD ≌△OBC(2)△OAD ≌△OBC 可得∠D=∠C=25°利用三角形内角和为180°可得∠OBC=65°利用三角形的外角等于与它不相邻的两个内角的和,可得∠BED 的度数.【详解】解(1)△OAD ≌△OBC理由:在△OAD 与△OBC 中OA=OB O=O OD=OC ⎧⎪∠∠⎨⎪⎩∴△OAD ≌△OBC (SAS )(2)由(1)可知:△OAD ≌△OBC∴∠D=∠C∵∠C=25°∴∠D=25°∵∠O=90°∴∠OBC=180°-∠O-∠C=180°-90°-25°=65°在△BDE中,∠OBC=∠D+∠BED∴∠BED=∠OBC-∠D=65°-25°=40°【点睛】本题考查了全等的判定及性质,以及三角形内角和和外角和的性质,掌握全等的判定是解题的关键.63.某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得河的宽度,他们是这样做的:①在河流的一侧岸边B点,选对岸正对的一棵树A;②沿河岸直走20米有一树C,继续前行20米到达D处;③从D处沿与河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长为5米.求河流的宽度是多少?并说明理由.【答案】河流的宽度是5m ,证明见解析【解析】【分析】)根据全等三角形对应角相等可得AB=DE ;利用“角边角”证明Rt △ABC 和Rt △EDC 全等,再根据全等三角形对应边相等解答.【详解】解:河的宽度是5m ;证明如下:由作法知,BC=DC ,∠ABC=∠EDC=90°,在Rt △ABC 和Rt △EDC 中,ABC=EDC=90BC=DC ACB=ECD ⎧∠∠⎪⎨⎪∠∠⎩∴Rt △ABC ≌Rt △EDC (ASA ),∴AB=ED=5,即河流的宽度是5m【点睛】本题考查了全等三角形的应用,正确理解题中的测量距离是解题的关键.64.背景知识:如图,在Rt ABC 中,90ACB ∠=︒,若AC BC =,则:AB ==.(1)解决问题:如图(1),90ACD ∠=︒,AC DC =,MN 是过点A 的直线,过点D 作DB MN ⊥于点B ,连接CB ,现尝试探究线段BA 、BC 、BD 之间的数量关系:过点C 作CE CB ⊥,与MN 交于点E ,易发现图中出现了一对全等三角形,即 ≌,由此可得线段BA 、BC 、BD 之间的数量关系是: ;(2)类比探究:将图(1)中的MN 绕点A 旋转到图(2)的位置,其它条件不变,试探究线段BA 、BC 、BD 之间的数量关系,并证明;(3)拓展应用:将图(1)中的MN 绕点A 旋转到图 (3)的位置,其它条件不变,若2BD =,BC =AB 的长为 (直接写结果). 【答案】(1)△EAC ≌△BDC ;;(2)BD −,证明见解析;(3)4.【解析】【分析】(1)利用ASA 证明出△EAC ≌△BDC ,从而得出AE=BD ,EB=AE+AB=BD+AB ,根据EB =进一步得出答案即可;(2)过C 作EC ⊥CB 交MN 于E ,利用ASA 证明△ACE ≌△DCB ,进而求得线段之间的关系,进一步求证即可;(3)过C 作EC ⊥CB 于MN 于E ,利用ASA 证明△ACE ≌△DCB ,然后进一步即可求出AB 的长.【详解】(1)∵CE CB ⊥,∴∠ACE+∠ACB=90°,∵90ACD ∠=︒,∴∠BCD+∠ACB=90°∴∠ACE=∠BCD ,在四边形ACDB 中,∵DB MN ⊥,90ACD ∠=︒,∴∠CAB+∠D=180°,∵∠CAB+∠EAC=180°∴∠D=∠EAC ,在△EAC 与△BDC 中,∵∠EAC=∠D ,AC=DC ,∠ACE=∠DCB ,∴△EAC ≌△BDC(ASA),∴AE=BD ,EC=BC ,∴EB=AE+AB=BD+AB ,在Rt△ECB中,∵EC=BC,∴EB ,∴,故答案为:△EAC≌△BDC;;(2)BD−,证明:如图(2),过C作EC⊥CB交MN于E,则∠ECB=90°,∴∠ECB+∠BCA=∠ACD+∠BCA,∴∠ECA=∠BCD,∵DB⊥MN,∴∠ABD=∠ACD=90°,记AC与BD的交点为F,则∠BFA=∠DFC,∴∠BAF=∠FDC,在△ACE与△DCB中,∵∠BAF=∠FDC,AC=DC,∠ECA=∠BCD,∴△ACE≌△DCB(ASA),∴AE=BD,CE=CB,∴在Rt△BCE中,,∴,即:BD−;(3)如图(3)过C作EC⊥CB于MN于E,MN与CD相交于F,∵∠ACD=∠ACF=90°,∠ECB=90°,∴∠ACB+∠BCF=∠BCF+∠ECF,∴∠ACB=∠ECF,∴∠ACB+90°=∠ECF+90°,∴∠ACE=∠BCD,∵DB⊥MN,∴∠CAE=90°−∠AFC,∠D=90°−∠BFD,∵∠AFC=∠BFD,∴∠CAE=∠D,在△ACE与△DCB中,∵∠ACE=∠BCD,AC=DC,∠CAE=∠D,∴△ACE≌△DCB(ASA),∴AE=DB,CE=CB,∴△ECB为等腰直角三角形,∴,又∵BE=AB−AE=AB−BD,∴AB−,∵BD=2,,∴AB=4.【点睛】本题主要考查了全等三角形性质与判定的综合运用,熟练掌握相关概念是解题关键.65.如图,四边形ABCD中,AB=BC=2CD,AB∥CD,∠C=90°,E 是BC的中点,AE与BD相交于点F,连接DE.(1)求证:△ABE≌△BCD;(2)判断线段AE与BD的数量关系及位置关系,并说明理由;(3)若CD=1,试求△AED的面积.【答案】(1)见解析;(2)AE=BD,AE⊥BD,理由见解析;(3)△AED 的面积为3.2【解析】【分析】(1)由已知条件可推导得到AB BC ABE C BE CD =∠=∠=,,,由SAS 即可证明△ABE ≌△BCD ;(2)由(1)可得△ABE ≌△BCD 可得AE =BD ,再由角的转化可得∠AFB =90°,即可证明AE ⊥BD ;(3)因为 △AED 的面积=梯形ABCD 的面积﹣△ABE 的面积﹣△CDE 的面积,即可求解△AED 的面积.【详解】(1)证明:∵AB ∥CD ,∴∠ABE +∠C =180°,∵∠C =90°,∴∠ABE =90°=∠C ,∵E 是BC 的中点,∴BC =2BE ,∵BC =2CD ,∴BE =CD ,在△ABE 和△BCD 中,AB BC ABE C BE CD =⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△BCD (SAS );(2)解:AE =BD ,AE ⊥BD ,理由如下:由(1)得:△ABE ≌△BCD ,∴AE =BD ,∵∠BAE =∠CBD ,∠ABF +∠CBD =90°,∴∠ABF+∠BAE=90°,∴∠AFB=90°,∴AE⊥BD;(3)解:∵△ABE≌△BCD,∴BE=CD=1,∵AB=BC=2CD=2,∴CE=BC﹣BE=1,∴CE=CD,∴△AED的面积=梯形ABCD的面积﹣△ABE的面积﹣△CDE的面积=1 2(1+2)×2﹣12×2×1﹣12×1×1=32【点睛】此题考查全等三角形的判定与性质,解题关键在于掌握性质证明三角形全等.66.如图,△ABC 中,AB=BC,∠ABC=90°,F 为AB 延长线上一点,点E 在BC 上,且AE=CF.(1)求证:AE⊥CF;(2)若∠CAE=25°,求∠ACF 的度数.【答案】(1)见解析;(2)65°.【解析】【分析】(1)运用HL 定理直接证明△ABE ≌△CBF ,即可解决问题.(2)证明∠BAE=∠BCF=25°;求出∠ACB=45°,即可解决问题.【详解】如图,延长AE 交CF 于点H ,在Rt △ABE 与Rt △CBF 中,AE CF AB BC ⎧⎨⎩== ∴△ABE ≌△CBF (HL )∴∠BAE=∠BCF ,∵∠F+∠BCF=90°,∴∠BAE+∠F=90°,∴∠AHF=90°,∴AE ⊥CF(2)∵AB=BC ,∠ABC=90°,∴∠ACB=45°=∠BAC ,且∠CAE=25°,∴∠BAE=20°,∵△ABE ≌△CBF ,∴∠BAE=∠BCF=20°,∴∠ACF=65°.【点睛】此题考查全等三角形的判定及其性质的应用问题,准确找出图形中隐含的相等或全等关系是解题的关键.67.如图1,在△ABC中,点D、点E分别在边AB、BC上,DE=AE,且∠B=∠C=∠DEA=β。

人教版八年级数学上册《12.2三角形全等的判定》同步练习题(带答案)

人教版八年级数学上册《12.2三角形全等的判定》同步练习题(带答案)

人教版八年级数学上册《12.2三角形全等的判定》同步练习题(带答案)一、选择题1.如图AB ∥DF ,且AB =DF ,添加下列条件,不能判断△ABC ≅△FDE 的是( )A .AC =EFB .BE =CDC .AC ∥FFD .∠A =∠F2.工人师傅常用角尺平分一个任意角.作法如下:如图所示,∠AOB 是一个任意角,在边OA ,OB 上分别取OM =ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合,过角尺顶点C 的射线OC 即是∠AOB 的平分线.这种作法的道理是( )A .HLB .SSSC .SASD .ASA3.如图,在ABC 中,∠B=40°,∠C=60°,AD 平分BAC ∠交BC 于点D ,在AB 上截取AE AC =,则EDB ∠的度数为( )A .30°B .20°C .10°D .15°4.如图,,AB CD AD BC OE OF =∥∥,图中全等三角形共有( )A .4对B .5对C .6对D .7对5.如图,已知△ABC中AD=BD,F是高AD和BE的交点CD=2,AF=3,则线段BC的长度为()A.6 B.7 C.8 D.96.如图,△PBC的面积为15cm2,PB为∠ABC的角平分线,过点A作AP⊥BP于P,则△ABC 的面积为()A.25cm2B.30cm2C.32.5cm2D.35cm27.如图所示,点A在DE上,点F在AB上,且AC=CE,∠1=∠2=∠3,则DE的长等于()A.AC B.BC C.AB+AC D.AB8.如图,点E是BC的中点AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论∶①∠AED=90°②∠ADE=∠CDE③DE=BE④AD=AB+CD,四个结论中成立的是()A.①②④B.①②③C.②③④D.①③二、填空题9.如图,在△ABC和△DEF中,点B,F,C,E在同一直线上BF=CE,AC∥DF请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是(只需写一个,不添加辅助线).10.已知:如图,AD是△ABC的边BC上的中线,AB=6中线AD=4.则AC的取值范围是.11.如图,△ABC中AB=BC,∠ABC=90∘,F为AB延长线上一点,点E在BC上,且AE=CF,若∠BAE=25∘,则∠ACF=度.12.如图,E点为△ABC的边AC中点CN∥AB,过E点作直线交AB于M点,交CN于N点,若MB=6cm,CN=4cm,则AB=cm.13.如图,在Rt△ABC中∠BAC=90∘,AB=AC分别过点B,C作经过点A的直线的垂线段BD,CE 若BD=2,CE=4,则DE的长为.三、解答题14.如图,在中,D是BC边上一点,DE//AC,CB=DE,∠ABC=∠E,求证:AC=BD.15.如图,已知AB=AD,AC=AE,∠1=∠2求证∠C=∠E .16.如图,在三角形ABC中,∠C=90°,DE⊥AB于点D,DB=BC,求证:AC=AE+DE.17.如图,△ABC中,点D是BC延长线上一点,满足CD=AC,过点D作DE∥AC,连接CE,使∠DCE=∠A.(1)求证:△ABC≌△CED.(2)如果BD=10,AC=3,求DE的长.参考答案1.A2.B3.B4.D5.B6.B7.D8.A9. AC=DF10. 2<AC<1411. 7012. 1013. 614.证明:.在和中15.证明:∵∠1=∠2∴∠1+∠EAC=∠2+∠EAC 即∠BAC=∠DAE在△BAC和△DAE中{AB=AD∠BAC=∠DAE AC=AE∴△BAC≅△DAE(SAS)∴∠C=∠E .16.证明:∵∠C=90°,DE⊥AB∴∠EDB=∠C=90°在Rt △BED 和Rt △BEC 中 {BD =BC BE =BE∴Rt △BED ≌Rt △BEC (HL ) ∴DE=CE∴AC=AE+EC=AE+DE .17.(1)解:∵DE ∥AC∴∠ACB =∠CDE在△ABC 与△CED 中{∠ACB =∠CDE AC =CD ∠A =∠DCE∴△ABC ≌△CED (ASA )(2)∵△ABC ≌△CED∴CB =DE又∵CD =AC =3,BD =10∴DE =CB =BD −CD =10−3=7。

人教版八年级上册数学12.2 三角形全等的判定 课后训练及答案解析

人教版八年级上册数学12.2 三角形全等的判定 课后训练及答案解析

课后训练基础巩固1.如图,在△ABC中,AB=AC,BE=CE,则直接利用“SSS”可判定().A.△ABD≌△ACD B.△BDE≌△CDEC.△ABE≌△ACE D.以上都不对2.如图,在△ABC和△DEF中,AB=DE,∠B=∠DEF,请你再补充一个条件,能直接运用“SAS”判定△ABC≌△DEF,则这个条件是().A.∠ACB=∠DEF B.BE=CFC.AC=DF D.∠A=∠F3.如图,请看以下两个推理过程:①∵∠D=∠B,∠E=∠C,DE=BC,∴△ADE≌△AB C(AAS);②∵∠DAE=∠BAC,∠E=∠C,DE=BC,∴△ADE≌△ABC(AAS).则以下判断正确的(包括判定三角形全等的依据)是().A.①对②错B.①错②对C.①②都对D.①②都错4.如图是跷跷板的示意图,支柱OC与地面垂直,点O是横板AB的中点,AB可以绕着点O上下转动,当A端落地时,∠OAC=20°,横板上下可转动的最大角(即∠A′OA)是().A.80°B.60°C.40°D.20°5.(条件开放题)如图,在△ABC和△EFD中,当BD=FC,AB=EF时,添加条件__________,就可得到△ABC≌△EFD(只需填写一个你认为正确的条件).6.(实际应用题)如图是一个三角形测平架,已知AB=AC,在BC的中点D挂一个重锤DE,让其自然下垂,调整架身,使点A恰好在重锤线上,这时AD和BC的位置关系为__________.7.如图,AC⊥BD,垂足为点B,点E为BD上一点,BC=BE,∠C=∠AEB,AB=6 cm,则图中长度为6 cm的线段还有__________.8.如图,为了固定门框,木匠师傅把两根同样长的木条BE,CF两端分别固定在门框上,且AB=CD,则木条与门框围成的两个三角形(图中阴影部分)__________全等(填“一定”“不一定”或“一定不”).9.如图是小华用半透明的纸制作的四边形风筝.制好后用量角器测量发现,无论支架AB与CD有多长,只要满足DA=DB,CA=CB,则∠CAD与∠CBD始终相等.请你帮他说明其中的道理.能力提升10.如图是一块三角形模具,阴影部分已破损.(1)只要从残留的模具片中度量出哪些边、角,就可以不带残留的模具片到店铺加工一块与原来的模具ABC的形状和大小完全相同的模具A′B′C′?请简要说明理由.(2)作出模具△A′B′C′的图形(要求:尺规作图,保留作图痕迹,不写作法和证明).11.(一题多变题)如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于点D,CE⊥DE于点E,AD=CE.(1)若B,C在DE的同侧(如图①)且AD=CE,求证:AB⊥AC.(2)若B,C在DE的两侧(如图②),其他条件不变,(1)中的结论还成立吗?若成立,请给出证明;若不成立,请说明理由.参考答案1.C点拨:因为AB=AC,BE=CE,由图形知AE=AE,则直接利用“SSS”可判定△ABE≌△ACE.故选C.2.B点拨:若添加BE=CF,可得BE+EC=CF+EC,即BC=EF,又因为AB=DE,∠B=∠DEF,能直接运用“SAS”判定△ABC≌△DEF.故选B.3.B点拨:①中的判定根据为ASA,不是AAS,①错误;②是正确的.故选B.4.C点拨:因为点O是横板AB的中点,AB可以绕着点O上下转动,所以OB′=OA,OC=OC.由HL得Rt△OAC≌Rt△OB′C,所以∠OB′C=∠OAC=20°.所以∠A′OA=40°.故选C.5.∠B=∠F(或CA=DE)点拨:用“SAS”证全等可添加∠B=∠F;用“SSS”证全等可添加CA=DE.6.垂直点拨:由“边边边”可得△ADB≌△ADC,得∠ADB=∠ADC,又因为∠ADB+∠ADC=180°,所以∠ADB=∠ADC=90°.因此AD和BC垂直.7.BD点拨:由AC⊥BD,垂足为点B,BC=BE,∠C=∠AEB,得△ABE≌△DBC,所以BD=AB=6 cm.8.一定点拨:由“HL”可证得△ABE≌△DCF.9.解:在△CAD和△CBD中,∵,,, DA DB CA CB CD CD=⎧⎪=⎨⎪=⎩∴△CAD≌△CBD(SSS).∴∠CAD=∠CBD.10.解:(1)只要度量残留的三角形模具片的∠B,∠C的度数和边BC的长即可.根据“ASA”可证明△ABC≌△A′B′C′.(2)图略.11.(1)证明:∵BD⊥DE,CE⊥DE,∴∠ADB=∠CEA=90°,∠BAD+∠ABD=90°.在Rt△ADB和Rt△CEA中,∵,, AB CA AD CE=⎧⎨=⎩∴Rt△ADB≌Rt△CEA(HL).∴∠ABD=∠CAE.∴∠BAD+∠CAE=90°.∴∠BAC=180°-(∠BAD+∠CAE)=90°. ∴AB⊥AC.(2)解:仍有AB⊥AC.∵BD⊥DE,CE⊥DE,∴∠ADB=∠CEA=90°,∠BAD+∠ABD=90°.在Rt△ADB和Rt△CEA中,∵,, AB CA AD CE=⎧⎨=⎩∴Rt△ADB≌Rt△CEA(HL).∴∠ABD=∠CAE.∴∠BAD+∠CAE=90°.∴∠BAC=90°.∴AB⊥AC.。

12.1 全等三角形 初中数学人教版八年级上册课后习题(含答案)

12.1 全等三角形 初中数学人教版八年级上册课后习题(含答案)

12.1 全等三角形一、能力提升1.如图,若△ABC≌△ADE,则下列结论中一定成立的是( )A.AC=DEB.∠BAD=∠CAEC.AB=AED.∠ABC=∠AED2.如图,若△NMQ≌△MNP,且MN=8 cm,NP=6 cm,PM=7 cm,则MQ的长为( )A.8 cmB.7 cmC.6 cmD.5 cm3.如图,在△ABC中,D,E分别是AC,BC上的点.若△ADB≌△EDC≌△EDB,则∠C的度数是( )A.15°B.20°C.25°D.30°4.如图,△ACB≌△A'CB',∠BCB'=30°,则∠ACA'等于( )A.20°B.30°C.35°D.40°5.如图,已知△OAD≌△OBC,且∠O=70°,∠C=25°,则∠AEB的度数是 .6.如图,△ABD≌△AEC,∠B和∠E是对应角,AB与AE是对应边.求证:BC=ED,∠BAC=∠EAD.7.如图,△ABC≌△ABD,∠DAC=90°.(1)求∠C的度数;(2)判断AB与CD的位置关系,并说明理由.8.如图,已知△ABC≌△DEF,∠B=∠E=90°,∠A=61°,AB=5,BC=9,CF=6.(1)求∠D,∠DFE的度数;(2)求线段DE,CE的长.二、创新应用★9.阅读下面的文字,然后回答相关问题:如图①,若把△ACD沿着直线AC平行移动,它就能和△CBE重合,像这种变换图形位置的方法,叫做平移变换;如图②,若把△ABC沿着直线BC翻折,它就能和△DBC重合,像这种变换图形位置的方法,叫做翻折(或翻转)变换;如图③,若把△AOC绕着点O旋转一定的角度,它将与△EOD重合,像这种变换图形位置的方法,叫做旋转变换.想一想:(1)如图④,若△ABC≌△DEF,且点B与点E,点C与点F是对应顶点,则进行怎样的图形变换可以使这两个三角形重合?(2)如图⑤,已知△ABF≌△DCE,点E与点F是对应顶点,则△DCE可以看成是由△ABF通过怎样的图形变换得到的?一、能力提升1.B ∵△ABC≌△ADE,∴AB=AD,AC=AE,∠ABC=∠ADE,∠BAC=∠DAE.∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE.故选B.2.C 因为△NMQ≌△MNP,所以MQ与NP是对应边,即MQ=NP=6cm.3.D ∵△EDB≌△EDC,∴∠DEB=∠DEC=90°.∵△ADB≌△EDB,∴∠DAB=∠DEB=90°.∵△ADB≌△EDB≌△EDC,∴∠C=∠ABD=∠CBD=30°.4.B 因为△ACB≌△A'CB',所以∠ACB=∠A'CB',所以∠ACB-∠A'CB=∠A'CB'-∠A'CB,即∠ACA'=∠BCB'=30°.5.120° 因为△OAD≌△OBC,所以∠D=∠C=25°.根据三角形外角的关系,得∠DBE=∠C+∠O=25°+70°=95°,所以∠AEB=∠D+∠DBE=25°+95°=120°. 6.证明∵△ABD≌△AEC,∴BD=EC,∠BAD=∠EAC.∴BD-CD=EC-CD,∠BAD-∠CAD=∠EAC-∠CAD,即BC=ED,∠BAC=∠EAD.7.解(1)因为△ABC≌△ABD,所以∠C=∠D.因为在△ACD中,∠C+∠D+∠DAC=180°,×(180°-90°)=45°.又∠DAC=90°,所以∠C=∠D=12(2)AB⊥CD.理由:因为△ABC≌△ABD,所以∠ABC=∠ABD.又∠ABC+∠ABD=180°,所以∠ABC=90°.所以AB⊥CD.8.解(1)∵△ABC≌△DEF,∴∠A=∠D=61°.在△DEF中,∵∠E=90°,∠D=61°,∴∠DFE=90°-∠D=90°-61°=29°.(2)∵△ABC≌△DEF,∴AB=DE=5,BC=EF=9.∴CE=EF-CF=9-6=3.二、创新应用9.解(1)先将△ABC沿着直线BF平移,使点B与点E重合,点C与点F重合,再将此三角形沿着EF所在直线翻折便能与△DEF重合.(2)先将△ABF沿着直线BC平移,使点F与点E重合,再将此三角形绕着点E逆时针旋转180°,便可得到△DCE.(答案均不唯一)。

人教版数学八年级上册:12.2三角形全等的判定练习题(附答案)

人教版数学八年级上册:12.2三角形全等的判定练习题(附答案)

人教版数学八年级上册:12.2三角形全等的判定练习题(附答案)12.2 三角形全等的判定练习题(时间:45分钟满分:100分)一、选择题(每小题4分,共24分)1.如图,△ABC≌△CDA,∠BAC=∠DCA,则BC的对应边是( ) A.CD B.CAC.DA D.AB第1题图第2题图2.如图,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为( ) A.2 B.3C.5 D.2.53.下列说法中,错误的是( )A.全等三角形的面积相等B.全等三角形的周长相等C.面积相等的三角形全等D.面积不等的三角形不全等4.要测量圆形工件的外径,工人师傅设计了如图所示的卡钳,点O为卡钳两柄交点,且有OA=OB=OC=OD,如果圆形工件恰好通过卡钳AB,那么此工件的外径必是CD之长了,其中的依据是全等三角形的判定条件( )A.SSS B.SASC.ASA D.AAS第4题图第5题图5.如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是( ) A.∠A=∠D B.∠ACB=∠DBCC.AC=DB D.AB=DC6.如图1,已知两个全等直角三角形的直角顶点及一条直角边重合.将△ACB绕点C按顺时针方向旋转到△A′CB′的位置,其中A′C交直线AD于点E,A′B′分别交直线AD,AC于点F,G,则在图2中,全等三角形共有( )A.5对B.4对C.3对D.2对二、填空题(每小题4分,共16分)7.如图,△ABC≌△DEF,点A与点D,点B与点E分别是对应顶点,∠B=32°,∠A=68°,AB=13 cm,则∠F=度,DE=cm.8.如图,已知点A,D,B,F在一条直线上,AC=EF,AD=FB,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是.(只需填一个即可)第8题图第9题图9.如图,△ABC中,∠C=90°,∠B=30°,AD是∠BAC的平分线,DE⊥AB,垂足为E,则∠ADE的度数是.10.如图,AC=BC,∠ACB=90°,AE平分∠BAC,BF⊥AE,交AC的延长线于点F,且垂足为E,则下列结论:①AD=BF; ②BF=AF;③AC+CD=AB;④AB=BF;⑤AD=2BE.其中正确的结论有.(填序号)三、解答题(共60分)11.(8分)如图,点B,E,C,F在同一条直线上,∠A=∠D,∠B =∠DEF,BE=CF.求证:AC=DF.12.(8分)如图,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.13.(10分)如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE 于点E,AD⊥CE于点D.(1)求证:△ADC≌△CEB;(2)若AD=5 cm,DE=3 cm,求BE的长度.14.(10分)如图,已知PB⊥AB,PC⊥AC,且PB=PC,D是AP 上的一点,求证:BD=CD.15.(12分)如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D 是AC的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A,D重合,连接BE,EC.试猜想线段BE和EC 的数量及位置关系,并证明你的猜想.16.(12分)如图,在△ABC中,∠B=∠C,AB=10 cm,BC=8 cm,点D为AB的中点,点P在线段BC上以3 cm/s的速度由B点向C点运动.同时,点Q在线段CA上以相同的速度由C点向A点运动,一个点到达终点后另一个点也停止运动,当△BPD与△CQP全等时,求P点运动的时间.参考答案:二、填空题(每小题4分,共16分) 7. 80 , 13 .8.∠A =∠F 或AC ∥EF 或BC =DE(答案不唯一). 9.60°.10.①③⑤.三、解答题(共60分) 11.证明:∵BE =CF ,∴BE -EC =CF -EC ,即BC =EF. 在△ABC 和△DEF 中,∠A =∠D ,∠B =∠DEF ,BC =EF ,∴△ABC ≌△DEF(AAS ).∴AC =DF.12.证明:∵∠1=∠2,∴∠CAB =∠EAD.在△BAC 和△DAE 中,AC =AE ,∠CAB =∠EAD AB =AD ,,∴△BAC ≌△DAE(SAS ).∴BC =DE.13.解:(1)证明:∵AD ⊥CE ,BE ⊥CE ,∠ACB =90°,∴∠ADC =∠ACB =∠CEB =90°. ∴∠BCE =∠CAD.在△ADC 与△CEB 中,∠ADC =∠CEB ,∠CAD =∠BCE ,AC =BC ,∴△ADC ≌△CEB(AAS ). (2)由(1)知,△ADC ≌△CEB ,则AD =CE =5 cm ,CD =BE. ∵CD =CE -DE ,∴BE =AD -DE =5-3=2(cm ).14.证明:∵PB ⊥AB ,PC ⊥AC ,∴∠PBA =∠PCA =90°.在Rt △PBA 和Rt △PCA 中,PB =PC ,PA =PA ,∴Rt △PBA ≌Rt △PCA(HL ).∴∠APB =∠APC.在△PBD 和△PCD 中,PB =PC ,∠BPD =∠CPD ,PD =PD ,∴△PBD ≌△PCD(SAS ).∴BD =CD.15.解:BE =EC ,BE ⊥EC.证明过程如下:∵AC =2AB ,点D 是AC 的中点,∴AB =AD =CD.∵∠EAD =∠EDA =45°,∴∠EAB =∠EDC =135°. 在△EAB 和△EDC 中,EA =ED ,∠EAB =∠EDC ,AB =DC ,∴△EAB ≌△EDC(SAS ).∴∠AEB =∠DEC ,EB =EC.∴∠AEB +∠BED =∠DEC +∠BED. ∴∠BEC =∠AED =90°. ∴BE =EC ,BE ⊥EC.16.解:∵点D 为AB 的中点,AB =10 cm ,∴BD =AD =5 cm .设点P 运动的时间是x s ,则BP =CQ =3x cm ,CP =(8-3x)cm ,若BD 与CQ 是对应边,则BD =CQ ,∴5=3x.∴x =53.此时BP =3x =5 cm ,CP =8-3x =3 cm ,BP ≠CP ,故舍去;若BD 与CP 是对应边,则BD =CP ,∴5=8-3x.∴x =1,符合题意.综上所述,点P 运动的时间是1 s .。

人教版八年级数学上册 12.2 三角形全等的判定 同步练习题(Word版附答案)

人教版八年级数学上册 12.2 三角形全等的判定 同步练习题(Word版附答案)

12.2三角形全等的判定同步练习题附答案第1课时用“SSS”判定三角形全等基础题知识点1用“SSS”判定三角形全等1.如图,如果AB=A′B′,BC=B′C′,AC=A′C′,那么下列结论正确的是()A.△ABC≌△A′B′C′B.△ABC≌△C′A′B′C.△ABC≌△B′C′A′D.这两个三角形不全等2.如图,下列三角形中,与△ABC全等的是③.第2题第4题3.如图所示,AD=BC,AC=BD,用三角形全等的判定“SSS”可证明△ADC≌或△ABD≌.4.如图,OA=OB,AC=BC.求证:△AOC≌△BOC.5.已知:如图,在△ABC中,AB=AC,AD是BC边上的中线,求证:△ABD≌△ACD.知识点2三角形全等的判定与性质的综合6.如图,AB=A1B1,BC=B1C1,AC=A1C1,且∠A=110°,∠B=40°,则∠C1=()A.110°B.40°C.30°D.20°第6题第7题7.如图所示,在△ABC和△DBC中,已知AB=DB,AC=DC,则下列结论中错误的是()A.△ABC≌△DBC B.∠A=∠DC.BC是∠ACD的平分线D.∠A=∠BCD8.如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.知识点3尺规作一个角等于已知角9.已知∠AOB,点C是OB边上的一点.用尺规作图画出经过点C与OA平行的直线.中档题10.如图,AB=AC,AD=AE,BE=CD,∠2=110°,∠BAE=60°,下列结论错误的是()A.△ABE≌△ACD B.△ABD≌△ACEC.∠C=30°D.∠1=70°第10题第11题11.(长春中考)如图,以△ABC的顶点A为圆心,以BC长为半径作弧;再以顶点C为圆心,以AB长为半径作弧,两弧交于点D;连接AD,CD.若∠B=65°,则∠ADC的大小为.12.如图,AB=AC,DB=DC,EB=EC.(1)图中有几对全等三角形?请一一写出来;(2)选择(1)中的一对全等三角形加以证明.13.(河北中考)如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得A B=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.14.如图,已知AB=AC,AD=AE,BD=CE,求证:∠3=∠1+∠2.综合题15.(佛山中考)如图,已知AB=DC,DB=AC.(1)求证:∠B=∠C;(注:证明过程要求给出每一步结论成立的依据)(2)在(1)的证明过程中,需要作辅助线,它的意图是什么?第2课时用“SAS”判定三角形全等基础题知识点1利用“SAS”判定三角形全等1.下图中全等的三角形有()图1图2图3图4A.图1和图2 B.图2和图3C.图2和图4 D.图1和图32.如图,在△ABD和△ACE中,AB=AC,AD=AE,要证△ABD≌△ACE,需补充的条件是()A.∠B=∠C B.∠D=∠EC.∠DAE=∠BAC D.∠CAD=∠DAC3.已知:如图,OA=OB,OC平分∠AOB,求证:△AOC≌△BOC.知识点2全等三角形的判定与性质的综合4.(泸州中考)如图,C是线段AB的中点,CD=BE,CD∥BE.求证:∠D=∠E.5.如图,已知△ABC和△DAE,D是AC上一点,AD=AB,DE∥AB,DE=AC.求证:AE=BC.知识点3利用“SAS”判定三角形全等解决实际问题6.如图,将两根钢条AA′,BB′的中点O连在一起,使AA′,BB′可以绕着点O自由转动,就做成了一个测量工件,则AB的长等于内槽宽A′B′,那么判定△AOB≌△A′OB′的理由是()A.边角边B.角边角C.边边边D.角角边第6题第7题7.如图所示,有一块三角形镜子,小明不小心将它打破成1、2两块,现需配成同样大小的一面镜子.为了方便起见,需带上1块,其理由是.易错点 误用“SSA”判定三角形全等8.如图,AD 平分∠BAC ,BD =CD ,则∠B 与∠C 相等吗?为什么?解:相等.理由:∵AD 平分∠BAC ,∴∠BAD =∠CAD. 在△ABD 和△ACD 中,⎩⎪⎨⎪⎧AB =AC ,∠BAD =∠CAD ,BD =CD ,∴△ABD ≌△ACD(SAS). ∴∠B =∠C.以上解答是否正确?若不正确,请说明理由.中档题9.如图,已知AB =AC ,AD =AE ,若要得到“△ABD ≌△ACE”,必须添加一个条件,则下列所添条件不成立的是( )A .BD =CEB .∠ABD =∠ACEC .∠BAD =∠CAE D .∠BAC =∠DAE第9题 第10题 第11题 第12题10.(陕西中考)如图,在四边形ABCD 中,AB =AD ,CB =CD.若连接AC ,BD 相交于点O ,则图中全等三角形共有( )A .1对B .2对C .3对D .4对 11.如图,点A 在BE 上,AD =AE ,AB =AC ,∠1=∠2=30°,则∠3的度数为 .12.如图,A ,B ,C ,D 是四个村庄,B ,D ,C 在一条东西走向公路的沿线上,BD =1km ,DC =1km ,村庄AC ,AD 间也有公路相连,且公路AD 是南北走向,AC =3km ,只有AB 之间由于间隔了一个小湖,所以无直接相连的公路.现决定在湖面上造一座斜拉桥,测得AE =1.2km ,BF =0.7km , 则建造的斜拉桥长至少有 km.13.如图,点B ,C ,E ,F 在同一直线上,BC =EF ,AC ⊥BC 于点C ,DF ⊥EF 于点F ,AC =DF.求证:(1)△ABC ≌△DEF ; (2)AB ∥DE.14.如图所示,A,F,C,D四点同在一直线上,AF=CD,AB∥DE,且AB=DE.求证:(1)△ABC≌△DEF;(2)∠CBF=∠FEC.综合题15.如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC.延长AD到点E,使DE=AB.求证:(1)∠ABC=∠EDC;(2)△ABC≌△EDC.第3课时用“ASA”或“AAS”判定三角形全等基础题知识点1利用“ASA”判定三角形全等1.如图,已知△ABC三条边、三个角,则甲、乙两个三角形中和△ABC全等的图形是()A.甲B.乙C.甲和乙都是D.都不是2.(宜宾中考)如图,已知∠CAB=∠DBA,∠CBD=∠DAC.求证:BC=AD.3.(孝感中考)如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.知识点2利用“AAS”判定三角形全等4.如图所示,在△ABC中,∠B=∠C,D为BC的中点,过点D分别向AB,AC作垂线段,则能够说明△BDE≌△CDF的理由是()A.SSS B.SAS C.ASA D.AAS5.(玉林中考)如图,AB=AE,∠1=∠2,∠C=∠D.求证:△ABC≌△AED.6.(广西中考)如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C.求证:AB=DC.知识点3三角形全等判定方法的选用7.(南州中考)如图,点B,F,C,E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC第7题第8题第9题第10题8.(济宁中考)如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D,E,AD,CE交于点H,请你添加一个适当的条件:,使△AEH≌△CEB.中档题9.如图所示,∠CAB=∠DBA,∠C=∠D,AC,BD相交于点E,下列结论不正确的是()A.∠DAE=∠CBE B.△DEA与△CEB不全等C.CE=DE D.EA=EB10.如图所示,已知D是△ABC的边AB上一点,DF交AC于点E,DE=EF,FC∥AB.若BD=2,CF =5,则AB的长为()A.1 B.3 C.5 D.711.(宜昌中考)杨阳同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语,其具体信息如下:如图,AB∥OH∥CD,相邻两平行线间的距离相等,AC,BD相交于O,OD⊥CD,垂足为D,已知AB=20 m,请根据上述信息求标语CD的长度.12.(邵阳中考)如图,已知点A,F,E,C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.综合题13.如图1所示,在△ABC中,∠ACB=90°,AC=BC,过点C在△ABC外作直线MN,AM⊥MN于点M,BN⊥MN于点N.(1)求证:MN=AM+BN;(2)如图2,若过点C作直线MN与线段AB相交,AM⊥MN于点M,BN⊥MN于点N(AM>BN),则(1)中的结论是否仍然成立?说明理由.第4课时用“HL”判定直角三角形全等基础题知识点1利用“HL”判定三角形全等1.如图,∠BAD=∠BCD=90°,AB=CB,可以证明△BAD≌△BCD的理由是()A.HL B.ASA C.SAS D.AAS2.下列判定两个直角三角形全等的方法中,不正确的是()A.两条直角边分别对应相等B.斜边和一锐角分别对应相等C.斜边和一条直角边分别对应相等D.两个三角形的面积相等3.在Rt△ABC和Rt△DEF中,AB=DE,∠A=∠D=90°,再补充一个条件,便可得Rt△ABC≌Rt△DEF.4.如图,小明和小芳以相同的速度分别同时从A,B出发,小明沿AC行走,小芳沿BD行走,并同时到达C,D.若CB⊥AB,DA⊥AB,则CB与DA相等吗?为什么?5.如图,AD⊥BE,垂足C是BE的中点,AB=DE,求证:AB∥DE.6.如图,∠ACB =∠CFE =90°,AB =DE ,BC =EF ,求证:AD =CF.知识点2 直角三角形全等判定方法的选用7.如图,在Rt △ABC 和Rt △A′B′C′中,∠C =∠C′=90°,那么下列各条件中,不能使Rt △ABC ≌Rt △A′B′C′的是( )A .AB =A′B′=5,BC =B′C′=3 B .AB =B′C′=5,∠A =∠B′=40° C .AC =A′C′=5,BC =B′C′=3D .AC =A′C′=5,∠A =∠A′=40°第7题 第8题8.如图所示,BE ⊥AC ,CF ⊥AB ,垂足分别是E ,F.若BE =CF ,则图中全等三角形有( )A .1对B .2对C .3对D .4对 易错点 错用了“HL”判定三角形全等9.如图,AB ⊥CF 于点B ,AD ⊥CE 于点D ,且AB =AD ,DE =BF.求证:AF =AE.证明:在Rt △ABF 和Rt △ADE 中,⎩⎪⎨⎪⎧AB =AD ,BF =DE , ∴Rt △ABF ≌Rt △ADE(HL). ∴AF =AE.上面的推理过程正确吗?如果不正确,说明错在哪里,并写出正确的推理过程.中档题10.如图,在Rt△ABC中,∠BAC=90°,DE⊥BC,AC=6,EC=6,∠ACB=60°,则∠ACD的度数为()A.45°B.30°C.20°D.15°第10题第11题11.如图,MN∥PQ,AB⊥PQ,点A,D在直线MN上,点B,C在直线PQ上,点E在AB上,AD+BC=7,AD=EB,DE=EC,则AB=.12.(镇江中考)如图,AD,BC相交于点O,AD=BC,∠C=∠D=90°.(1)求证:△ACB≌△BDA;(2)若∠ABC=35°,则∠CAO=.13.如图,已知AD,AF分别是两个钝角△ABC和△ABE的高,如果AD=AF,AC=AE.求证:BC =BE.综合题14.如图,已知AB=AE,∠B=∠E,BC=ED,AF⊥CD.求证:F是CD的中点.12.2 三角形全等的判定 同步练习题参考答案第1课时 用“SSS”判定三角形全等基础题知识点1 用“SSS”判定三角形全等1.如图,如果AB =A′B′,BC =B′C′,AC =A′C′,那么下列结论正确的是(A)A .△ABC ≌△A′B′C′B .△ABC ≌△C′A′B′ C .△ABC ≌△B′C′A′D .这两个三角形不全等 2.如图,下列三角形中,与△ABC 全等的是③.第2题 第4题3.如图所示,AD =BC ,AC =BD ,用三角形全等的判定“SSS”可证明△ADC ≌△BCD 或△ABD ≌△BAC .4.如图,OA =OB ,AC =BC.求证:△AOC ≌△BOC.证明:在△AOC 和△BOC 中, ⎩⎪⎨⎪⎧OA =OB ,AC =BC ,OC =OC ,∴△AOC ≌△BOC(SSS).5.已知:如图,在△ABC 中,AB =AC ,AD 是BC 边上的中线,求证:△ABD ≌△ACD.证明:∵AD 是BC 边上的中线, ∴BD =CD.在△ABD 和△ACD 中,⎩⎪⎨⎪⎧AB =AC ,AD =AD ,BD =CD ,∴△ABD ≌△ACD(SSS).知识点2 三角形全等的判定与性质的综合6.如图,AB =A 1B 1,BC =B 1C 1,AC =A 1C 1,且∠A =110°,∠B =40°,则∠C 1=(C)A .110°B .40°C .30°D .20°第6题 第7题7.如图所示,在△ABC 和△DBC 中,已知AB =DB ,AC =DC ,则下列结论中错误的是(D)A .△ABC ≌△DBCB .∠A =∠DC .BC 是∠ACD 的平分线 D .∠A =∠BCD8.(福建中考)如图,点B ,E ,C ,F 在一条直线上,AB =DE ,AC =DF ,BE =CF.求证:∠A =∠D .证明:∵BE =CF ,∴BE +CE =CF +CE ,即BC =EF. 在△ABC 和△DEF 中, ⎩⎪⎨⎪⎧AB =DE ,AC =DF ,BC =EF ,∴△ABC ≌△DEF(SSS). ∴∠A =∠D.知识点3 尺规作一个角等于已知角9.已知∠AOB ,点C 是OB 边上的一点.用尺规作图画出经过点C 与OA 平行的直线.解:①以点O 为圆心,任意长为半径,弧交OA 于点E ,交OB 于点D ; ②以点C 为圆心,OD 的长为半径画弧交OB 于点G ;③以点G 为圆心,DE 的长为半径,交前弧于点H ,连接CH ,则CH ∥OA.中档题10.如图,AB =AC ,AD =AE ,BE =CD ,∠2=110°,∠BAE =60°,下列结论错误的是(C)A .△ABE ≌△ACDB .△ABD ≌△ACEC .∠C =30°D .∠1=70°第10题 第11题11.(长春中考)如图,以△ABC 的顶点A 为圆心,以BC 长为半径作弧;再以顶点C 为圆心,以AB 长为半径作弧,两弧交于点D ;连接AD ,CD.若∠B =65°,则∠ADC 的大小为65°. 12.如图,AB =AC ,DB =DC ,EB =EC.(1)图中有几对全等三角形?请一一写出来; (2)选择(1)中的一对全等三角形加以证明.解:(1)有3对全等三角形:△ABD ≌△ACD ,△ABE ≌△ACE ,△DBE ≌△DCE. (2)以△ABD ≌△ACD 为例. 证明:在△ABD 和△ACD 中, ⎩⎪⎨⎪⎧AB =AC ,DB =DC ,AD =AD ,∴△ABD ≌△ACD(SSS).13.(河北中考)如图,点B ,F ,C ,E 在直线l 上(F ,C 之间不能直接测量),点A ,D 在l 异侧,测得A B =DE ,AC =DF ,BF =EC.(1)求证:△ABC ≌△DEF ;(2)指出图中所有平行的线段,并说明理由.解:(1)证明:∵BF =EC , ∴BF +FC =EC +CF , 即BC =EF.又∵AB =DE ,AC =DF ,∴△ABC ≌△DEF(SSS). (2)AB ∥DE ,AC ∥DF.理由:∵△ABC ≌△DEF ,∴∠ABC =∠DEF ,∠ACB =∠DFE. ∴AB ∥DE ,AC ∥DF.14.如图,已知AB =AC ,AD =AE ,BD =CE ,求证:∠3=∠1+∠2.证明:在△ABD 和△ACE 中, ⎩⎪⎨⎪⎧AB =AC ,AD =AE ,BD =CE ,∴△ABD ≌△ACE(SSS). ∴∠BAD =∠1,∠ABD =∠2. ∵∠3=∠BAD +∠ABD , ∴∠3=∠1+∠2.综合题15.(佛山中考)如图,已知AB =DC ,DB =AC.(1)求证:∠B =∠C ;(注:证明过程要求给出每一步结论成立的依据) (2)在(1)的证明过程中,需要作辅助线,它的意图是什么?解:(1)证明:连接AD , 在△BAD 和△CDA 中, ⎩⎪⎨⎪⎧AB =DC (已知),DB =AC (已知),AD =DA (公共边),∴△BAD ≌△CDA(SSS).∴∠B =∠C(全等三角形的对应角相等). (2)作辅助线的意图是构造全等的三角形.第2课时 用“SAS”判定三角形全等基础题知识点1 利用“SAS”判定三角形全等 1.下图中全等的三角形有(D)图1 图2 图3 图4 A .图1和图2 B .图2和图3 C .图2和图4 D .图1和图32.如图,在△ABD 和△ACE 中,AB =AC ,AD =AE ,要证△ABD ≌△ACE ,需补充的条件是(C)A .∠B =∠C B .∠D =∠EC .∠DAE =∠BACD .∠CAD =∠DAC 3.已知:如图,OA =OB ,OC 平分∠AOB ,求证:△AOC ≌△BOC.证明:∵OC 平分∠AOB , ∴∠AOC =∠BOC. 在△AOC 和△BOC 中, ⎩⎪⎨⎪⎧OA =OB ,∠AOC =∠BOC ,OC =OC ,∴△AOC ≌△BOC(SAS).知识点2 全等三角形的判定与性质的综合4.(泸州中考)如图,C 是线段AB 的中点,CD =BE ,CD ∥BE.求证:∠D =∠E.证明:∵C 是线段AB 的中点, ∴AC =CB.∵CD ∥BE ,∴∠ACD =∠CBE. 在△ACD 和△CBE 中, ⎩⎪⎨⎪⎧AC =CB ,∠ACD =∠CBE ,CD =BE ,∴△ACD ≌△CBE(SAS). ∴∠D =∠E.5.如图,已知△ABC 和△DAE ,D 是AC 上一点,AD =AB ,DE ∥AB ,DE =AC.求证:AE =BC.证明:∵DE ∥AB , ∴∠ADE =∠BAC.在△ADE 和△BAC 中,⎩⎪⎨⎪⎧AD =BA ,∠ADE =∠BAC ,DE =AC ,∴△ADE ≌△BAC(SAS).∴AE =BC.知识点3 利用“SAS”判定三角形全等解决实际问题6.如图,将两根钢条AA′,BB′的中点O 连在一起,使AA′,BB′可以绕着点O 自由转动,就做成了一个测量工件,则AB 的长等于内槽宽A′B′,那么判定△AOB ≌△A′OB′的理由是(A)A .边角边B .角边角C .边边边D .角角边第6题 第7题7.如图所示,有一块三角形镜子,小明不小心将它打破成1、2两块,现需配成同样大小的一面镜子.为了方便起见,需带上1块,其理由是两边及其夹角分别相等的两个三角形全等. 易错点 误用“SSA”判定三角形全等8.如图,AD 平分∠BAC ,BD =CD ,则∠B 与∠C 相等吗?为什么?解:相等.理由:∵AD 平分∠BAC , ∴∠BAD =∠CAD. 在△ABD 和△ACD 中, ⎩⎪⎨⎪⎧AB =AC ,∠BAD =∠CAD ,BD =CD ,∴△ABD ≌△ACD(SAS).∴∠B=∠C.以上解答是否正确?若不正确,请说明理由.解:不正确.使用“SAS”的前提条件:已知的对应元素(边或角)必须都是两个三角形中元素(边或角),且其中一个三角形的两边及其夹角必须对应相等.本题错误的原因是列的条件和使用方法不对应,错用“SSA”来证明两个三角形全等.中档题9.如图,已知AB=AC,AD=AE,若要得到“△ABD≌△ACE”,必须添加一个条件,则下列所添条件不成立的是(B)A.BD=CE B.∠ABD=∠ACEC.∠BAD=∠CAE D.∠BAC=∠DAE第9题第10题第11题10.(陕西中考)如图,在四边形ABCD中,AB=AD,CB=CD.若连接AC,BD相交于点O,则图中全等三角形共有(C)A.1对B.2对C.3对D.4对11.如图,点A在BE上,AD=AE,AB=AC,∠1=∠2=30°,则∠3的度数为30°.12.如图,A,B,C,D是四个村庄,B,D,C在一条东西走向公路的沿线上,BD=1km,DC=1 km,村庄AC,AD间也有公路相连,且公路AD是南北走向,AC=3km,只有AB之间由于间隔了一个小湖,所以无直接相连的公路.现决定在湖面上造一座斜拉桥,测得AE=1.2km,BF=0.7km,则建造的斜拉桥长至少有1.1km.13.如图,点B,C,E,F在同一直线上,BC=EF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)AB∥DE.证明:(1)∵AC⊥BC于点C,DF⊥EF于点F,∴∠ACB=∠DFE=90°.在△ABC 和△DEF 中,⎩⎪⎨⎪⎧BC =EF ,∠ACB =∠DFE ,AC =DF ,∴△ABC ≌△DEF(SAS).(2)∵△ABC ≌△DEF , ∴∠B =∠DEF. ∴AB ∥DE.14.如图所示,A ,F ,C ,D 四点同在一直线上,AF =CD ,AB ∥DE ,且AB =DE.求证:(1)△ABC ≌△DEF ; (2)∠CBF =∠FEC.证明:(1)∵AB ∥DE , ∴∠A =∠D. 又∵AF =CD ,∴AF +FC =CD +FC. ∴AC =DF. ∵AB =DE ,∴△ABC ≌△DEF(SAS). (2)∵△ABC ≌△DEF ,∴BC =EF ,∠ACB =∠DFE. ∵FC =CF ,∴△FBC ≌△CEF(SAS). ∴∠CBF =∠FEC.综合题15.如图,在四边形ABCD 中,∠A =∠BCD =90°,BC =DC.延长AD 到点E ,使DE =AB.求证:(1)∠ABC =∠EDC ; (2)△ABC ≌△EDC.证明:(1)在四边形ABCD 中, ∵∠BAD =∠BCD =90°, ∴∠B +∠ADC =180°.又∵∠CDE +∠ADC =180°. ∴∠ABC =∠EDC. (2)连接AC.在△ABC 和△EDC 中,⎩⎪⎨⎪⎧AB =ED ,∠ABC =∠EDC ,CB =CD ,∴△ABC ≌△EDC(SAS).第3课时 用“ASA”或“AAS”判定三角形全等基础题知识点1 利用“ASA”判定三角形全等1.如图,已知△ABC 三条边、三个角,则甲、乙两个三角形中和△ABC 全等的图形是(B)A .甲B .乙C .甲和乙都是D .都不是2.(宜宾中考)如图,已知∠CAB =∠DBA ,∠CBD =∠DAC.求证:BC =AD.证明:∵∠CAB =∠DBA ,∠CBD =∠DAC , ∴∠DAB =∠CBA.在△ADB 与△BCA 中,⎩⎪⎨⎪⎧∠CAB =∠DBA ,AB =BA ,∠DAB =∠CBA ,∴△ADB ≌△BCA(ASA).∴BC =AD.3.(孝感中考)如图,BD ⊥AC 于点D ,CE ⊥AB 于点E ,AD =AE.求证:BE =CD.证明:∵BD ⊥AC ,CE ⊥AB , ∴∠ADB =∠AEC =90°. 在△ABD 和△ACE 中, ⎩⎪⎨⎪⎧∠ADB =∠AEC ,AD =AE ,∠A =∠A ,∴△ABD ≌△ACE(ASA). ∴AB =AC.又∵AD =AE ,∴AB -AE =AC -AD ,即BE =CD. 知识点2 利用“AAS”判定三角形全等4.如图所示,在△ABC 中,∠B =∠C ,D 为BC 的中点,过点D 分别向AB ,AC 作垂线段,则能够说明△BDE ≌△CDF 的理由是(D)A .SSSB .SASC .ASAD .AAS 5.(玉林中考)如图,AB =AE ,∠1=∠2,∠C =∠D.求证:△ABC ≌△AED.证明:∵∠1=∠2,∴∠1+∠EAC =∠2+∠EAC , 即∠BAC =∠EAD.又∵∠C =∠D ,AB =AE , ∴△ABC ≌△AED(AAS).6.(广西中考)如图,点E ,F 在BC 上,BE =CF ,∠A =∠D ,∠B =∠C.求证:AB =DC.证明:∵BE =CF , ∴BF =CE.在△ABF 和△DCE 中, ⎩⎪⎨⎪⎧∠A =∠D ,∠B =∠C ,BF =CE ,∴△ABF ≌△DCE(AAS). ∴AB =DC.知识点3 三角形全等判定方法的选用7.(南州中考)如图,点B ,F ,C ,E 在一条直线上,AB ∥ED ,AC ∥FD ,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF 的是(C)A .AB =DE B .AC =DF C .∠A =∠D D .BF =EC第7题 第8题 第9题 第10题8.(济宁中考)如图,在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别为D ,E ,AD ,CE 交于点H ,请你添加一个适当的条件:答案不唯一,如AH =CB ,使△AEH ≌△CEB.中档题9.如图所示,∠CAB =∠DBA ,∠C =∠D ,AC ,BD 相交于点E ,下列结论不正确的是(B)A .∠DAE =∠CBEB .△DEA 与△CEB 不全等C .CE =DED .EA =EB10.如图所示,已知D 是△ABC 的边AB 上一点,DF 交AC 于点E ,DE =EF ,FC ∥AB.若BD =2,CF =5,则AB 的长为(D)A .1B .3C .5D .711.(宜昌中考)杨阳同学沿一段笔直的人行道行走,在由A 步行到达B 处的过程中,通过隔离带的空隙O ,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语,其具体信息如下:如图,AB ∥OH ∥CD ,相邻两平行线间的距离相等,AC ,BD 相交于O ,OD ⊥CD ,垂足为D ,已知AB =20 m ,请根据上述信息求标语CD 的长度.解:∵AB ∥CD ,∴∠ABO =∠CDO. ∵OD ⊥CD ,∴∠CDO =90°. ∴∠ABO =90°,即OB ⊥AB. ∵相邻两平行线间的距离相等, ∴OD =OB.在△ABO 和△CDO 中,⎩⎪⎨⎪⎧∠ABO =∠CDO ,OB =OD ,∠AOB =∠COD ,∴△ABO ≌△CDO(ASA). ∴CD =AB =20 m.12.(邵阳中考)如图,已知点A ,F ,E ,C 在同一直线上,AB ∥CD ,∠ABE =∠CDF ,AF =CE.(1)从图中任找两组全等三角形; (2)从(1)中任选一组进行证明.解:(1)△ABE ≌△CDF ,△AFD ≌△CEB(答案不唯一).(2)选△ABE ≌△CDF , 证明:∵AB ∥CD , ∴∠BAE =∠DCF. ∵AF =CE ,∴AF +EF =CE +EF ,即AE =CF. 在△ABE 和△CDF 中, ⎩⎪⎨⎪⎧∠BAE =∠DCF ,∠ABE =∠CDF ,AE =CF ,∴△ABE ≌△CDF(AAS).综合题13.如图1所示,在△ABC 中, ∠ACB =90°,AC =BC ,过点C 在△ABC 外作直线MN ,AM ⊥MN 于点M ,BN ⊥MN 于点N.(1)求证:MN =AM +BN ;(2)如图2,若过点C 作直线MN 与线段AB 相交,AM ⊥MN 于点M ,BN ⊥MN 于点N(AM >BN),(1)中的结论是否仍然成立?说明理由.解:(1)证明:∵∠ACB =90°, ∴∠ACM +∠BCN =90°. 又∵AM ⊥MN ,BN ⊥MN , ∴∠AMC =∠CNB =90°. ∴∠BCN +∠CBN =90°. ∴∠ACM =∠CBN. 在△ACM 和△CBN 中, ⎩⎪⎨⎪⎧∠ACM =∠CBN ,∠AMC =∠CNB ,AC =CB ,∴△ACM ≌△CBN(AAS). ∴MC =NB ,MA =NC. ∵MN =MC +CN , ∴MN =AM +BN.(2)(1)中的结论不成立,结论为MN =AM -BN. 理由:同(1)中证明可得△ACM ≌△CBN , ∴CM =BN ,AM =CN. ∵MN =CN -CM , ∴MN =AM -BN.第4课时 用“HL”判定直角三角形全等基础题知识点1 利用“HL”判定三角形全等 1.如图,∠BAD =∠BCD =90°,AB =CB ,可以证明△BAD ≌△BCD 的理由是(A)A .HLB .ASAC .SASD .AAS 2.下列判定两个直角三角形全等的方法中,不正确的是(D)A .两条直角边分别对应相等B .斜边和一锐角分别对应相等C .斜边和一条直角边分别对应相等D .两个三角形的面积相等 3.在Rt △ABC 和Rt △DEF 中,AB =DE ,∠A =∠D =90°,再补充一个条件答案不唯一,如BC =EF ,便可得Rt △ABC ≌Rt △DEF.4.如图,小明和小芳以相同的速度分别同时从A ,B 出发,小明沿AC 行走,小芳沿BD 行走,并同时到达C ,D.若CB ⊥AB ,DA ⊥AB ,则CB 与DA 相等吗?为什么?解:CB =DA.理由:由题意易知AC =BD. ∵CB ⊥AB ,DA ⊥AB , ∴∠DAB =∠CBA =90°. 在Rt △DAB 和Rt △CBA 中,⎩⎪⎨⎪⎧BD =AC ,AB =BA , ∴Rt △DAB ≌Rt △CBA(HL). ∴DA =CB.5.如图,AD ⊥BE ,垂足C 是BE 的中点,AB =DE ,求证:AB ∥DE.证明:∵C 是BE 的中点, ∴BC =CE. ∵AD ⊥BE ,∴∠ACB =∠DCE =90°. 在Rt △ACB 和Rt △DCE 中,⎩⎪⎨⎪⎧AB =DE ,BC =EC ,∴∠B =∠E. ∴AB ∥DE.6.如图,∠ACB =∠CFE =90°,AB =DE ,BC =EF ,求证:AD =CF.证明:∵∠ACB =∠CFE =90°,∴∠ACB =∠DFE =90°. 在Rt △ACB 和Rt △DFE 中,⎩⎪⎨⎪⎧AB =DE ,BC =EF , ∴Rt △ACB ≌Rt △DFE(HL). ∴AC =DF.∴AC -AF =DF -AF ,即AD =CF. 知识点2 直角三角形全等判定方法的选用7.如图,在Rt △ABC 和Rt △A′B′C′中,∠C =∠C′=90°,那么下列各条件中,不能使Rt △ABC ≌Rt △A′B′C′的是(B)A .AB =A′B′=5,BC =B′C′=3 B .AB =B′C′=5,∠A =∠B′=40° C .AC =A′C′=5,BC =B′C′=3D .AC =A′C′=5,∠A =∠A′=40°第7题 第8题8.如图所示,BE ⊥AC ,CF ⊥AB ,垂足分别是E ,F.若BE =CF ,则图中全等三角形有(C)A .1对B .2对C .3对D .4对 易错点 错用了“HL”判定三角形全等9.如图,AB ⊥CF 于点B ,AD ⊥CE 于点D ,且AB =AD ,DE =BF.求证:AF =AE.证明:在Rt △ABF 和Rt △ADE 中,⎩⎪⎨⎪⎧AB =AD ,BF =DE ,∴AF =AE.上面的推理过程正确吗?如果不正确,说明错在哪里,并写出正确的推理过程. 解:不正确,错用了“HL”. 证明:∵AB ⊥CF ,AD ⊥CE , ∴∠ABF =∠ADE =90°. 在△ABF 和△ADE 中,⎩⎪⎨⎪⎧AB =AD ,∠ABF =∠ADE ,BF =DE ,∴△ABF ≌△ADE(SAS).∴AF =AE.中档题10.如图,在Rt △ABC 中,∠BAC =90°,DE ⊥BC ,AC =6,EC =6,∠ACB =60°,则∠ACD 的度数为(B)A .45°B .30°C .20°D .15°第10题 第11题11.如图,MN ∥PQ ,AB ⊥PQ ,点A ,D 在直线MN 上,点B ,C 在直线PQ 上,点E 在AB 上,AD +BC =7,AD =EB ,DE =EC ,则AB =7.12.(镇江中考)如图,AD ,BC 相交于点O ,AD =BC ,∠C =∠D =90°.(1)求证:△ACB ≌△BDA ; (2)若∠ABC =35°,则∠CAO =20°.证明:∵∠C =∠D =90°,∴△ACB 和△BDA 是直角三角形. 在Rt △ACB 和Rt △BDA 中,⎩⎪⎨⎪⎧BC =AD ,AB =BA , ∴Rt △ACB ≌Rt △BDA(HL).13.如图,已知AD ,AF 分别是两个钝角△ABC 和△ABE 的高,如果AD =AF ,AC =AE.求证:BC =BE.证明:∵AD ,AF 分别是两个钝角△ABC 和△ABE 的高, ∴∠ADB =∠AFB =90°. 在Rt △ABD 和Rt △ABF 中,⎩⎪⎨⎪⎧AB =AB ,AD =AF ,∴Rt △ABD ≌Rt △ABF(HL). ∴DB =FB.在Rt △ADC 和Rt △AFE 中,⎩⎪⎨⎪⎧AC =AE ,AD =AF , ∴Rt △ADC ≌Rt △AFE(HL). ∴DC =FE.∴DB -DC =FB -FE ,即BC =BE.综合题14.如图,已知AB =AE ,∠B =∠E ,BC =ED ,AF ⊥CD.求证:F 是CD 的中点.证明:连接AC ,AD. 在△ABC 和△AED 中, ⎩⎪⎨⎪⎧AB =AE ,∠B =∠E ,BC =ED ,∴△ABC ≌△AED(SAS). ∴AC =AD.在Rt △ACF 和Rt △ADF 中,⎩⎪⎨⎪⎧AC =AD ,AF =AF , ∴Rt △ACF ≌Rt △ADF(HL). ∴CF =DF ,即F 为CD 的中点.。

人教版八年级数学上册《第十二章全等三角形》课后练习及答案解析

人教版八年级数学上册《第十二章全等三角形》课后练习及答案解析

人教版八年级数学上册《第十二章全等三角形》课后练习及答案解析一、选择题(每小题3分,共30分) 1.下列说法正确的是( )A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等 2. 如图所示,a,b,c 分别表示△ABC 的三边长,则下面与△ABC 一定全等的三角形是( )3.如图所示,已知△ABE ≌△ACD ,∠1=∠2,∠B=∠C , 下列不正确的等式是( ) B.∠BAE=∠CADA.AB=AC C.BE=DC D.AD=DE 4. 在△ABC 和△A /B /C /中,AB=A /B /,∠B=∠B /,补充条件后仍不一定能保证△ABC ≌△A /B /C /,则补充的这个条件是( )A .BC=B /C / B .∠A=∠A / C .AC=A /C /D .∠C=∠C / 5.如图所示,点B 、C 、E 在同一条直线上,△ABC 与△CDE都是等边三角形,则下列结论不一定成立的是( )A.△ACE ≌△BCDB.△BGC ≌△AFCC.△DCG ≌△ECFD.△ADB ≌△CEA6. 要测量河两岸相对的两点A,B 的距离,先在AB 的垂线BF 上取两点C,D ,使CD=BC ,再作出BF 的垂线DE ,使A,C,E 在一条直线上(如图所示),可以说明△EDC ≌△ABC ,得ED=AB ,因此测得ED 的长就是AB 的长,判定△EDC ≌△ABC 最恰当的理由是( ) 第3题图第5题图 第2题图第6题图AB C DA.边角边B.角边角C.边边边D.边边角7.已知:如图所示,AC=CD ,∠B=∠E=90°,AC ⊥CD ,则不正确的结论是( )A .∠A 与∠D 互为余角B .∠A=∠2C .△ABC ≌△CED D .∠1=∠28. 在△ABC 和△FED 中,已知∠C=∠D ,∠B=∠E ,要判定这两个三角形全等,还需要条件( ) A.AB=ED B.AB=FD C.AC=FD D.∠A=∠F 9.如图所示,在△ABC 中,AB=AC ,∠ABC 、∠ACB 的平分线BD ,CE 相交于O 点,且BD 交AC 于点D ,CE 交AB 于 点E .某同学分析图形后得出以下结论:①△BCD ≌△CBE ; ②△BAD ≌△BCD ;③△BDA ≌△CEA ;④△BOE ≌△COD ;⑤△ACE ≌△BCE ,上述结论一定正确的是( ) A.①②③ B.②③④ C.①③⑤ D.①③④10、下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命题的个数有( ) A 、3个 B 、2个 C 、1个 D 、0个二、填空题(每题3分,共21分)11.如图6,AC=AD,BC=BD,则△ABC≌ ;应用的判定方法是 .12.如图7,△ABD≌△BAC,若AD=BC,则∠BAD的对应角为 .13.已知AD是△ABC的角平分线,DE⊥AB于E,且DE=3cm ,则点D到AC的距离为 .B C DA 图6 D O CBA 图8 A D CB图7 第9题图 第7题图14.如图8,AB与CD交于点O,OA=OC,OD=OB,∠AOD= ,根据 可得△AOD≌△COB,从而可以得到AD= .15.如图9,∠A=∠D=90°,AC=DB,欲使OB=OC,可以先利用“HL”说明 ≌ 得到AB=DC,再利用“ ”证明△AOB≌ 得到OB=OC. 16.如果两个三角形的两条边和其中一边上的高分别对应相等,那么这两个三角形的第三边所对的角的关系是 .17.如图10,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带________去配,这样做的数学依据是是 . 三、解答题(共29分)18. (6分)如右图,已知△ABC 中,AB =AC ,AD 平分∠BAC ,请补充完整过程说明△ABD ≌△ACD 的理由.解: ∵AD 平分∠BAC∴∠________=∠_________(角平分线的定义)在△ABD 和△ACD 中⎪⎪⎩⎪⎪⎨⎧∴△ABD ≌△ACD ( ) 19. (8分)如图,已知△≌△是对应角.(1)写出相等的线段与相等的角;(2)若EF=2.1 cm ,FH=1.1 cm ,HM=3.3 cm ,求MN和HG 的长度.第19题图图10 DCBA20.(7分)如图,A、B两建筑物位于河的两岸,要测得它们之间的距离,可以从B点出发沿河岸画一条射线BF,在BF上截取BC=CD,过D作DE∥AB,使E、C、A在同一直线上,则DE的长就是A、B之间的距离,请你说明道理.21.(8分)已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:△ABC≌△DEF.四、解答题(共20分)22.(10分)已知:BE⊥CD,BE=DE,BC=DA,求证:①△BEC≌△DAE;②DF⊥BC.B C EF A23.(10分)如图,在四边形ABCD 中,E 是AC 上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6.12章·全等三角形(详细答案)一、选择题 CBDCD BDCDC二、填空题 11、△ABD SSS 12、∠ABC 13、3cm 14、∠COB SAS CB 15、△ABC △DCB AAS △DOC 16、相等 17、○3 两角和它们的夹边分别相等的两个三角形全等三、解答题18、AD CAD AB=AC ∠BAD=∠CAD AD=AD SAS19、B 解:(1)EF=MN EG=HN FG=MH ∠F=∠M ∠E=∠N ∠EGF=∠MHN (2)∵△EFG ≌△NMH ∴MN=EF=2.1cm∴GF=HM=3.3cm ∵FH=1.1cm ∴HG=GF -FH=3.3-1.1=2.2cm 20、解:∵DE ∥AB ∴∠A=∠E在△ABC 与△CDE 中∠A=∠E BC=CD∠ACB=∠ECD∴△ABC ≌△CDE(ASA)∴AB=DE21、证明:∵AB ∥DE∴∠A=∠EDF∵BC ∥EFCA∴∠ACB=∠F∵AD=CF∴AC=DF在△ABC与△DEF中∠A=∠EDFAC=DF∠ACB=∠F△ABC≌△DEF(ASA)四、解答题22、证明:①∵BE⊥CD∴∠BEC=∠DEA=90°在Rt△BEC与Rt△DEA中BC=DABE=DE∴Rt△BEC≌Rt△DEA(HL)②∵Rt△BEC≌Rt△DEA∴∠C=∠DAE∵∠DEA=90°∴∠D+∠DAE=90°∴∠D+∠C=90°∴∠DFC=90°∴DF⊥BC23、证明:在△ABC与△ADC中1=∠2AC=AC3=∠4∴△ABC≌△ADC(ASA)∴CB=CD在△ECD与△ECB中CB=CD∠3=∠4CE=CE∴△ECD≌△ECB(SAS)∴∠5=∠6第十二章全等三角形一、填空题(每小题4分,共32分).1.已知:///ABC A B C ∆∆≌,/A A ∠=∠,/B B ∠=∠,70C ∠=︒,15AB cm =,则/C ∠=_________,//A B =__________.2.如图1,在ABC ∆中,AB=AC ,AD ⊥BC 于D 点,E 、F 分别为DB 、DC 的中点,则图中共有全等三角形_______对.图1 图2 图33. 已知△ABC ≌△A ′B ′C ′,若△ABC 的面积为10 cm 2,则△A ′B ′C ′的面积为______ cm 2,若△A ′B ′C ′的周长为16 cm ,则△ABC 的周长为________c m . 4. 如图2所示,∠1=∠2,要使△ABD ≌△ACD ,需添加的一个条件是________________(只添一个条件即可).5.如图3所示,点F 、C 在线段BE 上,且∠1=∠2,BC =EF ,若要使△ABC ≌△DEF ,则还需补充一个条件________,依据是________________.6.三角形两外角平分线和第三个角的内角平分线_____一点,且该点在三角形______部. 7.如图4,两平面镜α、β的夹角 θ,入射光线AO 平行于β,入射到α上,经两 次反射后的出射光线CB 平行于α,则角θ等于________.8.如图5,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则ACE △ 的面积为______.二、选择题(每小题4分,共24分) 9.如图6,AE =AF ,AB =AC ,E C 与B F 交于点O ,∠A =600,∠B =250,则∠E OB 的度数为( )A 、600B 、700C 、750D 、85010.△ABC ≌△DEF ,且△ABC 的周长为100 cm ,A 、B 分别与D 、E 对应,且AB =35 cm ,DF =30 cm ,则EF 的长为( ) A .35 cm B .30 cm C .45 cm D .55 cm11.图7是一个由四根木条钉成的框架,拉动其中两根木条后,它的形状将会改变,若固定其形状,下列有四种加固木条的方法,不能固定形状的是钉在________两点上的木条.( )A .A 、FB .C 、E C .C 、AD .E 、F12.要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C 、D ,使CD= BC ,再定出BF 的垂线DE ,使A 、C 、E 在一条直线上,可以证明△EDC ≌△ABC , 得到ED=AB ,因此测得ED 的长就是AB 的长(如图8),判定△EDC ≌△ABC 的理由是( )NAMC B图7 图8 图9 图10A.边角边公理 B.角边角公理; C.边边边公理 D.斜边直角边公理13.如图9,在△ABC中,∠A:∠B:∠C=3:5:10,又△MNC≌△ABC,则∠BCM:∠BCN等于()A.1:2 B.1:3C.2:3 D.1:414.如图10,P是∠AOB平分线上一点,CD⊥OP于F,并分别交OA、OB于CD,则CD_____P点到∠AOB两边距离之和.( )A.小于B.大于C.等于D.不能确定三、解答题(共46分)中,∠ACB=90°,延长BC至B',使15.已知如图11,ABCC B'=BC,连结A B'.求证:△AB B'是等腰三角形.图11第十二章全等三角形。

八年级数学上册《第十二章三角形全等的判定》同步练习题及答案-人教版

八年级数学上册《第十二章三角形全等的判定》同步练习题及答案-人教版

八年级数学上册《第十二章三角形全等的判定》同步练习题及答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题1.如图,已知CA=CD,∠1=∠2,如果只添加一个条件(不加辅助线)使ΔABC≌ΔDEC,则添加的条件不能为()A.AB=DE B.∠B=∠E C.BC=EC D.∠A=∠D2.下列条件中,能判定两个三角形全等的是()A.有一个内角是50°的两个直角三角形;B.有一个内角是50°的两个等腰三角形;C.有一个内角为50°且腰长为6cm的两个等腰三角形D.有一个内角为100°且腰长为6cm的两个等腰三角形.3.工人师傅常借助“角尺”这个工具来平分一个角,其背后的依据就是全等三角形的性质.如图,在∠AOB 的两边OA、OB上分别取OC=OD适当摆放角尺(图中的∠CED),使其两边分别经过点C、D,且点C、D处的刻度相同,这时经过角尺顶点E的射线OE就是∠AOB的平分线.这里判定两个三角形全等的依据是( )A.SAS B.SSS C.AAS D.ASA4.如图AC=DC,BC=EC,∠ACD=∠BCE,则下列结论错误的是()A.∠A=∠D B.∠B=∠E C.AB=DE D.CD=CE5.如图,已知AD是△ABC的中线,E、F分别是AD和AD延长线上的点,且BF∥CE,连接BF,CE下列说法中:①BD=CD;②△BDF≌△CDE;③∠BAF+∠ABC=∠CDE;④CE=AE.正确的是()A.①②③B.①②④C.①③④D.②③④6.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D,若AD=12,CD=5,则ED的长度是()A.8 B.7 C.6 D.57.如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,AB=5,BD=1则CF的长度为()A.2 B.2.5 C.4 D.58.如图,在△ABC中∠C=90°,D是BC上一点,DE⊥AB于点E,AE=AC连接AD,若BC=8,则BD+DE等于()A.6 B.7 C.8 D.9二、填空题9.如图,在△ABC中AD⊥BC,AD平分∠BAC,则△ABD≌△ACD的根据是.10.如图,A,B两点分别位于一个池塘的两端,小凡想用绳子测量A,B间的距离,但无法从A点直接到达B点,聪明的小凡想出一个办法:先在地上选取一个可以直接到达B点的点C,连接BC,取BC的中点P(点P 可以直接到达A点),连接AP并延长到点D,使DP=AP.连接CD,并测量出它的长度为10米,则A,B两点间的距离为米.11.如图∠ACB=90°,AC=BC,AE⊥CE于点E,BD⊥CE于点D,AE=5cm,BD=2cm则DE的长是cm.12.如图,已知方格纸中是4个相同的正方形,则∠1+∠2的度数为.13.如图,在Rt△ABC中,AC=BC,点P是BC上一点,BD⊥AP交AP延长线于点D,连接CD.若图中两阴影三角形的面积之差为32(即S△ACP-S△PBD=32),则CD=三、解答题14.如图,点A,D,B,E在一条直线上AD=BE,BC=EF,AC=DF求证:∠C=∠F.15.如图,点B在线段AC上BD∥CE,AB=EC,DB=BC求证:AD=EB.16.如图,DB平分∠ADC,点P在BD上PM⊥AD,PN⊥CD,M,N为垂足,求证:PM=PN.BC,AE=DF,AE∥DF.17.如图,点A,B,C,D在同一条直线上AB=CD=13(1)求证:△AEC≌△DFB;(2)若SΔAEC=6,求三角形BEC的面积.18.如图,在四边形ABCD中,点E为对角线BD上一点∠A=∠BEC,∠ABD=∠BCE且AD=BE.(1)证明:①△ABD≌△ECB;②AD//BC;(2)若BC=15,AD=6请求出DE的长度.参考答案1.A2.D3.B4.D5.A6.B7.C8.C9.ASA10.1011.312.90°13.814.证明:∵AD=BE∴AD+BD=BE+BD,即:AB=DE 在△ABC和△DEF中∵{BC=EF AC=DFAB=DE∴△ABC≌△DEF(SSS)∴∠C=∠F15.证明:∵BD∥CE ∴∠ABD=∠C∴在△ABD和△ECB中{AB=CE∠ABD=∠CDB=BC∴△ABD≌△ECB(SAS)∴AD=EB.16.证明:∵BD平分∠ADC∴∠ADB=∠CDB∴∠PMD=∠PND=90°∵PD=PD∴△PMD≌△PND(AAS)∴PM=PN.17.(1)证明:∵AE∥DF∴∠A=∠D∵AB=CD∴AB+BC=CD+BC∴AC=DB在△AEC和△DFB中{AE=DF ∠A=∠D AC=DB∴△AEC≌△DFB(SAS);(2)解:如图所示,在△AEC中,以AC为底作EH为高∴SΔAEC=12EH⋅AC,SΔBCE=12EH⋅BC∵AB=CD=13BC∴AC=43BC,SΔAEC=6∴SΔBEC=34SΔAEC=4.5.18.(1)证明:①在△ABD与△ECB中{∠A=∠BEC∠ABD=∠BCEAD=EB∴△ABD≌△ECB(AAS);∴∠ADB=∠EBC∴AD//BC;(2)解:∵△ABD≌△ECB∴BD=BC=15,BE=AD=6∴DE=BD−BE=15−6=9.。

部编版人教初中数学八年级上册《三角形全等之类比探究 专题突破随堂测试题(含答案)》最新精品

部编版人教初中数学八年级上册《三角形全等之类比探究 专题突破随堂测试题(含答案)》最新精品

1
前言:
该专题突破随堂测试题由多位一线国家特级教师针对当前最新的热点、考点、重点、难点、知识点,精心编辑而成。

以高质量的专题突破随堂测试题助力考生查漏补缺,在原有基础上更进一步。

(最新精品专题突破随堂测试题)
三角形全等之类比探究(随堂测试)
1. 在四边形ABCD 中,AB =AD ,∠BAD =90°,P 是直线CD 上一点,连接PA ,过点B ,D 作BE ⊥PA ,DF ⊥PA ,垂足分别为点E ,F .
(1)如图1,请探究BE ,DF ,EF 这三条线段的数量关系.
(2)若点P 在DC 的延长线上,如图2,则这三条线段又具有怎样的数量关系?
(3)若点P 在CD 的延长线上,如图3,直接写出BE ,DF ,EF 这三条线段的数量关系.
图3图2图1P A B C D E F P F E D C B A P F E D
C A 做题要求: 1.读题标注,将条件标注在图上; 2.走通第一问,梳理路线图; 3.依照路线图,类比解决问题.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形全等之类比探究(习题)
➢ 例题示范
例1:已知,在△ABC 中,∠BAC =90°,AB =AC ,点D 为直线BC 上一动点(点D 不与点B ,C 重合).以AD 为边作正方形ADEF ,AD =AF ,∠DAF =90°,连接CF .
(1)如图1,当点D 在线段BC 上时,求证:CF +CD =BC ;
(2)如图2,当点D 在线段BC 的延长线上时,其他条件不变,请直接写出CF ,BC ,CD 三条线段之间的关系;
(3)如图3,当点D 在线段BC 的反向延长线上时,且点A ,F 分别在直线BC 的两侧,其他条件不变,求CF ,BC ,CD 三条线段之间的关系.
图2
图1
A
B
C
D
E
F
F
E
D C
B
A
【思路分析】
结合题目特征,本题为类比探究问题. 解决方法:
(1)根据题目条件及(1)问中D 在线段BC 上,证明△ABD ≌△ACF ,就可以得出BD =CF ,结论可证.
(2)用解决第(1)问的方法解决后续问题,方法上完全照搬.
如图2,通过证明△ABD ≌△ACF ,就可以得出BD =CF ,进而得到BC +CD =CF ; 如图3,通过证明△ABD ≌△ACF ,就可以得出BD =CF ,进而得到BC +CF =CD . 【过程书写】 证明:如图,
图3A
B
C D
E
F
图1F
E
D
C
B
A
∵∠DAF =90°,∠BAC =90° ∴∠BAD =∠CAF 在△BAD 和△CAF 中,
AB AC BAD CAF AD AF =⎧⎪
∠=∠⎨⎪=⎩
∴△BAD ≌△CAF (SAS ) ∴BD =CF ∵BD +CD =BC ∴CF +CD =BC (2)BC +CD =CF
(3)BC +CF =CD ,理由如下: ∵∠DAF =90°,∠BAC =90° ∴∠BAD =∠CAF 在△BAD 和△CAF 中,
AB AC BAD CAF AD AF =⎧⎪
∠=∠⎨⎪=⎩
∴△BAD ≌△CAF (SAS ) ∴BD =CF ∵BC +BD =CD ∴BC +CF =CD
➢ 巩固练习
1. 已知AB ⊥BD ,ED ⊥BD ,AC ⊥CE ,BC =DE ,如图1.
图3
A
B C
D
F
(1)求证:AC =CE .
(2)若将△ECD 沿CB 方向平移至如图2的位置(C 1,C 2不重合),其余条件不变,结论AC 1=C 2E 还成立吗?请说明理由. (3)若将△ECD 沿CB 方向平移至如图3的位置(B ,C 2重合),其余条件不变,结论AC 1=C 2E 还成立吗?请说明理由.
2. (1)【问题发现】小明学习中遇到这样一个问题:
如图1,△ABC 是等边三角形,点D 为BC 的中点,且满足∠ADE =60°,DE 交等边三角形外角平分线CE 所在直线于点E ,试探究AD 与DE 的数量关系.小明发现,过点D 作DF ∥AC ,交AB 于点F ,通过构造全等三角形,经过推理论证,能够使问题得到解决,请直接写出AD 与DE 的数量关系:
图3
图2
图1
A
B
C D
E
E
D
B A
E
D
B 2)A
2C 1
C 1
_______________;
(2)【类比探究】如图2,当点D 是线段BC 上(除B ,C 外)任意一点时(其他条件不变),试猜想AD 与DE 之间的数量关系,并证明你的结论; (3)【拓展应用】如图3,当点D 在线段BC 的延长线上(其他条件不变),试猜想AD 与DE 之间的数量关系,并证明你的结论.
图1F
E
D C
B A
图2
E
D
C
B
A
图3E
D
C B A
3. 如图1所示,在△A B C 和△A D E 中,A B =A C ,A D =A E ,
∠BAC =∠DAE ,且点B ,A ,D 在一条直线上,连接BE ,CD ,M ,N 分别为BE ,CD 的中点,连接AM ,AN ,MN . (1)求证:①BE =CD ;②△AMN 是等腰三角形.
(2)在图1的基础上,将△ADE 绕点A 按顺时针方向旋转180°,其他条件不变,得到如图2所示的图形.(1)中的两个结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.
图1
A B
C
D
E M N
【参考答案】
1. 证明略
路线图: (AAS) A DCE
ABC CDE AC CE
∠=∠↓
↓=△≌△ 提示:
(1)AC=CE ,由垂直转互余可以得到∠A =∠DCE , 结合BC=DE 证明△ABC ≌△CDE ,得到对应边相等, 可以得到AC=CE .
(2)成立,照搬第一问的字母、思路和过程可以得到AC 1=C 2E . (3)成立,照搬第一问的字母、思路和过程可以得到AC 1=C 2E .
2. 证明略
D DF AC AB F 过点作∥,交于点
路线图
(AAS)
BDF BF BD AF CD
ADF DEC AD DE ↓
==↓
↓=△为等边三角形,△≌△ 提示:
(1)AD =DE
(2)AD =DE 成立,根据△ABC 以及△BDF 是等边三角形,得到AF =DC ,再结合∠ADE =60°,倒角,得到∠DAF =∠EDC ,结合外角平分线,知∠DCE =∠AFD =120°,得到△ADF ≌
△DEC ,得到对应边相等,可得AD =DE .
(3)成立,照搬第二问的字母、思路和过程可以得到AD =DE .
3. 证明略
路线图
(SAS) (SAS) BAE CAD BE CD ABE ACD ABM ACN AM AN AMN ↓=∠=∠↓
↓=↓
△≌△,△≌△△是等腰三角形
提示:
(1)由已知条件先证明△BAE ≌△CAD (SAS),得到BE=CD ,结合第一次全等提供的条件证明△ABM ≌△ACN (SAS)得到AM=AN ,因而△AMN 是等腰三角形.
(2)成立,照搬第一问的字母、思路和过程可以得到BE=CD ,△AMN 是等腰三角形.。

相关文档
最新文档