运筹学考试复习题及参考答案【新】

合集下载

运筹学复习题及参考答案

运筹学复习题及参考答案

中南大学现代远程教育课程考试复习题及参考答案运筹学一、判断题:1. 图解法与单纯形法虽然求解的形式不同,但从几何上理解,两者是一致的。

( )2. 线性规划问题的每一个基本解对应可行解域的一个顶点。

( )3. 任何线性规划问题存在并具有惟一的对偶问题。

( )4. 已知y i *为线性规划的对偶问题的最优解,若y i *>0,说明在最优生产计划中第i 种资源已完全耗尽。

( )5. 单纯形迭代中添加人工变量的目的是为了得到问题的一个基本可行解。

( )6. 订购费为每订一次货所发生的费用,它同每次订货的数量无关。

( )7. 如果线性规划问题存在最优解,则最优解一定可以在可行解域的顶点上获得。

( )8. 用单纯形法求解Max 型的线性规划问题时,检验数Rj >0对应的变量都可以被选作入基变量。

( ) 9. 对于原问题是求Min ,若第i 个约束是“=”,则第i 个对偶变量yi ≤0。

( ) 10. 用大M 法或两阶段法单纯形迭代中若人工变量不能出基(人工变量的值不为0),则问题无可行解。

( )11. 如图中某点vi 有若干个相邻点,与其距离最远的相邻点为vj ,则边[vi,vj]必不包含在最小支撑树内。

( )12. 在允许缺货发生短缺的存贮模型中,订货批量的确定应使由于存贮量的减少带来的节约能抵消缺货时造成的损失。

( )13. 根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解,反之,当对偶问题无可行解时,其原问题具有无界解。

( )14. 在线性规划的最优解中,若某一变量xj 为非基变量,则在原来问题中,改变其价值系数cj ,反映到最终单纯形表中,除xj 的检验数有变化外,对其它各数字无影响。

( ) 15. 运输问题是一种特殊的线性规划问题,因而其求解结果也可能出现下列四种情况之一:有惟一最优解,有无穷多最优解,无界解,无可行解。

( )16. 动态规划的最优性原理保证了从某一状态开始的未来决策独立于先前已做出的决策。

运筹学试题及详细答案

运筹学试题及详细答案

运筹学试题及详细答案
一、选择题
1、Nash均衡的定义是:
A、每位参与者的行为均达到最佳利益的状态
B、每位参与者的行为均达到得到最大胜利的状态
C、每位参与者的行为均达到合作的最佳状态
D、每位参与者的行为均达到合作的最大胜利的状态
答案:A
2、决策就是参与者用来实现选择的:
A、计划
B、机构
C、程序
D、工具
答案:D
3、运筹学可以分为:
A、组合数学
B、运动学
C、博弈论
D、概率论
答案:A、B、C、D
4、非线性规划有:
A、分支定界法
B、梯度下降法
C、基于格法的解法
D、对偶法
答案:A、B、C、D
5、关于迭代法,下列表述正确的有:
A、可以求解非凸优化问题
B、单次迭代过程简单
C、收敛性较好
D、用于非线性规划
答案:A、B、C
二、填空题:
1、博弈论是研究__参与者之间的__的科学。

答案:多,竞争。

运筹学试卷及答案完整版

运筹学试卷及答案完整版

《运筹学》模拟试题及参考答案一、判断题(在下列各题中,你认为题中描述的内容为正确者,在题尾括号内写“√”,错误者写“×”。

)1. 图解法提供了求解线性规划问题的通用方法。

( )2. 用单纯形法求解一般线性规划时,当目标函数求最小值时,若所有的检验数C j-Z j ≥0,则问题达到最优。

( )3. 在单纯形表中,基变量对应的系数矩阵往往为单位矩阵。

( )4. 满足线性规划问题所有约束条件的解称为基本可行解。

( )5. 在线性规划问题的求解过程中,基变量和非基变量的个数是固定的。

( )6. 对偶问题的目标函数总是与原问题目标函数相等。

( )7. 原问题与对偶问题是一一对应的。

( )8. 运输问题的可行解中基变量的个数一定遵循m+n-1的规则。

( )9. 指派问题的解中基变量的个数为m+n。

( )10. 网络最短路径是指从网络起点至终点的一条权和最小的路线。

( )11. 网络最大流量是网络起点至终点的一条增流链上的最大流量。

( )12. 工程计划网络中的关键路线上事项的最早时间和最迟时间往往不相等。

( )13. 在确定性存贮模型中不许缺货的条件下,当费用项目相同时,生产模型的间隔时间比订购模型的间隔时间长。

( )14. 单目标决策时,用不同方法确定的最佳方案往往是一致的。

( )15. 动态规划中运用图解法的顺推方法和网络最短路径的标号法上是一致的。

( )三、填空题1. 图的组成要素;。

2. 求最小树的方法有、。

3. 线性规划解的情形有、、、。

4. 求解指派问题的方法是。

5. 按决策环境分类,将决策问题分为、、。

6. 树连通,但不存在。

A 111四、下列表是线性规划单纯形表(求Z max ),请根据单纯形法原理和算法。

1. 计算该规划的检验数2. 计算对偶问题的目标函数值3. 确定上表中输入,输出变量五、已知一个线性规划原问题如下,请写出对应的对偶模型21max 6x x S +=⎪⎩⎪⎨⎧≥≥+≤+0,16327212121x x x x x x六、下图为动态规划的一个图示模型,边上的数字为两点间的距离,请用逆推法求出S 至F 点的最短路径及最短路长。

运筹学试卷及参考答案

运筹学试卷及参考答案

运筹学试卷及参考答案运筹学试卷一、选择题(每小题2分,共20分)1、下列哪个不是线性规划的标准形式?() A. min z = 3x1 + 2x2B. max z = -4x1 - 3x2C. s.t. 2x1 - x2 <= 1D. s.t. x1 + x2 >= 0答案:C2、以下哪个是最小生成树的Prim算法?() A. 按照权值从小到大的顺序选择顶点 B. 按照权值从大到小的顺序选择顶点 C. 按照距离从小到大的顺序选择顶点 D. 按照距离从大到小的顺序选择顶点答案:B3、下列哪个不是网络流模型的典型应用?() A. 道路交通流量优化 B. 人员部署 C. 最短路径问题 D. 生产计划答案:C4、下列哪个是最小化问题中常用的动态规划解法?() A. 自顶向下的递推求解 B. 自底向上的递推求解 C. 分治算法 D. 回溯法答案:A5、下列哪个是最大流问题的 Ford-Fulkerson 算法?() A. 增广路径的寻找采用深度优先搜索 B. 增广路径的寻找采用广度优先搜索 C. 初始流采用最大边的二分法求解 D. 初始流采用最小边的二分法求解答案:B二、简答题(每小题10分,共40分)1、请简述运筹学在现实生活中的应用。

答案:运筹学在现实生活中的应用非常广泛。

例如,线性规划可以用于生产计划、货物运输和资源配置等问题;网络流模型可以用于解决道路交通流量优化、人员部署和生产计划等问题;动态规划可以用于解决最短路径、货物存储和序列安排等问题;图论模型可以用于解决最大流、最短路径和最小生成树等问题。

此外,运筹学还可以用于医疗资源管理、金融风险管理、军事战略规划等领域。

总之,运筹学的理论和方法可以帮助人们更好地解决实际生活中的问题,提高决策的效率和准确性。

2、请简述单纯形法求解线性规划的过程。

答案:单纯形法是一种求解线性规划问题的常用方法。

它通过不断迭代和修改可行解,最终找到最优解。

具体步骤如下: (1) 将线性规划问题转化为标准形式; (2) 根据标准形式构造初始可行基,通常选取一个非基变量,使其取值为零,其余非基变量的取值均为零; (3) 根据目标函数的系数,计算出目标函数值; (4) 通过比较目标函数值和已选取的非基变量的取值,选取最优的非基变量进行迭代; (5) 在迭代过程中,不断修正基变量和非基变量的取值,直到找到最优解或确定无解为止。

《运筹学》期末考试试题及参考答案

《运筹学》期末考试试题及参考答案

《运筹学》试题参考答案一、填空题(每空2分,共10分)1、在线性规划问题中,称满足所有约束条件方程和非负限制的解为 可行解 。

2、在线性规划问题中,图解法适合用于处理 变量 为两个的线性规划问题。

3、求解不平衡的运输问题的基本思想是 设立虚供地或虚需求点,化为供求平衡的标准形式 。

4、在图论中,称 无圈的 连通图为树。

5、运输问题中求初始基本可行解的方法通常有 最小费用法 、 西北角法 两种方法。

二、(每小题5分,共10分)用图解法求解下列线性规划问题: 1)max z = 6x 1+4x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0781022122121x x x x x x x , 解:此题在“《运筹学》复习参考资料.doc ”中已有,不再重复。

2)min z =-3x 1+2x 2⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤-≤-≤+-≤+0,137210422422121212121x x x x x x x x x x 解:⑴ ⑵ ⑶ ⑷ ⑸ ⑹、⑺⑴⑵ ⑶ ⑷ ⑸、⑹可行解域为abcda ,最优解为b 点。

由方程组⎩⎨⎧==+02242221x x x 解出x 1=11,x 2=0∴X *=⎪⎪⎭⎫ ⎝⎛21x x =(11,0)T ∴min z =-3×11+2×0=-33三、(15分)某厂生产甲、乙两种产品,这两种产品均需要A 、B 、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示:A B C 甲 9 4 3 70 乙 4 6 10 1203602003001)建立使得该厂能获得最大利润的生产计划的线性规划模型;(5分)2)用单纯形法求该问题的最优解。

(10分) 解:1)建立线性规划数学模型:设甲、乙产品的生产数量应为x 1、x 2,则x 1、x 2≥0,设z 是产品售后的总利润,则max z =70x 1+120x 2s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+0300103200643604921212121x x x x x x x x , 2)用单纯形法求最优解:加入松弛变量x 3,x 4,x 5,得到等效的标准模型:max z =70x 1+120x 2+0 x 3+0 x 4+0 x 5s.t.⎪⎪⎩⎪⎪⎨⎧=≥=++=++=++5,...,2,1,03001032006436049521421321j x x x x x x x x x x j 列表计算如下:∴X *=(11,11,11,0,0)T∴max z =70×11100+120×11300=1143000四、(10分)用大M 法或对偶单纯形法求解如下线性规划模型:min z =5x 1+2x 2+4x 3⎪⎩⎪⎨⎧≥≥++≥++0,,10536423321321321x x x x x x x x x解:用大M 法,先化为等效的标准模型:max z / =-5x 1-2x 2-4x 3 s.t.⎪⎩⎪⎨⎧=≥=-++=-++5,...,2,1,010********214321j y x x x x x x x x j增加人工变量x 6、x 7,得到:max z / =-5x 1-2x 2-4x 3-M x 6-M x 7 s.t⎪⎩⎪⎨⎧=≥=+-++=+-++7,...,2,1,010*********2164321j x x x x x x x x x x x j大M 法单纯形表求解过程如下:∴x *=(32,2,0,0,0)T最优目标函数值min z =-max z / =-(-322)=322五、(15分)给定下列运输问题:(表中数据为产地A i 到销地B j 的单位运费)1)用最小费用法求初始运输方案,并写出相应的总运费;(5分) 2)用1)得到的基本可行解,继续迭代求该问题的最优解。

《运筹学》课程考试试卷及答案

《运筹学》课程考试试卷及答案

《运筹学》课程考试试卷一、填空题(共10分,每空1分)1、线性规划问题的3个要素是: 、 和 。

2、单纯形法最优性检验和解的判别,当 现有顶点对应的基可行解是最优解,当 线性规划问题有无穷多最优解,当 线性规划问题存在无界解。

4、连通图的是指: 。

5、树图指 ,最小树是 。

6、在产销平衡运输问题中,设产地为m 个,销地为n 个,运输问题的解中的基变量数为 。

二、简答题 简算题(共20分) 1、已知线性规划问题,如下: max Z=71x -22x +53x⎪⎩⎪⎨⎧=≥≤+≤+-3,2,1,084632..31321i x x x x x x t s i请写出其对偶问题。

(10分)2、已知整数规划问题:1212121212max105349..528,0,,z x x x x s t x x x x x x =++≤⎧⎪+≤⎨⎪≥⎩且为整数在解除整数约束后的非整数最优解为(x1, x2)=(1, 1.5),根据分支定界法,请选择一个变量进行分支并写出对应的2个子问题(不需求解)。

(10分)三、计算题(共70分)1、某厂用A1,A2两种原料生产B1,B2,B3三种产品,工厂现有原料,每吨所需原料数量以及每吨产品可得利润如下表。

在现有原料的条件下,应如何组织生产才能使该厂获利最大?(共20分) (1) 写出该线性规划问题的数学模型(4分)(2)将上面的数学模型化为标准形式(2分)(3)利用单纯形法求解上述问题(14分,单纯形表格已给出, 如若不够, 可自行添加)(3)利用单纯形法求解上述问题(14分,单纯形表格已给出, 如若不够, 可自行添加)2、考虑下列运输问题:请用表上作业法求解此问题,要求:使用V ogel法求初始解。

若表格不够可自行添加(15分)3、有4台机器都可以做A、B、C、D四种工作,都所需费用不同,其费用如下表所示。

请用匈牙利法求总费用最小的分配方案。

(10分)4、某工厂内联结6个车间的道路如下图所示,已知每条道路的的距离,求沿部分道路架设6个车间的电话网,使电话线总距离最短。

《运筹学》课程考试试卷试题(含答案)

《运筹学》课程考试试卷试题(含答案)

《运筹学》课程考试试卷试题(含答案)一、选择题(每题5分,共25分)1. 运筹学的核心思想是()A. 最优化B. 系统分析C. 预测D. 决策答案:A2. 在线性规划中,约束条件可以用()表示。

A. 等式B. 不等式C. 方程组D. 矩阵答案:B3. 以下哪个不是运筹学的基本模型?()A. 线性规划B. 整数规划C. 非线性规划D. 随机规划答案:D4. 在目标规划中,以下哪个术语描述的是决策变量的偏离程度?()A. 目标函数B. 约束条件C. 偏差变量D. 权重系数答案:C5. 在动态规划中,以下哪个概念描述的是在决策过程中,某一阶段的最优决策对后续阶段的影响?()A. 最优子结构B. 无后效性C. 最优性原理D. 阶段性答案:B二、填空题(每题5分,共25分)1. 运筹学是一门研究在复杂系统中的______、______和______的科学。

答案:决策、优化、实施2. 在线性规划中,若目标函数为最大化,则其标准形式为______。

答案:max z = c^T x3. 在非线性规划中,若目标函数和约束条件均为凸函数,则该规划问题为______。

答案:凸规划4. 在目标规划中,若决策变量x_i的权重系数为w_i,则目标函数可以表示为______。

答案:min Σ(w_i d_i^+ + w_i d_i^-)5. 在动态规划中,若状态变量为s_n,决策变量为u_n,则状态转移方程可以表示为______。

答案:s_{n+1} = f(s_n, u_n)三、判断题(每题5分,共25分)1. 线性规划问题的最优解一定在可行域的顶点处取得。

()答案:正确2. 在整数规划中,若决策变量为整数,则目标函数和约束条件也必须为整数。

()答案:错误3. 目标规划中的偏差变量可以是负数。

()答案:正确4. 在动态规划中,最优策略具有最优子结构。

()答案:正确5. 在非线性规划中,若目标函数为凸函数,则约束条件也必须为凸函数。

运筹学考试试卷及答案

运筹学考试试卷及答案

运筹学考试试卷及答案一、选择题(每题2分,共20分)1. 线性规划问题的标准形式是:A. 所有变量都非负B. 目标函数是最大化C. 所有约束条件都是等式D. 所有约束条件都是不等式答案:A2. 单纯形法中,如果某个变量的检验数为负数,那么:A. 该变量可以增大B. 该变量可以减小C. 该变量保持不变D. 该变量不能进入基答案:A3. 在运输问题中,如果某种资源的供应量大于需求量,那么应该:A. 增加供应量B. 减少需求量C. 增加需求量D. 减少供应量答案:C4. 动态规划的基本原理是:A. 递归B. 迭代C. 回溯D. 分解答案:D5. 决策树中,每个节点代表:A. 一个决策B. 一个状态C. 一个结果D. 一个概率答案:A6. 排队论中,M/M/1队列的特点是:A. 到达时间服从泊松分布,服务时间服从指数分布,且只有一个服务台B. 到达时间服从指数分布,服务时间服从泊松分布,且只有一个服务台C. 到达时间服从泊松分布,服务时间服从指数分布,且有两个服务台D. 到达时间服从指数分布,服务时间服从泊松分布,且有两个服务台答案:A7. 网络流问题中,最大流最小割定理说明:A. 最大流等于最小割B. 最大流小于最小割C. 最大流大于最小割D. 最大流与最小割无关答案:A8. 整数规划问题中,分支定界法的基本思想是:A. 将问题分解为多个子问题B. 将问题转化为线性规划问题C. 将问题转化为非线性规划问题D. 将问题转化为动态规划问题答案:A9. 在多目标决策中,如果目标之间存在冲突,通常采用的方法是:A. 目标排序B. 目标加权C. 目标合并D. 目标替换答案:B10. 敏感性分析的目的是:A. 确定最优解的稳定性B. 确定最优解的唯一性C. 确定最优解的可行性D. 确定最优解的最优性答案:A二、填空题(每题2分,共20分)1. 线性规划问题的可行域是由所有_________约束条件构成的集合。

答案:可行2. 在单纯形法中,如果目标函数的系数都是正数,则该问题为_________问题。

《 运筹学》复习题

《 运筹学》复习题

《运筹学》复习题一、单项选择题1、()运筹学的主要内容包括: [单选题] *A.线性规划B.非线性规划C.存贮论D.以上都是(正确答案)2、()下面是运筹学的实践案例的是: [单选题] *A.丁谓修宫B.田忌赛马C.二战间,英国雷达站与防空系统的协调配合D.以上都是(正确答案)5、()运筹学模型: [单选题] *A.在任何条件下均有效B.只有符合模型的简化条件时才有效(正确答案)C.可以解答管理部门提出的任何问题D.是定性决策的主要工具8、()图解法通常用于求解有()个变量的线性规划问题。

[单选题] *A.1B.2(正确答案)C.4D.510、 (D)将线性规划问题转化为标准形式时,下列说法不正确的是: [单选题] *A.如为求z的最小值,需转化为求-z的最大值(正确答案)B.如约束条件为≤,则要增加一个松驰变量C.如约束条件为≥,则要减去一个剩余变量D.如约束条件为=,则要增加一个人工变量12、()关于主元的说法不正确的是: [单选题] *A.主元所在行称为主元行B.主元所在列称为主元列C.主元列所对应非基变量为进基变量D.主元素可以为零(正确答案)13、()求解线性规划的单纯形表法中所用到的变换有: [单选题] *A.两行互换B.两列互换C.将某一行乘上一个不为0的系数(正确答案)D.都正确14、()矩阵的初等行变换不包括的形式有: [单选题] *A. 将某一行乘上一个不等于零的系数B.将任意两行互换C. 将某一行乘上一个不等于零的系数再加到另一行上去D.将某一行加上一个相同的常数(正确答案)17、()关于标准线性规划的特征,哪一项不正确: [单选题] *A.决策变量全≥0B.约束条件全为线性等式C.约束条件右端常数无约束(正确答案)D.目标函数值求最大18、()线性规划的数学模型的组成部分不包括: [单选题] *A.决策变量B.决策目标函数C.约束条件D.计算方法(正确答案)19、()如果在线性规划标准型的每一个约束方程中各选一个变量,它在该方程中的系数为1,在其它方程中系数为零,这个变量称为: [单选题] *A.基变量(正确答案)B.决策变量C.非基变量D.基本可行解21、 (C)关于线性规划的最优解判定,说法不正确的是: [单选题] *A.如果是求最小化值,则所有检验数都小于等于零的基可行解是最优解。

《运筹学》期末复习题

《运筹学》期末复习题

《运筹学》期末复习题一、单项选择题1、下列叙述正确的是()。

A.线性规划问题,若有最优解,则必是一个基变量组的可行基解B.线性规划问题一定有可行基解C.线性规划问题的最优解只能在最低点上达到D.单纯形法求解线性规划问题时,每换基迭代一次必使目标函数值下降一次答案:A2、线性规划的变量个数与其对偶问题的()相等。

A.变量目标函数C.约束条件个数答案:C3、在利用表上作业法求各非基变量的检验数时,有闭回路法和()两种方法。

A.西北角法C.最低费用法答案:B4、下列各项()不是目标规划的特点。

A.多目标C.具有优先次序答案:B5、下列关于图的说法中,错误的为()。

A.点表示所研究的事物对象C.无向图是由点及边所构成的图答案:D6、利用单纯形法求解线性规划问题时,首先需要()。

A.找初始基础可行基C.确定改善方向答案:A7、对偶问题最优解的剩余变量解值()原问题对应变量的检验数的绝对值。

A.大于C.等于答案:C第1页共17页B.变量约束条件D.不确定B.位势法D.元素差额法B.单一目标D.不求最优B.检验当前基础可行解是否为最优解D.确定入变量的最大值和出变量B.小于D.不能确定8、当某个非基变量检验数为零,则该问题有()。

A.无解B.无穷多最优解C.退化解D.惟一最优解答案:B9、PERT网络图中,()表示一个工序。

A.节点B.弧C.权D.关键路线答案:B10、假设对于一个动态规划问题,应用顺推法以及逆推解法得出的最优解分别为P和D,则有(A.P>DB.P答案:C11、下列有关线性规划问题的标准形式的叙述中错误的是()。

A.目标函数求极大B.约束条件全为等式C.约束条件右端常数项全为正D.变量取值全为非负答案:C12、线性规划问题的数学模型由目标函数、约束条件和()三个部分组成。

A.非负条件B.顶点集合C.最优解D.决策变量答案:D13、如果原问题有最优解,则对偶问题一定具有()。

A.无穷多解B.无界解C.最优解D.不能确定答案:C14、运输问题的基变量有()个。

最新最全的运筹学复习题及答案

最新最全的运筹学复习题及答案

四、把下列线性规划问题化成标准形式:i htninZ =— 2n 2Xj + x 2 + x 3 = 4 轧一百+总-X 3<6 lx 3<0,x 2>0f x 3 无约束2.令口二-工],Xi —巧‘-工二 化为标准型为 maiZ f =2工1‘ + Xj — 2工「+ 2工「工「+ 工)+ X}* ■*= 4x/ + Xi - 1/ + 工「, x 2 t x/, JT / 工03. maxZ = 2xj + x 3 + 3x 3 + &+ x 2 + X] + 叫冬7 2x| - 3xj + Sxj = - 8x t -2x a +2^>1,孟1 *旳鼻0 ’ x a ^0 * x<无釣束氛令帀=—i 5\x/「化为际准塑maxZ" = 2^! - z/十 3x )屮 疋/ -工广.r T - JCJ ' ++ 工J -十 JT * ■ 71 2工L 一 3xj* — 5jf] = 8$・tx i _2xj 十 2x/ 亠 2x<" - -x^ — 1起 >0 (j = 1,2, (8)五、按各题要求。

建立线性规划数学模型1、某工厂生产A 、B 、C 三种产品,每种产品的原材料消耗量、机械台时消耗量以及这些资源的限量,单位 产品的利润如下表所示:|■ X, +^22J 4<3和,衍>02、minZ=2x i -x 2+2x 3根据客户订货,三种产品的最低月需要量分别为 200, 250和100件,最大月销售量分别为 和120件。

月销售分别为250,280和120件。

问如何安排生产计划,使总利润最大。

五订•设曲事“彌分列代矯三种产品的产■曲 型为 morZ 廿!0x| + 14占 + 12巧 B +lg + <20002工]+ 1-lxi + jj 1C00 200< j t <250 250<i 2<280 100< <120 Xi i Xj I Xj 02、某建筑工地有一批长度为 10米的相同型号的钢筋,今要截成长度为 筋60根,问怎样下料,才能使所使用的原材料最省 ? 3米的钢筋90根,长度为 2.将10米长的钢箭截为3米长和4米长.共有且下几种 下料方式: 设吧,工分别表赤采用I 、]]、山科下料力成的钢筋 敕,则线性规则模型可号成:mtnZ = JE| * Xz 丰 Xj{2x z 卡 3xj > 90 2it + Xj 60Jl I X 3 t^3 耳 O1.某运输公司在春运期间需要 24小时昼夜加班工作,需要的人员数量如下表所示: 每个工作人员连续工作八小时,且在时段开始时上班,问如何安排,使得既满足以上要求,又使上班人数 最少?250, 2804米的钢3.设茯第/时段匕班的人数为也C - 1 l 2.--,6)t WJ**tT 规划棋型为minZ ■工}工*五、分别用图解法和单纯形法求解下列线性规划问题.并对照指出单纯形迭代的每一步相当于图解法可行域中的哪一个顶点O1. maxZ= 10xt 十 5x :2. niax^ — 2x )+ x 23x 1 + 4X 2^95x, M156x t + 2X 2^24 s. t J5x l + 2X 2C8S. t.'bx t + x 3 W5i t x l ,x 2^0?q fX I ^Ol 八专何诂%丿* :■■『詁:匚;出』沖L '~s~ —挣*IB.MBE.B ■ ;, ■■仏N 晁 < 5*・■ T 石。

大学考试试卷《运筹学》及参考答案3套.doc

大学考试试卷《运筹学》及参考答案3套.doc

2012年9月份考试运筹学第一次作业一、单项选择题(本大题共100分,共40小题,每小题2. 5分)1.•个无()、但允许多重边的图称为多重图。

A.边B.孤C.环D.路2.运筹学是一门()。

A.决策科学B.数学科学C.应用科学D.逻辑科学3.基可行解对应的基,称为()。

A.最优基B.可行基C.最优可行基D.极值基4.运筹学用()来描述问题。

A.拓补语言B.计算机语言C.机器语言D 数学语言5.隐枚墓最是省去若干目标函数不占优势的()的一种检验过程。

A.基本可行解B.最优解C.基本解D.可行解6.对偶问题与原问题研究出自()目的。

A.不同B.相似C.相反D.同一7.资源价格大于影子价格时,应该()该资源。

A.头入B.卖出C.保持现状D 借贷出8.敏房性分析假定()不变,分析参数的波动对最优解有什么影响。

A.可行基B.基本基C.非可行基D.最优基9.从系统工程或管理信息预测决辅助系统的角度来看,管理科学与()就其功能而言是等同或近似的。

A 纬汁学B:计算机辅助科学C,运筹学D.人工智能科学10.闭回路的特点不包括()。

A.每个顶点都是直角B.每行或每列有且仅有两个顶点C.每个顶点的连线都是水平的或是垂直的D.起点终点可以不同11.运输问题分布m*n矩阵表的横向约束为()。

A.供给约束B.需求约束C.以上两者都有可能C.超额约束12.动态规划综合了()和“最优化原理”。

A.一次决策方法B.二次决策方法C.系统决策方法D.分级决策方法13.线性规划问题不包括()。

A.资源优化配置B.复杂系统结构性调整C,混沌系统分析D,宏、微观经济系统优化14.运输问题分布m*n矩阵表的纵向约束为()。

A.供给约束B.需求约束C.以上两者都有可D.超额约束15.路的第一个点和最后一个点相同,称为()oA.通路B,环路C.回路D,连通路16.对偶问题与原问题研究的是()对象。

A.2种B.不同的C.1种D.相似的17.运输问题的求解方法不包括()。

运筹学复习题及 答案

运筹学复习题及 答案

运筹学复习题及答案一、一个毛纺厂用羊毛和涤纶生产A、B、C混纺毛料,生产1单位A、B、C分别需要羊毛和涤纶3、2;1、1;4、4单位,三种产品的单位利润分别为4、1、5。

每月购进的原料限额羊毛为8000单位,涤纶为3000单位,问此毛纺厂如何安排生产能获得最大利润?(要求:建立该问题的数学模型)解:设生产混纺毛料ABC各x1、x2、x3单位max z=x1+x2+5x33x1+x2+4x3≤80002x1+x2+4x3≤3000x1,x2,x3≥0二、写出下述线性规划问题的对偶问题max s=2x1+3x2-5x3+x4x1+x2-3x3+x4≥52x1 +2x3-x4≤4x2 +x3+x4=6x1,x2,x3≥0;x4无约束解:先将原问题标准化为:max s=2x1+3x2-5x3+x4-x1-x2+3x3-x4≤-52x1 +2x3-x4≤4x2 +x3+x4=6x1,x2,x3≥0;x4无约束则对偶问题为:min z=-5y1+4y2+6y3-y1+2y2≥2-y1+ y2≥33y1+ 2y2+y3≥-5-y1-y2+y3=1y1,y2≥0,y3无约束三、求下述线性规划问题min S =2x1+3x2-5x3x 1+x 2-3x 3 ≥5 2x 1 +2x 3 ≤4x 1,x 2,x 3≥0解:引入松弛变量x4,x5,原问题化为标准型:max Z=-S =-2x 1-3x 2+5x 3x 1+x 2-3x 3 -x 4=5 2x 1 +2x 3 +x 5=4x 1,x 2,x 3, x 4,x 5≥0 对应基B 0=(P2,P5T(B 0)=x1的检验数为正,x1进基,由min {5/1,4/2}=4/2知,x5出基,迭代得新基B1=(P2,P1),对应的单纯形表为T(B 1)=至此,检验数全为非正,已为最优单纯形表。

对应的最优解为: x1=2,x2=3,x3=x4=x5=0,max z=-13,故原问题的最优解为: x1=2,x2=3,x3 =0,min s=13。

运筹学试习题及答案

运筹学试习题及答案

运筹学试习题及答案《运筹学》复习试题及答案(一)一、填空题1、线性规划问题是求一个线性目标函数_在一组线性约束条件下的极值问题。

2、图解法适用于含有两个变量的线性规划问题。

3、线性规划问题的可行解是指满足所有约束条件的解。

4、在线性规划问题的基本解中,所有的非基变量等于零。

5、在线性规划问题中,基可行解的非零分量所对应的列向量线性无关6、若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。

7、线性规划问题有可行解,则必有基可行解。

8、如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其基可行解_的集合中进行搜索即可得到最优解。

9、满足非负条件的基本解称为基本可行解。

10、在将线性规划问题的一般形式转化为标准形式时,引入的松驰数量在目标函数中的系数为零。

11、将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左_端加入松弛变量。

12、线性规划模型包括决策(可控)变量,约束条件,目标函数三个要素。

13、线性规划问题可分为目标函数求极大值和极小_值两类。

14、线性规划问题的标准形式中,约束条件取等式,目标函数求极大值,而所有变量必须非负。

15、线性规划问题的基可行解与可行域顶点的关系是顶点多于基可行解16、在用图解法求解线性规划问题时,如果取得极值的等值线与可行域的一段边界重合,则这段边界上的一切点都是最优解。

17、求解线性规划问题可能的结果有无解,有唯一最优解,有无穷多个最优解。

18、19、如果某个变量Xj为自由变量,则应引进两个非负变量Xj , Xj,同时令Xj=Xj- Xj。

20、表达线性规划的简式中目标函数为ijij21、、(2、1 P5))线性规划一般表达式中,aij表示该元素位置在二、单选题1、如果一个线性规划问题有n个变量,m个约束方程(m行解的个数最为_C_。

′〞′A、m个B、n个C、CnD、Cm个2、下列图形中阴影部分构成的集合是凸集的是A mn3、线性规划模型不包括下列_ D要素。

《运筹学》期末考试试题及参考答案

《运筹学》期末考试试题及参考答案

《运筹学》期末考试试题及参考答案《运筹学》期末考试试题及参考答案一、填空题1、运筹学是一门新兴的_________学科,它运用_________方法,研究有关_________的一切可能答案。

2、运筹学包括的内容有_______、、、_______、和。

3、对于一个线性规划问题,如果其目标函数的最优解在某个整数约束条件的约束范围内,那么该最优解是一个_______。

二、选择题1、下列哪一项不是运筹学的研究对象?( ) A. 背包问题 B. 生产组织问题 C. 信号传输问题 D. 原子核物理学2、以下哪一个不是运筹学问题的基本特征?( ) A. 唯一性 B. 现实性 C. 有解性 D. 确定性三、解答题1、请简述运筹学在日常生活中的应用实例,并就其中一个进行详细说明。

2、某企业生产三种产品,每种产品都可以选择用手工或机器生产。

假设生产每件产品手工需要的劳动时间为3小时,机器生产为2小时,卖价均为50元。

此外,手工生产每件产品的材料消耗为10元,机器生产为6元。

已知每个工人每天工作时间为24小时,可生产10件产品,每件产品的毛利润为50元。

请用运筹学方法确定手工或机器生产的数量,以达到最大利润。

参考答案:一、填空题1、交叉学科;数学;合理利用有限资源,获得最大效益2、线性规划、整数规划、动态规划、图论与网络、排队论、对策论3、整点最优解二、选择题1、D 2. A三、解答题1、运筹学在日常生活中的应用非常广泛。

例如,在背包问题中,如何在有限容量的背包中选择最有价值的物品;在生产组织问题中,如何合理安排生产计划,以最小化生产成本或最大化生产效率;在信号传输问题中,如何设计最优的信号传输路径,以确保信号的稳定传输。

以下以背包问题为例进行详细说明。

在背包问题中,给定一组物品,每个物品都有自己的重量和价值。

现在需要从中选择若干物品放入背包中,使得背包的容量恰好被填满,同时物品的总价值最大。

这是一个典型的0-1背包问题,属于运筹学的研究范畴。

最新(整理)《运筹学》期末考试试题及参考答案

最新(整理)《运筹学》期末考试试题及参考答案

(整理)《运筹学》期末考试试题及参考答案------------------------------------------作者xxxx------------------------------------------日期xxxx《运筹学》试题参考答案一、填空题(每空2分,共10分)1、在线性规划问题中,称满足所有约束条件方程和非负限制的解为 可行解 。

2、在线性规划问题中,图解法适合用于处理 变量 为两个的线性规划问题。

3、求解不平衡的运输问题的基本思想是 设立虚供地或虚需求点,化为供求平衡的标准形式 。

4、在图论中,称 无圈的 连通图为树。

5、运输问题中求初始基本可行解的方法通常有 最小费用法 、 西北角法 两种方法。

二、(每小题5分,共10分)用图解法求解下列线性规划问题: 1)max z = 6x 1+4x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0781022122121x x x x x x x , 解:此题在“《运筹学》复习参考资料。

do c”中已有,不再重复. 2)min z =-3x 1+2x 2⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤-≤-≤+-≤+0,137210422422121212121x x x x x x x x x x 解:⑴ ⑵ ⑶ ⑷ ⑸ ⑹、⑺⑴⑵ ⑶ ⑷ ⑸、⑹可行解域为ab cda,最优解为b 点。

由方程组⎩⎨⎧==+02242221x x x 解出x 1=11,x 2=0∴X *=⎪⎪⎭⎫ ⎝⎛21x x =(11,0)T∴m in z =-3×11+2×0=-33三、(15分)某厂生产甲、乙两种产品,这两种产品均需要A、B 、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示:A B C 甲 9 4 3 70 乙 4 6 10 1203602003001)建立使得该厂能获得最大利润的生产计划的线性规划模型;(5分)2)用单纯形法求该问题的最优解.(10分) 解:1)建立线性规划数学模型:设甲、乙产品的生产数量应为x 1、x 2,则x 1、x 2≥0,设z是产品售后的总利润,则m ax z =70x 1+120x 2s .t 。

运筹学考试复习题及参考答案【新】

运筹学考试复习题及参考答案【新】

中南大学现代远程教育课程考试复习题及参考答案《运筹学》一、判断题:在下列各题中,你认为题中描述的内容为正确者,在题尾括号内写“T”,错误者写“F”。

1. 线性规划问题的每一个基本可行解对应可行域的一个顶点。

( )2. 用单纯形法求解一般线性规划时,当目标函数求最小值时,若所有的检验数C j-Z j≤0,则问题达到最优。

( )3. 若线性规划的可行域非空有界,则其顶点中必存在最优解。

( )4. 满足线性规划问题所有约束条件的解称为可行解。

( )5. 在线性规划问题的求解过程中,基变量和非机变量的个数是固定的。

( )6. 对偶问题的对偶是原问题。

( )7. 在可行解的状态下,原问题与对偶问题的目标函数值是相等的。

( )8. 运输问题的可行解中基变量的个数不一定遵循m+n-1的规则。

( )9. 指派问题的解中基变量的个数为m+n。

( )10. 网络最短路径是指从网络起点至终点的一条权和最小的路线。

( )11. 网络最大流量是网络起点至终点的一条增流链上的最大流量。

( )12. 工程计划网络中的关键路线上事项的最早时间和最迟时间往往是不相等。

( )13. 在确定性存贮模型中不许缺货的条件下,当费用项目相同时,生产模型的间隔时间比订购模型的间隔时间长。

( )14. 单目标决策时,用不同方法确定的最佳方案往往是不一致的。

( )15. 动态规则中运用图解法的顺推方法和网络最短路径的标号法上是一致的。

( )二、单项选择题1、对于线性规划问题标准型:maxZ=CX, AX=b, X≥0, 利用单纯形法求解时,每作一次迭代,都能保证它相应的目标函数值Z必为()。

A. 增大B. 不减少C. 减少D. 不增大2、若线性规划问题的最优解不唯一,则在最优单纯形表上()。

A. 非基变量的检验数都为零B. 非基变量检验数必有为零C. 非基变量检验数不必有为零者D. 非基变量的检验数都小于零3、线性规划问题的数学模型由目标函数、约束条件和()三个部分组成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中南大学现代远程教育课程考试复习题及参考答案《运筹学》一、判断题:在下列各题中,你认为题中描述的内容为正确者,在题尾括号内写“T”,错误者写“F”。

1. 线性规划问题的每一个基本可行解对应可行域的一个顶点。

( )2. 用单纯形法求解一般线性规划时,当目标函数求最小值时,若所有的检验数C j-Z j≤0,则问题达到最优。

( )3. 若线性规划的可行域非空有界,则其顶点中必存在最优解。

( )4. 满足线性规划问题所有约束条件的解称为可行解。

( )5. 在线性规划问题的求解过程中,基变量和非机变量的个数是固定的。

( )6. 对偶问题的对偶是原问题。

( )7. 在可行解的状态下,原问题与对偶问题的目标函数值是相等的。

( )8. 运输问题的可行解中基变量的个数不一定遵循m+n-1的规则。

( )9. 指派问题的解中基变量的个数为m+n。

( )10. 网络最短路径是指从网络起点至终点的一条权和最小的路线。

( )11. 网络最大流量是网络起点至终点的一条增流链上的最大流量。

( )12. 工程计划网络中的关键路线上事项的最早时间和最迟时间往往是不相等。

( )13. 在确定性存贮模型中不许缺货的条件下,当费用项目相同时,生产模型的间隔时间比订购模型的间隔时间长。

( )14. 单目标决策时,用不同方法确定的最佳方案往往是不一致的。

( )15. 动态规则中运用图解法的顺推方法和网络最短路径的标号法上是一致的。

( )二、单项选择题1、对于线性规划问题标准型:maxZ=CX, AX=b, X≥0, 利用单纯形法求解时,每作一次迭代,都能保证它相应的目标函数值Z必为()。

A. 增大B. 不减少C. 减少D. 不增大2、若线性规划问题的最优解不唯一,则在最优单纯形表上()。

A. 非基变量的检验数都为零B. 非基变量检验数必有为零C. 非基变量检验数不必有为零者D. 非基变量的检验数都小于零3、线性规划问题的数学模型由目标函数、约束条件和()三个部分组成。

A. 非负条件B. 顶点集合C. 最优解D. 决策变量4、已知x1= ( 2, 4), x2=(4, 8)是某线性规划问题的两个最优解,则()也是该线性规划问题的最优解。

A. (4,4)B. (1,2)C. (2,3)D. 无法判断5、下列数学模型中,( )是线性规划模型。

A. MinZ =3x 1+x 2-2 x 3B. 2x 1+3x 2-4x 3≤12 4x 1+x 2+2x 3≥83x 1-x 2+3x 3=6 x 1≥ 0,x 2无约束,x 3≤ 0C. D.6、线性规划问题最终解的情形有( )。

A. 可行解、最优解、基本解和无解B. 可行解、基本可行解、基本解和最优解C. 最优解、退化解、多重最优解和无解D. 最优解、退化解、多重解和无界解 7、若x 是原问题maxZ=CX , AX ≤b , X ≥0的可行解,y 是其对偶问题MinS=Yb , YA ≥C , Y ≥0的可行解,则有( )。

A. CX ≥YbB. CX ≤YbC. CX=YbD. 无法确定8、下面关于运输问题与线性规划问题的关系,( )是正确的。

A. 运输问题和线性规划问题是两类不同的优化问题;B. 运输问题和线性规划问题是两类相同的优化问题,但不能用相同的方法求解;C. 运输问题是一类特殊的线性规划问题;D. 该两类问题的关系无法确定。

9、动态规划问题中的状态变量必须具有( )性质。

A. 无后效性B. 无后效性和决策性C. 可知性和决策性D. 无后效性和可知性10、 图的组成要素有( )。

A. 点B. 点及点之间的连线C. 点和权D. 点、边和权 11、网络计划技术中关键路线法与计划评审技术两种方法的根本区别在于( )。

A. 工序时间参数的确定B. 计算原理与计算过程C. 关键路线的确定方法D. 最早时间与最迟时间的确定 12、下面关于网络图中的虚工序的描述,正确的是( )。

A. 虚工序是技术上的等待,因而它不耗费人力、物力,只耗费时间;B. 虚工序与实工序一样,包括技术上的等待,因而它既耗费人力、物力,又耗费时间;C. 虚工序所描述的是一类实际上不存在的工序,只是为了作图的需要;MaxZ= 10x 1+x 2-3x 3x 21+5x 2≤15 x 1-8x 2+3x 3≥22 x j ≥0, j=1,2,3 Z=5x 1+6x 2+8x 3-9x 4x 1+4x 3-x 4=19x 2-5x 3+4x 4≥30 x 1+x 2-6x 4≤9 x j ≥0,j=1,2,3,4 MaxZ=x 1+4x 2-8x 3+x 24x 1+4x 3-x 4=29x 2-5x 3+4x 4≥40 x 1+x 2-6x 4≤19 x j ≥0,j=1,2,3,4D. 虚工序是表示前后两道工序之间的逻辑关系,因而它既不耗费人力、物力,又不耗费时间。

13、决策的三要素是( )。

A. 方案、状态和收益B. 方案、状态和损失C. 方案集、状态集和损益矩阵D. 方案集、状态集和概率集 14、求解风险型决策问题的最大概率准则,一般适用于( )。

A. 状态概率为已知的情形B. 状态概率为相等的情形C. 状态概率悬殊较大的情形D. 既然作为决策准则,应该适用于任何情形 15、针对某一特定的不确定型的决策问题,分别采用五种决策准则(等可能准则、乐观准则、悲观准则、折衷准则和后悔值准则)进行决策,其决策结果( )。

A. 相同B. 一般不相同C. 绝大多数相同D. 不能确定三、简述题1. 用图解法说明一般线性规划问题的最优解一定在可行域的顶点上达到。

2. 运输问题是特殊的线性规划问题,但为什么不用单纯形法求解。

3. 建立动态规划模型时,应定义状态变量,请说明状态变量的特点。

四、下列表是三个不同模型的线性规划单纯形表,请根据单纯形法原理和算法,分别在表中括号中填上适当的数字。

1. 计算该规划的目标函数值 2、确定上表中输入,输出变量五、已知一个线性规划原问题如下,请写出对应的对偶模型max 1225S x x =+121212438,0x x x x x x ≤⎧⎪≤⎪⎨+≤⎪⎪≥⎩ C j→201520Cix Bx 1 x 2x 3x 4x 520 x 121-1六、下图为动态规划的一个图示模型,边上的数字为两点间的距离,请用逆推法求出S 至F 点的最短路径及最短路长。

七、自已选用适当的方法,对下图求最小(生成树)。

八、用标号法求下列网络V 1→V 7的最短路径及路长。

九、下图是某一工程施工网络图(统筹图),图中边上的数字为工序时间(天),请求出各事项的最早时间和最迟时间,求出关键路线,确定计划工期。

V 1 V 7V 5V 6V 4 V 3V 254 35 3 1761731V 12335 23 3 5 6V 3V 2V 4V 5 V 6B 1S A 249B 38C 2 11 FC 195A 1 8 71112 146B 2 10 558十、某企业生产三种产品A 1、A 2、A 3。

每种产品在销售时可能出现销路好(S 1),销路一般(S 2)和销路差(S 3)三种状态,每种产品在不同销售状态的获利情况(效益值)如表1所示,请按乐观法则进行决策,选取生产哪种产品最为合适。

(表1)十一、已知运输问题的运价表和发量和收量如表2所示,请用最小元素法求出运输问题的一组解。

(表2)十二、下列表3是一个指派问题的效率表(工作时间表),其中A i 为工作人员(i=1, 2, 3, 4)、B j 为工作项目(j=1, 2, 3, 4),请作工作安排,使总的工作时间最小。

(表3)231 4 56 512491059 4状态 效益值 产品S 1S 2 S 3 A 1 5040 -6 A 2 20 15 9 A 318 1312B 1 B 2 B 3 B 4 A 1 2 9 12 7 9 A 2 1 3 5 2 4 A 3 10 4 2 6 5354 6B 1 B 2 B 3 B 4 A 1 4 1 7 4 A 2 2 2 3 5 A 3 5 6 4 3 A 46324十三、有一化肥厂用两种原料A,B生产C,D,E三种化肥,根据市场调查某地区各种化肥每天最少需求分别为100吨,60吨,130吨。

该厂每天可供的原料分别为200吨和240吨。

单位成品化肥所耗费的原料及销售利润如下表。

问每天应生产多少各类化肥,使该厂利润最大。

要求建立线性规划模型,不作具体计算。

化肥\原料 A B 最低需要量单位利润C 1 2 100 10D 1.5 1.2 26 15E 4 1 130 11供应量200 240《运筹学》参考答案一、判断题1. T2. F3. T4.T5.T6.T7. F8. T9. F10.T 11. F 12. F 13.T 14. T 15. F二、单项选择题1.A2.B3.D4.B5.A6.C7.B8.C9. D 10.B11.A 12.D 13.C 14.C 15.B三、简述题见教材四、计算题1.z=602. X4输入,X3输出五、S min = 4y1+3y2+4y3y 1+y 3≥2y 2+y 3≥5 y 1, y 2, y 3≥0 六、 S=26 七、八、最短路径:V 1→V 3→V 5→V 6→V 7 L=10九、关键线①—③—④—⑥ 计划工期31 十、S 1 S 2 S 3 A 1 50 40 -6 A 2 20 15 9 A 3 181312选A 1为最佳方案V 1V 3 V 2V 4V 5V 6 50 √ 20 1823 145 6 512 4 9 1050 9 40 0 5 13 12 12 22 22 31 31 22 27V 1 V 3V 2V 4V 5V 6L=13L=13十一、 十二、L = 8十三、解:设成品化肥的产量分别为x 1、x 2、x 3吨,则线性规划模型为:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=≥≤++≤++≥≥≥++=3,2,1,02402.1220045.113026100111510321321321321j x x x x x x x x x x x x x MaxZ jB 1 B 2 B 3 B 4 A 1 2 ⑨ 12 ⑦ 9 A 2 ① 3 5 ② 4 A 3 10 ④ ② 6 535463 1 6 5 14 B 1 B 2 B 3 B 4 A 14①74A 2 ②2 3 5 A 3 5 6 4 ③A 4 6 3 ②4。

相关文档
最新文档