人教版高中物理选修3-2高 二 《电磁感应》全章复习

合集下载

高二物理选修3-2第四章《电磁感应》知识复习提纲

高二物理选修3-2第四章《电磁感应》知识复习提纲

高三物理选修3-2知识点总结:第四章电磁感应(人教版)第四章:电磁感应本章的主要内容是实验探究,通过亲身实验,理解法拉第是如何发现电磁感应现象的,进而通过实验探究产生感应电流的条件、感应电流的方向及大小,通过实验认识自感现象,并分析其原因援在深刻认识实验现象的基础上,总结相关的物理规律,并结合实际情况灵活应用。

知识构建:新知归纳:●电流的磁效应:把一根导线平行地放在磁场上方,给导线通电时,磁针发生了偏转,就好像磁针受到磁铁的作用一样。

这说明不仅磁铁能产生磁场,电流也能产生磁场,这个现象称为电流的磁效应。

●电流磁效应现象:磁铁对通电导线的作用,磁铁会对通电导线产生力的作用,使导体棒偏转。

电流和电流间的相互作用,有相互平行而且距离较近的两条导线,当导线中分别通以方向相同和方向相反的电流时,观察到发生的现象是:同向电流相吸,异向电流相斥。

●电磁感应发现的意义:①电磁感应的发现使人们对电与磁内在联系的认识更加完善,宣告了电磁学作为一门统一学科的诞生。

②电磁感应的发现使人们找到了磁生电的条件,开辟了人类的电器化时代。

③电磁感应现象的发现,推动了经济和社会的发展,也体现了自然规律的和谐的对称美。

●对电磁感应的理解:电和磁有着必然的联系,电能生磁,磁也一定能够生电,但磁生电是有条件的,只有变化的磁场或相对位置的变化才能产生感应电流,磁生电表现为磁场的“变化”和“运动”。

引起电流的原因概括为五类:①变化的电流。

②变化的磁场。

③运动的恒定电流。

④运动的磁场。

⑤在磁场中运动的导体。

●磁通量:闭合电路的面积与垂直穿过它的磁感应强度的乘积叫磁通量,即Φ,θ为磁感线与线圈平面的夹角。

对磁通量Φ的说明:虽然闭合电路的面积与垂直穿过它的磁感应强度的乘积叫磁通量,但是当磁场与闭合电路的面积不垂直时,磁感应强度也有垂直闭合电路的分量磁感应强度垂直闭合电路面积的分量。

●产生感应电流的条件:一是电路闭合。

二是磁通量变化。

●楞次定律:内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。

人教版高二物理选修3-2 第四章_ 电磁感应 总复习

人教版高二物理选修3-2 第四章_ 电磁感应 总复习

第四章 总复习1、(2004年新老课程内蒙、海南、西藏、陕西等地区试题)一矩形线圈位于一随时间t 变化的匀强磁场内,磁场方向垂直线圈所在的平面(纸面)向里,如图12-1所示.磁感应强度B 随时间t 变化的规律如图12-1所示.以I 表示线圈中的感应电流,以图12-1中线圈上箭头所示方向的电流为正,则以下的I -t 图12-2中正确的是【解析】本题主要考查学生应用楞次定律判断感应电流方向的能力,以及法拉第电磁感应定律具体应用的能力.根据法拉第电磁感应定律tB nS t B S n t n E ∆∆=∆∆=∆∆=φ及磁场的变化情况可知:0到1磁场的磁感应强度是均匀增大的,所以产生的感应电动势是恒定的,由于电阻是恒定的,故感应电流是恒定不变的;同理,1到2、3到4、5到6感应电流都是恒定不变的;而2到3和4到5由于磁场的磁感应强度没有变化,所以感应电流为零.感应电流的方向可以根据楞次定律进行判断.在应用楞次定律进行判断的时候要注意感应电流产生的磁场总要阻碍原磁场的磁通量的变化,即原磁场的磁通量要增加,那么感应电流产生的磁场就要阻碍它增加,反之要阻碍它减小.0到1内磁场的磁感应强度是增大的,由于线圈的面积不变,故磁通量增加,所以感应电流产生的磁场与原磁场方向相反.由此可知感应电流的方向是逆时针方向,与规定的方向相反,所以是负的.同理可得1到2是正的、3到4是负的、5到6是正的.综上所述正确答案是A【答案】A2、如图12-3所示,磁带录音机既可用作录音,也可用作放音,其主要部件为可匀速行进的磁带a 和绕有线圈的磁头b ,不论是录音或放音过程,磁带或磁隙软铁会存在磁化现象.下面对于它们在录音、放音过程中主要工作原理的描述,正确的是( )A 、放音的主要原理是电磁感应,录音的主要原理是电流的磁效应B 、录音的主要原理是电磁感应,放音的主要原理是电流的磁效应C 、放音和录音的主要原理都是磁场对电流的作用D 、录音和放音的主要原理都是电磁感应【解析】录音是声音信号通过话筒转化为电信号,电信号再通过磁头转化为磁信号记录在磁带上的过程,所以录音的过程主要原理是电流的磁效应.放音是记录在磁带上的磁信号通过绕在磁头上的线圈产生感应电流,转化为电信号,然后电信号再通过扬声器转变为声音信号,所以放音过程的主要原理是电磁感应.【答案】A3、如图12-4所示的电路,1D 和2D 是两个相同的小电珠,L 是一个自感系数很大的线圈,其电阻与R 相同.由于存在自感现象,在电键S 接通和断开时,小电珠1D 和2D 先后亮暗的次序是( )A 、接通时1D 先达最亮,断开时1D 先暗B 、接通时2D 先达最亮,断开时2D 先暗C 、接通时1D 先达最亮,断开时1D 后暗D 、接通时2D 先达最亮,断开时2D 后暗【解析】当电键S 接通时,由于自感现象的存在,流过线圈的电流由零变大时,线圈上产生自感电动势的方向是左边正极,右边负极,使通过线圈的电流从零开始慢慢增加,所以开始瞬时电流几乎全部从1D 通过,而该电流又将同时分路通过2D 和R ,所以1D 先达最亮,经过一段时间电路稳定后,1D 和2D 达到一样亮.当电键S 断开时电源电流立即为零,因此2D 立即熄灭,而对1D ,由于通过线圈的电流突然减弱,线圈中产生自感电动势(右端为正极,左端为负极),使线圈L 和1D 组成的闭合电路中有感应电流,所以1D 后暗.【答案】C4、如图12-5所示,甲图中线圈A的a、b端加上如图乙所示的电压时,在0~t0时间内,线圈B中感应电流的方向及线圈B的受力方向情况是( )A、感应电流方向不变; B、受力方向不变;C、感应电流方向改变; D、受力方向改变.【解析】在前一段过程由乙图可知线圈A 中的电流逐渐增大,所以线圈的磁通量也逐渐增大.由楞次定律可以判断感应电流的方向从左往右看是逆时针方向,安培力的方向向右.在后一段过程由乙图可知线圈A 中的电流逐渐减小,所以线圈的磁通量也逐渐减小,但磁场方向与前一段过程相反.由楞次定律可以判断感应电流的方向从左往右看也是逆时针方向,但安培力的方向向左.故感应电流方向不变;受安培力的方向改变.【答案】AD5、如图12-6所示,ab 是一个可绕垂直于纸面的轴O 转动的闭合矩形导线框.当滑动变阻器的滑片P 自左向右滑动时,从纸外向纸内看,线框ab 将( )A 、保持静止不动B 、逆时针转动C 、顺时针转动D 、发生转动,但电源极性不明,无法确定转动方向.【解析】无论电源的极性如何,在两电磁铁中间的区域内应产生水平的某一方向的磁场,当滑片P 向右滑动时,电流减小,两电磁铁之间的磁场减弱,即穿过ab 线圈的磁通量减小.虽然不知ab 中感应电流的方向,但由楞次定律中的“阻碍”可直接判定线框ab 应顺时针方向转动(即向穿过线框的磁通量增加的位置――竖直位置转动).【答案】C6、如图12-7所示的整个装置放在竖直平面内,欲使带负电的油滴P在两平行金属板间静止,导体棒ab 将沿导轨运动的情况是( )A 、向右匀减速运动B 、向右匀加速运动C 、向左匀减速运动D 、向左匀加速运动【解析】对油滴有mg qE =,电场力向上.又由于油滴带负电,故电场强度方向向下,电容器上极板带正电,下极板带负电,线圈感应电动势正极在上端,负极在下端.由楞次定律得知ab 向右减速运动或向左加速运动.【答案】AD7、如图12-8所示,MN 是一根固定的通电长直导线,电流方向向上.今将一金属线框abcd 放在导线上,让线框的位置偏向导线的左边,两者彼此绝缘.当导线中的电流突然增大时,线框整体受力情况为( )A 、受力向右B 、受力向左C 、受力向上D 、受力为零【解析】导线中的电流突然增大时,金属框abcd 中的磁通量增加,由楞次定律可得,线框中的感应电流将阻碍它的增加,而导线在金属框中间位置时金属框内的磁通量为零.故金属框有向右运动的趋势.【答案】A8、如图12-9所示,要使金属环C 向线圈A 运动,导线ab 在金属导轨上应( )A 、向右做减速运动;B 、向左做减速运动;C 、向右做加速运动;D 、向左做加速运动.【解析】要使金属环C 向线圈A 运动,由楞次定律可得金属环C 中的磁通量必定减少,由此判定螺线管的感应电流减小.而螺线管的感应电流是由于ab 导线做切割磁感线运动产生的,所以ab 导线的运动将越来越慢,即减速运动.【答案】AB9、如图12-10所示,有一电阻不计的光滑导体框架,水平放置在磁感应强度为B 的竖直向上的匀强磁场中,框架宽为l .框架上放一质量为m 、电阻为R的导体棒.现用一水平恒力F 作用于棒上,使棒由静止开始运动,当棒的速度为零时,棒的加速度为________;当棒的加速度为零时,速度为_______.【解析】速度为零时,水平方向只受水平恒力F 作用,故m F a =;由于加速度为零时,受力平衡,可得方程:F l R l B B=υ 得:22l B FR =υ 【答案】m F 22lB FR 10、金属导线AC 垂直于CD ,AC 、CD 的长度均为1m ,电阻均为Ω5.0,在磁感应强度为1T 的匀强磁场中以s m /2的速度匀速向下运动,如图12-11所示,则导线AC 中产生的感应电动势大小是_______V ,导线CD中的感应电动势大小是________V .【解析】AC 中产生的感应电动势,由于金属导线与磁感应强度及速度都垂直,所以由L B E υ=得:V V E 2121=⨯⨯=而CD 中由于金属导线与运动速度平行,即CD 金属导线没有作切割磁感线运动,所以感应电动势为零.【答案】2V ;011、如图12-12所示,导轨与一电容器的两极板C 、D 连接,导体棒ab 与导轨接触良好,当ab 棒向下运动时,带正电的小球将向_____________板靠近.【解析】ab 棒向下作切割磁感线运动,由右手定则得b 端电势高,所以D 板带正电,故带正电的小球向C 板靠近.【答案】向C 板靠近12、如图12-13所示,两块水平放置的金属板间距为d ,用导线与一个n 匝的线圈连接,线圈置于方向竖直向上的均匀磁场B 中.两板间有一个质量为m 、电量为+q 的微粒,恰好处于静止状态,则线圈中磁场B 的变化情况是正在_________;其磁通量的变化率为____________.【解析】由于带电粒子恰好处于静止状态,所以有电场力与重力平衡.而两板间的电势差与线圈产生的感应电动势相等.带电粒子受到一个向上的电场力和向下的重力,所以下板电势高.由楞次定律可以判断出线圈的磁通量在减少,故磁感应强度B 在减小.由平衡条件得:q E mg 电= 所以q mg E =电 而dE d U E ==电 得qmgd d E E ==电 根据法拉第电磁感应定律得:t nE ∆∆=φ nq mgd n E t ==∆∆φ 【答案】减小;nqmgd 13、如图12-14所示,不计电阻的U 形导轨水平放置,导轨宽m 5.0,左端连接阻值为0.4Ω的电阻R ,在导轨上垂直于导轨放一电阻为0.1Ω的导体棒MN ,并用水平轻绳通过定滑轮吊着质量为m =2.4g 的重物,图中m L 8.0=,开始重物与水平地面接触并处于静止,整个装置处于竖直向上的匀强磁场中,磁感强度T B 5.00=,并且)/(1.0s T TB =∆∆的规律在增大,不计摩擦阻力,求至少经过多长时间才能将重物吊起?(2/10s m g =)【解析】根据题意可知:开始导体棒没有运动时U 形导轨和导体棒所构成的闭合回路的面积保持不变,而磁感应强度B 在增大,由法拉第电磁感应定律得V V S tB t E 04.08.05.01.0=⨯⨯=⋅∆∆=∆∆=φ 而磁场的磁感应强度的变化规律)(1.05.00T t t t B B B +=⋅∆∆+= 要把重物吊起来,则绳子的拉力必须大于或等于重力.设经过时间t 重物被吊起,此时磁感应强度为)(1.05.0T t B +=所以安培力为)1.05.0(04.05.01.04.004.0)1.05.0()1.05.0(t t L r R E t BIL F +=⨯+⨯+=++== 根据平衡条件得:mg t F =+=)1.05.0(04.0 解得:t =1s【答案】t =1s14、如图12-15所示,长为L 、电阻Ω=3.0r 、质量m =0.1kg 的金属棒CD 垂直跨搁在位于水平面上的两条平行光滑金属导轨上,两导轨间距也是L ,棒与导轨间接触良好,导轨电阻不计.导轨左端接有Ω=5.0R 的电阻,量程为0~3.0A 的电流表串接在一条导轨上,量程为0~1.0V 的电压表接在电阻R 的两端,垂直导轨平面的匀强磁场垂直向下穿过平面.现以向右恒定外力F 使金属棒右移.当金属棒以s m /2=υ的速度在导轨平面上匀速滑动时,观察到电路中的一个电表正好满偏,而另一个电表未满偏.问:(1)此满偏的电表是什么表?说明理由;(2)拉动金属棒的外力多大?(3)此时撤去外力F ,金属棒将逐渐慢下来,最终停止在导轨上.求从撤去外力到金属棒停止运动的过程中通过电阻R 的电荷量.【解析】(1)若电流表满偏,则I =3A ,U =IR =1.5V ,大于电压表的量程,故是电压表满偏.(2)由功能关系:)(2r R I F +=υ,而R U I =,故N R r R U F 6.1)(22=+=υ (3)由动量定理:t IBL m ∆⋅=∆υ,两边求和得到BLq m =υ由电磁感应定律得:L B E υ= )(r R I E +=代入解得:C r R I m q 25.0)(2=+=υ 15、匀强磁场的磁感应强度为B ,方向竖直向上,在磁场中有一个总电阻为R 、每边长为L 的正方形金属框abcd ,其中ab 、cd 边质量均为m ,其它两边质量不计,cd 边装有固定的水平轴.现将金属框从水平位置无初速释放,如图12-16所示,若不计一切摩擦,金属框经时间t 刚好到达竖直面位置cd b a //.(1)ab 边到达最低位置时感应电流的方向;(2)求在时间t 内流过金属框的电荷量;(3)若在时间t 内金属框产生的焦耳热为Q ,求ab 边在最低位置时受的磁场力多大?【解析】(1)感应电流的方向由/a 到/b . (2)由t RE t I q ∆=∆= t E ∆∆=φ 20BL BS =-=∆φ 整理得:R BL q 2=(3)由能的转化与守恒定律得:Q m mgL +=221υ 又由L B E υ=,R E I =,BIL F = 整理得:m Q gL RL B F 2222-= 【答案】(1)由/a 到/b (2)R BL q 2= (3)m Q gL R L B F 2222-= 16、有足够长的平行金属导轨,电阻不计,导轨光滑,间距m l 2=.现将导轨沿与水平方向成030=θ角倾斜放置.在底部接有一个Ω=3R 的电阻.现将一个长为m l 2=、质量kg m 2.0=、电阻Ω=2r 的金属棒自轨道顶部沿轨道自由滑下,经一段距离后进入一垂直轨道平面的匀强磁场中(如图12-17所示).磁场上部有边界,下部无边界,磁感应强度T B 5.0=.金属棒进入磁场后又运动了m S 30/=后开始做匀速直线运动,在做匀速直线运动之前这段时间内电阻R 上产生了J Q 36=的内能(2/10s m g =).求:(1)金属棒进入磁场后速度s m /15=υ时的加速度a的大小及方向;(2)磁场的上部边界距顶部的距离S .【解析】(1)金属棒从开始下滑到进入磁场前由机械能守恒得:221sin υθm S mg =⋅ 进入磁场后棒上产生感应电动势l B E υ=,又有rR E I += 金属棒所受的安培力沿轨道向上,大小为 BIl F =安由牛顿第二定律得: ma F mg =安-θsin整理得:ma l rR l B Bmg =+-υθsin 代入得:2/10s m a -=负号表示其方向为沿轨道向上.(2)设匀速运动时的速度为t υ,金属棒做匀速运动时根据平衡条件得: r R l B mg t +=υθ22sin 即s m l B r R mg t /5)(sin 22=+=θυ 自金属棒进入磁场到做匀速运动的过程中由能的转化与守恒得:)(21sin 22/υυθ--⋅t m E S mg =电 又有电功率分配关系E r R RE Q +=电 J Q Rr R E 60=+=电代入解得:S =32.5m【答案】(1)2/10s m 方向为沿轨道向上;(2)32.5m。

人教版高中物理选修3-2第四章电磁感应章节复习(共53张PPT)

人教版高中物理选修3-2第四章电磁感应章节复习(共53张PPT)
无论回路是否闭合,只要穿过线 圈平面的磁通量发生变化,线圈中 就有感应电动势.产生感应电动势 的那部分导体相当于电源
课堂练习
线圈在长直导线电流的磁场中,作如图的运
动: A.向右平动
B.向下平动
C.绕轴转动(ad边向外)
D.从纸面向纸外作平动
E.向上平动(E线圈有个缺口)
判断线圈中有没有感应电流?
3.感应电流方向的判断
结论:感应电动势与线圈的形状和转动轴的具体 位置无关(但是轴必须与B垂直)
课堂练习
如图所示,矩形线圈同n=50匝导线组成,ab边长 L1=0.4m,bc边长L2=0.2m,在B=0.1T的匀强磁场中, 以两短边中点的连线为轴转动,ω=50rad/s,求: (1)线圈从图甲位置转过180o过程中的平均电动势 (2)线圈从图乙位置转过30o时的瞬时电动势
向、同强度的电流,导线框ABCD和两导线在同一 平面内,导线框沿着与两导线垂直的方向自右向 左在两导线间匀速运动.在运动过程中,导线框 中感应电流的方向( )
A.沿ABCD方向不变.
B.由ABCD方向变成ADCB方向.
C.沿ADCB方向不变.
D.由ADCB方向变成ABCD方向.
课堂练习
如图所示,一磁铁用细线悬挂,一闭合铜环用
B.电键S由闭合到断开瞬间
C.电键S是闭合的,变阻器滑片P向左迅速 滑动
D.电键S是闭合的,变阻器滑片P向右迅速 滑动
如图(a),圆形线圈P静止在水平桌面上, 其正上方悬挂一相同的线圈Q,P和Q共轴.Q 中通有变化电流,电流随时间变化的规律如 图(b)所示.P所受的重力为G,桌面对P的 支持力为N,则 A.t1时刻N>G B.t2时刻N>G C.t3时刻N<G D.t4时刻N=G

高中物理选修3-2第四章电磁感应-8.电磁感应单元复习(课件)(69张)-PPT优秀课件

高中物理选修3-2第四章电磁感应-8.电磁感应单元复习(课件)(69张)-PPT优秀课件

(3)导体平动切割时L用垂直于v 的有效长度;转动切 割时,速度v用切割部分的平均速度.
( 4)线圈在匀强磁场中绕垂直于磁场方向的轴做匀速 转动时产生的最大电动势
Em =nBωS, n是线圈匝数。
(5)导体棒以端点为轴,在垂直于磁感 应线的匀强磁场中匀速转动时,
E 1 Bωl 2 2
(6)产生感应电动势的那部分导体相当于电源
4、自感电动势的方向
自感电动势的方向总是阻碍导体中电流的变化(增 反减同)。即电流增大时,自感电动势阻碍电流增大 ;当电流减小时,阻碍电流减小,因此自感电动势总 是起着延缓电流变化的作用。自感现象中引起自感电 动势产生的电流变化,只能是逐渐变化而不可能发生 突变,即通过线圈中的电流不能突变 。
四、感应电动势的大小
(反4之),可Φ以=推0导时出, △电Φ量/△的t计为算最式大值q。IΔtE RΔtnΔR Φ
2、导体切割磁感线运动时
E = BLv sinθ.
(1)式中θ为导体运动速度v与磁感应强度B的夹角。此
式只适用于匀强磁场,若是非匀强磁场则要求L很短。
(2)v 恒定时,产生的E恒定;v发生变化时,求出的E 是与v对应的瞬时值;v为某段时间的平均速度时,求出 的E为该段时间内的感应电动势的平均值.
D.0~T/2时间内线框受安培力的合力向右,
T/2~T时间内线框受安培力的合力向左
A组能力训练题9 9、如图所示,线圈的直流电阻为10Ω, R=20Ω,线
圈的自感系数较大,电源的电动势为6 V,内阻不计.
则在闭合S瞬间,通过L的电流为__0___A,通过R的电
F
(2)电阻R上消耗的最大功率。
a b
解:(1)当F=F安时,ab杆可能达到最大速度vmax

高中物理选修3-2:电磁感应知识点归纳

高中物理选修3-2:电磁感应知识点归纳

高中物理选修3-2:电磁感应知识点归纳展开全文高中知识搜索小程序一、电磁感应的发现1.“电生磁”的发现奥斯特实验的启迪:丹麦物理学家奥斯特发现电流能使小磁针偏转,即电流的磁效应2.“磁生电”的发现(1)电磁感应现象的发现法拉第根据他的实验,将产生感应电流的原因分成五类:①变化的电流;②变化的磁场;③运动中的恒定电流;④运动中的磁铁;⑤运动中的导线。

(2)电磁感应的发现使人们找到了“磁生电”的条件,开辟了人类的电气化时代。

二、感应电流产生的条件1. 探究实验实验一:导体在磁场中做切割磁感线的运动实验二:通过闭合回路的磁场发生变化2. 感应电流产生的条件:穿过闭合电路的磁通量发生变化时,这个闭合电路中就有感应电流产生三、感应电动势1. 定义:由电磁感应产生的电动势,叫感应电动势。

产生电动势的那部分导体相当于电源。

2. 产生条件:只要穿过电路的磁通量发生变化,无论电路是否闭合,电路中都会有感应电动势。

3. 方向判断:在内电路中,感应电动势的方向是由电源的负极指向电源的正极,跟内电路中的电流的方向一致。

产生感应电动势的那部分导体相当于电源。

【关键一点】感应电流的产生需要电路闭合,而感应电动势的产生电路不一定需要闭合四、法拉第电磁感应定律1. 定律内容:感应电动势的大小,跟穿过这个电路的磁通量的变化率成正比。

2. 表达式:说明:①式中N为线圈匝数,是磁通量的变化率,注意它与磁通量以及磁通量的变化量的区别。

②E与无关,成正比③在图像中为斜率,所以斜率的意义为感应电动势五、导体切割磁感线时产生的电动势公式中的l为有效切割长度,即导体与v垂直的方向上的投影长度.图中有效长度分别为:甲图:l=cdsin β(容易错算成l=absin β).乙图:沿v1方向运动时,l=MN;沿v2方向运动时,l=0.丙图:沿v1方向运动时,;沿v2方向运动时,l=0;沿v3方向运动时,l=R.六、右手定则1. 内容:将右手手掌伸平,使大拇指与其余并拢的四指垂直,并与手掌在同一平面内,让磁感线从手心穿入,大拇指指向导体运动方向,这时四指的指向就是感应电流的方向,也就是感应电动势的方向2. 适用情况:导体切割磁感线产生感应电流七、楞次定律1.内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。

物理选修3-2人教新课标第四章电磁感应单元复习汇总

物理选修3-2人教新课标第四章电磁感应单元复习汇总
1
2
(1)楞次定律揭示了判断感应电流方向的规律, 即“感应电流的磁场”总是要阻碍引起感应电流的磁通 量的变化,其核心思想是阻碍,楞次定律提供了判断 感应电流方向的基本方法。
3
(2)楞次定律说明电磁感应现象是符合能量守恒定律 的,因此我们可以将楞次定律的含义推广为“感应电流的 效果,总是要反抗产生感应电流的原因”。这些原因包括 外磁场变化、相对位置变化、相对面积变化和导体中电 流变化。这样运用推广的含义解题,特别是判断闭合导 体的运动要比应用楞次定律本身去判断简便得多。
7
(2)这些图像问题大体上可分为两类: ①由给定的电磁感应过程选出或画出正确图像。 ②由给定的有关图像分析电磁感应过程,求解相应的 物理量。 不管是何种类型,电磁感应中的图像问题常需利用右 手定则、左手定则、楞次定律和法拉第电磁感应定律等规 律分析解决。
8
[例证2]
(2012· 新课标全国卷)如图4-2,
9
图 4- 3
10
[解析]
因通电导线周围的磁场离导线越近磁场
越强,而线框中左右两边的电流大小相等,方向相反,
所以受到的安培力方向相反,导线框的左边受到的安 培力大于导线框的右边受到的安培力,所以合力与左
边导线框受力的方向相同。因为线框受到的安培力的
合力先水平向左,后水平向右,根据左手定则,导线 框处的磁场方向先垂直纸面向里,后垂直纸面向外, 根据右手螺旋定则,导线中的电流先为正,后为负, 所以选项A正确,选项B、C、D错误。
21
(2)而当线框的 ab 边到达 gg′与 ff′的正中间位置(如图中的位置③所 示)时,线框又恰好做匀速运动,说 明 mgsin θ=4BI2L 1 故 I2= I1 4 BLv′ BLv 1 由 I1= R 及 I2= R 可知,此时 v′= v 4

人教版高中物理选修3-2知识点整理及重点题型梳理] 电磁感应 复习与巩固 提高

人教版高中物理选修3-2知识点整理及重点题型梳理] 电磁感应 复习与巩固 提高

人教版高中物理选修3-2知识点梳理重点题型(常考知识点)巩固练习电磁感应 复习与巩固【学习目标】1.电磁感应现象发生条件的探究与应用。

2.楞次定律的建立过程与应用:感应电流方向决定因素的探究,楞次定律的表述及意义。

3.法拉第电磁感应定律的运用,尤其是导体棒切割磁感线产生感应电动势sin E BLv θ=的计算是感应电动势定量计算的重点所在。

在应用此公式时要特别注意导体棒的有效切割速度和有效长度。

4.利用法拉第电磁感应定律、电路知识、牛顿运动定律、能的转化和守恒定律进行综合分析与计算。

【知识网络】【要点梳理】要点一、关于磁通量ϕ,磁通量的变化ϕ∆、磁通量的变化率tϕ∆∆ 1、磁通量磁通量cos B S BS BS ϕθ⊥⊥===,是一个标量,但有正、负之分。

可以形象地理解为穿过某面积磁感线的净条数。

2、磁通量的变化磁通量的变化21ϕϕϕ∆=-.要点诠释:ϕ∆的值可能是2ϕ、1ϕ绝对值的差,也可能是绝对值的和。

例如当一个线圈从与磁感线垂直的位置转动180︒的过程中21ϕϕϕ∆=+.3、磁通量的变化率磁通量的变化率tϕ∆∆表示磁通量变化的快慢,它是回路感应电动势的大小的决定因素。

2121t t t ϕϕϕ-∆=∆-, 在回路面积和位置不变时B S t t ϕ∆∆=∆∆(B t∆∆叫磁感应强度的变化率); 在B 均匀不变时S B t t ϕ∆∆=∆∆,与线圈的匝数无关。

要点二、关于楞次定律(1)定律内容:感应电流具有这样的方向:感应电流的磁场总是阻碍引起感应电流的磁通量发生变化。

(2)感应电流方向的决定因素是:电路所包围的引起感应电流的磁场的方向和磁通量的增减情况。

(3)楞次定律适用范围:适用于所有电磁感应现象。

(4)应用楞次定律判断感应电流产生的力学效果(楞次定律的变式说法):感应电流受到的安培力总是阻碍线圈或导体棒与磁场的相对运动,即线圈与磁场靠近时则相斥,远离时则相吸。

(5)楞次定律是能的转化和守恒定律的必然结果。

高中物理选修3-2知识点详细汇总

高中物理选修3-2知识点详细汇总

高中物理选修3-2知识点详细汇总电磁感应现象愣次定律一、电磁感应1.电磁感应现象只要穿过闭合回路的磁通量发生变化,闭合回路中就有电流产生,这种利用磁场产生电流的现象叫做电磁感应。

产生的电流叫做感应电流.2.产生感应电流的条件:闭合回路中磁通量发生变化3. 磁通量变化的常见情况 (Φ改变的方式):①线圈所围面积发生变化,闭合电路中的部分导线做切割磁感线运动导致Φ变化;其实质也是B不变而S增大或减小②线圈在磁场中转动导致Φ变化。

线圈面积与磁感应强度二者之间夹角发生变化。

如匀强磁场中转动的矩形线圈就是典型。

③磁感应强度随时间(或位置)变化,磁感应强度是时间的函数;或闭合回路变化导致Φ变化(Φ改变的结果):磁通量改变的最直接的结果是产生感应电动势,若线圈或线框是闭合的.则在线圈或线框中产生感应电流,因此产生感应电流的条件就是:穿过闭合回路的磁通量发生变化.4.产生感应电动势的条件:成闭合回路,四指指向高电势.⑤“因电而动”用左手定则.“因动而电”用右手定则.⑥应用时要特别注意:四指指向是电源内部电流的方向(负→正).因而也是电势升高的方向;即:四指指向正极。

导体切割磁感线产生感应电流是磁通量发生变化引起感应电流的特例,所以判定电流方向的右手定则也是楞次定律的一个特例.用右手定则能判定的,一定也能用楞次定律判定,只是对导体在磁场中切割磁感线而产生感应电流方向的判定用右手定则更为简便.2.楞次定律(1)楞次定律(判断感应电流方向):感应电流具有这样的方向,感应电流的磁场总是阻碍引起感应电流的磁通量的变化.(感应电流的) 磁场 (总是) 阻碍 (引起感应电流的磁通量的)变化原因产生结果;结果阻碍原因。

(定语) 主语 (状语) 谓语 (补语) 宾语(2)对“阻碍”的理解注意“阻碍”不是阻止,这里是阻而未止。

阻碍磁通量变化指:磁通量增加时,阻碍增加(感应电流的磁场和原磁场方向相反,起抵消作用);磁通量减少时,阻碍减少(感应电流的磁场和原磁场方向一致,起补偿作用),简称“增反减同”.(3)楞次定律另一种表达:感应电流的效果总是要阻碍..(.或反抗...).产生感应电流的原因. (F安方向就起到阻碍的效果作用)即由电磁感应现象而引起的一些受力、相对运动、磁场变化等都有阻碍原磁通量变化的趋势。

高中物理第四章电磁感应章末复习总结课件新人教版选修3_2

高中物理第四章电磁感应章末复习总结课件新人教版选修3_2

[典型错解] 当变阻器的滑动头在最上端时,电阻丝 AB 因被短路而无电流通过。由串并联电路规律可知,滑动 头下移时,流过 AB 中的电流是增加的。当线圈 CDEF 中 的电流在 G 处产生的磁感应强度的方向是“·”时,由楞次 定律可知 AB 中逐渐增加的电流在 G 处产生的磁感应强度 的方向是“×”,再由安培定则可知,AB 中的电流方向是 从 A 流向 B,从而判定电源的上端为正极。
(2)楞次定律 ①内容:感应电流具有这样的方向,即感应电流的磁场 总要阻碍引起感应电流的磁通量的变化。 ②楞次定律是判断感应电流方向的一般法则,当导体做 切割磁感线运动时,用右手定则判断感应电流的方向与用楞 次定律来判断,其结果是一样的。
(3)楞次定律的理解:楞次定律反映这样一个物理过程: 原磁通量变化时(Φ 原变),产生感应电流(I 感),这是属于电磁 感应的条件问题;感应电流一经产生就在其周围空间激发磁 场(Φ 感),这就是电流的磁效应问题;而且 I 感的方向就决定 了 Φ 感的方向(用右手螺旋定则判定);Φ 感阻碍 Φ 原的变化 ——这正是楞次定律所解决的问题。这样一个复杂的过程, 可以用图表理顺如下:
[错因分析] 楞次定律中“感应电流的磁场总是要阻 碍引起感应电流的磁通量的变化”,所述的“磁通量”是指 穿过线圈内部磁感线的条数,因此判断感应电流方向的位置 一般应该选在线圈的内部。
[正确解答] 当线圈 CDEF 中的感应电流在 G 处产生 的磁感应强度的方向是“·”时,它在线圈内部产生的磁感 应强度方向应是“×”,AB 中增强的电流在线圈内部产生 的磁感应强度方向是“·”,所以,AB 中电流的方向是由 B 流向 A,故电源的下端为正极。
分析:电磁感应现象中产生的安培力总是阻碍物体的相 对运动,并不一定阻碍物体的运动。如电磁驱动就促进了物 体的运动。
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理学习材料 (马鸣风萧萧**整理制作)人教版 高 二 物 理《电磁感应》全章复习【教学内容】一、 知识框架【方法指导与教材延伸】一、分清磁通、磁通变化、磁通变化率磁通⊥=ΦBS (单位Wb ),表示穿过垂直磁感线的某个面积的磁感线的多少。

磁通变化12Φ-Φ=∆Φ,是回路中产生电磁感应现象的必要条件,即只要有∆Φ,一定有感应电动势的产生。

磁通变化率)/(s Wb t∆∆Φ,反映了穿过回路的磁通变化的快慢,是决定感应电动势大小的因素。

因此,判断回路中是否发生电磁感应现象,应从∆Φ上着手;比较回路中产生的感应电动势大小,应从t∆∆Φ上着手。

感应电动势感应电流 自感现象切割磁感线特例磁通变化应该注意,当穿过回路的磁通按正弦(或余弦)规律变化时(如放在匀强磁场中匀速转动的线圈),穿过线圈的磁通量最大时,磁通的变化率恰最小。

二、从能的转化上理解电磁感应现象电磁感应现象的实质是其它形式的能与电能之间的转化。

因此,无论用磁体与线圈相对运动或是用导体切割磁感线,产生感应电流时都会受到磁场的阻碍作用,外力在克服磁场的这种阻碍作用下做了功,把机械能转化为电能。

所以,发生磁通变化的线圈、作切割运动的这一部分导体,都相当于一个电源,由它们可以对外电路供电。

在求解电磁感应问题时,认识电源,区分内外电路,画出等效电路十分有用。

三、认识一般与特殊的关系磁通变化是回路中产生电磁感应现象的普通条件,闭合电路的一部分导体作切割磁感线运动仅是一个特例。

深刻认识两者之间的关系,就不至于被整个线框在匀强磁场中运动时,其中部分导体的切割运动所迷惑。

磁通变化时产生感应电动势是一般现象,它跟电路的是否闭合、电路的具体组成等无关,而产生的感应电流则可以看成是电路闭合的一个特例,由感受电动势决定电流,所以感应电动势是更本质的、更重要的量。

同理,自感现象仅是电磁感应普遍现象中的一个特例,它所激起的电流方向同样符合“阻碍电流变化”的普遍结论。

【例题选讲】例1、图1中PQRS为一正方形导线框,它以恒定速度向右进入以MN为边的匀强磁场,磁场方向垂直线框平面,MN线与线框的边成45°角。

E、F分别为PS和PQ的中点。

关于线框中的感应电流,正确的说法是()A、当E点经过边界MN时,线框中感应电流最大。

B、当P点经过边界MN时,线框中感应电流最大。

C、当F点经过边界MN时,线框中感应电流最大D、当Q点经过边界MN时,线框中感应电流最大ε。

当B、v一定时,作切割运动的导线分析导线作切割运动时的感应电动势大小为Blv=越长,产生的感应电动势越大。

题中线框向右运动时,有效切割边是SR或PQ两竖边,另外的SP、QR两水平边不切割磁感线。

当E 点经过边界MN 时,有效切割边长只是竖边SR 的一半; 当P 点经过边界MN 时,有效切割边长就是竖边SR ;当F 点经过边界MN 时,由于竖边SR 和PF 部分都切割磁感线,但两者产生的电动势在框内引起方向相反的电流,等效于竖边SR 的一半作切割运动;当Q 点经过边界MN 时,整个线框都在磁场内,有效切割边长为零。

由此可见,当P 点经过边界MN 时,有效切割边长最长,产生的感应电动势最大,框内的感应电流也最大。

答:B例2、如图2所示,两水平平行金属导轨间接有电阻R ,置于匀强磁场中,导轨上垂直搁置两根金属棒ab 、cd 。

当用外力F 拉动ab 棒向右运动的过程中,cd 棒将会( )A 、向右运动B 、向左运动C 、保持静止D 、向上跳起分析 ab 棒向右运动时,切割磁感线。

根据右手定则,电流方向从b 流向a 。

这个感应电流从a 端流出后,分别流向cd 棒和电阻R 。

cd 棒中由于通有从c 到d 的电流,会受到磁场力,根据左手定则,其方向向右。

结果,使cd 棒跟着ab 棒向右运动。

答:A例3、如图3所示,小灯泡的规格为“2V 、4W ”,接在光滑水平导轨上,轨距0.1m ,电阻不计,金属棒ab 垂直搁置在导轨上,电阻1Ω,整个装置处于磁感强度B=1T 的匀强磁场中,求:(1)为使小灯正常发光,ab 的滑行速度多大? (2)拉动金属棒ab 的外力功率多大?分析 要求小灯正常发光,灯两端电压应等于其额定值2V 。

这个电压是由于金属棒滑动时产生的感应电动势提供的,金属棒移动时,外力的功率转化为全电路上的电功率。

解答:(1)根据小灯的标志是小灯的额定电流和电阻分别为Ω=Ω=====142,22422P U R A A U P I 设金属棒滑行速度为v ,它产生的感应电流为rR BlvI +=感。

式中r 为棒的电阻。

由I 感=I ,即I r R Blv =+,得s m s m Bl r R I v /40/1.01)11(2)(=⨯+=+=。

(2)根据能的转换,外力的机械功率等于整个电路中的电功率,所以拉动ab 作切割运动的功率为W W r R I P P 8)11(2)(22=+=+==电机说明 第(1)题也可以不必算出感应电流,直接根据感应电动势分压得出,即由Blv R Rr R R U 4+=+=ε ∴s m s m BlR r R U v /40/11.01)11(2)(=⨯⨯+=+=只是必须注意,此时灯两端电压,即ab 棒两端电压,指的是路端电压,并不是电动势,在电磁感应现象中,分清电源电动势和端电压十分重要。

【同步练习】 一、选择题:1、如图1所示,当变阻器滑片向右移动时,用细线吊着的金属环将( ) A 、向左运动B 、向右运动C 、不动D 、无法判断2、如图2所示,Q 是用毛皮摩擦过的橡校圆棒,由于它的转动,使得金属环P 中产生了如图所示的电流,那么Q 棒的转动情况是( )A 、顺时针加速运动B 、逆时针加速转动C 、顺时针匀速转动D 、逆时针减速转动3、一个线圈中电流强度均匀增大,则这个线圈的( ) A 、自感系数也将均匀增大B 、磁通量也将均匀增大C 、自感系数、自感电动势都均匀增大D 、自感系数、自感电动势、磁通量都不变4、如图3所示,匀强磁场中有一线框abcdef 匀速拉出磁场,其ab 、cd 、ef 的电阻均为r ,其它电阻不计,ab 拉出磁场后,流过ab 的电流强度为I ,则( )A 、流过ab 棒的电流强度大小始终不变B 、 ef 棒中感应电流所受安培力大小始终不变C 、作用在金属框上外力的功率始终不变图1图2图3D 、穿过金属框磁通量的变化由大变小5、如图4所示,将一个正方形多匝线圈从磁场中匀速拉出的过程中,关于拉力的功率说法中错误的是( )A 、与线圈匝数成正比B 、与线圈边长成正比C 、与导线的截面积成正比D 、与导线的电阻率成正比6、如图5所示,光滑导轨水平放置,匀强磁场竖直向上,金属棒ab 、cd 质量相等,开始给ab 一个冲量,使它具有向右初速v ,经过较长一段时间后,金属棒cd 的速度( )A 、向右,等于vB 、向左,等于vC 、向右,等于v/2D 、静止不动7、如图6所示,半径不同的两金属圈环ab 、AB 都不封口,用导线分别连接Aa 、Bb 组成闭合回路,当图中磁场逐渐增加时,回路中感应电流的方向是( )A 、abBAaB 、ABbaAC 、内环b →a ,外环B →AD 、无感应生电流8、如图7所示,闭合铜框两侧均有电阻R ,铜环与框相切并可沿框架无摩擦活动,匀强磁场垂直框架向里,当圆环在水平恒力作用下右移时,则( )A 、铜环内无感应电流B 、铜环内有顺时针方向电流C 、铜环内有逆时针方向电流D 、以上说法均不正确9、如图8所示,在匀强磁场中放有平行铜导轨,它和小线圈C 相连接,要使大线圈A 获得顺时针方向感应电流,则放在导轨上金属棒MN 的运动情况可能是( )A 、向右匀速B 、向左加速C 、向左减速D 、向右加速 图 4图 5B cabd 图6图7 图8E、向右减速10、如图9所示,闭合金属环从高h的曲面左侧自由滚下,又滚上曲面的右侧,环平面与运动方向均垂直于非匀强磁场,摩擦不计,则()A、环滚上的高度小于hB、环滚上的高度等于hC、运动过程中环内无感应电流D、运动过程中安培力对环一定做负功11、如图10所示,圆形线圈的一半位于匀强磁场中,当线圈由图示位置开始运动时,弧acb受到向右的磁场力,则线圈的运动可能是()A、向左平动B、向右平动(线圈未全部进入磁场)C、以直径ab为轴转动(不超过90°)D、以直径cd为轴转动(不超过90°)12、如图11所示,ab、cd金属棒均处于匀强磁场中,当导体棒ab向右运动时,则cd 棒()A、必向右运动B、可能向左运动C、可能不动D、其运动方向与ab棒运动方向和运动性质有关二、填空题:13、将一条磁铁分别两次插入一闭合线圈中同一位置,两次插入时间比为1:2,则感应电动势比为,产生热量比为,通过电量比为,电功率比为。

14、如图12所示,光滑铝棒a和c平行地固定在水平桌面上,铝棒b和d搁在a、c 棒上面,接触良好,组成回路,O为回路中心,当条形磁铁的一端从O点的正上方向下运动接近回路的过程中,则b棒和d棒的运动情况是。

15、在赤道某地的地磁场为4×10-5T,磁感线方向与水平面平行,有一条东西方向水平放置的导体棒长0.5m,当它以2m/s初速向北水平抛出后,感应电动势与时间t的关系式是,电势较高的是端。

图9图10图1116、电阻为R 的矩形线框abcd ,边长ab=L ,ad=h ,质量为m ,自某一高度自由落下,通过一匀强磁场,磁场方向垂直纸面向里,磁场区域的宽度为h ,如图13所示,若线框恰好以恒定速度通过磁场,线框中产生的焦耳热是 。

(不考虑空气阻力)17、如图14所示,MN 、PQ 为水平面上足够长的平行光滑导轨、匀强磁场方向如图所示,导电棒ab 、cd 的质量均为m ,ab 初速为零,cd 初速为v 0,则ab 最终的速度是 ,整个过程中产生的热量为 。

18、AB 两闭合线圈为同样导线绕成且均为10匝,半径为r A =2r B ,内有如图15所示的有理想边界的匀强磁场,若磁场均匀地减小,则A 、B 环中感应电动势之比εA :εB = ,产生的感应电流之比I A :I B = 。

19、如图16所示两电阻分别为2R 和R ,其余电阻不计,电容器电容为C ,匀强磁场B垂直纸面向里,当MN 为2v 向右、PQ 以v 向左运动时,电容器左极板带电量为 。

(轨宽为l )20、如图17所示,两条平行滑轨MN 、PQ 相距30cm ,上面放置着ab 、cd 两平行可动的金属棒,两棒用40cm 丝线系住,abcd 回路电阻0.5Ω。

设磁感强度的变化率△B/△t=-10T/s ,当B 减少到1T 时,丝线受到的张力为 N 。

三、计算题:21、如图18所示,水平平行放置的两根长直光滑导电轨道MN 与PQ 上放有一根直导线ab ,ab 和导轨垂直,轨宽20cm ,ab 电阻为0.02Ω,导轨处于竖直向下的磁场中,B=0.2T ,电阻R=0.03Ω,其它线路电阻不计,ab 质量为0.1kg 。

相关文档
最新文档