高中数学必修5正弦定理(一)A

合集下载

人教A版必修5第1章《正弦定理和余弦定理》ppt导学课件

人教A版必修5第1章《正弦定理和余弦定理》ppt导学课件
2 2 2 2 2 2 2 2 2 2 2 2
根据勾股定理知△ABC 是直角三角形. 4、 已知 a,b,c 分别为△ABC 三个内角 A,B,C 的对边,acosC+ 3asinC-b-c =0. (1)求 A; (2)若 a=2,△ABC 的面积为 3,求 b, c. 【解析】本题考查正弦定理.(1)利用正 弦定理边化角结合两角和差公式化简求 解; (2)利用三角形面积公式及余弦定理 求解. 【答案】 (1)由 acosC+ 3asinC-b-c= 0 及正弦定理得

【解析】本题考查正弦定理 . 在三角形中【解析】本题考查正弦定理.由正弦定理, 需要考虑大边对大角,三个内角的和不能得 sin B= 2, 2 0 超过 180 .利用正弦定理求得∠B,根据大 ∵a>b,∴∠A>∠B. 边对大角,故∠B =30°,勾股定理求得 ∴∠B 只有一解.∴∠B=45°. c. 【答案】45°.
人教(A)数学 · 必修5 对点助学PPT
【知识目标】
1、理解正弦定理和余弦定理公 式的推导过程;
正弦定理和余弦定理
【学习目标】
1、会根据正弦定理和余弦定理 解三角形(知三求一) ; 2、会利用正弦定理和余弦定理 进行边角的相互转化2 3, b=6,
B=60°或 120°.
a
sin A

= =2R sin B sin C
b
c
(R 为△ABC 的外接圆半径).
统一为“边”之间的关系式或“角” 【答案】由正弦定理 a = b sin A sin B 之间的关系式. 3 1 1 可得 = ,∴sin B= , sin 60° sin B 2
【对点巩固】
故∠B=30°或 150°.由 a>b,

高中数学新人教A版必修5第一章 1.1 1.1.1 正弦定理

高中数学新人教A版必修5第一章  1.1  1.1.1  正弦定理

正弦定理和余弦定理1.1.1 正弦定理(1)直角三角形中的边角之间有什么关系?(2)正弦定理的内容是什么?利用它可以解哪两类三角形?(3)解三角形的含义是什么?预习课本P 2~3,思考并完成以下问题[新知初探]1.正弦定理在一个三角形中,各边和它所对角的正弦的比相等,即a sin A =b sin B =c sin C. [点睛] 正弦定理的特点(1)适用范围:正弦定理对任意的三角形都成立.(2)结构形式:分子为三角形的边长,分母为相应边所对角的正弦的连等式. (3)刻画规律:正弦定理刻画了三角形中边与角的一种数量关系,可以实现三角形中边角关系的互化.2.解三角形一般地,把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素,已知三角形的几个元素求其他元素的过程叫做解三角形.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)正弦定理适用于任意三角形( )(2)在△ABC 中,等式b sin A =a sin B 总能成立( ) (3)在△ABC 中,已知a ,b ,A ,则此三角形有唯一解( )解析:(1)正确.正弦定理适用于任意三角形.(2)正确.由正弦定理知a sin A =bsin B,即b sin A =a sin B .(3)错误.在△ABC 中,已知a ,b ,A ,此三角形的解有可能是无解、一解、两解的情况,具体情况由a ,b ,A 的值来定.答案:(1)√ (2)√ (3)×2.在△ABC 中,下列式子与sin Aa 的值相等的是( )A.bc B.sin B sin A C.sin C cD.c sin C 解析:选C 由正弦定理得,a sin A =c sin C, 所以sin A a =sin C c .3.在△ABC 中,已知A =30°,B =60°,a =10,则b 等于( ) A .5 2B .10 3C.1033D .5 6解析:选B 由正弦定理得,b =a sin Bsin A=10×3212=10 3.4.在△ABC 中,A =30°,a =3,b =2,则这个三角形有 ( )A .一解B .两解C .无解D .无法确定解析:选A ∵b <a ,A =30°,∴B <30°,故三角形有一解.已知两角及一边解三角形[典例] 在△ABC 中,已知a =8,B =60°,C =75°,求A ,b ,c . [解] A =180°-(B +C )=180°-(60°+75°)=45°, 由正弦定理b sin B =a sin A ,得b =a sin B sin A =8×sin 60°sin 45°=46,由a sin A =c sin C ,得c =a sin C sin A =8×sin 75°sin 45°=8×2+6422=4(3+1).已知三角形任意两角和一边解三角形的基本思路(1)由三角形的内角和定理求出第三个角. (2)由正弦定理公式的变形,求另外的两条边.[注意] 若已知角不是特殊角时,往往先求出其正弦值(这时应注意角的拆并,即将非特殊角转化为特殊角的和或差,如75°=45°+30°),再根据上述思路求解.[活学活用]在△ABC 中,若A =60°,B =45°,BC =32,则AC =( ) A .43 B .2 3 C. 3D .32解析:选B 由正弦定理得,BC sin A =AC sin B ,即32sin 60°=AC sin 45°,所以AC =3232×22=23,故选B.已知两边及其中一边的对角解三角形[典例] 在△ABC 中,a =3,b =2,B =45°,求A ,C ,c . [解] 由正弦定理及已知条件,有3sin A =2sin 45°,得sin A =32.∵a >b ,∴A >B =45°.∴A =60°或120°. 当A =60°时,C =180°-45°-60°=75°,c =b sin C sin B =2sin 75°sin 45°=6+22; 当A =120°时,C =180°-45°-120°=15°,c =b sin C sin B =2sin 15°sin 45°=6-22. 综上可知:A =60°,C =75°,c =6+22或A =120°,C =15°,c =6-22.已知三角形两边和其中一边的对角解三角形的方法(1)首先由正弦定理求出另一边对角的正弦值.(2)如果已知的角为大边所对的角时,由三角形中大边对大角、大角对大边的法则能判断另一边所对的角为锐角,由正弦值可求锐角唯一.(3)如果已知的角为小边所对的角时,则不能判断另一边所对的角为锐角,这时由正弦值可求两个角,要分类讨论.[活学活用]在△ABC 中,c =6,C =60°,a =2,求A ,B ,b . 解:∵a sin A =c sin C ,∴sin A =a sin C c =22.∴A =45°或A =135°. 又∵c >a ,∴C >A .∴A =45°. ∴B =75°,b =c sin B sin C =6·sin 75°sin 60°=3+1.三角形形状的判断[典例] 在△ABC 中,a cos ⎝⎛⎭⎫π2-A =b cos ⎝⎛⎭⎫π2-B ,判断△ABC 的形状. 解:[法一 化角为边] ∵a cos ⎝⎛⎭⎫π2-A =b cos ⎝⎛⎭⎫π2-B ,∴a sin A =b sin B .由正弦定理可得:a ·a 2R =b ·b2R ,∴a 2=b 2,∴a =b ,∴△ABC 为等腰三角形. [法二 化边为角]∵a cos ⎝⎛⎭⎫π2-A =b cos ⎝⎛⎭⎫π2-B , ∴a sin A =b sin B .由正弦定理可得:2R sin 2A =2R sin 2B ,即sin A =sin B , ∴A =B .(A +B =π不合题意舍去) 故△ABC 为等腰三角形.利用正弦定理判断三角形的形状的两条途径(1)化角为边......将题目中的所有条件,利用正弦定理化角为边,再根据多项式的有关知识(分解因式、配方等)得到边的关系,如a =b ,a 2+b 2=c 2等,进而确定三角形的形状.利用的公式为:sin A =a 2R ,sin B =b 2R ,sin C =c2R. (2)化边为角......将题目中所有的条件,利用正弦定理化边为角,再根据三角函数的有关知识得到三个内角的关系,进而确定三角形的形状.利用的公式为:a =2R sin A ,b =2R sin B ,c =2R sin C .[活学活用]在△ABC 中,sin 2A =sin 2B +sin 2C ,且sin A =2sin B ·cos C .试判断△ABC 的形状. 解:由正弦定理,得sin A =a 2R ,sin B =b 2R ,sin C =c2R .∵sin 2A =sin 2B +sin 2C , ∴⎝⎛⎭⎫a 2R 2=⎝⎛⎭⎫b 2R 2+⎝⎛⎭⎫c 2R 2, 即a 2=b 2+c 2, 故A =90°.∴C =90°-B ,cos C =sin B . ∴2sin B ·cos C =2sin 2B =sin A =1. ∴sin B =22. ∴B =45°或B =135°(A +B =225°>180°,故舍去). ∴△ABC 是等腰直角三角形.层级一 学业水平达标1.在△ABC 中,a =5,b =3,则sin A ∶sin B 的值是( )A.53B.35C.37D.57 解析:选A 根据正弦定理得sin A sin B =a b =53. 2.在△ABC 中,a =b sin A ,则△ABC 一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形解析:选B 由题意有a sin A =b =b sin B,则sin B =1, 即角B 为直角,故△ABC 是直角三角形. 3.在△ABC 中,若sin A a =cos C c,则C 的值为( )A .30°B .45°C .60°D .90°解析:选B 由正弦定理得,sin A a =sin C c =cos Cc ,则cos C =sin C ,即C =45°,故选B.4.在△ABC 中,a =3,b =5,sin A =13,则sin B =( )A.15B.59C.53D .1解析:选B 在△ABC 中,由正弦定理a sin A =bsin B ,得sin B =b sin Aa =5×133=59.5.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且a =3b sin A ,则sin B =( ) A. 3 B.33C.63D .-63解析:选B 由正弦定理得a =2R sin A ,b =2R sin B ,所以sin A =3sin B sin A ,故sinB =33. 6.下列条件判断三角形解的情况,正确的是______(填序号). ①a =8,b =16,A =30°,有两解; ②b =18,c =20,B =60°,有一解; ③a =15,b =2,A =90°,无解; ④a =40,b =30,A =120°,有一解.解析:①中a =b sin A ,有一解;②中c sin B <b <c ,有两解;③中A =90°且a >b ,有一解;④中a >b 且A =120°,有一解.综上,④正确.答案:④7.在△ABC 中,若(sin A +sin B )(sin A -sin B )=sin 2C ,则△ABC 的形状是________. 解析:由已知得sin 2A -sin 2B =sin 2C ,根据正弦定理知sin A =a 2R ,sin B =b2R ,sin C=c2R, 所以⎝⎛⎭⎫a 2R 2-⎝⎛⎭⎫b 2R 2=⎝⎛⎭⎫c 2R 2,即a 2-b 2=c 2,故b 2+c 2=a 2.所以△ABC 是直角三角形. 答案:直角三角形8.在△ABC 中,若A =105°,C =30°,b =1,则c =________. 解析:由题意,知B =180°-105°-30°=45°.由正弦定理,得c =b sin C sin B =1×sin 30°sin 45°=22. 答案:229.已知一个三角形的两个内角分别是45°,60°,它们所夹边的长是1,求最小边长. 解:设△ABC 中,A =45°,B =60°, 则C =180°-(A +B )=75°. 因为C >B >A ,所以最小边为a . 又因为c =1,由正弦定理得, a =c sin A sin C =1×sin 45°sin 75°=3-1, 所以最小边长为3-1.10.在△ABC 中,已知a =22,A =30°,B =45°,解三角形. 解:∵a sin A =b sin B =csin C, ∴b =a sin B sin A =22sin 45°sin 30°=22×2212=4.∴C =180°-(A +B )=180°-(30°+45°)=105°,∴c =a sin C sin A =22sin 105°sin 30°=22sin 75°12=42sin(30°+45°)=2+2 3.层级二 应试能力达标1.(2017·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =( )A.π12B.π6C.π4D.π3解析:选B 因为sin B +sin A (sin C -cos C )=0, 所以sin(A +C )+sin A sin C -sin A cos C =0,所以sin A cos C +cos A sin C +sin A sin C -sin A cos C =0,整理得sin C (sin A +cos A )=0.因为sin C ≠0,所以sin A +cos A =0,所以tan A =-1,因为A ∈(0,π),所以A =3π4,由正弦定理得sin C =c ·sin A a =2×222=12,又0<C <π4,所以C =π6.2.已知a ,b ,c 分别是△ABC 的内角A ,B ,C 的对边,若△ABC 的周长为4(2+1),且sin B +sin C =2sin A ,则a =( )A. 2 B .2 C .4D .2 2解析:选C 根据正弦定理,sin B +sin C =2sin A 可化为b +c =2a , ∵△ABC 的周长为4(2+1),∴⎩⎨⎧a +b +c =4(2+1),b +c =2a ,解得a =4.故选C. 3.(2017·山东高考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若△ABC 为锐角三角形,且满足sin B (1+2cos C )=2sin A cos C +cos A sin C ,则下列等式成立的是( )A .a =2bB .b =2aC .A =2BD .B =2A解析:选A 由题意可知sin B +2sin B cos C =sin A cos C +sin(A +C ),即2sin B cos C =sin A cos C ,又cos C ≠0,故2sin B =sin A ,由正弦定理可知a =2b .4.如图,正方形ABCD 的边长为1,延长BA 至E ,使AE =1,连接EC ,ED ,则sin ∠CED =( )A.31010B.1010C.510D.515解析:选B 由题意得EB =EA +AB =2,则在Rt △EBC 中,EC =EB 2+BC 2=4+1= 5.在△EDC 中,∠EDC =∠EDA +∠ADC =π4+π2=3π4,由正弦定理得sin ∠CED sin ∠EDC =DC EC =15=55, 所以sin ∠CED =55·sin ∠EDC =55·sin 3π4=1010. 5.在△ABC 中,A =60°,B =45°,a +b =12,则a =________. 解析:因为a sin A =b sin B ,所以a sin 60°=bsin 45°,所以32b =22a ,① 又因为a +b =12,② 由①②可知a =12(3-6). 答案:12(3-6)6.在△ABC 中,若A =120°,AB =5,BC =7,则sin B =_______. 解析:由正弦定理,得AB sin C =BC sin A ,即sin C =AB ·sin ABC=5sin 120°7=5314. 可知C 为锐角,∴cos C =1-sin 2C =1114. ∴sin B =sin(180°-120°-C )=sin(60°-C ) =sin 60°·cos C -cos 60°·sin C =3314.答案:33147.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知A -C =90°,a +c =2b ,求C .解:由A -C =90°,得A 为钝角且sin A =cos C ,利用正弦定理,a +c =2b 可变形为sin A +sin C =2sin B ,又∵sin A =cos C ,∴sin A +sin C =cos C +sin C =2sin(C +45°)=2sin B , 又A ,B ,C 是△ABC 的内角,故C +45°=B 或(C +45°)+B =180°(舍去), 所以A +B +C =(90°+C )+(C +45°)+C =180°. 所以C =15°.8.在△ABC 中,已知c =10,cos A cos B =b a =43,求a ,b 及△ABC 的内切圆半径. 解:由正弦定理知sin B sin A =b a ,∴cos A cos B =sin Bsin A .即sin A cos A =sin B cos B ,∴sin 2A =sin 2B . 又∵a ≠b ,∴2A =π-2B ,即A +B =π2.∴△ABC 是直角三角形,且C =90°, 由⎩⎪⎨⎪⎧a 2+b 2=102,b a =43得a =6,b =8.故内切圆的半径为r =a +b -c 2=6+8-102=2.。

人教版高中数学高二人教A版必修5(正弦定理)

人教版高中数学高二人教A版必修5(正弦定理)

绝密★启用前1.1.1 正弦定理 (A 卷)考点:1.正弦定理解三角形 2.正弦定理判定三角形解的个数3.正弦定理边角互化的应用一、选择题:本题共8个小题,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【题文】在△ABC 中,6,60a b A ===,则sin B = ( )A . 23B .3.2 D .382.【题文】设△ABC 的内角A ,B ,C 所对的边分别为,,a b c ,若cos cos sin b C c B a A +=,则△ABC 的形状为( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不确定3.【题文】在△ABC 中, ,,A B C ∠∠∠所对的边分别为,,a b c ,若8,60,75a B C =∠=︒∠=︒,则实数b 等于( )A. B. D.3234.【题文】在△ABC 中,b =4B π∠=,tan A =,则实数a 的值是( )A .210B .C .10D .25.【题文】在△ABC 中,15,18,30a b A ===︒,则此三角形解的个数为( ) A .0 B . C . 2 D .不确定6.【题文】在△ABC 中,角,,A B C 所对的边分别为a b c 、、,已知π3,3a b A ===,则角B 等于( ) A.π4 B.3π4 C. π4或3π4D. 以上都不正确7.【题文】在△ABC 中,已知AB =,30B =︒,则A = ( ) A .45° B.15° C.45°或135° D.15°或105°8.【题文】在△ABC 中,已知1,15b c B ===,则边长a 等于 ( )A 1或21 C. 2 D.二、填空题:本题共3小题.9.【题文】在△ABC 中,已知a =4,B =60°,C =75°,则b = .10.【题文】在△ABC 中,角A , C 所对的边分别是a , c ,其中1=a ,33=c 3A π=,则角=C .11.【题文】如图所示,在一个坡度一定的山坡AC 的顶上有一高度为25m 的建筑物CD .为了测量该山坡相对于水平地面的坡角θ,在山坡的A 处测得15DAC ︒∠=,沿山坡前进50m 到达B 处,又测得45DBC ︒∠=.根据以上数据计算可得cos θ=__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.12.【题文】△ABC 的内角A 、B 、C 所对的边分别为a 、b 、c .己知A −C =90°,a +c =2b ,求C .13.【题文】如图,在△ABC中,点D 在BC 边上,π72cos 42CAD AC ADB ∠==∠=-,,.(1)求sin C ∠的值; (2)若5BD =,求AD 的长.14.【题文】在△ABC 中,c b a 、、分别是角C B A 、、所对的边,且满足C b a cos 3=.(1)求BCtan tan 的值; (2)若3tan ,3==A a ,求边长b 的值.1.1.1 正弦定理 (A 卷)参考答案与解析1. 【答案】D【解析】∵6,60a b A ===,由sin sin a b A B =得sin 3sin .8b A B a ==故选D. 考点:正弦定理. 【题型】选择题 【难度】一般2. 【答案】B【解析】由已知可得2sin cos cos sin sin B C B C A +=,∴()2sin sin B C A +=, ∴sin 1A =,∴π2A =,三角形为直角三角形. 考点:判断三角形的形状. 【题型】选择题 【难度】较易3. 【答案】C【解析】∵60,75B C ︒︒∠=∠=,∴45A ∠=,∵sin sin a bA B =,=,∴b =考点:正弦定理解三角形. 【题型】选择题 【难度】较易4. 【答案】B【解析】因为sin tan cos AA A==22sin cos 1A A +=,∴sin A =,由正弦定πsin 43=,解得a = B. 考点:三角恒等式,正弦定理解三角形. 【题型】选择题 【难度】一般5. 【答案】C303=,因为b a >,所以30B A >=,所以角B 可能是锐角,也可能是钝角,所以此三角形有两解,故选C.考点:正弦定理判定三角形解的个数. 【题型】选择题 【难度】一般6. 【答案】A【解析】在△ABC 中,∵π3,3a b A ===,∴3πsin sin sin 3a b A B =⇒=sin B ⇒=,又∵3b a =<=,∴π03B A <<=,∴π4B =,故选A. 考点:正弦定理解三角形. 【题型】选择题 【难度】一般7. 【答案】D 【解析】由正弦定理得sinsin AB ACC B=,得sin sin 30AB B C AC ==︒=,由AB AC >,得C B >,所以45C =︒或135︒,从而105A =︒或15︒.故选D . 考点:正弦定理解三角形. 【题型】选择题 【难度】一般8. 【答案】A【解析】由正弦定理可得,sin 6sin153sin 31c B C b ⨯===-, 在△ABC 中,c b >,60C ∴=或120.当60C =时,105A =,sin 6sin10531sin sin 60c A a C ︒︒∴===+; 当120C =时,45A =,此时sin 6sin 452sin sin120c A a C ︒︒∴===. 综上可得31a =+或2a =. 考点:正弦定理解三角形. 【题型】选择题 【难度】一般9. 【答案】26【解析】∵B =60°,C =75°,∴A =45°,∴由正弦定理得b =oo sin 4sin 60=26sin sin 45a B A ⨯=考点:正弦定理解三角形. 【题型】填空题 【难度】较易10. 【答案】π6【解析】由正弦定理可得313πsin sin 3C =,即212333sin =⨯=C ,所以π6C =或5π6,又a c <,所以π6C =.考点:正弦定理解三角形. 【题型】填空题 【难度】一般11. 【解析】在△ABD 中,50m 15451530AB DAB ADB ︒︒︒︒=∠=∠=-=,,,由正弦定理得50sin 30sin 15BD ︒︒=,可得100sin 15m BD ︒=.在△DBC 中,25m CD =,45CBD ︒∠=,90BCD θ︒∠=+,由正弦定理得()100sin15sin 45295sin 0θ︒︒︒=+,()cos sin 90θθ︒︒∴=+==1. 考点:正弦定理解三角形. 【题型】填空题 【难度】较难12. 【答案】15【解析】由正弦定理可得sin sin A C B +=,又由于()o o 90=180,A C B A C -=-+,故()cos sin C C A C +=+()o 9022.C C =+=cos 2,C C C = ()o cos 45=cos 2C C -.因为o o 090C <<, 所以o 2=45C C -,o =15C .考点:正弦定理边角互化的应用,三角恒等变换. 【题型】解答题 【难度】一般13. 【答案】(1)45(2【解析】(1)因为cos ADB ∠=,所以sin ADB ∠=. 又因为π4CAD ∠=,所以π4C ADB ∠=∠-.所以πsin sin sin 4C ADB ADB⎛⎫∠=∠-=∠ ⎪⎝⎭ππ4cos cos sin 441021025ADB ⋅-∠⋅=+=.(2)在△ACD 中,由sin sin AD ACC ADC=∠∠考点:两角差的正弦公式,正弦定理解三角形. 【题型】解答题 【难度】一般14. 【答案】(1)2 (2【解析】(1)由正弦定理可得sin 3sin cos A B C =,πA B C ++=,sin sin()=3sin cos A B C B C ∴=+,即sin cos cos sin =3sin cos B C B C B C +,cos sin =2sin cos B C B C ∴,cos sin =2sin cos B CB C∴,故tan =2tan CB. (2)由πA B C ++=得tan()tan(π)3B C A +=-=-,即tan tan 31tan tan B C B C +=--⨯, 将tan 2tan C B =代入得23tan 312tan BB=--, 解得tan 1B =或1tan 2B =-,根据tan 2tan C B =得tan tan C B 、同正, 所以tan 1B =,又tan 3A =,可得sin sin 210B A ==102,∴b考点:正弦定理的运用,三角函数的恒等变换. 【题型】解答题【难度】一般。

高中数学第二章解三角形2.1.1正弦定理课件北师大版必修5

高中数学第二章解三角形2.1.1正弦定理课件北师大版必修5

中,
sin
=

sin
=

.
sin
【做一做1】
在△ABC 中,若 3a=2bsin A,则角 B 等于
.
解析:根据已知条件及正弦定理可知 3sin A=2sin Bsin A⇔
3
π

3=2sin B⇔sin B= 2 ,所以角 B 为3 或 3 .
π

答案:3 或 3
知识拓展1.正弦定理的证明
Bcos A,又 sin B≠0,则 sin A= 3cos A,即 tan A= 3,又△ABC 为锐角三
π
角形,所以 A= .
3
答案:(1)7∶5∶3 (2)A
探究一
探究二
探究三
探究二
探究四
思维辨析
利用正弦定理解三角形
【例2】 在△ABC中,
(1)若A=45°,B=30°,a=2,求b,c与C.
(2)若B=30°,b=5, c=5 3 ,求A,C与a.
分析:先根据三角形中解的个数的判断方法得出解的情况,再求
出各元素的值.
解:(1)由三角形内角和定理得,
C=180°-(A+B)=180°-(45°+30°)=105°.
sin
由正弦定理得,b=
sin
1
=
sin 105°=sin(60°+45°)=
(5)在△ABC中,若 cos = 1 + cos2 ,则△ABC为等腰三角形或直
角三角形. (
)
答案:(1)
(2)
(3)× (4)× (5)
探究一
探究二
探究一
探究三
探究四
思维辨析

人教版高中数学必修五正弦定理和余弦定理课件

人教版高中数学必修五正弦定理和余弦定理课件

解的情况
A为钝角或直角
a>b a≤b
一解 无解
a<bsinA
无解
A为锐角
a=bsinA bsinA<a<b
一解 两解
a≥b
一解
思考 : 在ABC中, a x, b 2, A 450,若这个三角形有
两解,则x的取值范围是 _____2_,_2____
正弦定理的推论: =2R (R为△ABC外接圆半径) (边换角)
在已知三边和一个角的情况下:求另一个角 ㈠用余弦定理推论,解唯一,可以免去判断舍取。 ㈡用正弦定理,计算相对简单,但解不唯一,要进行 判断舍取。
练习1:在△ABC中,已知
解:
=31+18 =49
∴b=7
练习2:
在△ABC中, a 7,b 4 3, c 13 ,求△ABC的最小角。
解:
72 (4 13)2 ( 13)2 274 3
二、可以用正弦定理解决的两类三角问题: (1)知两角及一边,求其它的边和角; (2)知三角形任意两边及其中一边的对角,求其它
的边和角(注意判断解的个数)
思考:你能用正弦定理来解释为什么在三角形中越大
的角所对的边就越大吗?
分析:设△ABC的三个角所对边长分别是a、b、c,
且∠A≥∠B≥∠C,
(1)若△ABC是锐角或直角三角形 ∵正弦函数y=sinx在 [0, ]上是增函数 2
2A 2k 2B 或 2A 2k 2B(k Z)
0 A,B ,∴k 0,则A B或A+B=
故△ABC为等腰三角形或直角三角形.
2
针对性练习 1、已知△ABC中,sin2A=sin2B+sin2C,且 b sinB=c sinC,则△ABC的形状是

高中数学必修5全册知识点总结(理科)

高中数学必修5全册知识点总结(理科)

高中数学必修5知识点第一章解三角形(一)解三角形:1、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,,则有2sin sin sin a b c RC ===A B (R 为C ∆AB 的外接圆的半径)2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =;②sin 2a R A =,sin 2b R B =,sin 2c C R=;③::sin :sin :sin a b c C =A B ;3、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆A B =A ==B .4、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,推论:222cos 2b c abc+-A =第二章数列1、数列中n a 与n S 之间的关系:11,(1),(2).n n n S n a S S n -=⎧=⎨-≥⎩注意通项能否合并。

2、等差数列:⑴定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,即n a -1-n a =d ,(n≥2,n∈N +),那么这个数列就叫做等差数列。

⑵等差中项:若三数a A b 、、成等差数列2a bA +⇔=⑶通项公式:1(1)()n m a a n d a n m d=+-=+-或(n a pn q p q =+、是常数).⑷前n 项和公式:()()11122n n n n n a a S na d -+=+=⑸常用性质:①若()+∈ +=+N q p n m q p n m ,,,,则q p n m a a a a +=+;②下标为等差数列的项() ,,,2m k m k k a a a ++,仍组成等差数列;③数列{}b a n +λ(b ,λ为常数)仍为等差数列;④若{}n a 、{}n b 是等差数列,则{}n ka 、{}n n ka pb +(k 、p 是非零常数)、*{}(,)p nq a p q N +∈、,…也成等差数列。

高三数学必修5课件:正弦定理(1)(2)

高三数学必修5课件:正弦定理(1)(2)

思考:对于一般三角形,上述结论是否成立 思考:对于一般三角形,
在锐角三角形中, 在锐角三角形中,
作CD ⊥ AB于点D
CD = sin A,即CD = b sin A b CD = sin B,即CD = a sin B a
∴ b sin A = a sin B a b a c 即 = 同理: = sin A sin B sin A sin C a b c ∴ = = sin A sin B sin C
Da 同理 ∴
S∆ABC = absin C = bc sin A = ac sin B 2 2 2 abc a b c ∴ = = = 2S∆ABC sin A sin B sin C
1 1 S∆ABC = acsin B = absinC 2 2 1 S∆ABC = bcsin A 2 1 1 1
a b c ∴ = = sin A sin B sin C
由以上三种情况的讨论可得: 由以上三种情况的讨论可得: 正弦定理: 在一个三角形中,各边的长和 正弦定理: 在一个三角形中, 它所对角的正弦的比相等, 它所对角的正弦的比相等,即
a b c = = sin A sin B sin C
思考: 思考:用“向量”的方法如何证明“正弦定理 向量”的方法如何证明“
∆ABC中,b = 3 , B = 60 0 , c = 1, 求a和A, C
C = 30 , A = 90 , a = 2
1.1.1 正弦定理
第二节
思考: 思考:正弦定理可以解哪些类问题 已知两角和任一边, ①已知两角和任一边, 求其他两边及一角。 有唯一解) 求其他两边及一角。 (有唯一解) 已知两边和其中一边对角, ②已知两边和其中一边对角, 求另一边的对角。 求另一边的对角。 何时有一解,二解,无解) (何时有一解,二解,无解

高中数学人教A版必修5课件:1.1.1 正弦定理

高中数学人教A版必修5课件:1.1.1 正弦定理
������sin������ 20sin45° c= = sin������ sin75° 10 2 = sin(45°+30°) = 20 ������sin������ 20sin60° 10 3 10 3
2 3 2 2 × 2 + 2 ×2
= 1
40 3 6+ 2
3 − 20.
题型一
题型二
题型三
题型四
题型二
已知两边和其中一边的对角解三角形
【例 2】 在△ABC 中,已知下列条件,解三角形: (1)a=10,b=20,A=80° ; (2)b=10,c=5 6,C=60° ; (3)a= 3,b= 2,B=45° .
题型一
题型二
题型三
题型四
解:(1)由正弦定理,
20sin80° = 2sin 80° >1,故此三角形无解. 10 ������sin������ 10sin60° 2 (2)由正弦定理,得 sin B= ������ = = 2. 5 6
第一章
解三角形
1.1 正弦定理和余弦定理
1.1.1 正弦定理
1.了解正弦定理的推导过程,掌握正弦定理及其变形. 2.能用正弦定理解三角形,并能判断三角形的形状.
确定三角形解的个数 剖析:(1)已知三角形的两角与一边,根据正弦定理,有且只有一解. (2)已知三角形的两边及其中一边的对角,根据正弦定理,可能有 两解、一解或无解.在△ABC中,当已知a,b和角A时,解的情况如下:
������sin������ sin������ ������sin������ 2sin60°
2( 3+1) 4 2 2× 2 2( 3+1) 4
2 3 2 1 × 2 + 2 ×2 2

高中数学必修五-正弦定理与余弦定理

高中数学必修五-正弦定理与余弦定理

正弦定理与余弦定理知识集结知识元正弦定理公式知识讲解1.正弦定理【知识点的知识】1.正弦定理和余弦定理定理正弦定理余弦定理内容=2R(R是△ABC外接圆半径)a2=b2+c2﹣2bc cos A,b2=a2+c2﹣2ac cos B,c2=a2+b2﹣2ab cos C变形形式①a=2R sin A,b=2R sin B,c=2R sin C;②sin A=,sin B=,sin C=;③a:b:c=sin A:sin B:sin C;④a sin B=b sin A,b sin C=c sin B,a sin C=c sin A cos A=,cos B=,cos C=解决三角形的问题①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两角在△ABC中,已知a,b和角A时,解的情况A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b一解两解一解一解解的个数由上表可知,当A为锐角时,a<b sin A,无解.当A为钝角或直角时,a≤b,无解.2、三角形常用面积公式1.S=a•h a(h a表示边a上的高);2.S=ab sin C=ac sin B=bc sin A.3.S=r(a+b+c)(r为内切圆半径).【正余弦定理的应用】1、解直角三角形的基本元素.2、判断三角形的形状.3、解决与面积有关的问题.4、利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识(1)测距离问题:测量一个可到达的点到一个不可到达的点之间的距离问题,用正弦定理就可解决.解题关键在于明确:①测量从一个可到达的点到一个不可到达的点之间的距离问题,一般可转化为已知三角形两个角和一边解三角形的问题,再运用正弦定理解决;②测量两个不可到达的点之间的距离问题,首先把求不可到达的两点之间的距离转化为应用正弦定理求三角形的边长问题,然后再把未知的边长问题转化为测量可到达的一点与不可到达的一点之间的距离问题.(2)测量高度问题:解题思路:①测量底部不可到达的建筑物的高度问题,由于底部不可到达,因此不能直接用解直角三角形的方法解决,但常用正弦定理计算出建筑物顶部或底部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.②对于顶部不可到达的建筑物高度的测量问题,我们可选择另一建筑物作为研究的桥梁,然后找到可测建筑物的相关长度和仰、俯角等构成三角形,在此三角形中利用正弦定理或余弦定理求解即可.点拨:在测量高度时,要理解仰角、俯角的概念.仰角和俯角都是在同一铅锤面内,视线与水平线的夹角.当视线在水平线之上时,成为仰角;当视线在水平线之下时,称为俯角.例题精讲正弦定理公式例1.已知△ABC中,角A,B,C所对的边分别是a,b,c.若A=45°,B=30°,a=,则b=()A.B.1 C.2 D.例2.在△ABC中,角A,B,C的对边分别为a,b,c,若,则B=()A.B.C.D.或例3.在△ABC中,已知三个内角为A,B,C满足sin A:sin B:sin C=3:5:7,则C=()A.90°B.120°C.135°D.150°利用正弦定理解三角形知识讲解【正余弦定理的应用】1、解直角三角形的基本元素.2、判断三角形的形状.3、解决与面积有关的问题.4、利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识例题精讲利用正弦定理解三角形例1.在△ABC中,a,b,c是内角A,B,C所对的边.若a>b,则下列结论不一定成立的()A.A>B B.sin A>sin BC.cos A<cos B D.sin2A>sin2B例2.在△ABC中,角A,B,C的对边分别是a,b,c,且,则角A的大小为()A.B.C.D.例3.在△ABC中,三内角A,B,C的对边分别为a,b,c,若sin B =b sin A,则a=()A .B .C.1 D.三角形面积公式的简单应用知识讲解1.余弦定理【知识点的知识】1.正弦定理和余弦定理定理正弦定理余弦定理内容=2R(R是△ABC外接圆半径)a2=b2+c2﹣2bc cos A,b2=a2+c2﹣2ac cos B,c2=a2+b2﹣2ab cos C变形形式①a=2R sin A,b=2R sin B,c=2R sin C;②sin A=,sin B=,sin C=;③a:b:c=sin A:sin B:sin C;④a sin B=b sin A,b sin C=c sin B,a sin C=c sin A cos A=,cos B=,cos C=解决三角形的问题①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两角A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b 解的个数一解两解一解一解由上表可知,当A为锐角时,a<b sin A,无解.当A为钝角或直角时,a≤b,无解.例题精讲三角形面积公式的简单应用例1.已知△ABC的内角A,B,C的对边分别为a,b,c,且(a+b)2=c2+ab,B=30°,a=4,则△ABC的面积为()A.4 B.3C.4D.6例2.设△ABC的三个内角A,B,C成等差数列,其外接圆半径为2,且有,则三角形的面积为()A.B.C.或D.或例3.在△ABC中角ABC的对边分别为a、b、c,cos C=,且a cos B+b cos A=2,则△ABC面积的最大值为()A.B.C.D.利用余弦定理解三角形当堂练习填空题练习1.如图,O在△ABC的内部,且++3=,则△ABC的面积与△AOC的面积的比值为_____.练习2.锐角△ABC的内角A,B,C的对边分别为a,b,c,已知c2-8=(a-b)2,a=2c sin A,则△ABC的面积为____.练习3.在△ABC中,内角A,B,C的对边分别为a,b,c,已知,则的最大值是____.解答题练习1.'在△ABC中,角A,B,C所对的边分别为a,b,c,且满足.(1)求角B的大小;(2)若D为AC的中点,且BD=1,求S△ABC的最大值.'练习2.'在△ABC中,角A、B、C的对边分别是a、b、c,若(a+c)sin B-b sin C=b cos A.(1)求角A;(2)若△ABC的面积为4,a=6,求△ABC的周长.'练习3.'△ABC内角A,B,C所对的边分别为a,b,c.若。

1_1_1《正弦定理》1(人教A版必修5)

1_1_1《正弦定理》1(人教A版必修5)

1.1.1正弦定理(一)教学目标1.知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会使用正弦定理与三角形内角和定理解斜三角形中的一类简单问题2. 过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并实行定理基本应用的实践操作。

3.情态与价值:培养学生在方程思想指导下处理解三角形问题的运算水平;培养学生合情推理探索数学规律的数学思思想水平,通过三角形函数、正弦定理、向量的数量积等知识间的联系来表达事物之间的普遍联系与辩证统一。

(二)教学重、难点重点:正弦定理的探索和证明及其基本应用。

难点:正弦定理的推导即理解 (三)学法与教学用具学法:引导学生首先从直角三角形中揭示边角关系:sin sin sin abcA B C==,接着就一般斜三角形实行探索,发现也有这个关系;分别利用传统证法和向量证法对正弦定理实行推导,让学生发现向量知识的简捷,新颖。

教学用具:直尺、投影仪、计算器(四)教学过程1[探索研究]在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。

如图1.1-1,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1cC c ==, A 则sin sin sin a b c c A B C=== b c 从而在直角三角形ABC 中,sin sin sin a b cA B C==C a B (图1.1-1)思考:那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图1.1-2,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin abAB=, C同理可得sin sin cbC B =, b a从而sin sin a b A B =sin cC=A c B(图1.1-2) 思考:是否能够用其它方法证明这个等式?因为涉及边长问题,从而能够考虑用向量来研究这个问题。

人教A版高中数学必修5《正弦定理》说课稿

人教A版高中数学必修5《正弦定理》说课稿
人教A版普通高中课程标准教科书(必修五)第一章第一节
正弦定理
教材 分析 教法 分析
教学 反思
说课目录
教学 程序
板书 设计
学法 分析
一.教材分析
1
教材的地位和作用
三角形是基本的几何图形之一,有着极其广泛的应用。 在实际问题中,经常遇到解任意三角形 的问题,因此必 须 进一步学习任意三角形的边角关系和解任意三角形的一些 基本方法。 本节课是在学生已经于初中学习了直角三角形的边角 关系和解直角三角形的基本方法,在高中学习了三角函数 和平面向量的基础上的深化拓展。所以在此引入正弦定理 使得“解三角形”的学习变得合情合理 ,学生易于接受。
学生猜想
四.教学程序
(二)归纳猜想,证明定理(2)
学生结论 学生猜想
直角
(1)sinA sinB sinC = ab (2)abc = c3sinA sinB sinC c2
a b c = = 是否对任意三角形都成立呢? sinA sinB sinC
锐角
钝角
突破难点
C

若学生直接回答出做高转化为直角三角形, 60t 则由学生叙述证明的思路,教师板书过程; 若学生未能回答思路,则教师提示情境问 题的转化思路,让学生类比证明。 ?
A
解放军
30t
40°
50° B
海盗
四.教学程序
钝角的证明思路同锐角情况, 由学生课后完成
C
a B 过C作CD⊥AB,则有 b b sinA = CD = a b CD sinA = b sinA sinB a a sinB = CD = CD sinB a c A 同理可得,过B作BE⊥AC,则有 = sinA sinC

2014年高中数学 1.1.1正弦定理教案(一)新人教A版必修5

2014年高中数学 1.1.1正弦定理教案(一)新人教A版必修5

1.1.1正弦定理讲授新课[合作探究]师那么对于任意的三角形,关系式CcB b A a sin sin sin ==是否成立?(由学生讨论、分析)生可分为锐角三角形和钝角三角形两种情况:如右图,当△ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD =A sin B =B sin A ,则B b A a sin sin =,同理,可得B bC c s i ns i n =.从而C cB b A a s i ns i n s i n ==.(当△ABC 是钝角三角形时,解法类似锐角三角形的情况,由学生自己完成) 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即CcB b A a sin sin sin ==.师是否可以用其他方法证明这一等式? 生可以作△ABC 的外接圆,在△ABC 中,令BC =A ,AC =B ,AB =C ,根据直径所对的圆周角是直角以及同弧所对的圆周角相等,来证明CcB b A a sin sin sin ==这一关系. 师很好!这位同学能充分利用我们以前学过的知识来解决此问题,我们一起来看下面的证法. 在△ABC 中,已知BC =A ,AC =B ,AB =C ,作△ABC 的外接圆,O 为圆心,连结BO 并延长交圆于B′,设BB′=2R.则根据直径所对的圆周角是直角以及同弧所对的圆周角相等可以得到 ∠BAB′=90°,∠C =∠B′,∴sin C =sin B′=RcB C 2sin sin ='=. ∴R Cc2sin =. 同理,可得R B bR A a 2sin ,2sin ==.∴R CcB b A a 2sin sin sin ===. 这就是说,对于任意的三角形,上述关系式均成立,因此,我们得到等式CcB b A a sin sin sin ==. 点评:上述证法采用了初中所学的平面几何知识,将任意三角形通过外接圆性质转化为直角三角形进而求证,此证法在巩固平面几何知识的同时,易于被学生理解和接受,并且消除了学生所持的“向量方法证明正弦定理是唯一途径”这一误解.既拓宽了学生的解题思路,又为下一步用向量方法证明正弦定理作了铺垫. [知识拓展]师接下来,我们可以考虑用前面所学的向量知识来证明正弦定理.从定理内容可以看出,定理反映的是三角形的边角关系,而在向量知识中,哪一知识点体现边角关系呢?生向量的数量积的定义式A ·B =|A ||B |C osθ,其中θ为两向量的夹角.师回答得很好,但是向量数量积涉及的是余弦关系而非正弦关系,这两者之间能否转化呢?生 可以通过三角函数的诱导公式sinθ=Co s(90°-θ)进行转化. 师这一转化产生了新角90°-θ,这就为辅助向量j 的添加提供了线索,为方便进一步的运算,辅助向量选取了单位向量j,而j 垂直于三角形一边,且与一边夹角出现了90°-θ这一形式,这是作辅助向量j 垂直于三角形一边的原因.师在向量方法证明过程中,构造向量是基础,并由向量的加法原则可得=+而添加垂直于的单位向量j 是关键,为了产生j 与、、CB 的数量积,而在上面向量等式的两边同取与向量j 的数量积运算,也就在情理之中了.师下面,大家再结合课本进一步体会向量法证明正弦定理的过程,并注意总结在证明过程中所用到的向量知识点.点评: (1)在给予学生适当自学时间后,应强调学生注意两向量的夹角是以同起点为前提,以及两向量垂直的充要条件的运用.(2)要求学生在巩固向量知识的同时,进一步体会向量知识的工具性作用. 向量法证明过程:(1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于,则j 与的夹角为90°-A ,j 与的夹角为90°-C .由向量的加法原则可得=+,为了与图中有关角的三角函数建立联系,我们在上面向量等式的两边同取与向量j 的数量积运算,得到j j ∙=+∙)(由分配律可得j j ∙=∙+.∴Co s90°Co s(90°-C Co s(90°-A ).∴A sin C =C sin A .∴CcA a sin sin =. 另外,过点C 作与垂直的单位向量j,则j 与的夹角为90°+C ,j 与的夹角为90°+B ,可得BbC c sin sin =. (此处应强调学生注意两向量夹角是以同起点为前提,防止误解为j 与的夹角为90°-C ,j与的夹角为90°-B )∴CcB b A a sin sin sin ==.(2)△ABC 为钝角三角形,不妨设A >90°,过点A 作与垂直的单位向量j,则j 与的夹角为A -90°,j 与的夹角为90°-C .由=+,得j·+j·=j·, 即A ·Co s(90°-C )=C ·Co s(A -90°), ∴A sin C =C sin A . ∴CcA a sin sin = 另外,过点C 作与垂直的单位向量j,则j 与的夹角为90°+C ,j 与夹角为90°+B .同理,可得C cB b sin sin =.∴CcB b simA a sin sin ==(形式1). 综上所述,正弦定理对于锐角三角形、直角三角形、钝角三角形均成立. 师在证明了正弦定理之后,我们来进一步学习正弦定理的应用. [教师精讲](1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使A =ksin A ,B =ksin B ,C =ksin C ;(2)C cB b A a sin sin sin == 等价于CcA aB bC c B b A a sin sin ,sin sin ,sin sin === (形式2). 我们通过观察正弦定理的形式2不难得到,利用正弦定理,可以解决以下两类有关三角形问题. ①已知三角形的任意两角及其中一边可以求其他边,如BAb a sin sin =.这类问题由于两角已知,故第三角确定,三角形唯一,解唯一,相对容易,课本P 4的例1就属于此类问题. ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如B baA sin sin =.此类问题变化较多,我们在解题时要分清题目所给的条件.一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形. 师接下来,我们通过例题评析来进一步体会与总结. [例题剖析]【例1】在△ABC 中,已知A =32.0°,B =81.8°,A =42.9 c m,解三角形.分析:此题属于已知两角和其中一角所对边的问题,直接应用正弦定理可求出边B ,若求边C ,再利用正弦定理即可.解:根据三角形内角和定理, C =180°-(A +B )=180°-(32.0°+81.8°)=66.2°; 根据正弦定理,b =ooA B a 0.32sin 8.81sin 9.42sin sin =≈80.1(c m); c =osin32.02.66sin 9.42sin sin oA C a =≈74.1(c m). [方法引导](1)此类问题结果为唯一解,学生较易掌握,如果已知两角和两角所夹的边,也是先利用内角和180°求出第三角,再利用正弦定理.(2)对于解三角形中的复杂运算可使用计算器.【例2】在△ABC 中,已知A =20c m ,B =28c m ,A =40°,解三角形(角度精确到1°,边长精确到1 c m ).分析:此例题属于B sin A <a <b 的情形,故有两解,这样在求解之后呢,无需作进一步的检验,使学生在运用正弦定理求边、角时,感到目的很明确,同时体会分析问题的重要性.解:根据正弦定理,sin B =2040sin 28sin oa Ab =≈0.899 9.因为0°<B <180°,所以B ≈64°或B ≈116°.(1)当B ≈64°时,C =180°-(A +B )=180°-(40°+64°)=76°,C =ooA C a 40sin 76sin 20sin sin =≈30(c m). (2)当B ≈116°时,C =180°-(A +B )=180°-(40°+116°)=24°,C =ooA C a 40sin 24sin 20sin sin =≈13(c m). [方法引导]通过此例题可使学生明确,利用正弦定理求角有两种可能,但是都不符合题意,可以通过分析获得,这就要求学生熟悉已知两边和其中一边的对角时解三角形的各种情形.当然对于不符合题意的解的取舍,也可通过三角形的有关性质来判断,对于这一点,我们通过下面的例题来体会.变式一:在△ABC 中,已知A =60,B =50,A =38°,求B (精确到1°)和C (保留两个有效数字).分析:此题属于A ≥B 这一类情形,有一解,也可根据三角形内大角对大边,小角对小边这一性质来排除B 为钝角的情形.解:已知B <A ,所以B <A ,因此B 也是锐角.∵sin B =6038sin 50sin oa Ab =≈0.513 1,∴B ≈31°.∴C =180°-(A +B )=180°-(38°+31°)=111°.∴C =ooA C a 38sin 111sin 60sin sin =≈91. [方法引导]同样是已知两边和一边对角,但可能出现不同结果,应强调学生注意解题的灵活性,对于本题,如果没有考虑角B 所受限制而求出角B 的两个解,进而求出边C 的两个解,也可利用三角形内两边之和大于第三边,两边之差小于第三边这一性质进而验证而达到排除不符合题意的解.变式二:在△ABC 中,已知a =28,b =20,A =120°,求B (精确到1°)和C (保留两个有效数字). 分析:此题属于A 为钝角且A >B 的情形,有一解,可应用正弦定理求解角B 后,利用三角形内角和为180°排除角B 为钝角的情形.解:∵sin B =28120sin 20sin oa Ab =≈0.618 6, ∴B ≈38°或B ≈142°(舍去).∴C =180°-(A +B )=22°. ∴ C =︒︒=120sin 22sin 28sin sin A C a ≈12. [方法引导](1)此题要求学生注意考虑问题的全面性,对于角B 为钝角的排除也可以结合三角形小角对小边性质而得到.(2)综合上述例题要求学生自我总结正弦定理的适用范围,已知两角一边或两边与其中一边的对角解三角形.(3)对于已知两边夹角解三角形这一类型,将通过下一节所学习的余弦定理来解. 师为巩固本节我们所学内容,接下来进行课堂练习:1.在△ABC 中(结果保留两个有效数字), (1)已知C =3,A =45°,B =60°,求B ;(2)已知B =12,A =30°,B =120°,求A .解:(1)∵C =180°-(A +B )=180°-(45°+60°)=75°,CcB b sin sin =,∴B =︒︒=75sin 60sin 3sin sin C B c ≈1.6.(2)∵BbA a sin sin =,∴A =︒︒=120sin 30sin 12sin sin B A b ≈6.9. 点评:此题为正弦定理的直接应用,意在使学生熟悉正弦定理的内容,可以让数学成绩较弱的学生进行在黑板上解答,以增强其自信心. 2.根据下列条件解三角形(角度精确到1°,边长精确到1): (1)B =11,A =20,B =30°;(2)A =28,B =20,A =45°; (3)C =54,B =39,C =115°;(4)A =20,B =28,A =120°.解: (1) ∵B bA a sin sin =.∴sin A =1130sin 20sin ︒=b B a ≈0.909 1.∴A 1≈65°,A 2≈115°.当A 1≈65°时,C 1=180°-(B +A 1)=180°-(30°+65°)=85°,∴C 1=︒︒=30sin 85sin 11sin sin sin 1B C b ≈22.当A 2≈115°时,C 2=180°-(B +A 2)=180°-(30°+115°)=35°,∴C 2=︒︒=30sin 35sin 11sin sin 2B C b ≈13.(2)∵sin B =2845sin 20sin ︒=a A b ≈0.505 1,∴B 1≈30°,B 2≈150°.由于A +B 2=45°+150°>180°,故B 2≈150°应舍去(或者由B <A 知B <A ,故B 应为锐角). ∴C =180°-(45°+30°)=105°.∴C =︒︒=45sin 105sin 28sin sin A C a ≈38.(3)∵CcB b sin sin =, ∴sin B =54115sin 39sin ︒=c C b ≈0.654 6.∴B 1≈41°,B 2≈139°.由于B <C ,故B <C ,∴B 2≈139°应舍去. ∴当B =41°时,A =180°-(41°+115°)=24°,A =︒︒=115sin 24sin 54sin sin C A c ≈24. (4) sin B =20120sin 28sin ︒=a A b =1.212>1. ∴本题无解.点评:此练习目的是使学生进一步熟悉正弦定理,同时加强解三角形的能力,既要考虑到已知角的正弦值求角的两种可能,又要结合题目的具体情况进行正确取舍. 课堂小结通过本节学习,我们一起研究了正弦定理的证明方法,同时了解了向量的工具性作用,并且明确了利用正弦定理所能解决的两类有关三角形问题:已知两角、一边解三角形;已知两边和其中一边的对角解三角形. 布置作业(一)课本第10页习题1.1 第1、2题. (二)预习内容:课本P 5~P 8余弦定理 [预习提纲](1)复习余弦定理证明中所涉及的有关向量知识.(2)余弦定理如何与向量产生联系.(3)利用余弦定理能解决哪些有关三角形问题.板书设计正弦定理1.正弦定理:2.证明方法:3.利用正弦定理,能够解决两类问题:CcB b A a sin sin sin == (1)平面几何法 (1)已知两角和一边 (2)向量法 (2)已知两边和其中一边的对角。

人教版A版高中数学必修5:正弦定理_课件25

人教版A版高中数学必修5:正弦定理_课件25

2R 形 sinC= c ;
2R
cosB= 2bc

2R
a2+c2-b2
形 (其中R是△ABC外接圆半径) cosC 2ac
式 ③a∶b∶c=sinA∶sinB∶sinC =
④asinB=bsinA,bsinC=
a2+b2-c2 2ab .
csinB,asinC=csinA.
定理
正弦定理
余弦定理
①已知两角和任一边,求 ①已知三边,求各
b,c,若ccooss AB=ab,则△ABC 一定是
()
A.等腰三角形
B.直角三角形
C.等腰直角三角形
D.等边三角形
解析:法一:由正弦定理得ccooss AB=ab=ssiinn BA, ∴sin Acos B=cos Asin B, 即sin(A-B)=0,可得A-B=0,∴A=B. 法二:由余弦定理将角化为边,可得a=b.
注意:在上述两种方法的等式变形中,一般两边不要约 去公因式,应移项提取公因式,以免漏解.
[精析考题]
[例3] (2011·山东高考)在△ABC中,内角A,B,C的对边分别
为a,b,c.已知cos
A-2cos cos B
C=2c-b a.
(1)求ssiinn CA的值;
(2)若cos B=14,b=2,求△ABC的面积S.
解决 另一角和其他两条边; 角;
的问 ②已知两边和其中一边的 ②已知两边和它们
题 对角,求另一边和其他两 的夹角,求第三边
角.
和其他两个角.
二、三角形常用面积公式 1.S=12a·ha(ha表示边a上的高); 2.S=12absin C=12acsin B = 12bcsin A ; 3.S=12r(a+b+c)(r为内切圆半径).

高中数学 1.1.1正弦定理教学设计 新人教A版必修5(1)

高中数学 1.1.1正弦定理教学设计 新人教A版必修5(1)

第一章解三角形1.1.1正弦定理教材分析与导入三维目标一、知识与技能1.通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;2.会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题.二、过程与方法1.让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系;2.引导学生通过观察、推导、比较,由特殊到一般归纳出正弦定理;3.进行定理基本应用的实践操作.三、情感态度与价值观1.培养学生在方程思想指导下处理解三角形问题的运算能力;2.培养学生探索数学规律的思维能力,通过三角函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一.教学重点发现正弦定理、用几何法和向量法证明正弦定理。

正弦定理是三角形边角关系中最常见、最重要的两个定理之一,它准确反映了三角形中各边与它所对角的正弦的关系,对于它的形式、内容、证明方法和应用必须引起足够的重视。

正弦定理要求学生综合运用正弦定理和内角和定理等众多基础知识解决几何问题和实际应用问题,这些知识的掌握,有助于培养分析问题和解决问题能力,所以一向为数学教育所重视。

教学难点用向量法证明正弦定理。

虽然学生刚学过必修4中的平面向量的知识,但是要利用向量推导正弦定理,有一定的困难。

突破此难点的关键是引导学生通过向量的数量积把三角形的边长和内角的三角函数联系起来。

用平面向量的数量积方法证明这个定理,使学生巩固向量知识,突出了向量的工具性,是向量知识应用的范例。

教学建议正弦定理是刻画三角形边和角关系的基本定理,也是最基本的数量关系之一。

此节内容从地位上讲起到承上启下的作用:承上,可以说正弦定理是初中锐角三角函数(直角三角形内问题)的拓广与延续,是对初中相关边角关系的定性知识的定量解释,即对“在任意三角形中有大边对大角,小边对小角”这一定性知识的定量解释,即正弦定理得到这个边、角的关系准确的量化的表示,实现了边角的互化。

它是三角函数一般知识和平面向量知识在三角形中的具体应用,同时教材这样编写也体现了新课标中“体现相关内容的联系,帮助学生全面地理解和认识数学”这一指导思想;启下,正弦定理解决问题具有一定的局限性,产生了余弦定理,二者一起成为解决任意三角形问题重要定理。

人教版数学【必修5】1.1.1正弦定理ppt课件

人教版数学【必修5】1.1.1正弦定理ppt课件
0 0
例2、在ABC中, a 2 , b 3 , B 600 , 解三角形.
2015年1月2日星期五
新课
例3、在ABC中, a 10, b 5 6 , A 45 , 解三角形.
0
正弦定理可解决的几类问题 :
(1)已知两角和任一边, 解三角形; (2)已知两边和其中一边对角, 解三角形. (可能有两解, 用"大角对大边"决定取舍)
新课
直角ABC :
A
B
2015年1月2日星期五
C
新课
钝角ABC :
A
E
D
B
C
2015年1月2日星期五
新课
正弦定理 :
在一个三角形中, 各边和它所对角的正弦 的比相等,即
a b c 2R sin A sin B sin C
2015年1月2日星期五
新课
例1、在ABC中, A 60 , B 45 , c 20, 解三角形.
首页
§ 1.1.1 正弦定理
2015年1月2日星期五
引入
关于解三角形 :
(1)三角形的六元素 : A, B, C , a, b, c(其中a, b, c分别为A, B, C的对边); (2)解三角形 : 用三角形已知元素求未知 元素.
2015年1月2日星期五
新课
锐角ABC 五
2015年1月2日星期五
结束
2015年1月2日星期五

新人教A版高中数学(必修5)1.1《正弦定理和余弦定理》

新人教A版高中数学(必修5)1.1《正弦定理和余弦定理》

数学5 第一章解三角形章节总体设计(一)课标要求本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落实在解三角形的应用上。

通过本章学习,学生应当达到以下学习目标:(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。

(2)能够熟练运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的生活实际问题。

(二)编写意图与特色1.数学思想方法的重要性数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深数学知识的理解和掌握。

本章重视与内容密切相关的数学思想方法的教学,并且在提出问题、思考解决问题的策略等方面对学生进行具体示范、引导。

本章的两个主要数学结论是正弦定理和余弦定理,它们都是关于三角形的边角关系的结论。

在初中,学生已经学习了相关边角关系的定性的知识,就是“在任意三角形中有大边对大角,小边对小角”,“如果已知两个三角形的两条对应边及其所夹的角相等,那么这两个三角形全”等。

教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题:“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题。

”设置这些问题,都是为了加强数学思想方法的教学。

2.注意加强前后知识的联系加强与前后各章教学内容的联系,注意复习和应用已学内容,并为后续章节教学内容做好准备,能使整套教科书成为一个有机整体,提高教学效益,并有利于学生对于数学知识的学习和巩固。

本章内容处理三角形中的边角关系,与初中学习的三角形的边与角的基本关系,已知三角形的边和角相等判定三角形全等的知识有着密切联系。

新人教A版必修5高中数学第一章1.1.1正弦定理(一)导学案

新人教A版必修5高中数学第一章1.1.1正弦定理(一)导学案

1.1.1 正弦定理(一)课时目标1.熟记正弦定理的内容;2.能够初步运用正弦定理解斜三角形.1.在△ABC 中,A +B +C =π,A 2+B 2+C 2=π2.2.在Rt △ABC 中,C =π2,则a c =sin_A ,bc=sin_B .3.一般地,把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.4.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即a sin A =b sin B =csin C ,这个比值是三角形外接圆的直径2R .一、选择题1.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若A ∶B ∶C =1∶2∶3,则a ∶b ∶c 等于( )A .1∶2∶3B .2∶3∶4C .3∶4∶5D .1∶3∶2 答案 D2.若△ABC 中,a =4,A =45°,B =60°,则边b 的值为( ) A.3+1 B .23+1 C .2 6 D .2+2 3 答案 C解析 由正弦定理a sin A =bsin B,得4sin 45°=b sin 60°,∴b =2 6. 3.在△ABC 中,sin 2A =sin 2B +sin 2C ,则△ABC 为( ) A .直角三角形 B .等腰直角三角形 C .等边三角形 D .等腰三角形 答案 A解析 sin 2A =sin 2B +sin 2C ⇔(2R )2sin 2A =(2R )2sin 2B +(2R )2sin 2C ,即a 2=b 2+c 2,由勾股定理的逆定理得△ABC 为直角三角形.4.在△ABC 中,若sin A >sin B ,则角A 与角B 的大小关系为( ) A .A >B B .A <BC .A ≥BD .A ,B 的大小关系不能确定 答案 A解析 由sin A >sin B ⇔2R sin A >2R sin B ⇔a >b ⇔A >B .5.在△ABC 中,A =60°,a =3,b =2,则B 等于( ) A .45°或135° B .60° C .45° D .135° 答案 C解析 由a sin A =b sin B 得sin B =b sin Aa=2sin 60°3=22.∵a >b ,∴A >B ,B <60° ∴B =45°.6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,如果c =3a ,B =30°,那么角C 等于( )A .120°B .105°C .90°D .75° 答案 A解析 ∵c =3a ,∴sin C =3sin A =3sin(180°-30°-C )=3sin(30°+C )=3⎝⎛⎭⎪⎪⎫32sin C +12cos C , 即sin C =-3cos C . ∴tan C =- 3.又C ∈(0°,180°),∴C =120°. 二、填空题7.在△ABC 中,AC =6,BC =2,B =60°,则C =_________. 答案 75°解析 由正弦定理得2sin A =6sin 60°,∴sin A =22.∵BC =2<AC =6,∴A 为锐角.∴A =45°. ∴C =75°.8.在△ABC 中,若tan A =13,C =150°,BC =1,则AB =________.答案 102解析 ∵tan A =13,A ∈(0°,180°),∴sin A =1010.由正弦定理知BC sin A =ABsin C , ∴AB =BC sin C sin A =1×sin 150°1010=102.9.在△ABC 中,b =1,c =3,C =2π3,则a =________.答案 1解析 由正弦定理,得3sin2π3=1sin B , ∴sin B =12.∵C 为钝角,∴B 必为锐角,∴B =π6,∴A =π6.∴a =b =1.10.在△ABC 中,已知a ,b ,c 分别为内角A ,B ,C 的对边,若b =2a ,B =A +60°,则A =______.答案 30°解析 ∵b =2a ∴sin B =2sin A ,又∵B =A +60°, ∴sin(A +60°)=2sin A即sin A cos 60°+cos A sin 60°=2sin A ,化简得:sin A =33cos A ,∴tan A =33,∴A =30°.三、解答题11.在△ABC 中,已知a =22,A =30°,B =45°,解三角形. 解 ∵a sin A =b sin B =csin C,∴b =a sin B sin A =22sin 45°sin 30°=22×2212=4.∵C =180°-(A +B )=180°-(30°+45°)=105°,∴c =a sin C sin A =22sin 105°sin 30°=22sin 75°12=2+2 3.12.在△ABC 中,已知a =23,b =6,A =30°,解三角形. 解 a =23,b =6,a <b ,A =30°<90°. 又因为b sin A =6sin 30°=3,a >b sin A , 所以本题有两解,由正弦定理得:sin B =b sin A a =6sin 30°23=32,故B =60°或120°.当B =60°时,C =90°,c =a 2+b 2=43; 当B =120°时,C =30°,c =a =2 3. 所以B =60°,C =90°,c =43或B =120°,C =30°,c =2 3. 能力提升13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c 若a =2,b =2,sin B +cos B =2,则角A 的大小为________.答案 π6解析 ∵sin B +cos B =2sin(π4+B )= 2.∴sin(π4+B )=1.又0<B <π,∴B =π4.由正弦定理,得sin A =a sin Bb =2×222=12.又a <b ,∴A <B ,∴A =π6.14.在锐角三角形ABC 中,A =2B ,a ,b ,c 所对的角分别为A ,B ,C ,求ab的取值范围.解 在锐角三角形ABC 中,A ,B ,C <90°,即⎩⎪⎨⎪⎧B <90°,2B <90°,180°-3B <90°,∴30°<B <45°.由正弦定理知:a b =sin A sin B =sin 2B sin B=2cos B ∈(2,3),故ab的取值范围是(2,3).1.利用正弦定理可以解决两类有关三角形的问题:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

BD AB 由正弦定理,得 sin b sin a DC AC AC sin b sin(180 a ) sin a BD AB 两式相除得 DC AC
b b
B
o a 180 -a
D
C
五、小结
一、正弦定理:
a b c 2R sin A sin B sin C
其中,R是△ABC的外接圆的半径
一、新课引入
小强师傅的一个三角形的模型坏了,只剩下如下 图所示的部分,测量出∠A=47°, ∠C=80°, AC长为 1m,想修好这个模型,但他不知道AB和BC的长度是多 少好去截料,你能帮师傅这个忙吗? C
E 80
b
47
53
a
A
c D
B
二、新课讲解
试借助三角形的高来寻找三角形的边与角之间的关系? (2)直角三角形: (1)锐角三角形:
3.在△ABC中,C=2B,则 sin 3B ( B )
sin B
b A. a
a B. b
c C. a
D. a
c
BD AB 4.已知△ABC,AD为角A的平分线,求证: DC AC
四、练习
角平分线定理
A
BD AB 4.已知△ABC,AD为角A的平分线,求证: DC AC
证明:在△ABD和△CAD中,
A
二、新课讲解
正弦定理: 在一个三角形中,各边和它所对角的正弦的比相等。
即:
a b c sin A sin B sin C
C a b
(1)从结构看: B A 各边与其对角的正弦严格对应,体现了数学的和谐美。 (2)从方程的观点看:
c
三个方程,每个含有四个量,知其三求其一。
应用正弦定理解三角形 题型一:已知两角和任意一边,求出其他两边和一角 题型二:已知两边及其中一边对角,求出其他一边和两角
C
B
作CD垂直于AB于D,则可
CD a sin B b sin A b a b c sin A sin B 作AE垂直于BC于E, A A b 则 AE c sin B b sin C
a
C
a b c sin A sin B sinC
c aa cb sin sin B sinC sin AA sin C
由正弦定理可得
a sinC 42.9 sin 66.2 c 74.1( cm ) o sin A sin 32.0
o
四、练习
1.在△ABC中,已知c=10,A=45o,C=30o,则a=_____; 10 2
4 6 2.在△ABC中,已知a=8,B=60o,C=75o,则b=_____;
第一章 解三角形
1.1.1 正弦定理(一)
一、新课引入
A c b 一般地,把三角形的三个角 A,B,C和它们的对边a,b,c叫做 三角形的元素 C
B
a
三角形中的边角关系 1.角的关系: 2.边的关系: 3.边角关系:
A B C 180
ab c , ab c
大边对大角,小边对小角
二、可以用正弦定理解决的三角问题:
※题型一:知两角及一边,求其它的边和角
题型二:知两边及其中一边对角,求其他边和角
二、新课讲解
试借助三角形的高来寻找三角形的边与角之间的关系? (3)钝角三角形:(∠C为钝角)
作CD垂直于AB于D,则可得 CD a sin B b sin A
E C b
a b sin A sin B
a B c
D
作BE垂直于AC的延长线于E,则
BE c sin A a sin BCE BCE C c sin A a sin( C ) a sin C a c a b c sin A sin C sin A sin B sinC
三、例题讲解
应用正弦定理解三角形 题型一:已知两角和任意一边,求出其他两边和一角 例1 在△ABC中,A=32.0º ,B=81.5º ,a=42.9,解此三 角形.(精确到0.1cm) 解:根据三角形的内角和定理: C=180º -(A+B)=66.2º
由正弦定理可得
a sin B 42.9 sin 81.8o b 80.1( cm ) o sin A sin 32.0
相关文档
最新文档