十字相乘法(教案)
十字相乘法教案
![十字相乘法教案](https://img.taocdn.com/s3/m/85fe833a7375a417866f8fda.png)
课题:十字相乘法一、教学设计与说明一、教材分析:“十字相乘法分解因式”是七年级第二学期第八章第4节的内容,也是学生在学习提取公因式与公式法两种因式分解后的内容。
学生对因式分解已有了解及应用,再借助十字交叉线分解因式,学生容易掌握,同时这节课也为以后学习分式的运算、一元二次方程、二次函数、分式方程、一元二次不等式等作铺垫,这节课无论从它的内容还是它的地位都十分重要。
二、教学目标:1、进一步理解因式分解的定义;2、会用十字相乘法进行二次三项式(q px x ++2)的因式分解;3、通过学生的不断尝试,培养学生的耐心和信心,同时在尝试中提高学生的观察能力。
三、教学的重点难点教学重点:能熟练应用十字相乘法进行二次三项式(q px x ++2)的因式分解。
教学难点:在q px x ++2分解因式时,准确地找出a 、b ,使p ab =,q b a =+。
四、教学设计1、通过学生对问题的“议一议”,发现“232++x x ”不是一个完全平方形式,产生 了究竟是否还能分解的问题,学生带着问题进入新课。
(吸引学生)2、通过学生对多项式乘法的“算一算”,巩固了多项式的乘法的知识,又观察到了计算 中含有“232++x x ”这个结论,为以下“想一想”作了充分准备。
3、通过学生对多项式乘法遗留问题的“想一想”,既加深了对因式分解定义的理解,又得到了“232++x x ”的分解结果,从而过渡到 “ab x b a x +++)(2”的分解。
4、借助十字交叉线给师生互动,让学生“动一动”理解十字相乘法的定义。
5、通过学生的多次尝试,用“做一做”的环节来体验“如何用十字相乘法因式分解”。
6、知道了十字相乘法,那么“练一练”的环节是不可缺少的,通过“练一练”,学生就 有实践的体会,并能把知识延伸与拓展,学生学习兴趣盎然。
7、最后是学生的自主小结,交流各自的感受,达成共识。
总之,整节课力争体现学生学习的主动性,让学生完全参与整节课的教学活动,体验知识的发生发展过程,通过多次尝试,培养学生的耐心和信心,提高学生的观察能力。
9.15 十字相乘法教案
![9.15 十字相乘法教案](https://img.taocdn.com/s3/m/d9081e1d55270722192ef71d.png)
9.15十字相乘法教学目标能较熟练地用十字相乘法把形如x2+ px + q的二次三项式分解因式;通过课堂交流思考,形成从特殊到一般、从具体到抽象的思维品质。
教学重点、难点能较熟练地用十字相乘法把形如x2+ px + q 的二次三项式分解因式;把x2 + px + q分解因式时,准确地找出a、b,使a ·b = q;a + b = p.教学流程设计:教学过程:一、复习导入1.口答计算结果:(1) (x+3)(x+4) (2) (x+3)(x-4)(3) (x-3)(x+4) (4) (x-3)(x-4)2.问题:你有什么快速计算类似多项式的方法吗?[在多项式的乘法中,有(x + a)(x + b) = x2 +(a + b)x + ab ]二、探索新知1、观察与发现:等式的左边是两个一次二项式相乘,右边是二次三项式,这个过程将积的形式转化成和差形式,进行的是乘法计算.反过来可得x2 +(a + b)x + ab = (x + a)(x + b).等式的左边是二次三项式,右边是两个一次二项式相乘,这个过程将和差的形式转化成积的形式,进行的是因式分解.2、体会与尝试:①试一试因式分解: x2+ 4x + 3 ;x2-2x -3将二次三项式x2+ 4x + 3因式分解,就需要将二次项x2分解为x·x,常数项3分解为3×1,而且3 + 1= 4,恰好等于一次项系数,所以用十字交叉线表示:x2+ 4x + 3 = (x + 3)(x + 1).x +3x +13x + x = 4x②定义:利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法.③拆一拆将下列各数表示成两个整数的积的形式(尽所有可能):6= ;12= ;24= ;-6= ;-12= ;-24= .④练一练将下列各式用十字相乘法进行因式分解:(1) x2-7x + 12;(2) x2-4x-12;(3) x2 + 8x + 12;(4) x2-11x-12;(5) x2 + 13x + 12;(6) x2-x-12;⑤探索符号规律,完成填空.3、思考与归纳:要将二次三项式x2+ px + q因式分解,就需要找到两个数a、b,使它们的积等于常数项q,和等于一次项系数p, 满足这两个条件便可以进行如下因式分解,即x2 + px + q = x2 +(a + b)x + ab = (x + a)(x + b).用十字交叉线表示: x +ax +bax + bx = (a + b)x由于把x2+ px + q中的q分解成两个因数有多种情况,怎样才能找到两个合适的数,通常要经过多次的尝试才能确定采用哪种情况来进行因式分解.三、课堂小结对二次三项式x2+ px + q进行因式分解,应重点掌握以下三个方面:1.掌握方法: 拆分常数项,验证一次项.2.符号规律: 当q>0时,a、b同号,且a、b的符号与p的符号相同;当q<0时,a、b异号,且绝对值较大的因数与p的符号相同.3.书写格式:竖分横积四、巩固新知1、比一比抢答练习2、拓展练习先填空,再分解(尽可能多的):x2 + ( )x + 60= ;五、布置作业练习册§9.15十字相乘法。
十字相乘法教案
![十字相乘法教案](https://img.taocdn.com/s3/m/f68c5f412e3f5727a5e962c2.png)
因式分解之十字相乘法教学目标:1.理解十字相乘法的概念,掌握用十字相乘法分解二次项系数为1的二次三项式的方法。
2.通过复习导入,启发学生从现有的知识探索新知。
教学重点:能较熟练地用十字相乘法把形如q px x ++2的二次三项式分解因式。
教学难点:把q px x ++2分解因式时,准确地找出a 、b ,使q b a =⋅ p b a =+。
教学过程:一、 复习导入:1.复习因式分解因式分解:把一个多项式分解成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式。
实质是(和差化积)与(整式乘法)是“积化和差”的过程正好(相反) 方法:提取公因式法;公式法。
(1)对于多项式44n m -,用公式法因式分解的结果是))()((22n m n m n m ++-;(2)452+-x x 能用提取公因式法和公式法来因式分解吗?这样的多项式又该如何分解呢?这就是我们今天这节课要学习的一种新的分解因式的方法——十字相乘法。
(3)填空:=++)4)(3(x x =-+)4)(3(x x =+-)4)(3(x x =--)4)(3(x x 注:填空ab x b a x b x a x +++=++)())((2 二、探索新知:1、观察与发现反过来可得等式的左边是(二次三项式),右边是两个(一次二项式)相乘,这个过程将(和差)的形式转化成(积)的形式,进行的是(因式分解).那么要想确定因式分解的结果,我们关键要确定什么呢?(确定a 和b )那么a 和b 如何确定呢?满足什么条件呢?(它们的乘积等于常数项,它们的和等于一次项系数)。
如:x a x b ,由这种交叉线:左边是2x x x =∙,右边ab b a =⨯是常数项,且交叉相乘()b a x bx ax +=+是一次项。
定义:利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法。
现在有一个多项式342++x x 让你分解因式,我们该如何分解呢?分析:根据总结的方法,要找到a+b=一次项系数4 ab=常数项3解:1,3;3,1====b a b a 。
第四章因式分解—十字相乘(教案)
![第四章因式分解—十字相乘(教案)](https://img.taocdn.com/s3/m/f8d0c0b718e8b8f67c1cfad6195f312b3169ebe2.png)
1.理论介绍:首先,我们要了解十字相乘的基本概念。十字相乘是一种因式分解的方法,通过将多项式的项按照一定规则排列,找到两个数使得它们的乘积等于常数项,而它们的和等于一次项的系数。这种方法是解决二次多项式分解问题的关键。
2.案例分析:接下来,我们来看一个具体的案例,如分解x^2 + 5x + 6。这个案例将展示十字相乘在实际中的应用,以及它如何帮助我们解决问题。
-难点突破方法:
-使用图表、动画或实物模型来形象化展示十字相乘的过程;
-通过多个例题,展示不同情况下十字相乘的应用,强调识别和选择合适数字的策略;
-分组讨论,让学生在小组内相互解释和交流,共同解决难点问题;
-设计具有挑战性的问题,鼓励学生独立思考和探索,如让学生尝试分解含有一个变量和常数的二次多项式;
五、教学反思
在今天的教学中,我发现学生们对十字相乘的概念接受度较高,但实际操作时仍有一些困难。在讲解理论部分时,我尽量用生动的语言和具体的例子来阐述,希望让学生能够更好地理解。从学生的反馈来看,这种方法是有效的。
然而,当我让学生们尝试自己分解一些多项式时,部分学生显得有些迷茫。他们对于如何选择合适的数进行十字相乘感到困惑。这时,我意识到需要在教学过程中加强对这一难点的讲解和练习。或许,我可以设计一些更具针对性的练习题,让学生们在课堂上即时巩固所学知识。
-理解并记忆十字相乘法的步骤,尤其是如何确定乘积和和;
-在应用十字相乘法时,如何灵活变通,处理各种不同类型的二次多项式;
-将实际问题转化为数学表达式,并运用十字相乘法进行因式分解。
举例:难点在于如何引导学生从简单的例子中总结出十字相乘的规律,如对于多项式x^2 + 5x + 6,学生需要找出两个数(2和3),使得它们的乘积等于6,和等于5。学生可能在这一过程中遇到困难,需要教师通过具体例子和图示来帮助学生理解。
十字相乘法(教案)
![十字相乘法(教案)](https://img.taocdn.com/s3/m/12379eda18e8b8f67c1cfad6195f312b3169ebb3.png)
十字相乘法(教案)1000字教学目标:1. 能够运用十字相乘法快速求出两个多项式的乘积。
2. 能够理解十字相乘法的基本原理和操作步骤。
3. 能够应用十字相乘法解决相关的数学问题。
教学重点:1. 十字相乘法的基本原理和操作步骤。
2. 把十字相乘法应用到乘法计算中。
教学难点:1. 操作规范和技巧。
2. 深入理解十字相乘法的基本原理。
教学过程:一、导入新知识:1. 询问学生是否听说过十字相乘法,并让学生尝试用传统的方法计算两个多项式的乘积。
2. 结果多项式的次数都比原来的两个多项式高,计算时间和计算难度都明显加大。
3. 需要用一种新方法,快速求解两个多项式的乘积。
4. 导入十字相乘法的概念。
二、对新知识的讲解:1. 十字相乘法可以快速求解两个多项式的乘积。
2. 十字相乘法的基本原理是在两个多项式的各项系数之间建立一个包含交叉求积的十字形式。
3. 在十字相乘法中,假设要计算多项式 (ax+b) 和 (cx+d) 的乘积,步骤如下:- 在一个横轴上标出 a 和 c。
- 在一个竖轴上标出 d 和 b。
- 在横轴上从 a 出发向右边画一条线,长度为 d+c。
- 在竖轴上从 d 出发向下边画一条线,长度为 a+b。
- 在横轴和竖轴的交点处,就是两个多项式的乘积 (ac)x^2 + (ad+bc)x + bd。
4. 对于乘法的标准式 (ax^2+bx+c) 和 (dx^2+ex+f),步骤如下:- 在一个横轴上标出 a 和 d。
- 在一个竖轴上标出 f 和 c。
- 在横轴上从 a 出发向右边画一条线,长度为 e+b。
- 在竖轴上从 f 出发向下边画一条线,长度为 e+c。
- 在横轴和竖轴的交点处,就是两个多项式的乘积 (ad)x^4 + (ae+bd) x^3 + (af+be+cd) x^2 + (bf+ce) x + cf。
三、教师示范:1. 让学生一起通过示例学习十字相乘法的操作规范和技巧:(1)计算 (x+1)(x+2):- 在横轴上标出 1 和 1。
十字相乘法教案
![十字相乘法教案](https://img.taocdn.com/s3/m/71cd957d326c1eb91a37f111f18583d049640fac.png)
十字相乘法教案课题:十字相乘法一、教学设计与说明一、教材分析:“十字相乘法分解因式”是七年级第二学期第八章第4节的内容,也是学生在学习提取公因式与公式法两种因式分解后的内容。
学生对因式分解已有了解及应用,再借助十字交叉线分解因式,学生容易掌握,同时这节课也为以后学习分式的运算、一元二次方程、二次函数、分式方程、一元二次不等式等作铺垫,这节课无论从它的内容还是它的地位都十分重要。
二、教学目标:1、进一步理解因式分解的定义;2、会用十字相乘法进行二次三项式(q px x ++2)的因式分解;3、通过学生的不断尝试,培养学生的耐心和信心,同时在尝试中提高学生的观察能力。
三、教学的重点难点教学重点:能熟练应用十字相乘法进行二次三项式(q px x ++2)的因式分解。
教学难点:在q px x ++2分解因式时,准确地找出a 、b ,使p ab =,q b a =+。
四、教学设计1、通过学生对问题的“议一议”,发现“232++x x ”不是一个完全平方形式,产生了究竟是否还能分解的问题,学生带着问题进入新课。
(吸引学生)2、通过学生对多项式乘法的“算一算”,巩固了多项式的乘法的知识,又观察到了计算中含有“232++x x ”这个结论,为以下“想一想”作了充分准备。
3、通过学生对多项式乘法遗留问题的“想一想”,既加深了对因式分解定义的理解,又得到了“232++x x ”的分解结果,从而过渡到“ab x b a x +++)(2”的分解。
4、借助十字交叉线给师生互动,让学生“动一动”理解十字相乘法的定义。
5、通过学生的多次尝试,用“做一做”的环节来体验“如何用十字相乘法因式分解”。
6、知道了十字相乘法,那么“练一练”的环节是不可缺少的,通过“练一练”,学生就有实践的体会,并能把知识延伸与拓展,学生学习兴趣盎然。
7、最后是学生的自主小结,交流各自的感受,达成共识。
总之,整节课力争体现学生学习的主动性,让学生完全参与整节课的教学活动,体验知识的发生发展过程,通过多次尝试,培养学生的耐心和信心,提高学生的观察能力。
十字相乘法-沪科版七年级数学下册教案
![十字相乘法-沪科版七年级数学下册教案](https://img.taocdn.com/s3/m/513cecb6710abb68a98271fe910ef12d2af9a9d8.png)
十字相乘法-沪科版七年级数学下册教案一、知识目标了解十字相乘法的原理及操作步骤,并能熟练运用此方法进行多项式乘法计算,提高计算准确率和速度。
二、教学重难点1.认识十字相乘法的基本原理和应用场景2.掌握十字相乘法的操作步骤3.训练学生进行多项式乘法计算的能力和技巧三、教学内容1. 引入老师出示两个多项式:(2x+3)(x−4)和(3x2−5x+2)(x+1)请同学们分别运用之前学过的常规方法计算,并对比计算结果,发现同学们在计算多项式乘法时往往出现错误的情况,因此本课将介绍一种“十字相乘法”来帮助大家提高乘法准确率和速度。
2. 学习目标1.了解十字相乘法的基本原理和应用场景2.掌握十字相乘法的操作步骤3.训练学生进行多项式乘法计算的能力和技巧3. 理论讲解1.十字相乘法的原理首先,我们把要进行乘法运算的多项式记作A(x)和B(x),A(x)的次数记为m,B(x)的次数记为n,那么他们的乘积C(x)的次数自然是m+n。
我们可以将乘积C(x)写成以下形式:C(x)=a0+b0x+c0x2+...+z m+n x m+n其中a0,b0,c0,...,z m+n分别代表C(x)中各项次数为0,1,2,...,m+n的系数。
接着,我们可以根据乘法分配律把A(x)和B(x)展开:A(x)B(x)=(a m x m+a m−1x m−1+...+a0)(b n x n+b n−1x n−1+...+b0)根据乘法“交换律”,这个式子也可以写成:A(x)B(x)=(b n x n+b n−1x n−1+...+b0)(a m x m+a m−1x m−1+...+a0)接下来,我们用竖式计算法的形式来写A(x)乘以B(x)的过程。
首先将竖式的竖形分成n+1段,分别对应乘数B(x)中次数为n,n−1,...,1,0的各项与被乘式A(x)进行乘法运算,以“+” 来连接所有部分结果。
假设A(x)=a m x m+a m−1x m−1+...+a0,B(x)=b n x n+b n−1x n−1+...+b0,我们把它们分段放在竖式的左边和上面:根据乘法交换律,我们也可以把它们放在竖式的右边和下面:由于同样的项会出现在不同的部分结果中,因此我们需要将这些部分结果进行合并。
十字相乘法精品教案
![十字相乘法精品教案](https://img.taocdn.com/s3/m/0c3f043031b765ce05081472.png)
十字相乘法精品教案十字相乘法进行因式分解【基础知识精讲】(1)理解二次三项式的意义; (2)理解十字相乘法的根据;(3)能用十字相乘法分解二次三项式;(4)重点是掌握十字相乘法,难点是首项系数不为1的二次三项式的十字相乘法. 【重点难点解析】 1.二次三项式多项式c bx ax ++2,称为字母x 的二次三项式,其中2ax 称为二次项,bx 为一次项,c 为常数项.例如,322--x x 和652++x x 都是关于x 的二次三项式.在多项式2286y xy x +-中,如果把y 看作常数,就是关于x 的二次三项式;如果把x 看作常数,就是关于y 的二次三项式.在多项式37222+-ab b a 中,把ab 看作一个整体,即3)(7)(22+-ab ab ,就是关于ab 的二次三项式.同样,多项式12)(7)(2++++y x y x ,把x +y 看作一个整体,就是关于x +y 的二次三项式. 十字相乘法是适用于二次三项式的因式分解的方法. 2.十字相乘法的依据和具体内容利用十字相乘法分解因式,实质上是逆用(ax +b )(cx+d )竖式乘法法则.它的一般规律是: (1)对于二次项系数为1的二次三项式q px x ++2,如果能把常数项q 分解成两个因数a ,b 的积,并且a +b 为一次项系数p ,那么它就可以运用公式))(()(2b x a x ab x b a x ++=+++分解因式.这种方法的特征是“拆常数项,凑一次项”.公式中的x 可以表示单项式,也可以表示多项式,当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号相同;当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项系数的符号相同.(2)对于二次项系数不是1的二次三项式c bx ax ++2(a ,b ,c 都是整数且a ≠0)来说,如果存在四个整数2121,,,c c a a ,使a a a =⋅21,c c c =⋅21,且b c a c a =+1221,那么c bx ax ++2))(()(2211211221221c x a c x a c c x c a c a x a a ++=+++=它的特征是“拆两头,凑中间”,这里要确定四个常数,分析和尝试都要比首项系数是1的情况复杂,因此,一般要借助“画十字交叉线”的办法来确定.学习时要注意符号的规律.为了减少尝试次数,使符号问题简单化,当二次项系数为负数时,先提出负号,使二次项系数为正数,然后再看常数项;常数项为正数时,应分解为两同号因数,它们的符号与一次项系数的符号相同;常数项为负数时,应将它分解为两异号因数,使十字连线上两数之积绝对值较大的一组与一次项系数的符号相同.用十字相乘法分解因式,还要注意避免以下两种错误出现:一是没有认真地验证交叉相乘的两个积的和是否等于一次项系数;二是由十字相乘写出的因式漏写字母.如:)45)(2(86522-+=-+x x y xy x (使交叉相乘再相加后的和等于一次项系数,在横向写出积的形式。
十字相乘法教学设计
![十字相乘法教学设计](https://img.taocdn.com/s3/m/c1f2b27969eae009591bec38.png)
用十字相乘法分解因式教学设计【教学目标】知识目标:学会用十字相乘法分解二次三项式;注意分解因式的基本步骤。
能力目标:渗透待定系数的思想。
情感目标:感受数学的简洁之美。
【教学重点】:恰当将系数分解质因数,凑出符合的“十字”。
【教学难点】:二次项系数不为1的二次三项式的因式分解。
【课前准备】:学案,阅读教材P172.【教学课时】:1课时。
【教学过程】:一、课前阅读。
阅读教材P172,尝试解决下面的问题。
1、完成后面的四道练习。
2、能用十字相乘法分解的二次三项式有何特征?3、已知x2+mx-12可以分解为两个一次二项式之积,则整数m的值可能是多少?二、新课学习。
(一)引入。
解一元二次方程x2-2x-3=0.(二)阅读效果交流。
1、请学生订正课本上的练习。
【教师点拨】①可应用前面所学的配方思想来解决;②注意一次项系数的符合.③在此处教画十字。
2、请学生谈问题2.【教师点拨】即公式x2+(p+q)x+pq=(x+p)(x+q)。
概括:能够分解为(x+p)(x+q)的二次三项式满足以下条件:①二次项系数为____;②一次项系数等于_________;③常数项等于________.3、订正问题3.【教师点拨】因-12=-1×12=-12×1=-2×6=-6×2=-3×4=-4×3,故m应有六种可能的值。
4、预习检测:将下列各式因式分解。
(1)x2 —6x +8 (2)x2 —2x —15(3)x2 —8x +12(三)阅读中学习。
1、例1、解方程:x2 +6x-7=0口诀:“竖分常数交叉验,横写因式不能乱。
阅读后反思:A、联系:本题与前面的因式分解题有什么相同之处?B、区别:本题与单纯的因式分解题有何区别?C、方法与思想:几个因式的积为0,则必有一个因式为0.【教师点拨】一元二次方程的标准形式为二次三项式的和为0,则只需将二次三项式分解为几个因式之积,就能应用“几个因式的积为0,则必有一个因式为0”求出未知数的值,可见,解方程与整式的变形是统一的。
沪科版数学七年级下册《十字相乘法》教学设计1
![沪科版数学七年级下册《十字相乘法》教学设计1](https://img.taocdn.com/s3/m/03c8c5a44793daef5ef7ba0d4a7302768e996fe8.png)
沪科版数学七年级下册《十字相乘法》教学设计1一. 教材分析《十字相乘法》是沪科版数学七年级下册中的一章节,主要介绍了十字相乘法的原理和应用。
本章节通过讲解十字相乘法,使学生能够掌握分解因式的方法,进一步提高他们的数学思维能力和解决问题的能力。
二. 学情分析学生在学习本章节之前,已经掌握了整式的乘法、因式分解等基础知识。
但学生在应用十字相乘法时,容易出错,对一些特殊情况进行处理不够灵活。
因此,在教学过程中,需要注重引导学生理解十字相乘法的原理,并通过大量练习让学生熟悉并掌握十字相乘法的应用。
三. 教学目标1.让学生理解十字相乘法的原理,掌握十字相乘法分解因式的步骤。
2.培养学生运用十字相乘法解决实际问题的能力。
3.提高学生的数学思维能力和解决问题的能力。
四. 教学重难点1.重点:十字相乘法的原理和应用。
2.难点:如何引导学生灵活运用十字相乘法解决实际问题。
五. 教学方法1.讲授法:讲解十字相乘法的原理和步骤。
2.案例分析法:分析具体例子,引导学生运用十字相乘法解决问题。
3.练习法:布置适量练习题,让学生巩固所学知识。
4.小组讨论法:分组讨论,培养学生的合作能力和交流能力。
六. 教学准备1.准备相关的教学PPT,展示十字相乘法的原理和应用。
2.准备一些具体的例子,用于讲解和练习。
3.准备一份详细的十字相乘法步骤指南,方便学生查阅。
七. 教学过程1.导入(5分钟)通过一个具体的问题引入十字相乘法,激发学生的兴趣。
2.呈现(10分钟)讲解十字相乘法的原理和步骤,让学生初步了解并掌握十字相乘法。
3.操练(15分钟)给学生发放练习题,让学生独立完成,巩固所学知识。
4.巩固(10分钟)讲解练习题的答案,分析学生容易出现的问题,并进行针对性讲解。
5.拓展(10分钟)给学生发放一些具有挑战性的题目,让学生小组讨论,共同解决问题。
6.小结(5分钟)对本节课的主要内容进行总结,强调十字相乘法的重点和难点。
7.家庭作业(5分钟)布置适量的家庭作业,让学生进一步巩固所学知识。
七年级数学下册《十字相乘法》教案、教学设计
![七年级数学下册《十字相乘法》教案、教学设计](https://img.taocdn.com/s3/m/34a9338b85254b35eefdc8d376eeaeaad0f31650.png)
5.通过课堂小结,让学生总结本节课所学内容,巩固知识点,提高记忆效果。
(三)情感态度与价值观
在本章节的教学过程中,注重培养学生的以下情感态度与价值观:
1.培养学生对数学学习的兴趣,激发他们主动探索、积极思考的学习热情。
2.培养学生的耐心和细心,让他们在解题过程中体会到付出努力的重要性,从而形成良好的学习习惯。
3.鼓励学生积极与他人合作,培养他们的团队精神,提高人际交往能力。
4.培养学生勇于面对困难和挑战的精神,让他们在解决问题中增强自信心,树立正确的价值观。
二、学情分析
七年级下册的学生在数学学习上已经具备了一定的基础,包括因式分解的基本概念和简单运用,以及多项式乘法的运算规则。在此基础上,他们对十字相乘法这一新知识点的学习将更加得心应手。然而,学生在运算过程中可能会出现以下问题:对十字相乘法理解不透彻,容易混淆运算步骤;对特定类型的因式分解题目不能迅速找到解题思路;以及在运算过程中忽视细节,导致答案错误。
三、教学重难点和教学设想
(一)教学重难点
1.重点:掌握十字相乘法的运算步骤,能够熟练运用到实际问题中,特别是解决因式分解相关问题。
2.难点:理解十字相乘法的原理,以及在复杂问题中灵活运用该方法。
(二)教学设想
1.教学方法:
-采用情境教学法,通过生活实例引入十字相乘法,使学生感受到数学与生活的紧密联系。
针对这些情况,教师需要关注以下几个方面:首先,通过生动有趣的案例引入,帮助学生建立起对十字相乘法的直观认识,降低学习难度;其次,设计梯度性练习题,让学生在逐步提高难度的过程中,熟练掌握十字相乘法的运用;最后,注重培养学生的细心和耐心,引导他们在解题过程中关注细节,提高解题准确率。
十字相乘法教案
![十字相乘法教案](https://img.taocdn.com/s3/m/c2ebea7f5627a5e9856a561252d380eb629423b9.png)
十字相乘法教案教案标题:十字相乘法教案教案概述:本教案旨在引导学生掌握十字相乘法的基本概念和运用方法。
通过多种教学策略和活动,提高学生对十字相乘法的理解和运用能力,培养学生的数学思维和解决问题的能力。
教学目标:1. 理解十字相乘法的概念和原理。
2. 能够运用十字相乘法进行简单的乘法计算。
3. 培养学生的数学思维和解决问题的能力。
教学重点:1. 十字相乘法的概念和原理。
2. 十字相乘法的运用方法。
教学准备:1. 教师准备:黑板、白板、彩色粉笔/白板笔、教学PPT等。
2. 学生准备:练习册、铅笔、橡皮擦等。
教学过程:一、导入(5分钟)1. 引入问题:请学生回顾一下之前学过的乘法计算方法,如何计算两个两位数的乘法?2. 学生回答并讨论,教师引导学生思考是否有更简便的方法进行乘法计算。
二、概念讲解(10分钟)1. 教师通过示意图和实例,简单介绍十字相乘法的概念和原理。
2. 教师解释十字相乘法的步骤:将两个乘数的十位数和个位数分别相乘,再将结果相加。
三、示范演示(15分钟)1. 教师以一个两位数乘一个两位数的示例进行演示,详细展示十字相乘法的步骤和计算过程。
2. 教师引导学生一起完成另外几个示例,确保学生掌握十字相乘法的运算方法。
四、练习巩固(15分钟)1. 学生个别练习:教师布置一些练习题,让学生个别完成,巩固十字相乘法的运算方法。
2. 学生互助练习:学生两两合作,互相出题并相互检查答案,加深对十字相乘法的理解和运用。
五、拓展应用(10分钟)1. 教师提供一些拓展题目,要求学生运用十字相乘法解决实际问题,如计算长方形的面积等。
2. 学生讨论解题思路,展示解题过程和答案。
六、总结回顾(5分钟)1. 教师总结十字相乘法的概念和运算方法。
2. 学生回答问题:你觉得十字相乘法相比其他乘法计算方法有什么优势?七、作业布置(2分钟)1. 布置适量的课后练习题,要求学生运用十字相乘法进行计算。
2. 提醒学生复习和巩固本节课的内容。
一元二次方程的解法----十字相乘法教案大全
![一元二次方程的解法----十字相乘法教案大全](https://img.taocdn.com/s3/m/2af388a0dc88d0d233d4b14e852458fb770b381c.png)
一元二次方程的解法----十字相乘法教案大全第一篇:一元二次方程的解法----十字相乘法教案大全一元二次方程的解法——十字相乘法班级________姓名________学号________一、学习目标:1、利用十字相乘法分解因式2、利用十字相乘法解一元二次方程练习:(1)x2+7x+12 =0(2)x2—5x+6=0(3)(x+2)(x—1)=10二、典例精析例1、用十字相乘法分解因式(1)x2+5x+6(3)x2+5x—6(5)x2—5xy+6y2练习:(1)x2—7x+10(3)x2—12x—13例2、用十字相乘法解一元二次方程(1)x2+5x+6=0(3)(x+3)(x—1)=5(2)x2—5x+64)x2—5x—6(6)(x+y)2—5(x+y)—6(2)y2+y—2(4)m2—5m+4(2)y2+y—2=0(4)t(t+3)=28例3、用十字相乘法解关于x的方程:(1)(x—2)2—2(x—2)—3=0*(2)(x2—3x)2—2(x2—3x)—8=0练习:(1)(x+1)2-5(x+1)-24=0(2)x2+(m2-n2)x-m2n2=0★例4、已知x2—5xy+6y2 =0(y≠0),求yxx+y 的值。
四、课后作业1、m2+7m—18=(m+a)(m+b),则a,b的符号为()A、a,b异号B、a,b异号且绝对值大的为负C、a, b同号D、a,b同号且绝对值大的为正(2、在下列各式中,(1)x2+7x+6(2)x2+4x+3(3)x2+6x+8(4)x2+7x+10(5)x2+15x+44有相同因式的是()A、(1)(2)B、(3)(5)C、(2)(5)D、(1)(2)、(3)(4)、(3)(5)3、x2+2x—3,x2—4x+3,x2+5x—6的公因式是()A、x—3B、3—xC、x +1D、x—14、若y2+py+q=(y—4)(y+7),则p=,q=.5、分解因式:(1)x2+7 x—8(2)y2—2y—15(3)(x+3y)2—4(x+3y)—326、用十字相乘法解一元二次方程(1)x2—3x—10 =0(2)x2+3x—10 =0(3)x2—6x—40 =0(4)x2—10x+16 =0(5)x2—3x—4 =0(6)m2—3m—18=07、用十字相乘法解关于x的一元二次方程:(1)(x+1)(x+3)=15(2)(x+2)(x—3)=14(3)x2-4ax+3a2=0(5)(x—2)2+3(x—2)—4=0(4)x2—3xy—18y2=0*(6)(x2—x)2—4(x2—x)—12=08、已知:△ABC的两边长为2和3,第三边的长是x2—7x+10=0的根,求△ABC的周长.9、已知下列n(n为正整数)个关于x的一元二次方程:x2-1=0<1>x2+x-2=0<2>x2+2x-3=0<3>……x2+(n-1)x-n=0<n>(1)请解上述一元二次方程<1>、<2>、<3>、;(2)请你指出这n个方程的根具有什么共同特点,写出一条即可. 第二篇:一元二次方程解法一元二次方程一般形式:ax2+bx+c=0(a≠0,a,b,c是常数)根的判别式时,方程有两个不相等的实数根;时,方程有两个相等的实数根;时,方程无实数根①当②当③当根与系数的关系解法1、直接开平方法x2=p或(nx+m)2=p(p≥0)2、配方法3、求根公式法4、因式分解法一、选择1.用配方法解下列方程时,配方有错误的是()一元二次方程的解法同步测试题7281 4162210222C.x+8x+9=0化为(x+4)=25D.3x-4x-2=0化为(x-)= 39222A.x-2x-99=0化为(x-1)=100B.2x-7x-4=0化为(x-)=2.用配方法解关于x的方程x+px+q=0时,此方程可变形为()2p2p2-4qp24q-p2A.(x+)=B.(x+)= 2424p2p2-4qp24q-p2C.(x-)=D.(x-)= 24243.二次三项式x-4x+7值()A.可以等于0B.大于3C.不小于3D.既可以为正,也可以为负1 24.若2x+1与4x-2x-5互为相反数,则x为()A.-1或222233B.1或-C.1或-D.1或 32325.以5-26和5+26为根的一元二次方程是()A.x-10x-1=0B.x+10x-1=0C.x+10x+1=0D.x-10x+1=06.方程2x-6x+3=0较小的根为p,方程2x-2x-1=0较大的根为q,则p+q等于()A.3B.2C.1D.237.已知x1、x2是方程x-x-3=0的两个实数根,那么x1+x2的值是()A.1B.5C.7D.222222222 4948.方程x(x+3)=x+3的解是()A.x=1B.x1=0, x2=-3C.x1=1 ,x2=3D.x1=1,x2=-39.下列说法错误的是()A.关于x的方程x=k,必有两个互为相反数的实数根。
十字相乘法教学设计(多篇)
![十字相乘法教学设计(多篇)](https://img.taocdn.com/s3/m/2d9c9e129e314332386893d7.png)
十字相乘法教学设计(多篇)篇:十字相乘法设计因式分解——十字相乘法东莞市可园中学教材与学情分析本课时属数学教材八年级上学期《分解因式》的补充内容,依据一是这一内容在九年级解一元二次方程中有很大的应用价值,二是学生的掌握难度并不大,增补此内容并不会增加学生负担,三是学习此内容可开阔学生视野,锻炼学生的思维,所以,我们也安排了课时讲解此内容。
教学目标:1、会用十字相乘法进行二次三项式(x2px q)的因式分解;2、通过学生的不断尝试,培养学生的耐心和信心,在尝试中提高学生的观察能力和逆向思维能力。
教学重点:能熟练应用十字相乘法进行二次三项式(x2px q)的因式分解。
b,a b q。
教学难点:在x2px q分解因式时,准确地找出a、使ab p,教学过程:一、复习引入分解因式:把一个多项式分解成几个整式的_______的形式。
已学的因式分解方法有_______________和______________.思考:你知道x25x6怎样分解因式吗?二、探究(x2)(x3) = ____;(x2)(x4)= _。
填空:(1)(2)(x3)(x4)= ___;(x a)(x b)= _。
(3)(4)根据上面结果,你会对下列二次三项式进行因式分解?请试一下。
它们有什么共同的特点?(1)x25x 6 =____________ , (2) x22x8=_______________。
(3)x27x12 =____________ , (4)x2(a b)x ab =_______________。
共同特点:①二次项系数是_____;②常数项是两个数之_______;③一次项系数是常数项的两个因数之_______。
例题讲解例1.因式分解x25x 6十字相乘法的定义:利用十字交叉来分解系数,把二次三项式分解因式的方法叫做十字相乘法。
练习1 .因式分解(1)x27x 6 (2)x25x 6例2.因式分解x22x8练习2.因式分解(1)x22x8 (2)x27x8四、巩固练习练习3.因式分解(1)x27x10 (2)x27x10(3)x29x10 (4)x23x10练习4.若x2mx n(x4)(x9),则m=______,n=________.五、拓展提升出题比赛练习5.在横线上填一个整数,然后因式分解(1)x2____x15 (2)x2____x 15练习6.若x2ax6在整数范围内可以因式分解,则a的值可能是_____________.六、小结七、教学反思在读书的时候学到十字相乘法时,曾经心里有这样一个疑惑,是不是所有的二次三项式都可以用十字相乘法进行因式分解呢?如果不是,那满足什么条件的二次三项式可以用十字相乘法进行因式分解呢?这留作我们今天这节课的第三个思考题。
“十字相乘法”教学设计
![“十字相乘法”教学设计](https://img.taocdn.com/s3/m/539e6727974bcf84b9d528ea81c758f5f71f2943.png)
十字相乘法教学设计1. 引言十字相乘法是一种用于计算两个多位数相乘的算术方法。
通过将两个数按位相乘,然后将结果相加,最终得到乘积。
这种方法可以帮助学生理解乘法运算的本质,并提高他们的计算能力和数学思维能力。
本文将介绍一个以交互式教学为核心的十字相乘法教学设计。
2. 教学目标•学生能够理解十字相乘法的原理和应用场景•学生能够使用十字相乘法计算多位数的乘法运算•学生能够应用十字相乘法解决实际问题3. 教学步骤3.1 理论讲解(10分钟)在本步骤中,教师将向学生详细介绍十字相乘法的原理和应用场景。
通过示例,教师可以解释这种方法如何帮助我们更快地计算乘法,并引导学生思考为什么这种方法有效。
教师还可以讲解十字相乘法的优缺点,以及与传统竖式乘法的差异。
3.2 游戏互动(15分钟)在本步骤中,教师可以设计一个小游戏来帮助学生巩固对十字相乘法的理解。
例如,教师可以准备一些多位数的乘法题目,让学生分组进行竞赛。
每个小组选择一名学生在黑板上用十字相乘法解答题目,并尽快完成。
第一个完成的小组可以赢得奖励。
3.3 实践练习(30分钟)在本步骤中,教师将提供一些练习题给学生,让他们用十字相乘法计算乘法运算。
教师可以选择一些适合学生水平的题目,从简单到复杂逐步增加难度。
同时,教师应该在课堂上指导学生解答习题,并提供必要的提示和帮助。
3.4 应用拓展(15分钟)在本步骤中,教师将向学生展示一些实际问题,并鼓励他们运用十字相乘法解决这些问题。
例如,教师可以提供一些购物清单,让学生计算总价;或者提供一些时间表,让学生计算总旅行时间。
通过这些应用题,学生可以将十字相乘法与实际问题相结合,更好地理解和掌握这种方法。
3.5 总结回顾(10分钟)在本步骤中,教师将与学生一起回顾学习内容,并解答学生在学习过程中遇到的问题。
教师还可以邀请学生分享他们在学习和应用十字相乘法中的收获和体会。
最后,教师可以总结本节课的重点,并展望下一节课的内容。
“十字相乘法”教学设计(优秀3篇)
![“十字相乘法”教学设计(优秀3篇)](https://img.taocdn.com/s3/m/e7194cbb951ea76e58fafab069dc5022abea4672.png)
“十字相乘法”教学设计(优秀3篇)“十字相乘法”教学设计篇一【教学内容】8.壹五十字相乘法(第一课时,课本P.49~P.51)【教学目标】1、能较熟练地用十字相乘法把形如x2+px+q的二次三项式分解因式;2、通过课堂交流,锻炼学生数学语言的表达能力;3、培养学生的观察能力和从特殊到一般、从具体到抽象的思维品质。
【教学重点】能较熟练地用十字相乘法把形如x2+px+q的二次三项式分解因式。
【教学难点】把x2+px+q分解因式时,准确地找出a、b,使a·b=q;a+b=p.【教学过程】一、复习导入1.口答计算结果:(1)(x+2)(x+1)(2)(x+2)(x-1)(3)(x-2)(x+1)(4)(x-2)(x-1)(5)(x+2)(x+3)(6)(x+2)(x-3)(7)(x-2)(x+3)(8)(x-2)(x-3)2.问题:你是用什么方法将这类题目做得又快又准确的呢?[在多项式的乘法中,有(x+a)(x+b)=x2+(a+b)x+ab]二、探索新知1、观察与发现:等式的左边是两个一次二项式相乘,右边是二次三项式,这个过程将积的形式转化成和差形式,进行的是乘法计算。
反过来可得x2+(a+b)x+ab=(x+a)(x+b).等式的左边是二次三项式,右边是两个一次二项式相乘,这个过程将和差的形式转化成积的形式,进行的是因式分解。
2、体会与尝试:①试一试因式分解:x2+4x+3;x2-2x-3将二次三项式x2+4x+3因式分解,就需要将二次项x2分解为x·x,常数项3分解为3×1,而且3+1=4,恰好等于一次项系数,所以用十字交叉线表示:x2+4{WWW.JIAOXUELA}x+3=(x+3)(x+1).x+3x+13x+“十字相乘法”教学设计篇二教学目标:1.使学生经历整十、整百数乘整十数的口算乘法的过程,能比较正确熟练地进行口算。
2学会运用整十、整百数乘整十数的口算乘法解决简单的实际问题。
初中数学:“十字相乘法”教学设计
![初中数学:“十字相乘法”教学设计](https://img.taocdn.com/s3/m/02bb883f1eb91a37f0115c48.png)
初中数学新课程标准教材数学教案( 2019 — 2020学年度第二学期 )学校:年级:任课教师:教学设计 / 数学教学设计 / 初中数学教学设计编订:XX文讯教育机构“十字相乘法”教学设计教材简介:本教材主要用途为通过学习数学的内容,让学生可以提升判断能力、分析能力、理解能力,培养学生的逻辑、直觉判断等能力,本教学设计资料适用于初中数学科目, 学习后学生能得到全面的发展和提高。
本内容是按照教材的内容进行的编写,可以放心修改调整或直接进行教学使用。
黄浦学校范丽君【教学内容】8.15 十字相乘法(第一课时,课本P.49~P.51)【教学目标】1、能较熟练地用十字相乘法把形如x2 + px + q的二次三项式分解因式;2、通过课堂交流,锻炼学生数学语言的表达能力;3、培养学生的观察能力和从特殊到一般、从具体到抽象的思维品质.【教学重点】能较熟练地用十字相乘法把形如x2 + px + q 的二次三项式分解因式. 【教学难点】把x2 + px + q分解因式时,准确地找出a、b,使a ·b = q;a + b = p. 【教学过程】一、复习导入1.口答计算结果:(1) (x+2)(x+1) (2) (x+2)(x-1) (3) (x-2)(x+1) (4) (x-2)(x-1)(5) (x+2)(x+3) (6) (x+2)(x-3) (7) (x-2)(x+3) (8) (x-2)(x-3)2.问题:你是用什么方法将这类题目做得又快又准确的呢?[在多项式的乘法中,有(x + a)(x + b) = x2 +(a + b)x + ab ]二、探索新知1、观察与发现:等式的左边是两个一次二项式相乘,右边是二次三项式,这个过程将积的形式转化成和差形式,进行的是乘法计算.反过来可得 x2 +(a + b)x + ab = (x + a)(x + b).等式的左边是二次三项式,右边是两个一次二项式相乘,这个过程将和差的形式转化成积的形式,进行的是因式分解.2、体会与尝试:①试一试因式分解: x2 + 4x + 3 ; x2 - 2x -3将二次三项式x2 + 4x + 3因式分解,就需要将二次项x2分解为x·x,常数项3分解为3×1,而且3 + 1= 4,恰好等于一次项系数,所以用十字交叉线表示:x2 + 4x + 3 = (x + 3)(x + 1).x +3x +13x +XX文讯教育机构WenXun Educational Institution。
15__十字相乘法教学案
![15__十字相乘法教学案](https://img.taocdn.com/s3/m/2311521c5f0e7cd18425360e.png)
十字相乘法教学目标:1、能较熟练地用十字相乘法解形如x 2 + px + q=0的一元二次方程2、通过课堂交流,锻炼学生数学语言的表达能力;3、培养学生的观察能力和从特殊到一般、从具体到抽象的思维品质.教学重点:能较熟练地用十字相乘法解形如x 2 + px + q=0的一元二次方程教学难点:把x 2 + px + q 分解因式时,准确地找出a 、b ,使a ·b = q ;a + b = p.【教学过程】一、复习导入1.口答计算结果:(1) (x+2)(x+1) (2) (x+2)(x -1) (3) (x -2)(x+1) (4) (x -2)(x -1)(5) (x+2)(x+3) (6) (x+2)(x -3) (7) (x -2)(x+3) ( 8) (x -2)(x -3)2.问题:你是用什么方法将这类题目做得又快又准确的呢?在多项式的乘法中,有(x + a)(x + b) = x 2 +( )x +二、探索新知1、观察与发现:x 2 +(a + b)x + ab = 0 (x + )(x + )=02、体会与尝试:1)试一试 因式分解法解方程: x 2 + 4x + 3=0 ; x 2 - 2x -3=02) 比一比 抢答练习(1) x 2 -7x + 12 =0 (2) x 2-4x -12=0 (3) x 2 + 8x + 12 =0 (4) x 2 -11x -12=0(5) x 2 + 13x + 12=0 (6) x 2 -x -12=0 (7)232x x ++=0 (8)276x x -+=0(9)2421x x --=0 (10)2215x x +-=0 (11) x 2-10x+24=0 (12) x 2+3x-10 =0(13) x 2-3x-28=0 (14) a 2+4a-21=0 (15)m 2+4m-12=0 (16)p 2-8p+7=0(17) a 2+4a-21=0 (18)m 2+4m-12=0 (19)p 2-8p+7=0 (20)b 2+11b+28=0⑤探索符号规律,完成填空. x 2 + px + q = x 2 +(a + b)x + ab =3、挑战:(看看谁聪明)例2 解方程3722+-x x =0解方程:(1) 2x2+3x+1 =0 (2)2y2+y-6 =0 (3) 6x2-13x+6=0 (4)3a2-7a-6=0(5)2x2-5x-12=0 (6)3x2-5x-2=0 (7)6x2-13x+5=0 (8)7x2-19x-6=0三、课堂小结对二次三项式x2 + px + q进行因式分解,应重点掌握以下三个方面:1.掌握方法: 拆分常数项,验证一次项.2.符号规律: 当q>0时,a、b ,且a、b的符号与的符号相同;当q<0时,a、b ,且因数与的符号相同.3.书写格式:竖分横积四、巩固新知拓展练习:先填空,再分解(尽可能多的): x2 ( )x + 60 =五、布置作业:(1)12x2-13x+3=0 (2)4x2+24x+27=0(3)4n2+4n-15=0 (4)6a2+a-35=0反思:。
十字相乘法(多项式因式分解--教案)
![十字相乘法(多项式因式分解--教案)](https://img.taocdn.com/s3/m/50539293aa00b52acfc7caf5.png)
十字相乘法教案教学目标:1.知识目标:使学生掌握通过代换方法,进行可以转化为x2+(a+b)x+ab型的多项式因式分解,领会整体代换、字母表示式和化归等数学方法。
理解运用十字相乘法分解因式的关键。
2.能力目标:通过问题设计,培养学生观察、分析、抽象、概括的逻辑思维能力;训练学生思维的灵活性、层次性,逐步提高学生运用变量代换思想和化归思想解决问题的能力。
3.情感目标:通过问题解决,培养合作意识,激发成功体验,鼓励创新思维。
教学设计思想:本课是简单介绍十字相乘法后的第二节课,结合学生基础较好的特点,我改变教参中的处理方式,尝试以二期课改的理念为指导,帮助学生进行探索性地学习,更好地实现有效学习。
在设计上,希望使学生体会字母表示式的想法和数学题的演变,学会透过现象看本质,灵活运用十字相乘法分解因式,进一步理解运用十字相乘法分解因式的关键。
感悟,从整体上观察、思考和处理问题是一种重要的数学方法,也是解决数学问题、发展数学内容时常用技能和技巧。
化归思想是数学中解决问题的主要思想方法。
教学过程:一、复习引入1.回忆课本上十字相乘法分解因式的一般步骤例1:把多项式x2-3x + 2分解因式。
x -1x -2解:x2-3x + 2 = (x-1) (x-2)像这种借助于画十字交叉线分解因式的方法叫做十字相乘法。
提问:是不是所有的二次三项式都能用十字相乘法分解因式?答:不是,(反例:x2 +3x-2)。
提问:形如x2+px+q的二次三项式满足什么条件时可以用十字相乘法分解因式?请同学总结:(板书)x2+px+q当q=ab,p =a+b时,x2+px+q = (x+a) (x+b) (*)再提问:在将首项系数为1的二次三项式因式分解时,你认为要注意什么?答:试分解后要及时检验,纵向相乘得首项,末项;交叉相乘得中间项。
应该注意的是一次项的系数和末项的系数都是包含了符号的。
如果常数项q是正数,那么把它分解成两个同号因数的积,它们的符号与一次项系数p的符号相同。
十字相乘法 教案 2023--2024学年人教版八年级数学上册
![十字相乘法 教案 2023--2024学年人教版八年级数学上册](https://img.taocdn.com/s3/m/2e99ee0aef06eff9aef8941ea76e58fafab045cd.png)
14.3因式分解14.3.3 十字相乘法教学内容14.3.3 十字相乘法课时1核心素养目标1.会用数学的眼光观察现实世界:十字相乘法要求学生在已有的方法上,培养学生的观察能力和理解运用的能力.2.会用数学的思维思考现实世界:在对十字相乘法因式分解的探究中,深入学习整式的乘法与因式分解的关系,培养逆向思维能力.3.会用数学的语言表示现实世界:通过对运用十字相乘法进行因式分解的探究学习,在经历猜想、验证、归纳的学习过程中,培养学生的观察能力和从特殊到一般、从具体到抽象的思维品质,培养类比归纳的能力逐步养成用数学语言表达与交流的习惯,感悟数据的意义与价值.知识目标1.理解并掌握十字相乘法的特征和使用十字相乘法因式分解的条件.2.能正确使用十字相乘法进行因式分解.教学重点理解并掌握十字相乘法的特征和使用十字相乘法因式分解的条件.教学难点正确使用十字相乘法进行因式分解.教学准备课件教学过程主要师生活动设计意图一、回顾导入二、探究新知一、旧知回顾,导入新知1.因式分解和整式乘法的关系是?师生活动:教师引导学生分析因式分解和整式乘法的关系:得出:两者是方向相反的变形.2.我们已经学习了哪些因式分解的方法?师生活动:教师引导学生回忆与总结:二、小组合作,探究概念和性质知识点:十字相乘法因式分解合作探究探究:1.计算:(1) ( x + 2 )( x + 3 ) = ___________;(2) ( x- 4 )( x + 1 ) =____________;(3) ( x + 4 )( x- 2 ) =____________;设计意图:通过问题串的形式,引导学生独立思考,实现从整数到整式的过渡,培养类比数的性质学习整式的学习方法.设计意图:用计算结果的直观展示,让学生感悟出多项式的乘法中有着特殊计算结果的算式,培养学生的观察总结的能力.2. 根据题1 和等式的性质填空:(1) x2 + 5x + 6 = ______________ ;(2) x2- 3x- 4 =_______________;(3) x2 + 2x- 8 =_______________;师生活动:学生独立完成填空,在教师的引导下发现并总结运算规律.观察因式分解算结果,你能发现什么规律?师生活动:学生独立完成填空,在教师的引导下发现运算规律并提出猜想. 教师完成总结:十字相乘法求因式分解:运算法则:x2 + (p + q)x + p q = (x + p)(x + q)条件:1. 多项式为二次三项式;2. 多项式常数项可分解成两个因式,且两个因式的和等于一次项系数.典例精析例1 分解因式:x2−5x + 6 .师生活动:学生根据十字相乘法的条件特点,尝试进行运算,选一名学生板书,教师在旁整理分析,总结计算方法.练一练1. 把下列多项式因式分解:(1) x2- 6x + 8;(2) x2 + 4x- 5 .师生活动:学生独立完成运算,选一名学生板书,教师与其余学生共同评价与完善板书.设计意图:用计算结果的直观展示,让学生观察总结能够用十字相乘法进行因式分解的多项式的特征.设计意图:锻炼运用提公因式法进行因式分解的能力,规范正确的解题步骤.设计意图:锻炼运用提公因式法进行因式分解的能力,培养学生建立几何与数式之间的联系.三、当堂练习,巩固所学三、当堂练习,巩固所学1.下列因式分解正确的是( )A.x3-4x = x(x2-4)B.x2-x-2 = (x + 1)(x-2)C.x2 + 2x-1 = (x-1)2D.x2-2x + 1 = x(x-2) + 12.把多项式x2 + m x-5因式分解成(x + 5)(x-n),则m的值为( ).A.m = 4 B.m = 3 C.m = 6 D.m = 53.因式分解:(1) 2x2 + 6xy + 4y2;(2) -3a2 + 18a- 24.4. 已知整式A = x(x+3)+5,整式B = ax-1.(1) 若A+B=(x-2)2,求a的值;(2) 若A-B可以分解为(x-2)(x-3),求a的值.设计意图:考查学生因式分解的概念的掌握.设计意图:考查学生运用十字相乘法进行因式分解的理解和运用.设计意图:检验学生运用十字相乘法进行因式分解的理解和运用的掌握情况.板书设计14.3.3 十字相乘法运算法则:x2 + (p + q)x + p q = (x + p)(x + q)条件:1. 多项式为二次三项式;2. 多项式常数项可分解成两个因式,且两个因式的和等于一次项系数.课后小结教师与学生一起回顾本节课所学的主要内容,梳理并完善知识思维导图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
十字相乘法(3)
教学目标
1.使学生掌握运用十字相乘法把某些形如ax2+bx+c的二次三项式分解因式;
2.进一步培养学生的观察力和思维和敏捷性.
教学重点和难点
重点:正确地运用十字相乘法把某些二次项系数不是1的二次三项式分解因式;
难点:灵活运用十字相乘法分解因式.
教学过程设计
一、导入新课
把下列各式多分解因式:
1.x2+6x-72;
2.(x+y) 2-8(x+y)+48;
3.x4-7x2+18;
4.x2-10xy-56y2.
答:
1.(x+12)(x-6);
2.(x+y-12)(x+y+4);
3.(x+3)(x-3)(x2+2);
4.(x-14y)(x+4y).
我们已经学习了把形如x2+px+q的某些二次三项式分解因式,也学习了通过设辅助元的方法把能转化为形如x2+px+q型的某些多项式分解因式.
对于二次项系数不是非曲直的二次三项式如何分解因式呢?这节课就来讨论这个问题,即把某些形如ax2+bx+c的二次三项式分解因式.
二、新课
例1 把2x2-7x+3分解因式.
分析:先分解二次项系数,分别写在十字交叉线的左上角和左下解,再分解常数项,分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.
分解二次项系数(只取正因数):
2=1×2=2×1;
分解常数项:
3=1×3=1×3==(-3)×(-1)=(-1)×(-3).
用画十字交叉线方法表示下列四种情况:
1 1
2 3
1×3+2×1
=5
1 3
2 1
1×1+2×3
=7
1 -1
2 -3
1×(-3)+2×(-1)
=-5
1 -3
2 -1
1×(-1)+2×(-3)
=-7
经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.
解 2x2-7x+3=(x-3)(2x-1).
一般地,对于二次三项式ax2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下:
a1 c1
a2 c2
a1a2+a2c1
按斜线交叉相乘,再相加,得到a1a2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即ax2+bx+c=(a1x+c1)(a2x+c2).
像这种借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法.
例2 把6x2-7x-5分解因式.
分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列,可有8种不同的排列方法,其中的一种
2 1
3 -5
2×(-5)+3×1=-7
是正确的,因此原多项式可以用十字相乘法分解因式.
解 6x2-7x-5=(2x+1)(3x-5).
指出:通过例1和例2可以看到,运用十字相乘法把一个二次项系数不是1的二次三项式因式分解,往往要经过多次观察,才能确定是否可以用十字相乘法分解因式.
对于二次项系数是1的二次三项式,也可以用十字相乘法分解因式,这时只需考虑如何把常数项分解因数.例如把x2+2x-15分解因式,十字相乘法是
1 -3
1 5
1×5+1×(-3)=2
所以x2+2x-15=(x-3)(x+5).
例3 把5x2+6xy-8y2分解因式.
分析:这个多项式可以看作是关于x的二次三项式,把-8y2看作常数项,在分解二次项及常数项系数时,只需分解5与-8,用十字交叉线分解后,经过观察,选取合适的一组,即
1 2
5 -4
1×(-4)+5×2=6
解 5x2+6xy-8y2=(x+2y)(5x-4y).
指出:原式分解为两个关于x,y的一次式.
例4 把(x-y)(2x-2y-3)-2分解因式.
分析:这个多项式是两个因式之积与另一个因数之差的形式,只有先进行多项式的乘法运算,把变形后的多项式再因式分解.
问:两上乘积的因式是什么特点,用什么方法进行多项式的乘法运算最简便?
答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用十字相乘法分解因式了.
解 (x-y)(2x-2y-3)-2
=(x-y)[2(x-y)-3]-2
=2(x-y) 2-3(x-y)-2
=[(x-y)-2][2(x-y)+1]
=(x-y-2)(2x-2y+1).
1 -2
2 +1
1×1+2×(-2)=-3
指出:把(x-y)看作一个整体进行因式分解,这又是运用了数学中的“整体”思想方法.
三、课堂练习
1.用十字相乘法分解因式:
(1)2x2-5x-12;(2)3x2-5x-2;
(3)6x2-13x+5;(4)7x2-19x-6;
(5)12x2-13x+3; (6)4x2+24x+27.
2.把下列各式分解因式:
(1)6x2-13xy+6y2; (2)8x2y2+6xy-35;
(3)18x2-21xy+5y2;(4)2(a+b) 2+(a+b)(a-b)-6(a-b) 2.
答案:
1.(1)(x-4)(2x+3);(2)(x-2)(3x+1);
(3)(2x-1)(3x-5); (4)(x-3)(7x+2);
(5)(3x-1)(4x-3); (6)(2x+3)(2x+9).
2.(1)(2x-3y)(3x-2y); (2)(2xy+5)(4xy-7);
(3)(3x-y)(6x-5y);(4)(3a-b)(5b-a).
四、小结
1.用十字相乘法把某些形如ax2+bx+c的二次三项式分解因式时,应注意以下问题:
(1)正确的十字相乘必须满足以下条件:
a1c1
在式子中,竖向的两个数必须满足关系a1a2=a,c1c2=c;在上式中,斜向的
a2c2
两个数必须满足关系a1c2+a2c1=b.
(2)由十字相乘的图中的四个数写出分解后的两个一次因式时,图的上一行两个数中,a1是第一个因式中的一次项系数,c1是常数项;在下一行的两个数中,a2是第二个因式中的一次项的系数,c2是常数项.
(3)二次项系数a一般都把它看作是正数(如果是负数,则应提出负号,利用恒等变形把
它转化为正数,)只需把它分解成两个正的因数.
2.形如x2+px+q的某些二次三项式也可以用十字相乘法分解因式.
3.凡是可用代换的方法转化为二次三项式ax2+bx+c的多项式,有些也可以用十字相乘法分解因式,如例
4.
五、作业
1.用十字相乘法分解因式:
(1)2x2+3x+1;(2)2y2+y-6;
(3)6x2-13x+6; (4)3a2-7a-6;
(5)6x2-11xy+3y2;(6)4m2+8mn+3n2;
(7)10x2-21xy+2y2; (8)8m2-22mn+15n2.
2.把下列各式分解因式:
(1)4n2+4n-15; (2)6a2+a-35;
(3)5x2-8x-13; (4)4x2+15x+9
(5)15x2+x-2;(6)6y2+19y+10;
(7)20-9y-20y2; (8)7(x-1) 2+4(x-1)(y+2)-20(y+2) 2.
答案:
1.(1)(2x+1)(x+1);(2)(y+2)(2y-3);
(3)(2x-3)(3x-2); (4)(a-3)(3a+2);
(5)(2x-3y)(3x-y); (6)(2m+n)(2m+3n);
(7)(x-2y)(10x-y); (8)(2m-3n)(4m-5n).
2.(1)(2n-3)(2n+5); (2)(2a+5)(3a-7);
(3)(x+1)(5x-13); (4)(x+3)(4x+3);
(5)(3x-1)(5x+2); (6)(2y+5)(3y+2);
(7)-(4y+5)(5y-4); (8)(x+2y+3)(7x-10y-27).
课堂教学设计说明
1.为了使学生切实掌握运用十字相乘法把某些二次三项式分解因式的思路和方法,在教学设计中,先通过例1,较祥尽地讲解借助画十字交叉线分解系数的具体方法,在此基础上再进一步概括如何运用十字相乘法把二次三项式ax2+bx+c进行因式分解的一般思路和方法.只有使学生掌握了十字相乘法的一向法规,才能进一步指导解决各种具体的问题,这种从特殊到一般,再从一般到特殊的认识问题的过程,是符合学生的认识问题的过程.
2.对于借助画十字,用观察的方法,选择和确定适合的数组,把二次三项式运用十字相乘法分解因式,学生最初是有一定的困难的.所以在教学中应循序渐进,首先讲解例1时,要求学生把分解二次项系数和常数项的各种情况都画十字交叉线表示,运用观察的方法,从中选取合适的数组,然后归纳为一般情况,总结出一般的方法,再通过例2加以巩固.
当学生熟悉了这种方法,摸索出规律后,就不要求学生把各种情况一一列出了.。