(完整版)弹塑性力学作业(含答案)

合集下载

弹塑性力学部分习题及答案

弹塑性力学部分习题及答案

1 εij = (ui, j +uj,i ) 2
σji, j
(i, j =12,3) ,
E 1 ν = 2(uj,ij +ui, jj ) +1−2νuk,kjδij (1+ν)
5Байду номын сангаас
20112011-2-17
题1-3
E 1 ν (uj,ij +ui,jj ) + σji, j = uk,ki 2 (1+ν) 1−2ν
3
2c
l
y
解: 1、将 Φ 代入
∇ 4Φ =0 满足, 为应力函数。 满足, Φ 为应力函数。
2、求应力(无体力) 求应力(无体力)
20112011-2-17 20
题1-13 3 3F xy q 2 Φ= xy− 2 + y 4c 3 2 c
2
o
x
2c
l
y
2
∂φ 3F xy ∂φ σx = 2 = − 3 +q, σy = 2 =0, ∂y 2c ∂x y2 ∂φ 3F τxy =− = − 1− 2 ∂x∂y 4c c
z l y
F = −ρg bz
x
x
20112011-2-17
8
题1-5 等截面直杆(无体力作用),杆轴 等截面直杆(无体力作用),杆轴 ), 方向为 z 轴,已知直杆的位移解为
u =−kyz v =kxz
w=k ( x, y) ψ
为待定常数, 其中 k 为待定常数,ψ(x‚y)为待定函数, 为待定函数 试写出应力分量的表达式和位移法方程。 试写出应力分量的表达式和位移法方程。
2

弹塑性力学习题及答案

弹塑性力学习题及答案

.本教材习题和参考答案及部分习题解答第二章2.1计算:(1)pi iq qj jk δδδδ,(2)pqi ijk jk e e A ,(3)ijp klp ki lj e e B B 。

答案 (1)pi iq qj jkpk δδδδδ=;答案 (2)pqi ijk jk pq qp e e A A A =-;解:(3)()ijp klp ki ljik jl il jk ki lj ii jj ji ij e e B B B B B B B B δδδδ=-=-。

2.2证明:若ijji a a =,则0ijk jk e a =。

(需证明)2.3设a 、b 和c 是三个矢量,试证明:2[,,]⋅⋅⋅⋅⋅⋅=⋅⋅⋅a a a b a cb a b b bc a b c c a c b c c证:因为123111123222123333i i i i i i i i i i i i i ii i i i a a a b a c b a b b b c c a c b c c a a a a b c b b b a b c c c c a b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以123111123222123333123111123222123333det det()i ii i i i i ii i i i i ii ii i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c a a a a b c b b b a b c c c c a b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即得 1231112123222123333[,,]i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c ⋅⋅⋅⋅⋅⋅=⋅⋅⋅==a a a b a c b a b b b c a b c c a c b c c 。

弹塑性力学习题集_很全有答案_

弹塑性力学习题集_很全有答案_
v = b0 + b1 x + b2 y + b3 z w = c 0 + c1 x + c 2 y + c3 z
式中 a 0 L , a1 L , a 2 L 为常数,试证各点的应变分量为常数。 2—29 设已知下列位移,试求指定点的应变状态。
(1) u = (3x 2 + 20) × 10 −2 , v = (4 yx) × 10 −2 ,在(0,2)点处。 (2) u = (6 x 2 + 15) × 10 −2 , v = (8 zy ) × 10 −2 , w = (3z 2 − 2 xy) × 10 −2 ,在(1,3,4)点处。 2—30 试证在平面问题中下式成立: εx + εy =ε′ x + ε′ y
题 2—15 图
12 6 0 2—17 已知一点处的应力张量为: σ ij = 6 10 0 MPa ,试求该点的最大主应力及 0 0 0 其主方向。 2—18* 在物体中某一点 σ x = σ y = σ z = τ xy = 0 ,试以 τ yz 和 τ zx 表示主应力。
2—39* 若位移分量 u i 和 u i′ 所对应的应变相同,试说明这两组位移有何差别? 2—40* 试导出平面问题的平面应变状态( ε x = γ zx = γ zy = 0 )的应变分量的不变量及
主应变的表达式。 2—41* 已知如题 2—41 图所示的棱柱形杆在自重作用下的应变分量为: γz νγz εz = , εx =εy = − ; γ xy = γ yz = γ zx = 0; E E 试求位移分量,式中 γ 为杆件单位体积重量,E、ν 为材料的弹性常数。
题 2—41 图
题 2—42 图

弹塑性力学部分习题及答案

弹塑性力学部分习题及答案

e kk
2019/8/31
4
题1-3
e kk
ij (1 E )( ij 1 2 e ij) (i,j 1 ,2 ,3 )
j,i j (1 E )( j,i j 1 2 k,jk ij ) (i,j 1 ,2 ,3 )
i1 2ui,j
j
Guj,jiGi,ju j
代入 j,ij F b i0 (i,j 1 ,2 ,3 )

G 2 u i G u j,j iF b i0在 V 上
2019/8/31
7
题1-4 等截面柱体在自重作用下,应力解为
x=y=xy=yz=zx=0 , z=gz,试求位移。
,且设 ur 表达式为
ur C1rC r2(18 E 2)2r3
b
ra
x
试由边界条件确定 C1 和 C2 。
y
解: 边界条件为: (r)r=a=0, (r)r=b=0
应力r(平面
应力问题):
r 1E2(ddrururr)
2019/8/31
32
题1-16 由边界条件确定 C1 和 C2 :
v g l x y E
y
l
式中 E、 为弹性模量和泊松系数。
试(1)求应力分量和体积力分量;
hh
(2)确定各边界上的面力。
x
解: 1、求应变
x u x E g l x , y y v E g (l x )
2019/8/31
15
x
x=ax、y=ax、xy= -ax
3、求应变
x=ax、y=a(2x+y-l-h)、 xy= -ax

(完整版)弹塑性力学作业(含答案)(1)

(完整版)弹塑性力学作业(含答案)(1)

(完整版)弹塑性⼒学作业(含答案)(1)第⼆章应⼒理论和应变理论2—3.试求图⽰单元体斜截⾯上的σ30°和τ30°(应⼒单位为MPa )并说明使⽤材料⼒学求斜截⾯应⼒为公式应⽤于弹性⼒学的应⼒计算时,其符号及正负值应作何修正。

解:在右图⽰单元体上建⽴xoy 坐标,则知σx = -10 σy = -4 τxy = -2 (以上应⼒符号均按材⼒的规定)代⼊材⼒有关公式得:代⼊弹性⼒学的有关公式得:⼰知σx = -10 σy= -4 τxy = +2由以上计算知,材⼒与弹⼒在计算某⼀斜截⾯上的应⼒时,所使⽤的公式是不同的,所得结果剪应⼒的正负值不同,但都反映了同⼀客观实事。

2—6. 悬挂的等直杆在⾃重W 作⽤下(如图所⽰)。

材料⽐重为γ弹性模量为 E ,横截⾯⾯积为A 。

试求离固定端z 处⼀点C 的应变εz 与杆的总伸长量Δl 。

解:据题意选点如图所⽰坐标系xoz ,在距下端(原点)为z 处的c 点取⼀截⾯考虑下半段杆的平衡得:c 截⾯的内⼒:N z =γ·A ·z ;c 截⾯上的应⼒:z z N A zz A Aγσγ??===?;所以离下端为z 处的任意⼀点c 的线应变εz 为:z z z E Eσγε==;则距下端(原点)为z 的⼀段杆件在⾃重作⽤下,其伸长量为:()22z z z z z z z z y zz l d l d d zd EEEγγγε==??=?=ooooV ;显然该杆件的总的伸长量为(也即下端⾯的位移):()2222ll A l lW ll d l EEAEAγγ=??===oV ;(W=γAl ) 2—9.⼰知物体内⼀点的应⼒张量为:σij =50030080030003008003001100-?? +---应⼒单位为kg /cm 2 。

试确定外法线为n i(也即三个⽅向余弦都相等)的微分斜截⾯上的总应⼒n P v、正应⼒σn 及剪应⼒τn 。

弹塑性力学习题集_很全有答案_

弹塑性力学习题集_很全有答案_
间的关系为 ε oB =
1 γ xy 。 (用弹塑性力学转轴公式来证明) 2
题 2—33 图
2 — 34
设 一 点 的 应 变 分 量 为 ε x = 1.0 × 10 −4 , ε y = 5.0 × 10 −4 , ε z = 1.0 × 10 −4 ,
ε xy = ε yz = 1.0 × 10 −4 , ε zx = 3.0 × 10 −4 ,试计算主应变。
应力 τ 8 。
2 —24* 一点的主应力为: σ 1 = 75a, σ 2 = 50a, σ 3 = −50a ,试求八面体面上的全应力
P8 ,正应力 σ 8 ,剪应力 τ 8 。
2—25 试求各主剪应力 τ 1 、 τ 2 、 τ 3 作用面上的正应力。 2—26* 用应力圆求下列(a)、(b) 图示应力状态的主应力及最大剪应力,并讨论若(b) 图中有虚线所示的剪应力 τ ′ 时,能否应用平面应力圆求解。
ε x = a 0 + a1 ( x 2 + y 2 ) + x 4 + y 4 , ε y = b0 + b1 ( x 2 + y 2 ) + x 4 + y 4 , γ xy = c 0 + c1 xy ( x 2 + y 2 + c 2 ), ε z = γ zx = γ yz = 0.
试求式中各系数之间应满足的关系式。 2—38* 试求对应于零应变状态( ε ij = 0 )的位移分量。
态。
题 2—13 图
题 2—14 图
2—14* 如题 2—14 图所示的变截面杆,受轴向拉伸载荷 P 作用,试确定杆体两侧外 表面处应力 σ z (横截面上正应力)和在材料力学中常常被忽

弹塑性力学课程作业 参考答案

弹塑性力学课程作业 参考答案

弹塑性力学课程作业1 参考答案一.问答题1. 答:请参见教材第一章。

2. 答:弹塑性力学的研究对象比材料力学的研究对象更为广泛,是几何尺寸和形态都不受任何 限制的物体。

导致这一结果的主要原因是两者研究问题的基本方法的不同。

3. 答:弹塑性力学与材料力学、结构力学是否同属固体力学的范畴,它们各自求解的主要问题都是变形问题,求解主要问题的基本思路也是相同的。

这一基本思路的主线是:(1)静 力平衡的受力分析;(2)几何变形协调条件的分析;(3)受力与变形间的物理关系分析; 4. 答:“假设固体材料是连续介质”是固体力学的一条最基本假设,提出这一基本假设得意义是为利用数学中的单值连续函数描述力学量(应力、应变和位移)提供理论依据。

5. 答:请参见本章教材。

6. 答:略(参见本章教材)7. 答:因为物体内一点某微截面上的正应力分量 σ 和剪应力分量τ 同材料的强度分析 问题直接相关,该点微截面上的全应力则不然。

8. 答:参照坐标系围绕一点截取单元体表明一点的应力状态,对单元体的几何形状并不做 特定的限制。

根据单元体所受力系的平衡的原理研究一点的应力状态。

研究它的目的是: 首先是了解一点的应力状态任意斜截面上的应力,进一步了解该点的主应力、主方向、 最大(最小)剪应力及其作用截面的方位,最终目的是为了分析解决材料的强度问题。

9.答:略(请参见教材和本章重难点剖析。

) 10. 答:略(请参见教材和本章重难点剖析。

)11. 答:略(请参见教材和本章重难点剖析。

) 这样分解的力学意义是更有利于研究材料的塑性变形行为。

12. 答:略(请参见教材和本章重难点剖析。

)纳唯叶 (Navier) 平衡微分方程的力学意义是:只有满足该方程的应力解和体力才是客观上可能存在的。

13. 答:弹塑性力学关于应力分量和体力分量、面力分量的符号规则是不一样的。

它们的区别请参见教材。

14、答:弹塑性力学的应力解在物体内部应满足平衡微分方程和相容方程(关于相容方程详见第3、5、6章),在物体的边界上应满足应力边界条件。

弹塑性力学试题答案完整版

弹塑性力学试题答案完整版

欧拉描述便于对固定空间区域特别是包含流动、大变形和物质混合问题的建模。 5)转动张量:表示刚体位移部分,即
0
Wij
=
1
2
v x

u y
1 2
w x

u z
1 2
u y

v x
0
1 2
w y

v z
1 2
u z

w x
1 2
v z

w y
0
6)应变张量:表示纯变形部分,即
22)小应变张量:(P33) 23)弹性模量:E 的数值随材料而异,是通过实验测定的,其值表征材料抵抗弹性变形的能力,其量纲
为 ML-1T-2 ,其单位为 Pa。
E 是度量物体受力时形变大小的物理量。指在弹性限度内,应力与应变的比值。 弹性模量又分纵向弹性模量(杨氏模量)和剪切弹性模量。杨氏模量为正应力与线应变之比值;剪切弹 性模量为剪应力与剪应变之比值。对同一种材料,在弹性极限内,弹性模量是一常数。 24)相容方程(P38): 25)变分原理:
弹塑性力学 2008、2009 级试题
一、简述题 1)弹性与塑性
弹性:物体在引起形变的外力被除去以后能恢复原形的这一性质。 塑性:物体在引起形变的外力被除去以后有部分变形不能恢复残留下来的这一性质。 2)应力和应力状态 应力:受力物体某一截面上一点处的内力集度。
应力状态:某点处的 9 个应力分量组成的新的二阶张量 。
( ) ( ) 个独立的应力分量的函数,即为 f = 0 , f ij 即为屈服函数。
10)不可压缩:对金属材料而言,在塑性状态,物体体积变形为零。
11)稳定性假设(P56):即德鲁克公社,包括:1.在加载过程中,应力增量所做的功 dWD 恒为正;2.在

(完整版)弹塑性力学习题题库加答案

(完整版)弹塑性力学习题题库加答案

第二章 应力理论和应变理论2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。

己求得应力解为:σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。

解:首先列出OA 、OB 两边的应力边界条件:OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0 得:b=-γ1;a =0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0则:cos sin 0cos sin 0x xy yxy σβτβτβσβ+=⎧⎨+=⎩………………………………(a )将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得:()()()1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=⎧⎪⎨--+-=⎪⎩化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1 ctg 3β2—17.己知一点处的应力张量为31260610010000Pa ⎡⎤⎢⎥⨯⎢⎥⎢⎥⎣⎦试求该点的最大主应力及其主方向。

解:由题意知该点处于平面应力状态,且知:σx =12×103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得:(()()31.233331210102217.0831******* 6.082810 4.9172410x yPa σσσ⎡++⎢=±=⨯⎢⎣⨯=⨯=±⨯=⨯则显然:3312317.08310 4.917100Pa Pa σσσ=⨯=⨯=σ1 与x 轴正向的夹角为:(按材力公式计算)()22612sin 22612102cos 2xyx ytg τθθσσθ--⨯-++====+=--+显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376°题图1-3则:θ=+40.268840°16' 或(-139°44')2—19.己知应力分量为:σx =σy =σz =τxy =0,τzy =a ,τzx =b ,试计算出主应力σ1、σ2、σ3并求出σ2的主方向。

弹塑性力学习题集很全有答案

弹塑性力学习题集很全有答案

直边及斜边上的边界条件,确定常数 a、b、c、d。
2—16* 已知矩形截面高为 h,宽为 b 的梁受弯曲时的正
应力σ z
=
My J
=
12M bh 3
y ,试求当非纯弯时横截面上的剪应力公
式。(利用弹塑性力学平衡微分方程)
题 2—15 图
12 6 0
2—17
已知一点处的应力张量为: σ ij
=
6
10
题 2—4 图
2—5* 如题 2—5 图,刚架 ABC 在拐角 B 点处受 P 力,已知刚架的 EJ,求 B、C 点的 转角和位移。(E 为弹性模量、J 为惯性矩)
2—6 悬挂的等直杆在自重 W 的作用下如题 2—6 图所示。材料比重为 γ ,弹性模量为 E,横截面积为 A。试求离固定端 z 处一点 c 的应变 ε z 与杆的总伸长 ∆l 。
P8 ,正应力 σ 8 ,剪应力τ 8 。 2—25 试求各主剪应力τ1 、τ 2 、τ 3 作用面上的正应力。 2—26* 用应力圆求下列(a)、(b) 图示应力状态的主应力及最大剪应力,并讨论若(b)
图中有虚线所示的剪应力τ ′ 时,能否应用平面应力圆求解。
题 2—26 图
2—27* 试求:如(a) 图所示,ABC 微截面与 x、y、z 轴等倾斜,但τ xy ≠ 0, τ yz ≠ 0, τ zx ≠ 0, 试问该截面是否为八面体截面?如图(b) 所示,八面体各截面上的τ 8 指向是否垂直棱边?
题 2—13 图
题 2—14 图
2—14* 如题 2—14 图所示的变截面杆,受轴向拉伸载荷 P 作用,试确定杆体两侧外
表面处应力 σ z (横截面上正应力)和在材料力学中常常被忽 略的应力 σ x 、τ zx 之间的关系。

弹塑性力学-陈明祥版的-课后习题答案++

弹塑性力学-陈明祥版的-课后习题答案++
◆ 分析研究物理现象的方法和工具的选用与人们 当时对客观事物的认识水平有关,会影响问题 的求解与表述。
◆ 所有与坐标系选取无关的量,统称为物理恒量。
◆ 在一定单位制下,只需指明其大小即足以被说明
的物理量,统称为标量。例如温度、质量、功等。
◆ 在一定单位制下,除指明其大小还应指出其方向
的物理量,称为矢量。例如速度、加速度等。
x j xk
(I-25)
4.张量的分解
张量一般是非对称的。若张量 ai的j 分量满足
aij a ji
(I-27)
则 aij称为对称张量。 如果 的分ai量j 满足
aij a ji
(I-28)
则称为反对称张量。显然反对称张量中标号重复的
分量(也即主对角元素)为零,即 a11 a22 。a33 0
弹塑性力学与材料力学同属固体力学的 分支学科,它们在分析问题解决问题的基本 思路上都是一致的,但在研究问题的基本方 法上各不相同。其基本思路如下:
(1) 受力分析及静力平衡条件 (力的分析)
物体受力作用处于平衡状态,应当满足的条件 是什么?(静力平衡条件)
(2) 变形的几何相容条件 (几何分析)
材料是均匀连续的,在受力变形后仍应是连续 的。固体内既不产生“裂隙”,也不产生“重叠 ”, 此时材料变形应满足的条件是什么?(几何相 容条件)
建立起普 遍适用的理 论与解法。
1、涉及数学理论较复杂,并以其理论与解
法的严密性和普遍适用性为特点;
2、弹塑性的工程解答一般认为是精确的;
3、可对初等力学理论解答的精确度和可靠
进行度量。
四、 弹塑性力学的基本任务
可归纳为以下几点: 1.建立求解固体的应力、应变和位移分布规律的 基本方程和理论; 2.给出初等理论无法求解的问题的理论和方法, 以及对初等理论可靠性与精确度的度量; 3.确定和充分发挥一般工程结构物的承载能力, 提高经济效益; 4.为进一步研究工程结构物的强度、振动、稳定 性、断裂等力学问题,奠定必要的理论基础。

弹塑性力学课后习题答案

弹塑性力学课后习题答案

(I-4) (I-5)
★ 关于求和标号,即哑标有:
◆ 求和标号可任意变换字母表示。
◆ 求和约定只适用于字母标号,不适用于数字标号。 ◆ 在运算中,括号内的求和标号应在进行其它运算前
优先求和。例:
aii2a121a222a323
(I-12)
(ai) i2(a 1 1a22 a3)3 2 (I-13)
aibjk cijk
(I-21)
◆ 张量乘法不服从交换律,但张量乘法服从分配
律和结合律。例如:
( a i j b i) c j k a i c k j b i c k j; 或 ( a i b k j ) c m a i( b j k c m )
(I-22)
C、张量函数的求导:
◆ 一个张量是坐标函数,则该张量的每个分量都
◆ 绝对标量只需一个量就可确定,而绝对矢量则需
三个分量来确定。
◆ 若我们以r表示维度,以n表示幂次,则关于三维
空间,描述一切物理恒量的分量数目可统一地表 示成:
Mrn (Ⅰ—1)
◆ 现令n为这些物理量的阶次,并统一称这些物
理量为张量。
当n=0时,零阶张量,M=1,标量; 当n=1时,一阶张量,M=3,矢量;
(I-25 )
4.张量的分解
张量一般是非对称的。若张量 aij的分量满足
aij a ji
(I-27)
则 aij 称为对称张量。 如果 的分aij量满足
aij aji
(I-28)
则称为反对称张量。显然反对称张量中标号重复的
分量(也即主对角元素)为零,即 a11a22。a330
第二章 应力理论
七应变莫尔圆41弹性变形与塑性变形的特点塑性力学的附加假设42常用简化力学模型43弹性本构方程弹性应变能函数44屈服函数主应力空间常用屈服条件47塑性本构方程简介静不定问题的解答1静力平衡分析平衡微分方程2几何变形分析几何方程3物理关系分析物理方程表明固体材料产生弹性变形或塑性变形时应力与应变以及应力率与应变率之间关系的物性方程称为本构方程关系

弹塑性力学习题集_很全有答案_

弹塑性力学习题集_很全有答案_

σ y = cx + dy − γy , τ xy = − dx − ay ,其它应力分量为零。试根据
直边及斜边上的边界条件,确定常数 a、b、c、d。 2—16* 已知矩形截面高为 h, 宽为 b 的梁受弯曲时的正 My 12 M 应力 σ z = = y, 试求当非纯弯时横截面上的剪应力公 J bh 3 式。 (利用弹塑性力学平衡微分方程)
题 2—15 图
12 6 0 2—17 已知一点处的应力张量为: σ ij = 6 10 0 MPa ,试求该点的最大主应力及 0 0 0 其主方向。 2—18* 在物体中某一点 σ x = σ y = σ z = τ xy = 0 ,试以 τ yz 和 τ zx 表示主应力。
3—1
为 ε 1 = 1.7 × 10 −4 , ε 2 = 0.4 × 10 −4 。已知ν = 0.3,试求主应变 ε 3 。
3—9 如题 4—9 图示尺寸为 1×1×1cm 的铝方块,无间隙地嵌入——有槽的钢块中。 设钢块不变形,试求:在压力 P = 6KN 的作用下铝块内一点应力状态的三个主应力及主应 变,铝的弹性常数 E=70Gpa,ν = 0.33。 3—10* 直径 D = 40mm 的铝圆柱体, 无间隙地放入厚度为 δ = 2mm 的钢套中, 圆柱受
v = b0 + b1 x + b2 y + b3 z w = c 0 + c1 x + c 2 y + c3 z
式中 a 0 L , a1 L , a 2 L 为常数,试证各点的应变分量为常数。 2—29 设已知下列位移,试求指定点的应变状态。
(1) u = (3x 2 + 20) × 10 −2 , v = (4 yx) × 10 −2 ,在(0,2)点处。 (2) u = (6 x 2 + 15) × 10 −2 , v = (8 zy ) × 10 −2 , w = (3z 2 − 2 xy) × 10 −2 ,在(1,3,4)点处。 2—30 试证在平面问题中下式成立: εx + εy =ε′ x + ε′ y

(完整版)弹塑性力学习题题库加答案.docx

(完整版)弹塑性力学习题题库加答案.docx

第二章 应力理论和应变理论2— 15.如 所示三角形截面水 材料的比重 γ,水的比重 γ 1。

己求得 力解 :σ x = ax+by , σy =cx+dy- γy , τxy =-dx-ay ;根据直 及斜 上的 界条件,确定常数 a 、b 、c 、 d 。

解:首先列出OA 、 OB 两 的 力 界条件:OA :l 1=-1 ;l 2=0 ;T x= γ1 y ; T y =0σx =-γ1y ; τxy =0代入: σx =ax+by ; τxy =-dx-ay 并 注 意 此 : x =0得 : b=- γ1; a=0;OB : l 1=cos β ; l 2=-sin β, T x =T y =0:x cosxy sin0 yx cosy sin⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( a )将己知条件: σ x=1xy=-dxyγ y-γ y ; τ; σ =cx+dy-代入( a )式得:1 y cos dx sin0L L L L L L L L L bdx coscxdyy sin L L L L L L L L L化 ( b )式得: d = γ12β;ctgT4n2τ 30° δ 30°30°化 ( c )式得: c =γctg β -2γ 13y10x10Ox12 6τxy103 Pa2— 17.己知一点 的 力 量6 10 00 0δ y求 点的最大主 力及其主方向。

x题1-3 图解:由 意知 点 于平面 力状 ,且知:σx =12×O103σ y =10× 103 τ xy =6× 103,且 点的主 力可由下式求得:β212 101221.2xyxy21023n 22xy22610βγ 1y113710311 6.0828 10317.083 10 3 Paγ34.91724 10BA然:y117.083 10 3Pa2 4.917 10 3Pa30σ 1 与 x 正向的 角 : (按材力公式 算)c2 xy2 6 12 sin 2tg 2121026xycos2然 2θ 第Ⅰ象限角: 2θ=arctg ( +6) =+80.5376 °则:θ=+40.2688 B 40° 16'或(-139° 44')2— 19.己知应力分量为:σx=σy=σz=τxy=0,τzy=a,τzx=b,试计算出主应力σ1、σ2、σ3 并求出σ2 的主方向。

弹塑性力学部分习题及答案

弹塑性力学部分习题及答案


根据梁的弯曲变形公式,y = Fx/L(L - x),其中y为挠度,F 为力,L为梁的长度。代入题目给定的数据,得y = (frac{300 times (4 - x)}{8})。当x = 2时,y = (frac{300 times (4 - 2)}{8}) = 75mm。
习题三答案及解析
解析
和变形情况。
04
弹塑性力学弹塑性力学的基本假设。
答案
弹塑性力学的基本假设包括连续性假设、均匀性假设、各向同性假设和非线性假设。连 续性假设认为物质是连续的,没有空隙;均匀性假设认为物质的性质在各个位置都是相 同的;各向同性假设认为物质的性质在不同方向上都是相同的;非线性假设认为弹塑性
习题二答案及解析
01 02 03 04
解析
选择题主要考察基本概念的理解,如能量守恒定律、牛顿第二定律等 。
填空题涉及简单的力学计算,如力的合成与分解、牛顿第二定律的应 用等。
计算题要求应用能量守恒定律和牛顿第二定律进行计算,需要掌握基 本的力学原理和公式。
习题三答案及解析
01
答案
02
选择题
03
1. A
2. 解
根据牛顿第二定律,F = ma,其中F为力,m为质量,a 为加速度。代入题目给定的数据,得a = (frac{400}{5}) = 80m/s(}^{2})。再根据运动学公式s = ut + (frac{1}{2})at(}^{2}),得s = 10 × 2 + (frac{1}{2} times 80 times (2)^2) = 108m。
04
计算题要求应用胡克定律和动量守恒定律进行计算,需要掌握基本的 力学原理和公式。
习题二答案及解析

弹塑性力学习题集很全有答案

弹塑性力学习题集很全有答案

cxy cy 2
0 0
0
0 0
axy 2
(2)
ε ij
=
0
1 2
(ax 2
+
by 2 )
0 ax 2 y 1 (az 2 + by 2 ) 2
1
2 1
2
(ax 2 (az 2
+ +
by
2
)
by 2 )
0
c(x 2 + y 2 ) (3) ε ij = cxyz
cxyz cy 2 x
0 0
2—35* 已知物体中一点的应变分量为
10 4 − 2
ε ij
=
4
5
3
×
10
−4
− 2 3 − 1
试确定主应变及最大主应变的方向。 2—36* 某一应变状态的应变分量 γ xy 和 γ yz =0,试证明此条件能否表示 ε x 、ε y 、ε z 中
之一为主应变? 2—37 已知下列应变状态是物体变形时产生的:
主应变的表达式。 2—41* 已知如题 2—41 图所示的棱柱形杆在自重作用下的应变分量为:
εz
=
γz E
,
εx
=εy
=
− νγz E
;
γ xy = γ yz = γ zx = 0;
试求位移分量,式中 γ 为杆件单位体积重量,E、ν 为材料的弹性常数。
2—42 如题 2—42 图所示的圆截面杆扭转时得到的应变分量为:ε x = ε y = ε z = γ xy = 0,
题 2—27 图
2—28 设一物体的各点发生如下的位移:
u = a0 + a1x + a2 y + a3 z v = b0 + b1x + b2 y + b3 z w = c0 + c1x + c2 y + c3 z 式中 a0 L, a1 L, a2 L 为常数,试证各点的应变分量为常数。 2—29 设已知下列位移,试求指定点的应变状态。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。

己求得应力解为: σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ;
试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。

解:首先列出OA 、OB 两边的应力边界条件: OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0
代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0
得:b=-γ1;a =0;
OB 边:l 1=cos β;l 2=-sin β,T x =T y =0
则:cos sin 0cos sin 0x xy yx
y σβτβτβσβ+=⎧⎨
+=⎩………………………………(a ) 将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得:
()()()
1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=⎧⎪⎨--+-=⎪⎩L L L L L L L L L L L L L L L L L L
化简(b )式得:d =γ1ctg 2β;
化简(c )式得:c =γctg β-2γ1 ctg 3β
2—17.己知一点处的应力张量为3
1260610010000Pa ⎡⎤⎢⎥⨯⎢⎥⎢⎥⎣⎦
试求该点的最大主应力及其主方向。

解:由题意知该点处于平面应力状态,且知:σx =12×103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得:
(()()3
1.2333
3
121010
2217.0831******* 6.082810 4.9172410
x y
Pa σσσ⎡++⎢==⨯⎢⎣⨯=⨯=±⨯=⨯
则显然:3
312317.08310 4.917100Pa Pa σσσ=⨯=⨯=
σ1 与x 轴正向的夹角为:(按材力公式计算)
()22612sin 226
12102
cos 2xy
x y tg τθθσσθ--⨯-++
====+=--+
显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376° 则:θ=+40.2688B 40°16' 或(-139°44')
5-2:给出axy ϕ=;(1):捡查ϕ是否可作为应力函数。

(2):如以ϕ为应力函数,求出应力分量的表达式。

(3):指出在图示矩形板边界上对应着什么样的边界力。

(坐标如图所示) 解:将axy ϕ=代入4
0ϕ∇=式
得:22
0ϕ∇∇= 满足。

故知axy ϕ=可作为应力函数。

求出相应的应力分量为:
220x y ϕσ∂==∂;220y x ϕσ∂==∂;2xy a x y
ϕτ∂=-=-∂∂;
上述应力分量0x y σσ==;xy a τ=-在图示矩形板的边界上对应着如图所示边界面力,该板处于纯剪切应力状态。

5-10:设图中的三角形悬臂梁只受重力作用。

而梁的比重为p ,试用纯三次式:
3223ax bx y cxy dy ϕ=+++的应力函数求解应力分量?
解:显然ϕ式满足2
0ϕ∇=式,可做为应力函数,相应的应力分量为:
2
2
266222x y xy cx by
py ax by py x bx cy x y σϕσϕ
τ⎫⎪=+⎪∂⎪=-=+-⎬∂⎪
⎪∂=-=--⎪
∂∂⎭
……………………(a )
边界条件:
ox 边:y =0 , l =0 ,m =-1, F x =F y =0 则:2bx =0 得:b =0
-6ax =0 得:a =0
oa 边:(),
cos 90sin ;cos ;0x y y xtg l m F F αααα==+=-===o
则:()()()26sin 2cos 02sin cos 0cx dxtg cxtg a cxtg pxtg b αααααααα-+-⋅=⎧⎪⎨
⋅-⋅=⎪⎩
L L L L L L L L L L L L 由(c ) 式得:2p
c ctg α=; 代入(b )式得:2
3
p d ctg α=-;
所以(a )式变为:
22x y xy pxctg pyctg py pyctga σααστ⎧=-⎪
=-⎨
⎪=-⎩
;上式中K 为纯剪屈服应力。

7.3 设123S S S 、、为应力偏量,试证明用应力偏量表示Mises 屈服条件时,其
形式为:
s σ= 证明:Mises 屈服条件为
()()()
222
21223312s σσσσσσσ-+-+-=
()()()
()
()()2
2
2
12233122
21231223312222123123231222S S S S S S S S S S S S S S S S S S S S S =-+-+-=++---⎡⎤=++-++⎢⎥
⎣⎦
左式
()12322
22
1230
32s S S S S S S σ++=∴=++=Q 左式
故有
s σ= 7.6 物体中某点的应力状态为2100
0002000/00300MN m -⎡⎤⎢⎥-⎢⎥
⎢⎥-⎣⎦
,该物体在单向拉伸 时2190/s MN m σ=,试用Mises 和Tresca 屈服条件分别判断该点是处于弹
性状态还是塑性状态 解:(1)Mises 屈服条件判断
()()()
()
()
222
421223312
4
2
610/7.2210/s
MN m MN m
σσσσσσσ-+-+-=⨯=⨯
故该点处于弹性状态 (2)Tresca 屈服条件判断
213200/MN m σσ-=
故该点处于塑性状态。

相关文档
最新文档