应用题中常见数量关系
常见几类应用题及其基本数量关系
常见几类应用题及其基本数量关系
明确各类应用题中的基本数量关系,是正确列出方程的关键.常遇到的几类应用题及其基本关系如下:
1.行程问题:基本关系式为
速度×时间=距离
2.工程问题:基本关系式为
工作效率×工作时间=工作总量
计划数量×超额百分数=超额数量
计划数量×实际完成百分数=实际数量
3.百分比浓度问题:基本关系式为
溶液×百分比浓度=溶质
4.混合物问题:基本关系式为
各种混合物数量之和=混合后的总量
混合前纯物之和=混合后纯物重量
混合物重量×含纯物的百分数=纯物的重量
5.航行问题:基本关系式为
静水速度+水速=顺水速度
静水速度-水速=逆水速度
6.数字问题要注意各数位上的数字与数位的关系.
7.倍比问题,要注意一些基本关系术语,如:倍、分、大、小等.。
通用的数量关系式
一、常用的数量关系式1、速度×时间=路程路程÷速度=时间路程÷时间=速度2、单价×数量=总价总价÷单价=数量总价÷数量=单价3、加数+加数=和和-一个加数=另一个加数4、被减数-减数=差被减数-差=减数差+减数=被减数5、因数×因数=积积÷一个因数=另一个因数6、被除数÷除数=商被除数÷商=除数商×除数=被除数在有余数的除法中: (被除数-余数)÷除数=商7、总数÷总份数=平均数8、相遇问题相遇路程=速度和×相遇时间或相遇路程=快车速度×相遇时间+慢车速度×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间二、长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米三、面积单位换算1平方千米=1000000平方米=100公顷1公顷=10000平方米1平方米=100平方分米=10000平方厘米1平方分米=100平方厘米四、质量单位换算1吨=1000 千克1千克=1000克1千克=1公斤五、时间单位换算1世纪=100年1年=12月=4个季度大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒六、运算定律1. 加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。
2. 加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。
3. 乘法交换律:两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。
应用题数量关系
应用题常见数量关系一、部整关系1、一部分+另一部分=整体2、整体-一部分=另一部分3、整体-另一部分=一部分二、比差关系1、较大数-较小数=差2、较大数-差=较小数3、较小数+差=较大数三、份总关系1、每份数×份数=总数2、总数÷份数=每份数3、总数÷每份数=份数行程问题:速度×时间=路程路程÷速度=时间路程÷时间=速度价格问题:单价×数量=总价总价÷单价=数量总价÷数量=单价工效问题:效率×时间=总量总量÷时间=效率总量÷效率=时间四、倍数关系1、一倍数×倍数=几倍数2、几倍数÷倍数=一倍数3、几倍数÷一倍数=倍数理清了应用题常见的数量关系,你也来练一练吧:1.青山小学开展植树活动,三年级一班有3个小队,每个小队分成2个小组,每组植树5棵。
全班一共植树多少棵?数量关系式:12列式计算:答:2.学校图书馆买来720本新书,放在5个书架上,每个书架有4层。
平均每层放多少本?数量关系式:12列式计算:答:3.火车提速以后,从原来的平均每小时行147千米提速到平均每小时行196千米。
现在,火车从甲地到乙地只需要用3小时。
原来火车从甲地到乙地要用多少小时?数量关系式:12列式计算:答:4.洗衣厂门市部,上午卖出洗衣机3台,下午卖出同样的洗衣机7台,下午比上午多收货款3264元。
每台洗衣机多少元?数量关系式:12列式计算:答:5.学校给运动员购买服装,上衣每件118元,裤子每条65元,一共购买25套上衣和裤子,学校共花了多少元?数量关系式:12列式计算:答:6.水果店有28筐苹果,每筐12千克,卖出189千克,还剩多少千克?数量关系式:12列式计算:答:7.中年级同学去看电影,三年级去了265人,比四年级多去29人。
两个年级共去了多少人?数量关系式:12列式计算:答:8.水果店有10筐桃子,每筐25千克,已知桃子的总重量比苹果的总重量要轻90千克,问水果店有苹果多少千克?数量关系式:12列式计算:答:9.从A城到B城的路程是554千米,一辆汽车3小时行驶174千米。
应用题中常见的数量关系
二、基础知识:小学应用题中常见的数量关系:速度、时间、路程的关系;单价、数量、总价的关系;工效、工时、工作总量的关系;单产量、数量、总产量的关系.产量问题:单产量×数量=总产量工程问题:工程问题主要是研究工作总量、工作效率、工作时间这三种数量关系。
要完成的任务叫工作总量,单位时间的工作量叫做工作效率。
他们三者之间的关系:工作总量 = 工作效率×工作时间工作时间=工作总量÷工作效率工作效率=工作总量÷工作时间单价问题:购买物品一共需要的钱交总价,一件商品的价钱叫做单价。
他们三者之间的关系:总价=单价×数量总价÷单价=数量总价÷数量=单价三、例题解析:例1:去年生产队有土地20亩,每亩产粮400千克,一共产粮多少千克今年退耕还林土地减少了5亩,由于采用了新的种子,每亩产量提高了50千克,问今年年产量比去年是提高了还是降低了例2:已知篮球、足球、排球平均每个36元,篮球比排球每个多10元,足球比排球每个多8元,每个足球多少元练一练:学校买了18个篮球和20个足球,共付了490元,每个篮球14元,每个足球多少元例3:商店以每双12元购进200双凉鞋,卖到还剩下10双时,除去购进这批凉鞋的全部开销外还获利260元,问:这批凉鞋的售价是多少元例4:一个筑路队要筑1680米长的路。
已经筑了15天,平均每天筑60米。
其余的12天筑完,余下的平均每天筑多少米例5:两工程队分别修同样长的一段路,甲队每天修680米,18天竣工;乙队每天比甲队多修136米,多少天竣工练一练:锅炉房运进一批煤,计划每天烧250公斤,可烧90天;实际每天节约25公斤,实际烧了多少天例6:某工程队修路,36人8天可以完成1440米,照这样进度,45人修路1350米,需要多少天例7:要修一条长3000米的公路,甲队每天修300米,乙队每天修200米,两队合修多少天完成(分析:两人共同完成,那么工作效率应该是两人工作效率之和,即:工作总量÷工作效率之和=共同工作所需时间)例8:甲、乙两队同时开凿一条长770米的隧道。
应用题中常见数量关系
应用题中常见数量关系单价×数量=总价工作效率×工作时间=工作总量总价÷数量=单价工作总量÷工作时间=工作效率总价÷单价=数量工作总量÷工作效率=工作时间速度×时间=路程每份数×份数=总数路程÷时间=速度路程÷速度=时间加数+加数=和一个加数=和-另一个加数被减数-减数=差减数=被减数-差被减数=差+减数单产量×数量=总产量总产量÷数量=单产量总产量÷单产量=数量总数÷份数=每份数总数÷每份数=份数因数×因数=积一个因数=积÷另一个因数被除数÷除数=商除数=被除数÷商被除数=商×除数 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数数学常用的数量关系式一、单位换算的进率1、长度1米=10分米 1分米=10厘米 1厘米=10毫米 1千米=1000米 1米=10分米=100厘米=1000毫米 1分米=10厘米=100毫米 2、面积1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 1平方千米=100公顷 1平方米=100平方分米=10000平方厘米=100 0000平方毫米 1平方分米=100平方厘米=10000平方毫米 1公顷=10000平方米 3、体积容积1立方米=1000立方分米=100 0000立方厘米 1立方米=1000升=100 0000毫升 1立方分米=1000立方厘米 1升=1000毫升 1立方分米=1000毫升 1立方厘米=1毫升 1立方分米=1升 4、重量1吨=1000千克 1千克=1000克 1吨=1000千克=100 0000克 5. 金钱1元=10角 1角=10分 1元=10角=100分 6、时间1小时=60分钟 1分钟=60秒 1小时=60分钟=3600秒 1昼夜=24小时二、年月季度1年有12个月,其中大月是1、3、5、7、8、10、12月有31天;小月是4、6、9、11月有30天;平年2月有28天,闰年2月有29天。
常用的数量关系式
常用的数量关系式1、速度×时间=路程路程÷速度=时间路程÷时间=速度2、单价×数量=总价总价÷单价=数量总价÷数量=单价3、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率4、加数+加数=和和-一个加数=另一个加数5、被减数-减数=差被减数-差=减数差+减数=被减数6、因数×因数=积积÷一个因数=另一个因数6、被除数÷除数=商被除数÷商=除数商×除数=被除数在有余数的除法中: (被除数-余数)÷除数=商7、总数÷总份数=平均数8、相遇问题相遇路程=速度和×相遇时间或相遇路程=快车速度×相遇时间+慢车速度×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间9、利息=本金×利率×时间10、收入-支出=结余单产量×数量=总产量量的计量在日常生活、生产劳动和科学研究中,经常要进行各种量的计量,我国法定计量单位与国际计量单位一致。
名数;数和单位名称合起来叫做名数。
单名数:只含有一种单位名称的名数叫单名数。
复名数:含有两种或两种以上单位名称的名数叫复名数。
×进率高级单位的名数低级单位的名数÷进率长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米面积单位换算1平方千米=1000000平方米1公顷=10000平方米1平方千米=100公顷1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体积(容积)单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米 1立方分米=1升1立方厘米=1毫升1升=1000毫升质量单位换算1吨=1000 千克1千克=1000克1千克=1公斤人民币单位换算1元=10角1角=10分1元=100分时间单位换算1世纪=100年1年=12月=4个季度大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒练习:填空(1). 1时30分=()时40分=()时时=()分0.7时=()分平方米=()平方分米125克=()千克2 立方分米=()升=()毫升10 吨=()吨()千克()元=50元8角1分(2).1米∶10厘米=()∶()=()∶()100毫升∶1升=()∶()=()∶ ()(3).填上适当的计量单位名称。
常用的数量关系
【常用的数量关系】1、每份数×份数=总数;总数÷每份数=份数;总数÷份数=每份数2、1倍数×倍数=几倍数;几倍数÷1倍数=倍数;几倍数÷倍数=1倍数3、速度×时间=路程;路程÷速度=时间;路程÷时间=速度4、单价×数量=总价;总价÷单价=数量;总价÷数量=单价5、工作效率×工作时间=工作总量;工作总量÷工作效率=工作时间;工作总量÷工作时间=工作效率;6、加数+加数=和;和-一个加数=另一个加数7、被减数-减数=差;被减数-差=减数;差+减数=被减数8、因数×因数=积;积÷一个因数=另一个因数9、被除数÷除数=商;被除数÷商=除数;商×除数=被除数【小学数学图形计算公式】1、正方形(C:周长,S:面积,a:边长)周长=边长×4;C=4a面积=边长×边长;S=a×a2、正方体(V:体积,a:棱长)表面积=棱长×棱长×6;S表=a×a×6体积=棱长×棱长×棱长;V= a×a×a3、长方形(C:周长,S:面积,a:边长,b:宽)周长=(长+宽)×2;C=2(a+b)面积=长×宽;S=a×b4、长方体(V:体积,S:面积,a:长,b:宽,h:高)(1)表面积=(长×宽+长×高+宽×高)×2;S=2(ab+ah+bh)(2)体积=长×宽×高;V=abh5、三角形(S:面积,a:底,h:高)面积=底×高÷2 ;S=ah÷2三角形的高=面积×2÷底三角形的底=面积×2÷高6、平行四边形(S:面积,a:底,h:高)面积=底×高;S=ah7、梯形(S:面积,a:上底,b:下底,h:高)面积=(上底+下底)×高÷2;S=(a+b)×h÷28、圆形(S:面积,C:周长,π:圆周率,d:直径,r:半径)(1)周长=π×直径π=2×π×半径;C=πd=2πr(2)面积=π×半径×半径;S= πr29、圆柱体(V:体积,S:底面积,C:底面周长,h:高,r:底面半径)(1)侧面积=底面周长×高=Ch=πdh=2πrh(2)表面积=侧面积+底面积×2(3)体积=底面积×高10、圆锥体(V:体积,S:底面积,h:高,r:底面半径)体积=底面积×高÷311、总数÷总份数=平均数12、和差问题的公式:已知两数的和及它们的差,求这两个数各是多少的应用题,叫做和差应用题,简称和差问题。
典型应用题数量关系
典型应用题数量关系1归一问题在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
这类应用题叫做归一问题。
总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数先求出单一量,以单一量为标准,求出所要求的数量。
2xx问题解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。
所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。
1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量先求出总数量,再根据题意得出所求的数量。
3和差问题已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。
大数=(和+差)÷2小数=(和-差)÷24和倍问题已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。
总和÷(几倍+1)=较小的数总和-较小的数=较大的数较小的数×几倍=较大的数5差倍问题已知两个数的差及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。
两个数的差÷(几倍-1)=较小的数×几倍=较大的数6倍比问题有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题。
总量÷一个数量=倍数另一个数量×倍数=另一总量先求出倍数,再用倍比关系求出要求的数。
7相遇问题两个运动的物体同时由两地出发相向而行,在途中相遇。
这类应用题叫做相遇问题。
相遇时间=总路程÷(甲速+乙速)总路程=(甲速+乙速)×相遇时间9植树问题按相等的距离植树,在距离、棵距、棵数这三个量之间,已知其中的两个量,要求第三个量,这类应用题叫做植树问题。
应用题中常见的数量关系
应用题中常见的数量关系一、基本应用题1.基本的数量关系(1)部分数与总数的关系:部分数+部分数=总数总数-部分数=部分数(2)大数、小数与相差的关系:大数-小数=相差数小数+相差数=大数大数-相差数=小数(3)每份数、份数与总数的关系:每份数×份数=总数总数÷份数=每份数总数÷每份数=份数(4)倍数关系:几倍数÷一倍数=倍数一倍数×几倍=几倍数几倍数÷倍数=一倍数2.常见的数量关系(1)单价、数量与总价的关系:单价×数量=总价总价÷数量=单价总价÷单价=数量(2)速度、时间与路程的关系:速度×时间=路程路程÷时间=速度路程÷速度=时间(3)单产量、数量与总产量的关系:单产量×数量=总产量总产量÷数量=单产量总产量÷单产量=数量(4)工作效率、工作时间与工作总量的关系:工作效率×工作时间=工作总量工作总量÷工作时间=工作效率工作总量÷工作效率=工作时间二、典型应用题1.求平均数应用题总数量÷总份数=平均数2.归一问题的数量关系(1)正归一:总量÷数量=单一量单一量×新的数量=新的总量(2)反归一:总量÷数量=单一量新的总量÷单一量=新的数量(小学奥数之归一问题解析及公式:为什么把有的问题叫归一问题?我国珠算除法中有一种方法,称为归除法.除数是几,就称几归;除数是8,就称为8归.而归一的意思,就是用除法求出单一量,这大概就是归一说法的来历吧!归一问题有两种基本类型.一种是正归一,也称为直进归一.如:一辆汽车3小时行150千米,照这样,7小时行驶多少千米?另一种是反归一,也称为返回归一.如:修路队6小时修路180千米,照这样,修路240千米需几小时?正、反归一问题的相同点是:一般情况下第一步先求出单一量;不同点在第二步.正归一问题是求几个单一量是多少,反归一是求包含多少个单一量。
应用题中常见的数量关系
应用题中常见的数量关系一、基本应用题1.基本的数量关系(1)部分数与总数的关系:部分数+部分数=总数总数-部分数=部分数(2)大数、小数与相差的关系:大数-小数=相差数小数+相差数=大数大数-相差数=小数(3)每份数、份数与总数的关系:每份数×份数=总数总数÷份数=每份数总数÷每份数=份数(4)倍数关系:几倍数÷一倍数=倍数一倍数×几倍=几倍数几倍数÷倍数=一倍数2.常见的数量关系(1)单价、数量与总价的关系:单价×数量=总价总价÷数量=单价总价÷单价=数量(2)速度、时间与路程的关系:速度×时间=路程路程÷时间=速度路程÷速度=时间(3)单产量、数量与总产量的关系:单产量×数量=总产量总产量÷数量=单产量总产量÷单产量=数量(4)工作效率、工作时间与工作总量的关系:工作效率×工作时间=工作总量工作总量÷工作时间=工作效率工作总量÷工作效率=工作时间二、典型应用题1.求平均数应用题总数量÷总份数=平均数2.归一问题的数量关系(1)正归一:总量÷数量=单一量单一量×新的数量=新的总量(2)反归一:总量÷数量=单一量新的总量÷单一量=新的数量(小学奥数之归一问题解析及公式:为什么把有的问题叫归一问题?我国珠算除法中有一种方法,称为归除法.除数是几,就称几归;除数是8,就称为8归.而归一的意思,就是用除法求出单一量,这大概就是归一说法的来历吧!归一问题有两种基本类型.一种是正归一,也称为直进归一.如:一辆汽车3小时行150千米,照这样,7小时行驶多少千米?另一种是反归一,也称为返回归一.如:修路队6小时修路180千米,照这样,修路240千米需几小时?正、反归一问题的相同点是:一般情况下第一步先求出单一量;不同点在第二步.正归一问题是求几个单一量是多少,反归一是求包含多少个单一量。
常用的数量关系式
一、常用的数量关系式1、速度×时间=路程路程÷速度=时间路程÷时间=速度2、单价×数量=总价总价÷单价=数量总价÷数量=单价3、加数+加数=和和-一个加数=另一个加数4、被减数-减数=差被减数-差=减数差+减数=被减数5、因数×因数=积积÷一个因数=另一个因数6、被除数÷除数=商被除数÷商=除数商×除数=被除数在有余数的除法中: (被除数-余数)÷除数=商7、总数÷总份数=平均数8、相遇问题相遇路程=速度和×相遇时间或相遇路程=快车速度×相遇时间+慢车速度×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间二、长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米三、面积单位换算1平方千米=1000000平方米=100公顷1公顷=10000平方米1平方米=100平方分米=10000平方厘米1平方分米=100平方厘米四、质量单位换算1吨=1000 千克1千克=1000克1千克=1公斤五、时间单位换算1世纪=100年1年=12月=4个季度大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒六、运算定律1. 加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。
2. 加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。
3. 乘法交换律:两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。
小学数学应用题十一种基本数量关系附例题
小学数学应用题十一种基本数量关系附例题从一年级开始,把应用题的数量关系讲明白,把类型分清楚,使学生清晰理解和掌握各种类型中的数量关系,将是关键的一环。
也是为今后解答复合应用题打好基础的重要一步。
下面就一起来看看小学数学应用题的11种基本数量关系。
加法的种类:(2种)1、已知一部分数和另一部分数,求总数。
例:小明家养灰兔8只,养白兔4只。
一共养兔多少只?想:已知一部分数(灰兔8只)和另一部分数(白兔4只)。
求总数。
列式:8+4=12(只)答:(略)2、已知小数和相差数,求大数。
例:小利家养白兔4只,灰兔比白兔多3只。
灰兔有多少只?想:已知小数(白兔4只)和相差和(灰兔比白兔多3只),求大数。
(灰兔的只数。
)列式:4+3=7(只)答:(略)减法的种类:(3种)1、已知总数和其中一部分数,求另一部分数。
例:小丽家养兔12只,其中有白兔8只,其余的是灰兔,灰兔有多少只?想:已知总数(12只),和其中一部分数(白兔8只),求另一部分数(灰兔有多少只?)列式:12—8=4(只)2、已知大数和相差数,求小数。
例:小强家养白兔8只,养的白兔比灰兔多3只。
养灰兔多少只?想:已知大数(白兔8只)和相差数(白兔比灰兔多3只),求小数(灰兔有多少只?)列式:8-3=5(只)3、已知大数和小数,求相差数。
例:小勇家养白兔8只,灰兔5只。
白兔比灰兔多多少只?想:已知大数(白兔8只)和小数(灰兔5只),求相差数。
(白兔比灰兔多多少只?)列式:8-5=3(只)乘法的种类:(2种)1、已知每份数和份数。
求总数。
例:小利家养了6笼兔子,每笼4只。
一共养兔多少只?想:已知每份数(4只)和份数(6笼),求总数(一共养兔多少只?)也就是求6个4是多少。
用乘法计算。
列式:4×6=24(只)本类应用题值得一提的是,一定要学生分清份数与每份数两者关系,计算时一定不要列反题。
不得改变两者关系。
即:每份数×份数=总数。
决不可以列式:份数×每份数=总数。
常用的数量关系式
一、常用得数量关系式1、速度×时间=路程路程÷速度=时间路程÷时间=速度2、单价×数量=总价总价÷单价=数量总价÷数量=单价3、加数+加数=与与-一个加数=另一个加数4、被减数-减数=差被减数-差=减数差+减数=被减数5、因数×因数=积积÷一个因数=另一个因数6、被除数÷除数=商被除数÷商=除数商×除数=被除数在有余数得除法中: (被除数-余数)÷除数=商7、总数÷总份数=平均数8、相遇问题相遇路程=速度与×相遇时间或相遇路程=快车速度×相遇时间+慢车速度×相遇时间相遇时间=相遇路程÷速度与速度与=相遇路程÷相遇时间二、长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米三、面积单位换算1平方千米=1000000平方米=100公顷1公顷=10000平方米1平方米=100平方分米=10000平方厘米1平方分米=100平方厘米四、质量单位换算1吨=1000 千克1千克=1000克1千克=1公斤五、时间单位换算1世纪=100年1年=12月=4个季度大月(31天)有:1\3\5\7\8\10\12月小月(30天)得有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒六、运算定律1、加法交换律:两个数相加,交换加数得位置,它们得与不变,即a+b=b+a 。
2、加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再与第一个数相加它们得与不变,即(a+b)+c=a+(b+c) 。
3、乘法交换律:两个数相乘,交换因数得位置它们得积不变,即a×b=b×a。
4、乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再与第一个数相乘,它们得积不变,即(a×b)×c=a×(b×c) 。
常用的数量关系
【常用的数量关系】3、速度×时间=路程;路程÷速度=时间;路程÷时间=速度4、单价×数量=总价;总价÷单价=数量;总价÷数量=单价5、工作效率×工作时间=工作总量;工作总量÷工作效率=工作时间;工作总量÷工作时间=工作效率;6、加数+加数=和;和-一个加数=另一个加数7、被减数-减数=差;被减数-差=减数;差+减数=被减数8、因数×因数=积;积÷一个因数=另一个因数9、被除数÷除数=商;被除数÷商=除数;商×除数=被除数【小学数学图形计算公式】1、正方形(C:周长, S:面积, a:边长)周长=边长×4; C=4a面积=边长×边长; S=a×a2、正方体(V:体积, a:棱长)表面积=棱长×棱长×6; S表=a×a×6=6a2体积=棱长×棱长×棱长; V= a×a×a=a33、长方形(C:周长, S:面积, a:边长, b:宽)周长=(长+宽)×2; C=2(a+b)面积=长×宽; S=a×b=ab4、长方体(V:体积, S:面积, a:长, b:宽, h:高)(1)表面积=(长×宽+长×高+宽×高)×2; S=2(ab+ah+bh)(2)体积=长×宽×高; V=abh5、三角形(S:面积, a:底, h:高)面积=底×高÷2 ; S=ah÷2三角形的高=面积×2÷底三角形的底=面积×2÷高6、平行四边形(S:面积, a:底, h:高)面积=底×高; S=ah7、梯形(S:面积, a:上底, b:下底, h:高)面积=(上底+下底)×高÷2; S=(a+b)×h÷28、圆形(S:面积, C:周长,π:圆周率, d:直径, r:半径)(1)周长=π×直径π=2×π×半径; C=πd=2πr(2)面积=π×半径×半径; S= πr29、圆柱体(V:体积, S:底面积, C:底面周长, h:高, r:底面半径)(1)侧面积=底面周长×高=Ch=πdh=2πrh(2)表面积=侧面积+底面积×2(3)体积=底面积×高10、圆锥体(V:体积, S:底面积, h:高, r:底面半径)体积=底面积×高÷311、总数÷总份数=平均数12、和差问题的公式:已知两数的和及它们的差,求这两个数各是多少的应用题,叫做和差应用题,简称和差问题。
应用题常用数量关系
一、应用题常用数量关系:1、平均数问题每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、一般行程问题速度×时间=路程路程÷速度=时间路程÷时间=速度3、行程问题中的相遇问题速度和×相遇时间=相遇路程相遇路程÷速度和=相遇时间相遇路程÷相遇时间=速度和相遇路程÷相遇时间—甲速度=乙速度4、行程问题中的追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间5、价钱问题单价×数量=总价总价÷单价=数量总价÷数量=单价6、工作问题工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率7、产量问题单产量×面积=总产量总产量÷单产量=面积总产量÷面积=单产量8、植树问题⑴在线路的两端都要植树栽树棵数=间隔数+1⑵在线路的一端要植树,另一端不要植树株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数二、平面图形的公式1、正方形C周长S面积a边长周长=边长×4C正=4a面积=边长×边长S正=a×a2、长方形C周长S面积a边长周长=(长+宽)×2 C长=2(a+b)面积=长×宽S长=ab3、平行四边形s面积a底h高面积=底×高s平=ah4、三角形s面积a底h高面积=底×高÷2 s三=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高5、梯形s面积a上底b下底h高面积=(上底+下底)×高÷2s梯=(a+b)× h÷2三、单位及进率(1)长度计量单位及进率:1千米(km)=1公里1千米=1000米1米=10分米(dm)1分米=10厘米(cm)1厘米=10毫米(mm)(2)面积计量单位及进率:1平方千米(k㎡)=100公顷(ha)1平方千米=1000000平方米(㎡)1公顷=10000平方米1平方米=100平方分米(d㎡)1平方分米=100平方厘米(c㎡)相邻两个面积单位之间的进率是100 (3)体积容积单位及进率:1立方米(m³)=1000立方分米(dm³) 1立方分米=1000立方厘米(cm³)1立方分米=1升(L)1立方厘米=1毫升(mL)。
小学数学基本应用题数量关系共10种(附例题)
小学数学基本应用题数量关系共10种(附例题)1加法的种类:(2种)“1.已知一部分数和另一部分数,求总数。
例:小明家养灰兔8只,养白兔4只。
一共养兔多少只?想:已知一部分数(灰兔8只)和另一部分数(白兔4只)。
求总数。
列式:8+4=12(只)答:(略)2.已知小数和相差数,求大数。
例:小利家养白兔4只,灰兔比白兔多3只。
灰兔有多少只?想:已知小数(白兔4只)和相差和(灰兔比白兔多3只),求大数。
(灰兔的只数。
)列式:4+3=7(只)答:(略)2减法的种类:(3种)“1.已知总数和其中一部分数,求另一部分数。
例:小丽家养兔12只,其中有白兔8只,其余的是灰兔,灰兔有多少只?想:已知总数(12只),和其中一部分数(白兔8只),求另一部分数(灰兔有多少只?)列式:12—8=4(只)2.已知大数和相差数,求小数。
例:小强家养白兔8只,养的白兔比灰兔多3只。
养灰兔多少只?想:已知大数(白兔8只)和相差数(白兔比灰兔多3只),求小数(灰兔有多少只?)列式:8-3=5(只)3.已知大数和小数,求相差数。
例:小勇家养白兔8只,灰兔5只。
白兔比灰兔多多少只?想:已知大数(白兔8只)和小数(灰兔5只),求相差数。
(白兔比灰兔多多少只?)列式:8-5=3(只)3乘法的种类:(2种)“1.已知每份数和份数。
求总数。
例:小利家养了6笼兔子,每笼4只。
一共养兔多少只?想:已知每份数(4只)和份数(6笼),求总数(一共养兔多少只?)也就是求6个4是多少。
用乘法计算。
列式:4×6=24(只)本类应用题值得一提的是,一定要学生分清份数与每份数两者关系,计算时一定不要列反题。
不得改变两者关系。
即:每份数×份数=总数。
决不可以列式:份数×每份数=总数。
2.求一个数的几倍是多少?例:白兔有8只,灰兔的只数是白兔的2倍。
灰兔有多少只?想:白兔有8只,灰兔的只数是白兔的2倍,也就是说:灰兔有白兔只数两个那么多,就是求2个8只是多少?列式:8×2=16(只)4除法的种类:(4种)“1.已知总数和份数,求每份数。
应用题中常见的数量关系[资料]
一、基本的数量关系部分数与总数的关系1、部分数+部分数=总数2、总数-部分数=部分数大数、小数与相差数的关系1大数-小数=相差数2小数+相差数=大数3大数-相差数=小数每份数、份数与总数的关系每份数×份数=总数总数÷份数=每份数总数÷每份数=份数(设一份数为x)倍数关系几倍数÷一倍数=倍数一倍数×倍数=几倍数几倍数÷倍数=一倍数(设一倍数位x)二、常见的数量关系单价、数量与总价的关系单价×数量=总价总价÷数量=单价总价÷单价=数量工作效率、工作时间与工作总量的关系工作效率×工作时间=工作总量工作总量÷工作时间=工作效率工作总量÷工作效率=工作时间速度、时间和路程的关系速度×时间=路程路程÷时间=速度路程÷速度=时间用去的钱、付出的钱和找回的钱的关系用去的钱+找回的钱=付出的钱付出的钱-找回的钱=用去的钱付出的钱-用去的钱=找回的钱一些常见的术语1、同样多2、多,少3、增加,增加了,增加到4、减少,减少了,减少到5、增加几倍6、扩大了,扩大到7、扩大8、缩小解应用题的一般方法1、弄清题意,分清已知条件和问题2、分析题中的数量关系,把应用题反映的实际问题抽象为数学问题3、列出算式或方程,进行计算或解方程4、检验,并写出答案。
归一应用题,归总应用题归一应用题:根据已知条件,在解题时要先求出一份是多少(归一)。
例如:单位时间的工作量(工作效率),单位面积的产量,商品的单价,单位时间内所行的路程(速度),然后再求出所求的问题,这类应用题叫归一问题。
归总应用题:是指在解答时要先计算出总数量(成为总),然后再算出所要求的数量是多少的应用题。
归总应用题暗含着“总”不变,即乘积不变,因此这类应用题也可以用反比例的知识解答。
ab=c(不变)行程应用题相遇问题,追及问题,行船问题,过桥问题置换问题公倍数,公因数问题和倍,差倍问题年龄问题盈亏问题植树问题。
常用的数量关系式
常用的数量关系式1、速度×时间=路程路程÷速度=时间路程÷时间=速度2、单价×数量=总价总价÷单价=数量总价÷数量=单价3、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率4、加数+加数=和和-一个加数=另一个加数5、被减数-减数=差被减数-差=减数差+减数=被减数6、因数×因数=积积÷一个因数=另一个因数6、被除数÷除数=商被除数÷商=除数商×除数=被除数在有余数的除法中: (被除数-余数)÷除数=商7、总数÷总份数=平均数8、相遇问题相遇路程=速度和×相遇时间或相遇路程=快车速度×相遇时间+慢车速度×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间9、利息=本金×利率×时间10、收入-支出=结余单产量×数量=总产量量的计量在日常生活、生产劳动和科学研究中,经常要进行各种量的计量,我国法定计量单位与国际计量单位一致。
名数;数和单位名称合起来叫做名数。
单名数:只含有一种单位名称的名数叫单名数。
复名数:含有两种或两种以上单位名称的名数叫复名数。
×进率高级单位的名数低级单位的名数÷进率长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米面积单位换算1平方千米=1000000平方米1公顷=10000平方米1平方千米=100公顷1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体积(容积)单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米1立方分米=1升1立方厘米=1毫升1升=1000毫升质量单位换算1吨=1000 千克1千克=1000克1千克=1公斤人民币单位换算1元=10角1角=10分1元=100分时间单位换算1世纪=100年1年=12月=4个季度大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒练习:填空(1). 1时30分=()时40分=()时时=()分0.7时=()分平方米=()平方分米125克=()千克2 立方分米=()升=()毫升10 吨=()吨()千克()元=50元8角1分(2).1米∶ 10厘米=()∶()=()∶()100毫升∶1升=()∶()=()∶ ()(3).填上适当的计量单位名称。
(完整版)常用的数量关系式
常用的数量关系式1、速度×时间=路程路程÷速度=时间路程÷时间=速度2、单价×数量=总价总价÷单价=数量总价÷数量=单价3、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率4、加数+加数=和和-一个加数=另一个加数5、被减数-减数=差被减数-差=减数差+减数=被减数6、因数×因数=积积÷一个因数=另一个因数6、被除数÷除数=商被除数÷商=除数商×除数=被除数在有余数的除法中: (被除数-余数)÷除数=商7、总数÷总份数=平均数8、相遇问题相遇路程=速度和×相遇时间或相遇路程=快车速度×相遇时间+慢车速度×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间9、利息=本金×利率×时间10、收入-支出=结余单产量×数量=总产量量的计量在日常生活、生产劳动和科学研究中,经常要进行各种量的计量,我国法定计量单位与国际计量单位一致。
名数;数和单位名称合起来叫做名数。
单名数:只含有一种单位名称的名数叫单名数。
复名数:含有两种或两种以上单位名称的名数叫复名数。
×进率高级单位的名数低级单位的名数÷进率长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米面积单位换算1平方千米=1000000平方米1公顷=10000平方米1平方千米=100公顷1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体积(容积)单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米1立方分米=1升1立方厘米=1毫升1升=1000毫升质量单位换算1吨=1000 千克1千克=1000克1千克=1公斤人民币单位换算1元=10角1角=10分1元=100分时间单位换算1世纪=100年1年=12月=4个季度大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒练习:填空(1). 1时30分=()时40分=()时时=()分0.7时=()分平方米=()平方分米125克=()千克2 立方分米=()升=()毫升10 吨=()吨()千克()元=50元8角1分(2).1米∶ 10厘米=()∶()=()∶()100毫升∶1升=()∶()=()∶ ()(3).填上适当的计量单位名称。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单价×数量=总价工作效率×工作时间=工作总量总价÷数量=单价工作总量÷工作时间=工作效率总价÷单价=数量工作总量÷工作效率=工作时间速度×时间=路程每份数×份数=总数路程÷时间=速度总数÷份数=每份数路程÷速度=时间总数÷每份数=份数加数+加数=和因数×因数=积一个加数=和-另一个加数一个因数=积÷另一个因数被减数-减数=差被除数÷除数=商减数=被减数-差除数=被除数÷商被减数=差+减数被除数=商×除数单产量×数量=总产量1倍数×倍数=几倍数总产量÷数量=单产量几倍数÷1倍数=倍数总产量÷单产量=数量几倍数÷倍数=1倍数数学常用的数量关系式一、单位换算的进率1、长度4、重量5. 金钱6、时间二、年月季度1年有12个月,其中大月是1、3、5、7、8、10、12月有31天;小月是4、6、9、11月有30天;平年2月有28天,闰年2月有29天。
1年有4个季度(每个季度有3个月):第一季度1、2、3月; 第二季度4、5、6月;第三季度7、8、9月;第四季度10、11、12月。
三、小学数学几何形体周长面积体积计算公式四、计算法则五、常用的数量关系式六、解方程的依据七、运算定律八、常见分数、小数互化表1、熟练的掌握常见分数和小数的互化,对于提升运算速度,增强数感,有着很好的协助。
2、记忆方法:(1)能够用一张卡片盖住左边的分数,看着小数说出与相等的分数,再交换。
(2)C列分数化小数的记法:分子乘5,小数点向左移动两位。
(3)D、E两列分数化小数的记法:分子乘4,小数点向左移动两位。
常见的数量关系式常见的数量关系式1、每份数份数=总数、每份数×份数份数=总数÷每份数=份数9、相遇问题相遇路程=速度和相遇时间相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和总数÷份数=每份数速度和=相遇路程÷相遇时间2、速度时间=路程速度×时间=时间路程÷速度=时间路程÷时间=速度3、单价数量=总价单价×数量单价数量=周长=边长×4 C=4a 总价÷单价=数量面积=边长×边长S= a2 总价÷数量=单价2 、长方形4、工作效率工作时间=工作总量工作效率×工作时间工作效率工作时间=周长=(长宽周长长+宽)×2 工作总量÷工作效率=工作时间面积=长×宽工作总量÷工作时间=工作效率3、正方体5、加数+加数=和和-一个加数=另一个加数6、被减数-减数=差V= 被减数-差=减数4 、长方体差+减数=被减数减数=(1)表面积(长×宽+长×高+宽×高)×2 7、因数×因数=积S=2(ab+ah+bh) 一个因数=积÷一个因数=另一个因数一个因数(2) 体积= 长×宽×高8、被除数÷除数=商V=abh 被除数÷商=除数长方体和正方体体积统一公式:商×除数=被除数V=sh 长方体(正方体)体积底面积底面积×长方体(正方体)的体积=底面积×高1小学数学图形计算公式1 、正方形C=2(a+b) S=ab表面积=棱长×棱长×6 S 表=a×a×6 或S=6 a2体积=棱长×棱长×棱长5 三角形面积=底×高÷2 s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6 平行四边形面积=底×高s=ah7 梯形面积=( 上底+ 下底)×高÷2 s=(a+b)× h÷222、【植树问题公式】(1)不封闭线路的植树问题:间隔数+1=棵数;(两端植树)路长÷间隔长+1=棵数。
或间隔数-1=棵数;(两端不植)路长÷间隔长-1=棵数;路长÷间隔数=每个间隔长;每个间隔长×间隔数=路长。
(2)封闭线路的植树问题:路长÷间隔数=棵数;路长÷间隔数=路长÷棵数=每个间隔长;每个间隔长×间隔数=每个间隔长×棵数=路长。
(3)平面植树问题:占地总面积÷每棵占地面积=棵数植树问题中的主要数量关系是:间隔数×每个间隔的米数=一共的米数;锯木头问题的主要数量关系是:锯的次数×锯一次用的时间=一共要的时间;爬楼梯问题中的数量关系式是:楼梯的级数÷每两层楼之间楼梯的级数=楼梯的段数。
敲钟问题的主要关系式是:等待的次数×等待一次用的时间=一共用的时间成活率=成活棵数/总棵数1、【和差问题公式】(和+差)÷2=较大数;(和-差)÷2=较小数。
2、【和倍问题公式】和÷(倍数+1)=一倍数;一倍数×倍数=另一数,或和-一倍数=另一数。
3、【差倍问题公式】差÷(倍数-1)=较小数;较小数×倍数=较大数,或较小数+差=较大数。
4、【平均数问题公式】总数量÷总份数=平均数。
合格率=合格/总数1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数1、【工程问题公式】(1)一般公式:工效×工时=工作总量;工作总量÷工时=工效;工作总量÷工效=工时。
(2)用假设工作总量为“1”的方法解工程问题的公式:1÷工作时间=单位时间内完成工作总量的几分之几;1÷单位时间能完成的几分之几=工作时间。
(注意:用假设法解工程题,可任意假定工作总量为2、3、4、5……。
特别是假定工作总量为几个工作时间的最小公倍数时,分数工程问题能够转化为比较简单的整数工程问题,计算将变得比较简便。
)2、【盈亏问题公式】(1)一次有余(盈),一次不够(亏),可用公式:(盈+亏)÷(两次每人分配数的差)=人数。
例如,“小朋友分桃子,每人10个少9个,每人8个多7个。
问:有多少个小朋友和多少个桃子?”解(7+9)÷(10-8)=16÷2=8(个)………………人数10×8-9=80-9=71(个)………………………桃子或8×8+7=64+7=71(个)(答略)(2)两次都有余(盈),可用公式:(大盈-小盈)÷(两次每人分配数的差)=人数。
例如,“士兵背子弹作行军训练,每人背45发,多680发;若每人背50发,则还多200发。
问:有士兵多少人?有子弹多少发?”解(680-200)÷(50-45)=480÷5=96(人)45×96+680=5000(发)或50×96+200=5000(发)(答略)(3)两次都不够(亏),可用公式:(大亏-小亏)÷(两次每人分配数的差)=人数。
例如,“将一批本子发给学生,每人发10本,差90本;若每人发8本,则仍差8本。
有多少学生和多少本本子?”解(90-8)÷(10-8)=82÷2=41(人)10×41-90=320(本)(答略)(4)一次不够(亏),另一次刚好分完,可用公式:亏÷(两次每人分配数的差)=人数。
(例略)(5)一次有余(盈),另一次刚好分完,可用公式:盈÷(两次每人分配数的差)=人数。
1、【一般行程问题公式】平均速度×时间=路程;路程÷时间=平均速度;路程÷平均速度=时间。
2、【反向行程问题公式】反向行程问题能够分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。
这两种题,都可用下面的公式解答:(速度和)×相遇(离)时间=相遇(离)路程;相遇(离)路程÷(速度和)=相遇(离)时间;相遇(离)路程÷相遇(离)时间=速度和。
3、【同向行程问题公式】追及(拉开)路程÷(速度差)=追及(拉开)时间;追及(拉开)路程÷追及(拉开)时间=速度差;(速度差)×追及(拉开)时间=追及(拉开)路程。
4、【列车过桥问题公式】(桥长+列车长)÷速度=过桥时间;(桥长+列车长)÷过桥时间=速度;速度×过桥时间=桥、车长度之和。
5、【行船问题公式】(1)一般公式:静水速度(船速)+水流速度(水速)=顺水速度;船速-水速=逆水速度;(顺水速度+逆水速度)÷2=船速;(顺水速度-逆水速度)÷2=水速。
(2)两船相向航行的公式:甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度(3)两船同向航行的公式:后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度1、【鸡兔问题公式】(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。