高等代数课件(北大版)第五章二次型§5.4
高等代数 二次型PPT课件
y2 1
k2
y2 2
kn
y2 n
k1
y1
( y1, y2 ,, yn)
k2
y2
,
kn yn
也就是要使CT AC成为对角矩阵.
11
第11页/共32页
由 于 对 任 意 的 实 对 称 矩阵A, 总 有 正 交 矩 阵P ,
使 P1 AP ,即 PT AP .把此结论应用于二次
型,有
二、小结
将一个二次型化为标准形,可以用正交变换 法,也可以用拉格朗日配方法,或者其它方法, 这取决于问题的要求.如果要求找出一个正交矩 阵,无疑应使用正交变换法;如果只需要找出一 个可逆的线性变换,那么各种方法都可以使用. 正交变换法的好处是有固定的步骤,可以按部就 班一步一步地求解,但计算量通常较大;如果二 次型中变量个数较少,使用拉格朗日配方法反而 比较简单.需要注意的是,使用不同的方法,所 得到的标准形可能不相同,但标准形中含有的项 数必定相同,项数等于所给二次型的秩.
15
第15页/共32页
4.将正交向量组单位化,得正交矩阵 P
令
i
i i
,
i 1,2,3,
1 3 2 5 Fra bibliotek2 45
得 1 2 3, 2 1 5 , 3 4 45 .
2 3
0
5
45
所以
1 3
P 2 3
2
3
2 5 15
0
2 45
4 45 .
5
45
16
它的顺序主子式
5 2 4
5 0,
52 1 0,
2
1 2 1 0,
21
4 2 5
故上述二次型是正定的.
高等代数【北大版】课件
线性方程组是求解线性规划问题的常用工具 。
物理问题建模
在物理问题中,线性方程组可以用来描述各 种现象,如振动、波动等。
投入产出分析
通过线性方程组分析经济系统中各部门之间 的相互关系。
控制系统分析
在控制系统分析中,线性方程组用于描述系 统的动态行为。
PART 03
向量与矩阵
REPORTING
高等代数【北大版】 课件
REPORTING
• 绪论 • 线性方程组 • 向量与矩阵 • 多项式 • 特征值与特征向量 • 二次型与矩阵的相似对角化
目录
PART 01
绪论
REPORTING
高等代数的应用
在数学其他分支的应用
高等代数是数学的基础学科,为其他分支提供了理论基础,如几 何学、分析学等。
PART 04
多项式
REPORTING
一元多项式的定义与运算
总结词
一元多项式的定义、运算性质和运算方法。
详细描述
一元多项式是由整数系数和变量组成的数学对象,具有加法、减法、乘法和除法等运算性质和运算方法。一元多 项式可以表示为$a_0 + a_1x + a_2x^2 + ldots + a_nx^n$的形式,其中$a_0, a_1, ldots, a_n$是整数,$x$是 变量。
矩阵的相似对角化
总结词
矩阵的相似对角化是将矩阵转换为对角矩阵 的过程,有助于简化矩阵运算和分析。
详细描述
矩阵的相似对角化是通过一系列的线性变换 ,将一个矩阵转换为对角矩阵。对角矩阵是 一种特殊的矩阵,其非主对角线上的元素都 为零,主对角线上的元素为特征值。通过相 似对角化,可以简化矩阵运算,并更好地理 解矩阵的性质和特征。
高等代数北大版教案-第5章二次型
高等代数北大版教案-第5章二次型-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN48第五章 二次型§1 二次型的矩阵表示一 授课内容:§1 二次型的矩阵表示二 教学目的:通过本节的学习,掌握二次型的定义,矩阵表示,线性替换和矩阵的合同.三 教学重点:矩阵表示二次型四 教学难点:二次型在非退化下的线性替换下的变化情况. 五 教学过程:定义:设P 是一数域,一个系数在数域P 中的n x x x ,,,21 的二次齐次多项式++++=n n n x x a x x a x a x x x f 11211221112122),,,(+++n n x x a x a 2222222 (2)n nn x a + (3)称为数域P 上的一个n 元二次型,或者,简称为二次型.例如:2332223121213423x x x x x x x x x +++++ 就是有理数域上的一个3元二次型.定义1 设n x x x ,,,21 ,n y y y ,,,21 是两组文字,系数在数域P 中的一组关系式⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=n nn n n n nn nn y c y c y c x y c y c y c x y c y c y c x 22112222121212121111 (4)称为n x x x ,,,21 到n y y y ,,,21 的一个线性替换,或则,简称为线性替换.如果系数行列式 0≠ij c ,那么线性替换(4)就称为非退化的.二次型的矩阵表示:49令 ji ij a a = ,j i < 由于 i j j i x x x x =,那么二次型(3)就可以写为++++=n n n x x a x x a x a x x x f 112112211121),,,(++++n n x x a x a x x a 2222221221 …+22211n nn n n n n x a x x a x x a +++∑∑===n i nj j i ij x x a 11(5)把(5)的系数排成一个n n ⨯矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n a a a a a a a a a A 212222111211它称为二次型(5)的矩阵.因为ji ij a a =,n j i ,,2,1, =,所以A A ='.我们把这样的矩阵称为对称矩阵,因此,二次型(5)的矩阵都是对称的.令⎪⎪⎪⎪⎪⎭⎫⎝⎛=n x x x X 21,于是,二次型可以用矩阵的乘积表示出来,()n x x x AX X 21='⎪⎪⎪⎪⎪⎭⎫⎝⎛nn n n n n a a a a a a a a a 212222111211⎪⎪⎪⎪⎪⎭⎫⎝⎛n x x x 21()⎪⎪⎪⎪⎪⎭⎫⎝⎛+++++++++=n nn n n n n n n n x a x a x a x a x a x a x a x a x a x x x 22112222121121211121∑∑===ni nj j i ij x x a 11.50故 AX X x x x f n '=),,,(21 .显然,二次型和它的矩阵是相互唯一决定的.由此还能得到,若二次型BX X AX X x x x f n '='=),,,(21且 B B A A ='=',,则,B A = 线性替换的矩阵表示令⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n c c cc c cc c c C 212222111211,⎪⎪⎪⎪⎪⎭⎫⎝⎛=n y y y Y 21,那么,线性替换(4)可以写成, ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n x x x 21⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n c c cc c c c c c212222111211⎪⎪⎪⎪⎪⎭⎫⎝⎛n y y y 21 或者CY X =.显然,一个非退化的线性替换把二次型还是变成二次型,现在就来看一下替换后的二次型与原二次型之间有什么关系.设 AX X x x x f n '=),,,(21 ,A A =', (7) 是一个二次型,作非退化的线性替换CY X = (8) 得到一个n y y y ,,,21 的二次型BY Y '.现在来看矩阵B 与矩阵A 的关系 把(8)代入(7)有AX X x x x f n '=),,,(21 ACY C Y CY A CY ''='=)()(BY Y Y AC C Y '=''=)(.51容易看出,矩阵AC C '也是对称的,事实上,AC C C A C AC C '=''''='')(.由此,即得AC C B '=.定义2 数域P 上n n ⨯矩阵B A ,称为合同的,如果有数域P 上可逆的n n ⨯矩阵C ,使AC C B '=.合同是矩阵之间的一个关系,不难看出,合同关系具有 (1)反身性 AE E A '=.(2)对称性 由 AC C B '=,即得)()(11--'=C B C A .(3)传递性 由111AC C A '=,2122C A C A '=,即得)()(21212C C A C C A '=.因之,经过非退化的线性替换,替换后的二次型的矩阵与原二次型矩阵是合同的.§2 标准形一 授课内容:§2 标准形二 教学目的:通过定理的证明掌握二次型化为标准形的配方法. 三 教学重点:化普通的二次型为标准形.四 教学难点:化普通的二次形为标准形的相应矩阵表示.52五 教学过程:I 导入可以认为,在二次型中最简单的一种是只含有平方项的二次型2222211n n x d x d x d +++ (1)II 讲授新课定理1 二次型都可以经过非退化的线性替换变为平方和(1)的形式. 不难看出,二次型(1)的.2222211n n x d x d x d +++ =()n x x x 21⎪⎪⎪⎪⎪⎭⎫⎝⎛n d d d00000021⎪⎪⎪⎪⎪⎭⎫⎝⎛n x x x 21. 反过来,矩阵是对角形的二次型就只含有平方项.定理2 在数域P 上,任意一个对称矩阵都合同于一对角矩阵. 定义 二次型),,,(21n x x x f 经过非退化的线性替换所变成的平方和称为),,,(21n x x x f 的一个标准形.例 化二次型313221321262),,(x x x x x x x x x f +-=为标准形.解:作非退化的线性替换⎪⎩⎪⎨⎧=-=+=33212211yx y y x y y x53则3213212121321)(2)(6))((2),,(y y y y y y y y y y x x x f ++---+=323122218422y y y y y y +--=322223231822)(2y y y y y y +---=再令 ⎪⎩⎪⎨⎧==-=3322311y z y z y y z 或⎪⎩⎪⎨⎧==+=3322311zy z y z z y则),,(321x x x f 233222212822z z z z z -+-=23232216)2(22z z z z +--=.最后令 ⎪⎩⎪⎨⎧=-==33322112z w z z w z w 或⎪⎩⎪⎨⎧=+==33322112wz w w z w z则 ),,(321x x x f 232221622w w w +-=是平方和,而这几次线性替换的结果相当于作一个总的线性替换,⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛100011011321x x x ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321100210001100010101w w w ⎪⎪⎪⎭⎫ ⎝⎛--=100110311⎪⎪⎪⎭⎫ ⎝⎛321w w w . 用矩阵的方法来解 例 化二次型313221321262),,(x x x x x x x x x f +-=为标准形.解:),,(321x x x f 的矩阵为⎪⎪⎪⎭⎫ ⎝⎛--=031301110A .取⎪⎪⎪⎭⎫⎝⎛-=1000110111C ,则111AC C A '=54⎪⎪⎪⎭⎫ ⎝⎛-=100011011⎪⎪⎪⎭⎫ ⎝⎛--031301110⎪⎪⎪⎭⎫ ⎝⎛-100011011⎪⎪⎪⎭⎫ ⎝⎛---=042420202. 再取⎪⎪⎪⎭⎫ ⎝⎛=1000101012C ,则2122C A C A '=⎪⎪⎪⎭⎫ ⎝⎛=101010001⎪⎪⎪⎭⎫ ⎝⎛---042420202⎪⎪⎪⎭⎫ ⎝⎛100010101⎪⎪⎪⎭⎫ ⎝⎛--=240420002. 再取⎪⎪⎪⎭⎫ ⎝⎛=1002100013C ,则3233C A C A '=⎪⎪⎪⎭⎫ ⎝⎛=120010001⎪⎪⎪⎭⎫ ⎝⎛--240420002⎪⎪⎪⎭⎫ ⎝⎛100210001 3A 是对角矩阵,因此令321C C C C =⎪⎪⎪⎭⎫ ⎝⎛-=100011011⎪⎪⎪⎭⎫ ⎝⎛100010101⎪⎪⎪⎭⎫ ⎝⎛100210001⎪⎪⎪⎭⎫ ⎝⎛--=100111311,就有AC C '⎪⎪⎪⎭⎫⎝⎛-=600020002.作非退化的线性替换CY X =即得),,(321x x x f 232221622y y y +-=.55§3 唯一性一 授课内容:§3 唯一性二 教学目的: 通过本节的学习,让学生掌握复二次型,实二次型的规范形,正(负)惯性指数,符号差.三 教学重点:复二次型,实二次型的规范形的区别及唯一性的区别. 四 教学难点:实二次型的唯一性 五 教学过程:在一个二次型的标准形中,系数不为零的平方项个数是唯一确定的,与所作的非退化的线性替换无关.二次型的矩阵的秩有时候就称为二次型的秩.至于标准形的系数就不是唯一的.例 二次型313221321262),,(x x x x x x x x x f +-=经过非退化的线性替换⎪⎪⎪⎭⎫ ⎝⎛321x x x ⎪⎪⎪⎭⎫⎝⎛--=100110311⎪⎪⎪⎭⎫ ⎝⎛321w w w 得到标准形232221622w w w +-.而经过非退化的线性替换56⎪⎪⎪⎭⎫ ⎝⎛321x x x ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=3100312111211⎪⎪⎪⎭⎫ ⎝⎛321y y y 就得到另一个标准形23222132212y y y +-. 这就说明,在一般的数域内,二次型的标准形不是唯一的,而与所作的非退化的线性替换有关.下面只就复数域与实数域的情形来进一步讨论唯一性的问题. 对于复数域的情形设),,,(21n x x x f 是一个复系数的二次型,则经过一个适当的非退化的线性替换后,),,,(21n x x x f 变为标准形,不妨设标准形为2222211r r y d y d y d +++ ,0≠i d ,r i ,,2,1 = (1)易知,r 就是),,,(21n x x x f 的矩阵的秩.因为复数总可以开平方,我们再作一非退化的线性替换⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧====++nn r r rrr z y z y z d y z d y 1111111 (2) (1)就变为22221r z z z +++ (3) (3)称为复二次型),,,(21n x x x f 的规范形.显然,规范形完全被原二次型的矩阵的秩所决定.定理3 任意一个复系数的二次型,经过一个适当的非退化的线性替换可以变为规范形,规范形是唯一的.定理3换个说法就是,任意一个复的对称矩阵合同于一个形式为⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛0011的对角矩阵.从而有,两个复对称矩阵合同的充分必要条件是它们的秩相等.对于实数域的情形设),,,(21n x x x f 是一个实系数的二次型,则经过一个适当的非退化的线性替换,再适当排列文字的次序,可使),,,(21n x x x f 变为标准形,2211p p y d y d ++ 2211r r p p y d y d ---++ (4)0>i d r i ,,2,1 = ,r 就是),,,(21n x x x f 的矩阵的秩.因为在实数域中,正实数总可以开平方,所以,再作一非退化的线性替换⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧====++n n r r rrr z y z y z d y z d y 1111111 (5) (4)就变为221p z z ++ 221r p z z ---+ (6)(6)称为实二次型),,,(21n x x x f 的规范形.显然,规范形完全被p r ,这两个数所决定.定理4(惯性定理) 任意一个实数域上的二次型,经过一个适当的非退化的线性替换可以变为规范形,规范形是唯一的.定义3 在实二次型),,,(21n x x x f 的规范形中,正平方项的个数p 称为),,,(21n x x x f 的正惯性指数,负平方项的个数p r -称为),,,(21n x x x f 的负惯性指数,它们的差r p p r p -=--2)(称为),,,(21n x x x f 的符号差.惯性定理也可以叙述为,实二次型的标准形中系数为正的平方项个数是唯一的,它等于正惯性指数,而系数为负的平方项个数也是唯一的,它等于负惯性指数.§4 正定二次型一 授课内容:§4 正定二次型二 教学目的:通过本节的学习,让学生掌握正定(负定,半正定,半负定,不定)二次型或矩阵.(顺序)主子式的定义,掌握各种类型的判别法.三 教学重点:正定二次型. 四 教学难点:判别方法 五 教学过程:定义4 实二次型),,,(21n x x x f 称为正定的,如果对于任意一组不全为零的实数n c c c ,,,21 都有0),,,(21>n c c c f .显然,二次型),,,(21n x x x f 221n x x ++=是正定的,因为只有在021====n c c c 时,221n c c ++ 才为零.一般的,实二次型),,,(21n x x x f 2222211n n x d x d x d +++=是正定的,当且仅当0>i d n i ,,2,1 =.可以证明,非退化的实线性替换保持正定性不变.定理5 n 元实二次型),,,(21n x x x f 是正定的充分必要条件是它的正惯性指数等于n .定理5说明,正定二次型),,,(21n x x x f 的规范形为221n y y ++ (5)定义5 实对称矩阵A 称为正定的,如果二次型AX X '正定. 因为二次型(5)的矩阵是单位矩阵E ,所以一个实对称矩阵是正定的,当且仅当它与单位矩阵合同.推论 正定矩阵的行列式大于零. 定义6 子式iii i iii a a a a a a a a a P 212222111211=),,2,1(n i =称为矩阵nn ij a A )(=的顺序主子式.定理6 实二次型),,,(21n x x x f ∑∑===ni nj j i ij x x a 11AX X '=是正定的充分必要条件为矩阵A 的顺序主子式全大于零.例 判断二次型3231212322213214845),,(x x x x x x x x x x x x f +-+++=是否正定.解:),,(321x x x f 的矩阵为⎪⎪⎪⎭⎫ ⎝⎛----524212425它的顺序主子式05> ,01225> , 0524212425>---- 因之,),,(321x x x f 正定. 与正定性平行,还有下面的概念.定义7 设),,,(21n x x x f 是一实二次型,对于任意一组不全为零的实数n c c c ,,,21 ,如果都有0),,,(21<n c c c f ,那么),,,(21n x x x f 称为负定的;如果都有0),,,(21≥n c c c f ,那么),,,(21n x x x f 称为半正定的;如果都有0),,,(21≤n c c c f ,那么),,,(21n x x x f 称为半负定的;如果它既不是半正定又不是半负定,那么),,,(21n x x x f 就称为不定的.对于半正定,我们有定理7 对于实二次型),,,(21n x x x f AX X '=,其中A 是实对称的,下面条件等价:(1)),,,(21n x x x f 是半正定的. (2)它的正惯性指数与秩相等. (3)有可逆实矩阵C ,使⎪⎪⎪⎪⎪⎭⎫⎝⎛='n d d d AC C21,其中,0≥i d n i ,,2,1 =. (4)有实矩阵C 使C C A '=.(5)A 的所有主子式皆大于或等于零.注意:在(5)中,仅有顺序主子式大于或等于零是不能保证半正定性的.比如,()⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-=-=212122211000),(x x x x x x x f 就是一个反例.。
(完整word版)最新高等代数北大版教案-第5章二次型
第五章二次型§ 1二次型的矩阵表示授课内§ 1二次型的矩阵表示二 教学目的:通过本节的学习,掌握二次型的定义,矩阵表示,线性 替换和矩阵的合同.三教学重点:矩阵表示二次型四教学难点:二次型在非退化下的线性替换下的变化情况• 五教学过程:定义:设P 是一数域,一个系数在数域P 中的x 1,x 2, ,x n 的二次齐次多项式称为数域P 上的一个n 元二次型,或者,简称为 二次型.例如: 2X1NX 2 3X 1X 3 2x 2 4X 2X 3 3X3就是有理数域上的一个3元二次型.定义1 设 X 1,X 2,x n, y 1, y 2,,y n 是两组文字,系数在数域P 中的一组关系式X1C 11 y 1 C 12 y 2Gn*X2C 21 y 1 C 22 y 2C 2n y n⑷XnC n1 y 1C n2 y 2C nn y n称为X 1,X 2 ,,X n到y 1,y 2, ,yn的一个线性替换,或则,简称为线性替换.如果系数行列式C j 0,那么线性替换 ⑷ 就称为非退化的. 二次型的矩阵表示:f(X i ,X ,\ 2,Xn ) ai1X1 2a 12x 1x 22a 1n x 1x2 822X22a 2n X 2X n2a nn X n令 a ij a ji ,i j 由于 x i x j x j x i ,那么二次型(3) 就可以写为A A.我们把这样的矩阵称为对称矩阵,因此,二次型 (5) 的矩阵都是对称的 .x 1x 2 2, 于是,二次型可以用矩阵的乘积表示出来,x na 11 a 12 a 1n x 1 X AXx 1 x 2a 21 a 22a 2nx 2x na n1a n2a nn x na 11x 1 a 12 x 2a 1n x na 21x 1 a 22x 2 a 2n x nx 1 x 2x na n1x 1 a n2x 2a nn x nnna 21x 2x 1 f (x 1,x 2,a 22 x 22,x n )a 11x 1a 2n x 2x n a 12x 1x 2a 1n x 1 x n…+an1X n X1a n2x n x 2a nn x nna ij x i x j(5)j1把 (5) 的系数排成一个n 矩阵a 11 a 21 a 12 a 22a 1n a 2na n1 a n2a nn 它称为二次型(5)的矩阵.因为a jija ji, i,j1,2, ,n ,所以a ij x i x j.i 1 j 1f(x1,x2, ,x n) X AX .显然,二次型和它的矩阵是相互唯一决定的. 由此还能得到,若二次型f(x1,x2,,x n)X AX X BX且 A A,BB,则, A B线性替换的矩阵表示c11 c12c1n y1令C c21 c22c2n2n, Y y2,J那么,线性替换(4) 可以写成,c n1 c n2c nn y nx1 c11c12c1n y1x2 c21c22c2n y2x n c n1c n2c nn y n或者X CY.显然,一个非退化的线性替换把二次型还是变成二次型,现在就来看一下替换后的二次型与原二次型之间有什么关系.设f(x1,x2, ,x n) XAX , A A,(7)是一个二次型,作非退化的线性替换X CY (8)得到一个y i, y2, , y n的二次型Y BY .现在来看矩阵B与矩阵A的关系把(8) 代入(7) 有f(x1,x2, ,x n) XAX (CY)A(CY) YCACY Y(CAC)Y YBY.容易看出,矩阵CAC也是对称的,事实上,(CAC) C AC C AC.由此,即得B CAC.定义2数域P上n n矩阵代B称为合同的,如果有数域P上可逆的n n矩阵C,使B CAC.合同是矩阵之间的一个关系,不难看出,合同关系具有(1) 反身性A EAE.(2) 对称性由B C AC ,即得A (C 1) B(C 1).(3) 传递性由A1 C1 AC1,A2 C2 A1C2 ,即得A2 (C1C2) A(C1C2). 因之,经过非退化的线性替换,替换后的二次型的矩阵与原二次型矩阵是合同的.§ 2 标准形一授课内容:§ 2 标准形二教学目的:通过定理的证明掌握二次型化为标准形的配方法.三教学重点:化普通的二次型为标准形.四教学难点:化普通的二次形为标准形的相应矩阵表示.五教学过程:I 导入可以认为,在二次型中最简单的一种是只含有平方项的二次型2 2 2d1x12d2x22d n x n2(1)II 讲授新课定理 1 二次型都可以经过非退化的线性替换变为平方和(1) 的形式. 不难看出,二次型(1) 的.d100X1d20X22 2 2 0d1X1 d2X2 d n X n= X1 X2 X n00d n X n 反过来,矩阵是对角形的二次型就只含有平方项定理2 在数域P 上,任意一个对称矩阵都合同于一对角矩阵. 定义二次型f (x1,x2, , x n )经过非退化的线性替换所变成的平方和称为f (x1,x2, ,X n)的一个标准形.f (x 1,x 2,x 3)而这几次线性替换的结果相当于作一个总的线性替换,X 1 1 1 0 1 0 1 1 0 0w 11 13w 1X 21 1 0 0 1 0 0 12 w 2 0 1 1 w2 X 30 0 1 0 0 1 0 0 1 w 30 0 1 w 3用矩阵的方法来解例 化二次型 为标准形 . 0 1 1解:fdvX z ’X s )的矩阵为A 10 313 0f (X 1,X 2,X 3)2X 1X 2 6X 2X 3 2X 1X 3为标准形 .解: 作非退化的线性替换X 1y 1 y 2X 2y 1 y 2X 3y则 f(X 1,X 2,X 3) 2(y 1 y 2)(y 1 y 2 ) 6(y 1 y 2)y 3 2(y 1 y 2)y 3 2y 122y 224y 1 y 3 8y 2y 3 2(y1y 3)22y 322y 228y 2y 3z 1 y 1y 3y 1z 1z 3再令z 2 y 2 或y 2 z 2z 3y 3y 3z 3则 f (X 1,X 2 ,X 3) 2z 122z 228z 2 z 32z 322z 122(z 2 2z 3)26z 32.w 1z 11 w 1最后令w 2 z 22z 3 或 z 2 w 2 2w 3例 化二次型w3 z 3z 3 w 3 2w 122w 226w 32是平方和,f (x 1,x 2,x 3)2x 1x 2 6x 2x 32x 1x 3110100C C 1C 2C 3001就有200C AC 02 0006作非退化的线性替换X CY 即得f(x 1,x 2,x 3) 2y 122y 226y 32.取 C 1 11 0 ,则 A 1 C 1 AC 11 1 0 0 1 11 10 11 0 1 031 10 0 01 1300011 0 1再取 C 2 0 1 0, 则 A 2C 2 A 1C 20 0 1101 2 4 0 0 0 1100再取 C 3 0 1 2 ,则 A 300110 01 02A 是对角矩阵,因此令0 2 0 0 1 0 0 0 0 2 4 0 1 21 04 20 0 1012 0011 0 02 0 2 1 0 1C 3A 2C 3§ 3 唯一性一授课内容:§ 3唯一性二教学目的:通过本节的学习,让学生掌握复二次型,实二次型的规范形,正(负)惯性指数,符号差•三教学重点:复二次型,实二次型的规范形的区别及唯一性的区别四教学难点:实二次型的唯一性五教学过程:在一个二次型的标准形中,系数不为零的平方项个数是唯一确定的,与所作的非退化的线性替换无关•二次型的矩阵的秩有时候就称为二次型的秩.至于标准形的系数就不是唯一的•例二次型 f (X i, X2, X3)2X1X26X2X3 2 X1X3经过非退化的线性替换X i113w1X 2011w2X3001W3得到标准形2w:2w;6W3.而经过非退化的线性替换111X i2y1111X——y223X1y3003就得到另一个标准形约222y22 2 尹这就说明,在一般的数域内,二次型的标准形不是唯一的,而与所作的非退化的线性替换有关下面只就复数域与实数域的情形来进一步讨论唯一性的问题 .对于复数域的情形设f(X i ,X 2, ,X n )是一个复系数的二次型,则经过一个适当的非退化 的线性替换后,f ( X 1, X 2 , ,X n )变为标准形,不妨设标准形为2 2d i y id 2『2d r Y r 2,d i0,i 1,2, ,r(易知,r 就是f (X i , X 2, ,X n )的矩阵的秩.‘因为复数总可以开平方,们再作一非退化的线性替换y i1「d 1z1Y r1 —drZr(2)y r 1Z r 1Y nZ n(1)就变为2Z12 Z2Z ; ⑶⑶称为复二次型f(X 1,X 2, ,Xn )的规范形 .显然,规范形完全被原二次型的矩阵的秩所决定.定理3任意一个复系数的二次型,经过一个适当的非退化的线性替 换可以变为规范形,规范形是唯一的•定理3换个说法就是,任意一个复的对称矩阵合同于一个形式为1的对角矩阵•从而有,两个复对称矩阵合同的充分必要条件是它们的秩相对于实数域的情形设f(X i,X2, ,X n)是一个实系数的二次型,则经过一个适当的非退化的线性替换,再适当排列文字的次序,可使f(%,X2,,X n)变为标准形,dy2d p y:d pi y:i d「y;⑷d i 0 i 1,2, ,r ,r就是f(x「X2, x)的矩阵的秩•因为在实数域中,正实数总可以开平方,所以,再作一非退化的线性替换y ii --------- z i d iy ri—d「(5) y r i Z r iy n Z n(4)就变为2Z i 2 2Z p Z p2i Z r⑹⑹称为实二次型f(X i,X2, ,X n)的规范形•显然,规范形完全被r, p 这两个数所决定•定理4(惯性定理)任意一个实数域上的二次型,经过一个适当的非退化的线性替换可以变为规范形,规范形是唯一的.定义3在实二次型f(X i,X2, ,X n)的规范形中,正平方项的个数p称为f (X i,X2,,X n)的正惯性指数,负平方项的个数r p称为f (X i ,X2, , X n)的负惯性指数,它们的差p (r p) 2 p r称为f ( X i ,X2 , , X n)的符号差.惯性定理也可以叙述为,实二次型的标准形中系数为正的平方项个数是唯一的,它等于正惯性指数,而系数为负的平方项个数也是唯一的,它等于负惯性指数•§ 4 正定二次型一 授课内容: § 4 正定二次型二 教学目的: 通过本节的学习,让学生掌握正定 ( 负定,半正定,半负 定,不定)二次型或矩阵 .( 顺序)主子式的定义,掌握各种类型的判别法 . 三 教学重点: 正定二次型 . 四 教学难点: 判别方法 五 教学过程:定义4实二次型f (X 「X 2, ,X n )称为正定的,如果对于任意一组不 全为零的实数C i ,C 2, ,C n 都有f (C i ,C 2, ,C n ) 0 .显然,二次型22f(X 1,X 2, ,X n ) X 1X n 是正定的,因为只有在 C 1 C 2C n时, C 12般的,实二次型f(X 1,X 2, ,X n ) d 1X 12d 2X 22是正定的,当且仅当 d i 0 i 1,2, ,n . 可以证明,非退化的实线性替换保持正定性不变 .定理5 n 元实二次型f (x i ,x 2, ,X n )是正定的充分必要条件是它的 正惯性指数等于 n .定理5说明,正定二次型f (x 1,x 2,, x n )的规范形为22 y 1y n (5)定义5实对称矩阵A 称为正定的,如果二次型 XAX 正定. 因为二次型 (5)的矩阵是单位矩阵 E ,所以一个实对称矩阵是正定的,d n X n 2C2才为零.负定的;如果都有f (C 1, C 2 ,,C n ) 0,那么f (X 1, X 2,,X n )称为半正定的;当且仅当它与单位矩阵合同. 推论正定矩阵的行列式大于零 定义6是否正定.解:f (X i , X 2 , X 3 )的矩阵为它的顺序主子式因之,f(X i ,X 2,X 3)正定.与正定性平行,还有下面的概念5245 20 ,2 1 22 142 55 0 ,子式称为矩阵A 定理6a 11 a 21a i1a 12 a 22a i2(a j )nn 的顺序主子式.实二次型 a 1ia 2i a(i 1,2, ,n)f (X 1 , X 2 , ,X n ) na j X j X j X AXj 1是正定的充分必要条件为矩阵 例判断二次型A 的顺序主子式全大于零.f(X 1,X 2,X 3) 5x 12X 22X 34X 1X 2 8x 1x 3 4X 2X 3定义 7 设 f (X 1, X 2 ,, x n )是实二次型, 对于任意一组不全为零的实数C1,C2, ,C n,如果都有f(G,C2, ,C n) 0,那么f区兀,,冷)称为负定的;如果都有f (C1, C2 , ,C n) 0,那么f (X1, X2, ,X n )称为半正定的;如果都有 f(c 1,c 2, ,c n ) 0,那么 f (x 1,x 2, , x n )称为半负定的;如果它既不是半正定又不是半负定,那么 f (x 1,x 2, , x n )就称为不定的.对于半正定,我们有定理7对于实二次型f(X i ,X 2, ,X n ) X AX ,其中A 是实对称的, 面条件等价:(1) f (x 1,x 2, , x n )是半正定的. (2) 它的正惯性指数与秩相等(3) 有可逆实矩阵 C ,使d n(4) 有实矩阵C 使A CC.(5) A 的所有主子式皆大于或等于零.注意:在(5) 中,仅有顺序主子式大于或等于零是不能保证半正定性 的.比如, f (x 1,x 2) x 22x 1 x 2 0 0 x1就是一个反例 .0 1 x 2CACd 1d 2,其中, d i 0 i 1,2, ,n .。
高等代数讲义ppt第五章二次型
二次型
§4 正定二次型
例题 1、 判别二次型
f (x1, x2 , x3 ) 5x12 x22 5x32 4x1x2 8x1x3 4x2 x3
是否正定。
2、 当 t 取什么值时,二次型
f (x1, x2 , x3 ) x12 x22 5x32 2t x1x2 2x1x3 4x2 x3
z12 z22 zr2
而且这个规范型是唯一的。
二次型
推论:任意一个复对称矩阵 A 都合同于对角矩阵:
1
1
0
0
其中对角线上 1 的个数 r 等于矩阵 A 的秩。
§3 唯一性
推论:两个复对称矩阵合同的充要条件是它们的秩相等。
ቤተ መጻሕፍቲ ባይዱ次型
§3 唯一性
实数域上的二次型
定理:任意一个秩为 r 的实系数的 n 元二次型,可经过适当的非退化线性
行列式
§1 n阶行列式的定义
例题 1、 化下列二次型为标准型
(1) f (x1, x2 , x3 ) x12 2x1x2 2x1x3 2x22 8x2 x3 5x32 (2) f (x1, x2 , x3 ) 2x1x2 6x2 x3 2x1x3
2、 化二次型
n
f (x1, x2 ,, xn ) xi2 xi x j
1
1
1
1
0
0
其中对角线上 1 和 -1 的个数都是唯一确定的,且其和 r 等于矩阵 A 的秩。
问题:试给出两个实对称矩阵合同的充要条件。
二次型
§4 正定二次型
§4 正定二次型
正定二次型的定义和判定
定义:实二次型 f (x1, x2 ,, xn ) 是正定的,如果对任意一组不全为零的 的实数 c1, c2 ,, cn 都有 f (c1, c2 ,, cn ) 0 。 定理:实二次型 f (x1, x2 ,, xn ) d1x12 d2 x22 dn xn2 是正定二次型 的充要条件是 di 0, i 1, 2,, n 。
高等代数 北大 课件
拉普拉斯定理与因式分解
总结词
拉普拉斯定理的表述、应用和因式分解的方法。
详细描述
拉普拉斯定理是行列式计算中的重要定理,它提供了计算行列式的一种有效方法。因式分解是将多项式分解为若 干个因子的过程,是解决代数问题的重要手段之一。
CHAPTER 04
矩阵的分解与二次型
矩阵的分解
01
02
03
矩阵的三角分解
矩阵的乘法
矩阵的乘法满足结合律和分配律,但不一定满足 交换律。
பைடு நூலகம்
矩阵的逆与行列式
矩阵的逆
对于一个非奇异矩阵,存在一个逆矩阵,使得原矩阵 与逆矩阵相乘等于单位矩阵。
行列式的定义
行列式是一个由矩阵元素构成的数学量,可以用于描 述矩阵的某些性质。
行列式的性质
行列式具有一些重要的性质,如交换律、结合律、分 配律等。
将一个矩阵分解为一个下 三角矩阵和一个上三角矩 阵之积。
矩阵的QR分解
将一个矩阵分解为一个正 交矩阵和一个上三角矩阵 之积。
矩阵的奇异值分解
将一个矩阵分解为若干个 奇异值和若干个奇异向量 的组合。
二次型及其标准型
二次型的定义
一个多项式函数,可以表示为$f(x_1, x_2, ..., x_n) = sum_{i=1}^{n} sum_{ j=1}^{n} a_{ij} x_i x_j$,其中 $a_{ij}$是常数。
VS
二次型的标准型
通过线性变换,将一个二次型转化为其标 准形式,即一个平方项之和减去另一个平 方项之和。
正定二次型与正定矩阵
正定二次型的定义
对于一个二次型,如果对于所有 的非零向量$x$,都有$f(x) > 0$ ,则称该二次型为正定二次型。
《高等代数》PPT课件
7) (ab)X=a(bX);
8) 1X=X.
.
5
例3 设Fn [x]是次数不超过n的系数在F中的多项式连同 零多项式组成的集合. 对任意两个多项式f(x), g(x)Fn [x] , f(x)+g(x)Fn [x]. 又对F中的任意数k, kf(x)Fn [x]. 并且,对
域R上的向量空间.
.
11
例6 设V为正实数集,R为实数域,在V中 规定加法和数量乘法运算如下:
ˆ = (即与的积) kˆ = k (即的k次幂) 其中, V, kR. 对任意的 , V , kR,有 ˆ = V, ˆ = k V.
.
12
并且,对任意的 , , V,k,m R,有 1) ˆ = = = ˆ 2) ( ˆ) ˆ =()ˆ =() =( )= ˆ( )= ˆ ( ˆ )
5) a·(f (x)+g(x))=a ·f (x) +a·g(x);
6) (a+b) ·f (x)=a·f (x)+b·f(x);
7) (ab) ·f (x)=a·(b·f(x));
8) 1·f (x) =f (x).
.
6
例4 设Mmn(F)是数域F上全体mn矩阵的集合,对任意的 A,BMmn(F) ,A+B Mmn(F), 对任意的k F,kA Mmn(F). 并且对任意的mXn矩阵A,B,C及任意的F中的数a,b,有
1) a+b=b+a; 2) (a+b)+c=a+(b+c);
3) 0+a=a;
4) 对任意aC ,存在bC ,使a+b=0; 5) k(a+b)=ka+kb; 6) (k+l)a=ka+la; 7) (kl)a=k(la); 8) 1a=a. 这里a,b,c是任意复数,k,l是任意实数。
扬大高等代数北大三版-第五章二次型
目录
CONTENTS
• 引言 • 二次型的定义与性质 • 二次型的分类与判别式 • 二次型与矩阵的等价关系 • 二次型与线性变换的关系 • 特殊二次型与正定二次型
01
引言
背景介绍
二次型是代数学的一个重要分支,它在几何、物理和工程等领域有广泛的应用。
二次型的研究起源于二次方程的求解问题,后来逐渐发展成为一个独立的数学领域。
正定二次型的定义与性质
正定二次型的定义
正定二次型是指对于任意非零向量x,都有f(x)>0的二次型,其中f(x)是x的二次齐次函 数。
正定二次型的性质
正定二次型具有一些重要的性质,如正定性、对称性、可微性等,这些性质在解决数学 问题时具有重要的作用。
正定二次型的应用
在数学物理中的应用
正定二次型在数学物理中有广泛的应用 ,如在量子力学、统计力学等领域中, 正定二次型可以用来描述粒子的能量和 动量等物理量。
线性变换与二次型的关系
二次型:一个多项式函数,可以表示为向量空间中向量的内积的线性组合, 其中每个内积项都是两个向量的二次方。
二次型可以通过线性变换转换为标准形式,即一个只包含平方项的多项式。
线性变换可以将二次型转换为标准形式,从而简化二次型的计算和分析。
线性变换的应用
01
02
03
在几何学中,线性变换可以用来 研究几何图形的形状和大小的变 化。
实对称矩阵是满足$A^T = A$的矩阵,其中 $A^T$是矩阵A的转置。
二次型可以通过线性变换转换为矩 阵形式,即$f(x_1, x_2, ..., x_n) = X^T A X$,其中$X$是列向量, $A$是实对称矩阵。
03
高等代数第5章二次型
于是
f a11 x a12 x1 x 2 a1n x1 x n
2 1
a 21 x 2 x1 a 22 x a 2 n x 2 x n
2 2
... an1 xn x1 an 2 xn x2 ann x
5.1.
二次型及其矩阵表示
5.1.1 二次型的定义及表示
系数在数域P中,含有n个未知量的二次齐次多项式
f x1 , x2 , , xn
2 a11 x1 2a12 x1 x2 2a13 x1 x3 2a1n x1 x n 2 a22 x2 2a23 x2 x3 2a2 n x2 xn
拉格朗日配方法若二次型含有的平方项则先把含有的乘积项集中然后配方再对其余的变量同样进行直到都配成平方项为止经过非退化线若二次型中不含有平方项但是则先作可逆线性替换化二次型为含有平方项的二次型然后再按1中方法配方
第5章
二次型
5.1 5.2 5.3 5.4
二次型及其矩阵表示 二次型的标准形 惯性定理和规范形 实二次型的正定性
拉格朗日配方法的步骤
1. 若二次型含有 x i 的平方项,则先把含有 x i 的乘积项集中,然后配方,再对其余的变量同 样进行,直到都配成平方项为止,经过非退化线 性 替换,就得到标准形; 2. 若二次型中不含有平方项,但是 a ij 0 ( i j ),则先作可逆线性替换 x i yi y j k 1,2,, n且k i , j x j yi y j x y k k 化二次型为含有平方项的二次型,然后再按1中方 法配方。
0 1 2 A 2 2 3 . 0 3 3
高等代数北大版二次型5
x2 ,...,
xn )
j1 n
a2 j x j
j1
n
anj x j
j1
10/10/2023§5.1 二次型旳矩阵表数学达与计算科学学院
n
n
x1 a1 j x j x2 a2 j x j
j1
j1
n
xn anj x j
j1
n
n
nn
( xi aij x j )
注 1)③或④为非退化旳
C=
cij
为可逆矩阵 .
nn
2)若X=CY为非退化线性替代,则有非退化
线性替代 Y C 1X .
10/10/2023§5.1 二次型旳矩阵表数学达与计算科学学院
3、二次型经过非退化线性替代仍为二次型
实际上,
f ( x1, x2 ,..., xn ) X AX
X CY
若系数行列式|cij|≠0,则称③为非退化线性替代.
10/10/2023§5.1 二次型旳矩阵表数学达与计算科学学院
例2 解析几何中旳坐标轴按逆时针方向旋转解角度
y
.
y
x
0
x
即变换
x
y
x cos y sin x sin y cos
它是非退化旳.
∵系数行列式
cos sin
sin cos
1.
aij xixj
i1 j1
i1 j1
于是有 f ( x 1 , x 2 ,..., xn ) X AX .
10/10/2023§5.1 二次型旳矩阵表数学达与计算科学学院
注意: 1)二次型旳矩阵总是对称矩阵,即 A A. 2)二次型与它旳矩阵相互唯一拟定,即
若 X AX X BX 且 A A, B B,则 A B. (这表白在选定文字 x1, x2 ,..., xn下,二次型
第五章二次型--精品PPT课件
定义: A , B∈Kn×n , A与B称为合同的,如果存 在n阶可逆阵C, 使B = C’AC.
注 1: K上n阶方阵的合同关系是等价关系. 注 2: 若A与B合同, A’= A, 则B’=B.
p=n.
f (x1 … xn)是半正定型
f (x1 … xn)的正惯性指数
p=r ≤ n.
f (x1 … xn)是负定型
f (x1 … xn)的负惯性指数q=n.
f (x1 … xn)是半负定型
f (x1 … xn)的负惯性指数
q=r ≤ n.
正定二次型与正定矩阵_3
定理: A’ =A∈Rn×n, 则下列条件等价: (1).A是正定阵. (2).对任意0≠X∈Rn×1, 有X’AX > 0. (3).存在可逆阵P∈Rn×n, 使得P’AP = In. (4).存在可逆阵P∈Rn×n, 使得A = P’P. (5).A的正惯性指数p = n. (6).A的所有主子式 > 0. (7).A的所有顺序主子式 > 0. (8).A的所有特征值 > 0.
注 2 : R上n阶对称阵,按合同关系分类共有
(n+1)(n+2)/2类
正定二次型与正定矩阵_1
设f (x1 … xn)是R上n元二次型,如果对
(a1,a2,…,an)≠0,恒有:
(1).f (a1 … an) > 0, 则称 f (x1 … xn)是正定二次型. (2).f (a1 … an)≥0,则称 f (x1 … xn)是半正定二次型. (3) .f (a1 … an) < 0,则称 f (x1 … xn)是负定二次型. (4) . f (a1 … an)≤0, 则称 f (x1 … xn)是半负定二次型.
47高等代数(北大三版)第五章 矩阵PPT课件
n
a
m
1
am2
a
m
n
b
m
1
bm 2
bm
n
5
A和B加法定义为:
a11 b11 ABa21 b21
am1 bm1
a12 b12 a22 b22
am2 bm2
a1n b1n
a2n
b2n
amn bmn
定义3(矩阵的乘法)给定一个 mn矩阵和一个 n l
矩阵
a11 a12
A
a21
a22
am1 am 2
a1n
a2n
amn
b11 b12
b1l
B
b21
b22
b2l
bn1 bn 2
bnl
6
A和B的乘法定义为
n
a1i bi1 i1
n
AB a2ibi1
i1
n
amibi1
i1
n
a1i bi 2
i 1 n
a2i bi 2
i 1
n
ami bi 2
二、教学目的 1. 掌握矩阵的加法、乘法以及 数与矩阵的乘法运算法则及其基本性 质,并能熟练地对矩阵进行运算。 2. 掌握转置矩阵及其运算性质。 3. 掌握方阵的幂、方阵的多项式。
三、重点、难点 矩阵的乘法运算法则及其基本性质,转置矩阵及其运算性质。
3
5.1.1 认识矩阵
设F是数域, 用F的元素 a i j 排成的m行n列的数表
例6 证明: 如果CAAC,CBBC, 则有 (AB)CC(AB); (AB)CC(AB).
10
5.1.4 方阵的多项式
单位矩阵 :主对角线上全是1,其余元素全是0的方阵称为单位矩
高等代数 讲义 第五章
③
称为由 x1, x2 ,L, xn到y1, y2 ,L, yn 的一个线性替换;
若系数行列式|cij|≠0,则称③为非退化线性替换.
§5.1 二次型的矩阵表示
例2 解析几何中的坐标轴按逆时针方向旋转解角度 θ
y
.
y′
x′
θ
0
x
即变换
⎧x =
⎨ ⎩
y
=
x′ cosθ − y′ sinθ x′ sinθ + y′ cosθ
aij xi x j
i =1
1≤i< j≤n
§5.1 二次型的矩阵表示
2、二次型的矩阵表示
1) 约定①中aij=aji,i<j ,由 xixj=xjxi,有 f ( x1, x2 ,L, xn ) = a11 x12 + a12 x1 x2 + LL + a1n x1 xn
+ a21 x2 x1 + a22 x22 + L + a2n x2 xn
⇒ B′ = (C′AC )′ = C′A′C = C′AC = B
2、经过非退化线性替换,新二次型矩阵与
原二次型矩阵是合同的.
进而,有: 若A′ = A, B′ = B,
二次型X´AX可经非退化线性替换化为二次型Y´BY
⇔ A与B合同.
§5.1 二次型的矩阵表示
例2 证明:矩阵A与B合同,其中
⎛ λ1
f = ax2 + 2bxy + cy2
选择适当角度 θ,逆时针旋转 坐标轴
{x = x′cosθ − y′sinθ y = x′cosθ + y′sinθ
f = a′x′2 + c′y′2
高等代数【北大版】课件
多项式的因式分解与根的性质
总结词
多项式的因式分解、根的性质和求解方 法
VS
详细描述
多项式的因式分解是将多项式表示为若干 个线性因子乘积的过程。通过因式分解, 可以更好地理解多项式的结构,简化计算 和证明。此外,多项式的根是指满足多项 式等于0的数。根的性质包括根的和与积、 重根的性质等。求解多项式的根的方法有 多种,如求根公式、因式分解法等。
性方
02
线性方程组的解法
高斯消元法 通过行变换将增广矩阵化为阶梯形矩 阵,从而求解线性方程组。
选主元高斯消元法
选择主元以避免出现除数为0的情况, 提高算法的稳定性。
追赶法
适用于系数矩阵为三对角线矩阵的情 况,通过逐步消去法求解。
迭代法
通过迭代逐步逼近方程组的解,常用 的方法有雅可比迭代法和SOR方法。
向量空间的子空间与基底
总结词
子空间与基底
详细描述
子空间是向量空间的一个非空子集,它也满足向量空间的定义和性质。基底是 向量空间中一个线性独立的集合,它可以用来表示向量空间中的任意元素。基 底中的向量个数称为向量空间的维数。
ቤተ መጻሕፍቲ ባይዱ
向量空间的维数与基底的关系
总结词
维数与基底的关系
详细描述
向量空间的维数与基底密切相关。一个向量空间的维数等于其基底的向量个数。 如果一个向量空间有n个基底,则它的维数为n。同时,如果一个向量空间有有限 个基底,则它的维数是有限的。
行列式
06
行列式的定义与性质
总结词
行列式的定义和性质是高等代数中的 基础概念,包括代数余子式、余子式、 转置行列式等。
详细描述
行列式是由n阶方阵的n!项组成的代数 式,按照一定规则排列,具有一些重 要的性质,如交换律、结合律、代数 余子式等。这些性质在后续章节中有 着广泛的应用。
扬大高等代数北大三版--第五章二次型-PPT精品文档
5
(3) 合同具有传递性 ( A1 = C1/AC1,A2 = C2/A1C2 → A2 = C2/ (C1/AC1)C2 = (C1C2)/A(C1C2) ).
二 次 型
8) 线性替换X = CY下 f (x1, x2, …, xn) = X/AX = Y/BY, 因B = C/AC,
故: X = CY为可逆线性替换时,二次型 X/AX 与 Y/BY的矩阵合同; → 为用矩阵来研究这类二次型的变换奠定了基础,提供了思路;
8
高 等 代 数
*2
性质:
4) 若C可逆,则X = CY是可逆线性替换,且Y = C-1X也是可逆的线 性替换;
5) f (x1, x2, …, xn) = X/AX 是 P 上的 n 元二次型,经线性替换 X = CY 化成 f (x1, x2, …, xn) = Y/BY ,则 B = C/AC . 证明: f (x1, x2, …, xn) = X/AX = (CY)/A(CY) = Y/(C/AC)Y = Y/ BY. 由于 B/ = (C/AC)/ = C/A/C// = C/AC = B → Y/BY 是 P 上 n 元二次 型,且 B = C/AC 成立. □
2019/2/20 课件 5
二 次 型
*3 性质:
高 1) 在二次型 f (x1, x2, …, xn) = X/AX中,矩阵A为对称矩阵; 等 2)把一阶矩阵A = (a)看成数a, 则一元二次型 代 f (x) = a11x12 = (x1)/(a11)(x1) = X/AX; 数 3) 数域P上, f (x , x , …, x ) 与n阶对称矩阵一一对应.
y
y/
x x / c o s y / s in / / y x s in y cos
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从而 A CC C 2 0.
注意
反之不然. 即实对称矩阵A,且 A 0, A未必正定.
如
A
1 0
0 1
,
A 10
但X AX x12 x22不是正定二次型.
2020/9/20§5. 4 正定二次型
4、顺序主子式、主子式 、
设矩阵 A (aij ) Rnn
a11 1) A(1,2, ,k)
因此有 X (kA)X kX AX 0. 故,kA正定.
2020/9/20§5. 4 正定二次型
(3)A正定,则存在可逆矩阵C,使 A CC ,于是 A CC C 2 0
又A* A A,1 由(1)(2)即得 A* 正定.
(4)由于 A 正定,知 Am为 n 阶可逆对称矩阵 , 当 m=2k 时, Am A2k Ak Ak ( Ak )EAk , 即,Am 与单位矩阵E合同,所以 Am正定.
一组不全为零的实数 c1,c2 , ,cn 都有
f (c1,c2 , ,cn ) 0
则称f 为正定二次型.
n
如,二次型 f ( x1, x2, , xn ) xi2 是正定的;
i 1 n1
f ( x1, x2, , xn ) xi2
i 1
2020/9/20§5. 4 正定二次型
2、正定性的判定
2 1
解: f ( x1, x2 ,
, xn )的矩阵
A
2
1
2
1
1
1
2 2
A的第k阶顺序主子式Pk
2020/9/20§5. 4 正定二次型
11
1
11 1
2 1 Pk 2 1
2 1 2
1 k1 2
2
1
1 2
11
1
22
k
11
1
22
k
111
k1 0 2
1 2
0
000
1
0
k
2
1 ( 1 )k1 2
1)实二次型 X AX 正定
X Rn ,若X 0,则X AX 0
2)设实二次型 f ( x1, x2 , , xn ) d1x12 d2 x22 dn xn2
f 正定 di 0,i 1, 2, , n
证:充分性显然. 下证必要性,若 f 正定,取
X0 (0,
,0, 1 ,0, (i)
反之,实二次型 g( y1, y2 , , yn )可经过非退化 线性替换 Y = C - 1X 变到实二次型 f ( x1, x2 , , xn ),
同理,若 g 正定,则 f 正定. 所以,非退化线性替换不改变二次型的正定性.
2020/9/20§5. 4 正定二次型
4)(定理5) n元实二次型 f ( x1, x2 , , xn )正定 秩 f =n= p( f 的正惯性指数).
k 2k
1
0,
0 k
k 1,2, ,n. f 正定.
2020/9/20§5. 4 正定二次型
例3、证明:若实对称矩阵A正定 ,则A的任意一个
k 阶主子式
ai1i1 Qk ai2i1
ai1i2 ai2i2
a a iki1 iki2
ai1ik ai2ik 0.
aik ik
(习题9)
证:作二次型
2、正定矩阵的判定
1)实对称矩阵A正定 A与单位矩阵E合同.
正定二次型的规范形为z12 z22 2) 实对称矩阵A正定
存在可逆矩阵C,使 A CC
zn2 ZEZ
可见,正定矩 阵是可逆矩阵.
A与E合同,即存在可逆矩阵C,使 A CEC CC
2020/9/20§5. 4 正定二次型
3)实对称矩阵A正定 A与任一正对角矩阵合同.
1 1
1 1
,
f ( x1, x2 ) X AX ( x1 x2 )2,
当 x1 x2 1 时,有 f ( x1, x2 ) 0.
所以A不是正定的.
2020/9/20§5. 4 正定二次型
2) 实对称矩阵A正定 det A A 0 证:若A正定,则存在可逆矩阵C ,使 A CC,
X0 AX0 0
即,g( xi1 , xi2 , , xik )是正定二次型,因此其矩阵的
行列式大于零,即 Qk 0.
2020/9/20§5. 4 正定二次型
设 A (aij )nn .
a11
令
A1
an1,1
a1,n1 an1,n1
,
=
a1n a2n an1,n
,
则
A
A1
ann
又A的顺序主子式全大于零,所以A1的顺序主子式
也全大于零.
由归纳假设,A1正定,即存在可逆矩阵G,使 GA1G En1.
kk
k(1 k n), 令 fk ( x1, x2, , xk )
aij xi x j
i1 j1
( x1, x2 ,
, xk )A(1, 2,
x1
,
k
)
x2
xk
2020/9/20§5. 4 正定二次型
对任意一不全为零的数 c1,c2 , ,ck , 有 fk (c1,c2 , ,ck ) f (c1,c2 , ,ck ,0, ,0) 0
其中,c j
cis , 0,
当 j is , s 1, 2, , k 当 j is , s 1, 2, , k
由于 A 正定,有 f ( x1, x2 , , xn ) X AX 正定,即有 X0 AX0 0, 从而, g(ci1 ,ci2 , ,cik ) f (0, ,0,ci1 ,0, ,ci2 ,0, ,cik ,0, ,0)
再令 C C1C2 , a ann GG
则有
CAC
En1 0
0 a
两边取行列式,得 C 2 A a
又 A >0 , a 0
即 En1 a 为正对角矩阵.
由判定充要条件3). 知A正定,所以X AX正定.
2020/9/20§5. 4 正定二次型
例2、判定下面二次型是否正定.
1) f ( x1, x2 , x3 ) 5x12 x22 5x32 4x1x2 8x1x3 4x2 x3
,0), i 1,2,
,n
则 f ( X0 ) di xi2 0, di 0,i 1,2, ,n
2020/9/20§5. 4 正定二次型
3)非退化线性替换不改变二次型的正定性.
证明:设正定二次型 f ( x1, x2 , , xn ) X AX 经过非退化线性替换 X=CY 化成
f ( x1, x2 , , xn ) Y (CAC )Y g( y1, y2, , yn )
ak1
a1k
Rkk
akk
称为A为第k阶顺序主子矩阵;
a11
a1k
2) Pk det A(1, 2, , k)
ak1
akk
称为A的第k阶顺序主子式.
2020/9/20§5. 4 正定二次型
3) k 级行列式
ai1i1 Qk ai2i1
ai1i2 ai2i2
a a iki1 iki2
ai1ik ai2ik
2020/9/20§5. 4 正定二次型
证:(1)由于 A 正定,则存在可逆矩阵 P,使 PAP E, 于是有,
(PAP)1 P1A1(P1) ((P1)) A1(P1) E 令 Q (P1), 则Q可逆,且 QA1Q E,
即,A1与单位矩阵E合同. 故,A1正定. (2)由于A 正定,对 X Rn , X 0, 都有 X AX 0,
证:设 f ( x1, x2 , , xn )经非退化线性替换 X CY 变成标准形
f ( x1, x2 , , xn ) d1 y12 d2 y22 dn yn2
由2), f 正定 di 0,i 1, 2, , n 即,f 的正惯性指数p=n=秩 f .
2020/9/20§5. 4 正定二次型
任取一组不全为零的数 k1, k2 , , kn , 令
k1
c1
Y
0
k2
,
X0
CY
0
c2
,
kn
cn
则,
f (c1,c2, ,cn ) X0 AX0 Y0(CAC )Y0 g(k1,k2, ,kn )
2020/9/20§5. 4 正定二次型
又由于C可逆,Y0 0 ,所以 X0 0, 即 c1,c2 , ,cn 不全为0. g(k1, k2 , , kn ) f (c1,c2 , ,cn ) 0 g( y1, y2 , , yn )正定.
kk
g( xi1 , xi2 ,
, xik )
a x x isit is it
s1 t 1
( xi1 , xi2 ,
,
xik
)Qk
xi1 xi2
xik
2020/9/20§5. 4 正定二次型
对任意一不全为零的数 ci1 ,ci2 , ,cik , 有
X0 (c1,c2 , ,cn ) 0,
fk ( x1, x2 , , xn )是正定的,从而 A(1, 2, , k)正定. Pk det A(1,2, ,k) 0, k 1,2, , n.
充分性: 对n作数学归纳法. n=1时,a11 a11 0. f ( xi ) a11x12正定. 结论成立. 假设对于n-1元二次型结论成立,下证n元的情形.
2020/9/20§5. 4 正定二次型
令
C1
G 0
0 1
,
则
C1AC1
G 0
0 1
A1
1
G 0
0 1
En1
G
G