等差、等比数列常用公式对照表
等差、等比数列基础学习知识对照表.doc
等差、等比数列基础知识对照表等差数列等比数列定n+1n =d a n 1=q(q ≠0)a -aa n表达式a1、a1 +d、a1+2d、⋯、a1+(n-1)d ⋯a1、a1q、a1q2、⋯、 a1q n-1⋯通公式a n=a1+(n-1)d=kn+b,a n=a m+(n-m)d a n=a1 q n-1 =C·q n,a n =a m·q n-m前n 和公式判定方法等差(比)中性nn (a 1 a n ) n (n 1) dS= 2 na 1 2=n(a k a n k 1 ) an 2 bn2(1)定法(2)通公式法(3)前 n 和公式法A=a b2(1)m+n=q+p a m+a n=a q +a p特: m+n=2p a m+a n=2a p(2)S m,S 2m-S m,S 3m-S2m成等差(3) a nS2n 1b n T2 n 1(4){an±b } 、{ a } 成等差n n(5)数偶数 2n 的等差数列 {a n}S 奇a nS偶 -S 奇 =nd,an 1S 偶(6)数奇数 (2n-1) 的等差数列{a n}na 1 (q 1)Sn=a1 (1 q n )1(q 1)qS n+1=a1+qS n定法G ba G(1)m+n=p+q a ·a =a ·aqm n p特: m+n=2p 2a · a =am np(2)S m,S 2m-S m,S 3m-S2m成等比· b } 、(3){an± b } 、 { a } 、 {ann n n{a n} 成等比b n(4)若数 n 偶数 2nP偶q nP奇(5)若数奇数 2n-1S2n-1 =(2n-1)a n(a n中 )S奇-S偶=a , S奇nnP奇P偶a nS 偶n 1数列求和的方法:公式法、分 法、并 法、 位相减法、倒序相加法、列 法。
例 1:(1) 数列 {a n } 的前 n 和 S n =3n-2n 2(n ∈N * ), 当 n ≥ 2 ,下列不等式中成立的是( )A . S >na >naB .S >na >naC .na >S >naD .na >S >nan1nnn11nnnn1(2) 已知数列 {a n } 的前 n 和 S n =a n -1(a ≠ 0), {a n } 是()A .等比数列B .等比数列C .等差等比数列D.既不是等差也不是等比数列(3) 已知方程 (x 2-2x+m)(x 2-2x+m)=0 的四个根 成一个首1的等比数列,4|m-n|=( )A . 1B .3C .1D .3428例 2:已知 S n 是等比数列 {a n } 的前 n 和(1)S 3、 S 9、S 6 成等差数列,求 :a 2、a 8、 a 5 成等差数列;(2) 求 S 1+S 2+S 3+⋯+S n . 例 3:填空(1) 已知等差数列 {a n } 的公差 d ≠0, 且 a 1、 a 3、a 9 成等比数列,a 1 a 3 a 9 =________。
等差等比数列表格
求通项:一、公式法 ①等差数列通项公式;②等比数列通项公式。
例1 已知数列{}n a 满足1232nn n a a +=+⨯,12a =,求数列{}n a 的通项公式。
解:1232nn n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2nn a 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222nn a n =-。
评注:本题解题的关键是把递推关系式1232n n n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2n na 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。
二、累加法 适用于 ()1""n n a a f n +-=型例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则11232211221()()()()(2)[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)111,n n n n n a a a a a a a a a a n n n n n n n nn n n n a ---=-+-++-+-+≥=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=== 也成立。
所以数列{}n a 的通项公式为2n a n =。
三、累乘法 适用于()1""n na f n a +=型例3 已知数列{}n a 满足112(1)53nn n a n a a +=+⨯=,,求数列{}n a 的通项公式。
等差等比数列公式大全
等差等比数列公式大全《起点家教班》1、 a n ={()2)1(11≥-=-n s s n s n n 注意:1--=n n n s s a 不是对一切正整数n 都成立,而是局限于n ≥22、 等差数列通项公式:n a =1a +(n-1)d = m a +(n-m)d ⇒ d=mn a a mn --(重要)3、 若{n a }是等差数列,m+n=p+q 则m a +n a =p a +q a4、 若{n a }是等比数列,m+n=p+q 则m a .n a =p a .q a5、 {n a }是等差数列,若m 、n 、p 、q ∈N *且m ≠n,p ≠q,则mn a a mn --=q p a a q p --=d6、 等差数列{n a }的前n 项和为n s ,则n s =()21na a n + (已知首项和尾项)=()211dn n na -+(已知首项和公差) =n d a dn ⎪⎭⎫⎝⎛-+212112(可以求最值问题)7、 等差数列部分和性质:m m m m m s s s s s 232,,--…仍成等差数列其公差是原来公差的m 28、 n s 的最值问题:若{n a }是等差数列,1a 为首项,d 为公差 ① 首项1a >0,d <0,n 满足n a ≥0,1+n a <0时前n 项和n s 最大 ② 首项1a <0,d >0,n 满足n a ≤0,1+n a >0时前n 项和n s 最小 9、 在等差数列{n a }中,奇s 与偶s 的关系:①当n 为奇数时,n s =n.a 21+n , 奇s -偶s =a 21+n ,偶奇s s =11-+n n ②当n 为奇数时,n s =n.2122++nn a a , 奇s -偶s =d n 2偶奇s s =122+nna a10、若{n a }是等比数列,a,G ,b 成等比数列则G 2=ab(等比中项) 11、若{n a },{}n b (项数相同)是等比数列则{}{}{}⎭⎬⎫⎩⎨⎧∙⎭⎬⎫⎩⎨⎧n n n n n n n b a b a a a a ,,,1,2λ仍是等比数列 12、等比数列单调性的问题①当1a ≥0时,若0<q <1则{n a }是递减数列; q >1则{n a }是递增数列 ②当1a <0时,若0<q <1则{n a }是递增数列; q >1则{n a }是递减数列 13、在等差数列中抽取新数列:一般地,对于公差为d 的等差数列{n a },若.,321k k k 成等差数列,那么,......,,,321kn k k k a a a a 仍成等差数列,而且公差为(12k k -)d 14、在等比数列中抽取新数列:,......,,,321kn k k k a a a a 组成新数列{}nk a ,如果序号...,321k k k 组成数列为{}n k ,且n k 成公差为m 的等差数列,那么数列{}nk a 是以q m 为公比的等比数列15、等比数列的前n 项和n s =()q q a n --111=qqa a n --11。
等比等差数列的所有公式
等比等差数列的所有公式等差数列和等比数列是数学领域里比较基础且常见的两种数列。
它们不仅在高中阶段的数学学习中出现,同时也在大学的高级数学科目中应用广泛。
本文将会全面介绍等差数列和等比数列的定义、公式以及应用,以期为读者提供一个全面且清晰的了解。
一、等差数列等差数列是指一种数列,其任意两个相邻项之间的差值是相等的,这个相等的差值叫做公差。
举个例子,1,3,5,7,9....,就是一个公差为2的等差数列。
等差数列的通项公式对于任意一个等差数列,其通项公式可以表示为an=a1+(n-1)d,其中an表示该数列的第n项,a1表示该数列的首项,d表示该数列的公差。
这个公式用起来非常方便,读者只需要知道该数列的首项和公差,就可以轻松地得出该数列的任意一项。
等差数列的和公式等差数列的和公式就是数列的所有数值之和,它能够帮助我们快速计算数列中所有数值之和。
韦达定理是该公式的基础,韦达定理是指求等差数列和时将数列上下颠倒,在叠加两个相同的数列使其首项与末项分别相加后,其中的所有项均相等,其和是所求等差数列的和的两倍。
求和公式: Sn=n(a1+an)/2其中n表示项数,a1表示首项,an表示末项。
(特殊情况下)如果公差为1,那么求和公式可以变为:Sn=n(a1+an)/2=n(a1+1)/2 。
二、等比数列等比数列是指一种数列,其任意两个相邻项之间的比值是相等的,这个相等的比值叫做公比。
例如,1,2,4,8,16....就是一个公比为2的等比数列。
等比数列的通项公式对于任意一个等比数列,其通项公式可以表示为an=a1×r^(n-1),其中an表示该数列的第n项,a1表示该数列的首项,r表示该数列的公比。
与等差数列的情况类似,知道等比数列的首项和公比,就可以很容易地得出该数列的任意一项。
等比数列的和公式等比数列的和公式可以帮助我们快速计算数列中所有数值之和。
其中,如果公比r=1,那么求和公式就是Sn=na1,这个公式表示如果公比为1的等比数列中有n个元素,那么这个数列的和就是该数列第一个元素的值与这n 个元素数值之和相等。
等差等比数列计算方法
等差、等比数列的公式1.概念与公式:①等差数列:1°.定义:若数列}{),(}{1n n n n a d a a a 则常数满足=-+称等差数列;2°.通项公式:;)()1(1d k n a d n a a k n -+=-+=3°.前n 项和公式:公式:.2)1(2)(11d n n na a a n S n n -+=+=②等比数列:1°.定义若数列q a a a nn n =+1}{满足(常数),则}{n a 称等比数列;2°.通项公式:;11kn k n n q a q a a --==3°.前n 项和公式:),1(1)1(111≠--=--=q qq a qq a a S nn n 当q=1时.1na S n =2.简单性质:①首尾项性质:设数列,,,,,:}{321n n a a a a a1°.若}{n a 是等差数列,则;23121 =+=+=+--n n n a a a a a a 2°.若}{n a 是等比数列,则.23121 =⋅=⋅=⋅--n n n a a a a a a ②中项及性质:1°.设a ,A ,b 成等差数列,则A 称a 、b 的等差中项,且;2b a A +=2°.设a ,G ,b 成等比数列,则G 称a 、b 的等比中项,且.ab G ±=③设p 、q 、r 、s 为正整数,且,s r q p +=+ 1°. 若}{n a 是等差数列,则;s r q p a a a a +=+ 2°. 若}{n a 是等比数列,则;s r q p a a a a ⋅=⋅④顺次n 项和性质:1°.若}{n a 是公差为d 的等差数列,∑∑∑=+=+=nk n n k nn k kk kaa a 121312,,则组成公差为n 2d 的等差数列;2°. 若}{n a 是公差为q 的等比数列,∑∑∑=+=+=nk n n k nn k kk kaa a 121312,,则组成公差为q n 的等比数列.(注意:当q =-1,n 为偶数时这个结论不成立)⑤若}{n a 是等比数列,则顺次n 项的乘积n n n n n n n a a a a a a a a a 3221222121,, ++++组成公比这2nq的等比数列.⑥若}{n a 是公差为d 的等差数列,1°.若n 为奇数,则,,:(21+==-=n n a a a a S S na S 中中中偶奇中即指中项注且而S 奇、S偶指所有奇数项、所有偶数项的和);2°.若n 为偶数,则.2nd S S =-奇偶练习 1.三个数,,1,,1,1,122成等比数列又成等差数列n m nm的值为则nm n m ++22 ( )A .-1或3B .-3或1C .1或3D .-3或-1 2.在等比数列1020144117,5,6,}{a a a a a a a n 则中=+=⋅=( )A .2332或B .2332--或 C .515--或 D .2131-或3.等比数列===302010,10,20,}{M MM M n a n n 则若项乘积记为前( )A .1000B .40C .425D .814.已知等差数列5,8,11,…与3,7,11,…都有100项,则它们相同项的个数 ( ) A .25 B .26 C .33 D .345.已知一个等差数列的前5项的和是120,最后5项的和是180,又所有项的和为360,则此数列的项数为 ( ) A .12项 B .13项 C .14项 D .15项 6.若两个等差数列)(27417,}{},{+∈++=N n n n B A B A n b a nn n n n n 且满足和项和分别为的前则的值是1111b a( )A .47 B .23 C .34 D .71781.B 2.A 3.D 4.A 5.A 6.C求通项方法(一)一 公式法:利用熟知的的公式求通项公式的方法称为公式法,常用的公式有1n n n a S S -=-(2)n ≥,等差数列或等比数列的通项公式。
等差和等比数列公式大总结
等差和等比数列公式大总结数列是数学中一个重要的概念,它是指按一定规律排列的一组数。
常见的数列有等差数列和等比数列。
在学习数列时,熟练掌握数列的公式是非常重要的。
本文将对等差数列和等比数列的公式进行总结。
一、等差数列的公式等差数列是指一个数列中后面的数与前面的数之差相等。
这个相等的差值就是等差数列的公差(d)。
等差数列的通项公式如下:an = a1 + (n-1)d其中,an为第n项,a1为第一项,d为公差。
等差数列的前n项和公式如下:Sn = n/2·[2a1 + (n-1)d]其中,Sn为前n项和。
二、等比数列的公式等比数列是指一个数列中后面的数与前面的数之比相等。
这个相等的比值就是等比数列的公比(q)。
等比数列的通项公式如下:an = a1·q^(n-1)其中,an为第n项,a1为第一项,q为公比。
等比数列的前n项和公式如下:Sn = (a1(1-q^n))/(1-q)其中,Sn为前n项和。
三、等差数列和等比数列的关系等差数列和等比数列都是常见的数列,它们有着一定的联系。
如果在等比数列中,取对数可以得到一个等差数列,相反地,在等差数列中,取指数可以得到一个等比数列。
具体如下:对于等比数列:取对数得到:log(an) = log(a1·q^(n-1))化简可得:log(an) = log(a1) + (n-1)log(q)令b = log(a1),d = log(q),则可得到:log(an) = b + (n-1)d这个式子和等差数列的通项公式an = a1 + (n-1)d一样,只不过d变成了log(q)。
所以,等比数列的通项公式也可以看做是等差数列的通项公式在取对数后的形式。
对于等差数列:取指数得到:an = a1·r^(n-1)化简可得:an = a1·e^(ln(r)·(n-1))令b = ln(a1),d = ln(r),则可得到:an = e^b·e^(d·(n-1))这个式子和等比数列的通项公式an = a1·q^(n-1)一样,只不过q变成了e^d。
等差等比数列的含义 求和公式分别是什么
等差等比数列的含义求和公式分别是什么等差等比数列的概念等差数列是指从其次项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。
这个常数叫做等差数列的公差,公差常用字母d表示。
例如:1,3,5,7,9……2n-1。
通项公式为:an=a1+(n-1)*d。
首项a1=1,公差d=2。
前n项和公式为:Sn=a1*n+[n*(n-1)*d]/2或Sn=[n*(a1+an)]/2。
留意:以上n均属于正整数。
等比数列是指从其次项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。
这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠0。
其中{an}中的每一项均不为0。
注:q=1时,an为常数列。
等比数列的性质1、在等比数列{an}{an}中,若m+n=p+q=2k(m,n,p,q,k∈N∗)m+n=p+q=2k(m,n,p,q,k∈N∗),则am⋅an=ap ⋅aq=a2kam⋅an=ap⋅aq=ak2。
2、若数列{an}{an},{bn}{bn}(项数相同)是等比数列,则{λan}(λ≠0){λan}(λ≠0),{1an}{1an},{a2n}{an2},{an⋅bn}{an⋅bn},{anbn}{anbn}仍旧是等比数列。
3、在等比数列{an}{an}中,等距离取出若干项也构成一个等比数列,即an,an+k,an+2k,an+3k,⋯an,an+k,an+2k,an+3k,⋯为等比数列,公比为qkqk。
4、q≠1q≠1的等比数列的前2n2n项,S偶=a2⋅[1−(q2)n]1−q2S偶=a2⋅[1−(q2)n]1−q2,S奇=a1⋅[1−(q2)n]1−q2S奇=a1⋅[1−(q2)n]1−q2,则S偶S奇=qS偶S奇=q。
5、等比数列的单调性,取决于两个参数a1a1和的取值,an=a1⋅qn−1an=a1⋅qn−1。
等差数列的基本性质1,公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d。
等差、等比数列常用公式对照表
8、证明等差数列的方法: 1、定义法:
an q ,q 为常数 an 1
2、通项法: an c q n 1 ,c、q 为常数 3 前 n 项和法: S n k q n k ,k,q 常数
2 4、等差中项法: an 1 an an 2
Sn 是等差数列 n
是等比数列、 或
bn 是等差数列,
cn
用裂项相
11、若 an
bn 是等差数
cn
消法
1 Tn c1 c2 anbn ,求
列, cn anbn
cn
bn an ,求
Tn c1 c2
cn
用错位相减法
一、求 an 二、求 S n
的方法:1、公式法;2、观察归纳法;3、累加法、累乘法;4、特征方程法 的方法:1、裂项相消法;2、错位相减法;3、倒序相加法;4、分组求和法
m
8、证明等差数列的方法: 1、定义法: an an 1 d ,d 为常数 2、通项法: an kn b ,k、b 为常数 3、前 n 项和法: S n An 2 Bn ,A,B 常数 4、等差中项法: 2an 1 an an 2 9、 bn 是等差数列, an bn 、
10、若 an an 1 f (n) ,则用累加法求
b 是等比数列, 9、 n
bn 、 an2 、 an bn 、是等比数列
10、若
an 1 bn 、 an
an
11、若 an 、
an f (n) ,则用累乘法求 an an 1
an am nm
an am
aq 特殊情况:若 m+n=2p,则 an am 2a p
等差数列等比数列公式汇总
等差数列等比数列公式汇总等差数列和等比数列都是在数学学习中不可或缺的知识,关于这两者出现的历史和定义,这里就不再赘述了。
本文主要探讨的是两个数列的公式以及在实际运用中的相关知识,旨在为学习者们提供一篇简单易懂的参考文献。
首先介绍的是等差数列的公式:1.项:a1=a2.数:n3.差:d4.公式:an=a1+(n-1)d5.和公式:Sn=n(a1+an)/2可以用等差数列求和公式求出等差数列的总和Sn。
用它来解决一下问题:某等差数列的首项是9,公差是2,求该数列的前20项之和。
解:根据等差数列求和公式Sn=n(a1+an)/2,Sn=20(9+a20)/2即Sn=20(9+9+(20-1)*2)/2=20(27+38)/2=20(65)/2=1300因此,该等差数列的前20项之和为1300。
接下来要介绍的是等比数列的公式。
1.项:a12.比:q3.公式:an=a1q(n-1)4.和公式:Sn=a1(1-q^n)/(1-q)可以用等比数列求和公式求出等比数列的总和Sn。
用它来解决一下问题:某等比数列的首项是1,公比是2的9次方,求该数列的前10项之和。
解:根据等比数列求和公式Sn=a1(1-q^n)/(1-q),Sn=1(1-2^10)/(1-2)=1(1023)/(1)=1023因此,该等比数列的前10项之和为1023。
本文介绍了等差数列和等比数列的基本公式以及如何用这些公式解决实际问题。
通过对比可以发现,在求和时,等比数列比等差数列要简单。
熟练掌握等差数列和等比数列的相关知识,会给后期的学习和工作带来诸多便利。
等差数列和等比数列的公式
等差数列和等比数列的公式
我们要了解等差数列和等比数列的公式。
等差数列是一个数列,其中任意两个相邻的项之间的差是一个常数。
等比数列是一个数列,其中任意两个相邻的项之间的比是一个常数。
对于等差数列,我们可以用以下公式表示:
1. 第一个项 a1
2. 公差 d
3. 项数 n
4. 和 S
等差数列的和 S 可以用以下公式表示:
S = n/2 × (2a1 + (n-1)d)
对于等比数列,我们可以用以下公式表示:
1. 第一个项 a1
2. 公比 r
3. 项数 n
4. 和 S
等比数列的和 S 可以用以下公式表示:
S = a1 × (r^n - 1) / (r - 1)
现在我们来计算一些具体的例子。
等差数列的和 S = 185
等比数列的和 S = 242。
等差数列公式大全
等差数列公式大全
数列公式又称为等差数列公式,它指的是一组以等差数列形式列出来的数列函数。
1.一般项公式:an=a1+(n-1)d。
2.和公式:Sn=n(a1+an)/2。
3.等比数列的一般项公式:an=a1*q^(n-1)。
4.等比数列的和公式:Sn=a1*(1-q^n)/(1-q)。
5.等比级数的和公式:S=a1/(1-q)。
6.飞利浦及公式:Sn=a1+(n-1)*d+(n-1)*(n-2)*c/2。
7.等差数列的最后一项公式:an=(a1+an-1)/2+d。
8.三项和公式:Sn=a1+an+an-1。
9.等差数列的公差公式:d=[an-a1]/n-1。
10.二项和公式:Sn=a1+an。
11.等差数列的方程:x+a=n(x+d)。
12.栢西秋-埃泽勒等比数列的和公式: Sn=a1*[1-qn+n(1-q)]/ (1-q)^2。
13.等差数列的前n项和公式:Sn=n(a1+an)/2。
14.亚里士多德等比数列的和公式:Sn=a1(qn-1)/(q-1)。
15.等差数列的最大项公式:an=a1+(n-1)*d。
等比和等差公式
等比和等差公式:答案解析一、等差数列如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示.等差数列的通项公式为:an=a1+(n-1)d (1)前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0.在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An 的等差中项,且任意两项am,an的关系为:an=am+(n-m)d它可以看作等差数列广义的通项公式.从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aqSm-1=(2n-1)an,S2n+1=(2n+1)an+1Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等.和=(首项+末项)*项数÷2项数=(末项-首项)÷公差+1首项=2和÷项数-末项末项=2和÷项数-首项项数=(末项-首项)/公差+1等差数列的应用:日常生活中,人们常常用到等差数列如:在给各种产品的尺寸划分级别时,当其中的最大尺寸与最小尺寸相差不大时,长安等差数列进行分级.若为等差数列,且有ap=q,aq=p.则a(p+q)=-(p+q).若为等差数列,且有an=m,am=n.则a(m+n)=0.等比数列:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列.这个常数叫做等比数列的公比,公比通常用字母q表示.(1)等比数列的通项公式是:An=A1*q^(n-1)(2)前n项和公式是:Sn=[A1(1-q^n)]/(1-q)且任意两项am,an的关系为an=am·q^(n-m)(3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}(4)若m,n,p,q∈N*,则有:ap·aq=am·an,等比中项:aq·ap=2ar ar则为ap,aq等比中项.记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列.在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的.性质:①若m、n、p、q∈N,且m+n=p+q,则am·an=ap*aq;②在等比数列中,依次每k项之和仍成等比数列.“G是a、b的等比中项”“G^2=ab(G≠0)”.在等比数列中,首项A1与公比q都不为零.注意:上述公式中A^n表示A的n次方.等比数列在生活中也是常常运用的.如:银行有一种支付利息的方式---复利.即把前一期的利息赫本金价在一起算作本金,在计算下一期的利息,也就是人们通常说的利滚利.按照复利计算本利和的公式:本利和=本金*(1+利率)存期。
高考数学数列总结:等差数列及等比数列公式
2019高考数学数列总结:等差数列及等比数列公式高中数学数列知识点总结:等差数列公式等差数列的通项公式为:an=a1+(n-1)d或an=am+(n-m)d前n项和公式为:Sn=na1+[n(n-1)/2] d或sn=(a1+an)n/2 若m+n=2p则:am+an=2ap以上n均为正整数文字翻译第n项的值=首项+(项数-1)*公差前n项的和=(首项+末项)*项数/2公差=后项-前项高中数学数列知识点总结:等比数列公式等比数列求和公式(1) 等比数列:a (n+1)/an=q (n∈N)。
(2) 通项公式:an=a1×q^(n-1); 推广式:an=am×q^(n-m);(3) 求和公式:Sn=n×a1 (q=1) Sn=a1(1-q^n)/(1-q)=(a1-an×q)/(1-q) (q≠1) (q为公比,n为项数)(4)性质:①若 m、n、p、q∈N,且m+n=p+q,则am×an=ap×aq;②在等比数列中,依次每 k项之和仍成等比数列.③若m、n、q∈N,且m+n=2q,则am×an=aq^2(5)"G是a、b的等比中项""G^2=ab(G ≠ 0)".(6)在等比数列中,首项a1与公比q都不为零. 注意:上述公式中an表示等比数列的第n项。
等比数列求和公式推导:Sn=a1+a2+a3+...+an(公比为q)q*Sn=a1*q+a2*q+a3*q+...+an*q =a2+a3+a4+...+a(n+1)Sn-q*Sn=a1-a(n+1) (1-q)Sn=a1-a1*q^nSn=(a1-a1*q^n)/(1-q) Sn=(a1-an*q)/(1-q)Sn=a1(1-q^n)/(1-q) Sn=k*(1-q^n)~y=k*(1-a^x)。
等比、等差公式
等比数列公式如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。
这个常数叫做等比数列的公比,公比通常用字母q表示。
(1)等比数列的通项公式是:An=A1×q^(n-1)若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点。
(2) 任意两项am,an的关系为an=am·q^(n-m)(3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n} (4)等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。
记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。
在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。
性质:①若 m、n、p、q∈N*,且m+n=p+q,则am·an=ap·aq;②在等比数列中,依次每 k项之和仍成等比数列.“G是a、b的等比中项”“G^2=ab(G≠0)”.(5) 等比数列前n项之和Sn=A1(1-q^n)/(1-q)或Sn=(a1-an*q)/(1-q)(q≠1) Sn=n*a1 (q=1)在等比数列中,首项A1与公比q都不为零.注意:上述公式中A^n表示A的n次方。
等比数列在生活中也是常常运用的。
如:银行有一种支付利息的方式---复利。
即把前一期的利息和本金加在一起算作本金,再计算下一期的利息,也就是人们通常说的利滚利。
按照复利计算本利和的公式:本利和=本金*(1+利率)^存期等差数列公式等差数列的通项公式为:an=a1+(n-1)d或an=am+(n-m)d前n项和公式为:sn=na1+(n(n-1))/2 d或sn=(a1+an)n/2若m+n=2p则:am+an=2ap以上n均为正整数文字翻译第n项的值=首项+(项数-1)*公差前n项的和=(首项+末项)*项数/2公差=后项-前项对称数列公式对称数列的通项公式:对称数列总的项数个数:用字母s表示对称数列中项:用字母C表示等差对称数列公差:用字母d表示等比对称数列公比:用字母q表示设,k=(s+1)/2一般数列的通项求法一般有:an=Sn-Sn-1 (n≥2)累和法(an-an-1=... an-1 - an-2=... a2-a1=...将以上各项相加可得an)。
等差等比数列公式
创作时间:二零二一年六月三十日
创作时间:二零二一年六月三十日
创作时间:二零二一年六月三十日
之马矢奏春创
作
创作时间:二零二一年六月三十日
等差数列
等比数列
等差中项 (充要)
G2=ab(需要)
通项公式 an=a1+(n1)d an=a1qn1
前n 项和
Sn=
/Sn=na1+n(n1)
Sn=
其他
anan1=d(界说)
2an=an1+an+1(等差中项) an=am+(nm)d (通项公式) m+n=p+q
am+an=ap+aq (通项公式)
S1=a1 an=SnSn1
a1+an=a2+an1=a3+an2…(在等差数列中,首末两项距离相等的两项和即是首末两项的和)[e.g.a7+a8=a1+a142a10=a5+a15]
Sn= S2n1=(2n1)an
Sn , S2nSn , S3nS2n ,…, SknS(k1)n 成等差数列,公差d=n2d
=q(界说)
an2=an1an+1(等差中项) an=amqnm (通项公式) m+n=p+q
aman=apaq (通项公式)
S1=a1 an=SnSn1
Sn , S2nSn , S3nS2n ,…, SknS(k1)n 成等比数列,公比q=qn。
等差数列等比数列公式
等差数列等比数列公式
等比数列是前一项除以后一项等于一个固定常数q通项公式an=a1·q(n-1),等差数列是前一项与后一项的差是常数等差数列的通项公式an=a1+(n-1)d=dn+a1-d等比
数列是指前一个数和后一个数的比相同,
一. 等差数列
1.通项公式
an =a1+(n-1)d
2.议和公式
sn=(a1+an)n/2
sn=n*a1+n(n-1)d/2
当n为奇数时:sn=中间项*项数
当n为偶数时:sn=中间两项的平均数*项数
3.特殊性质
若m+n=p+q,则am+an=ap+aq
对于等差数列,考试中常以中项求和公式为重点进行考察,下面我们就来练习一下。
基准:某剧院存有33排座位,后一排比前一排多3个座位,最后一排有个座位,答
这个剧院一共存有多少个座位?
a b c d
由题干所述,一共存有33项,公差为3,最后一项为,中间项为第17项,第17项=-
3x16=87,因此一共存有87*33即为个座位,挑选b项。
例:某一天,小李发现台历已经有一周没有翻了,就一次性翻了七张,这七天的日期
数加起来恰好是77,请问这一天是几号?
a 13号
b 14 号
c 15 号
d 17号
翻过去的七天日期数恰好是公差为1的等差数列,因此中间项是第四天为77/7=11号,最后一天是14号,那么当天为15号,选择c项。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
是等比数列
1、定义:
1、
2、通项:
2、
3、公差:
3、公比:
4、若m+n=p+q,则
特殊情况:若m+n=2p,则பைடு நூலகம்
称为 与 的等差中项
4、若m+n=p+q,则
特殊情况:若m+n=2p,则
称为 与 的等比中项
5、
5、
6、 是公差为md的等差数列
6、 是公比为 的等比数列
7、 是公差为 的等差数列
7、 是公比为 的等比数列
8、证明等差数列的方法:
1、定义法: ,d为常数
2、通项法: ,k、b为常数
3、前n项和法: ,A,B常数
4、等差中项法:
8、证明等差数列的方法:
1、定义法: ,q为常数
2、通项法: ,c、q为常数
3前n项和法: ,k,q常数
4、等差中项法:
9、 是等差数列, 、 是等差数列
9、 是等比数列, 、 、 、 、是等比数列
10、若 ,则用累加法求
10、若 ,则用累乘法求
11、若 、 是等差数列, ,求 用裂项相消法
11、若 是等比数列、 是等差数列, 或 ,求 用错位相减法
一、求 的方法:1、公式法;2、观察归纳法;3、累加法、累乘法;4、特征方程法
二、求 的方法:1、裂项相消法;2、错位相减法;3、倒序相加法;4、分组求和法