线性代数第一章 行列式

合集下载

第一章 行列式

第一章  行列式

第一章行列式行列式是一个重要的数学工具.它广泛应用于理、工、农、医、经济等很多领域。

在线性代数中,行列式更是一种不可或缺的重要工具.本章主要介绍行列式的定义、性质、计算及其在求解线性方程组中的应用——Cramer(克莱姆)法则.§1.1 行列式定义一、数域定义1.1 设P是含有0和1的一个数集,若P中任意两个数的和、差、积、商(除数不为0)仍在P中,则称P为一个数域.如果数集P中任意两个数作某一运算后的结果任在P中,则称P对这个运算封闭。

因此数域的定义也可简单叙述为:含有0和1且对加法、减法、乘法、除法(除数不为0)封闭的数集称为数域. 全体有理数组成的集合、全体实数组成的集合、全体复数组成的集合都是数域,分别称为有理数域、实数域、复数域依次用Q、R、C来记。

全体整数组成的集合不是数域,因为任意两个整数的商不一定是整数.要指出的是所有的数域都包含有理数域。

这是因为如果P是一个数域,则1在P中且由于P对加法封闭,所以1+1=2,2+1=3, ,n+1全在P中,即P包含全体自然数;又因0在P中且P对减法封闭,于是 0 - n = - n在P中,所以P包含全体整数;因为任意一个有理数都可表为两个整数的商,再由P对除法的封闭性知P包含全体有理数。

即任何一个数域都包含有理数域.今后本教材中所论及的数都是指某一固定数域中的数,文中一般不再特别加以说明.二、排列为了给出n阶行列式的定义,先介绍n级排列的概念.定义1.2 由自然数1 ,2 ,…,n组成的全排列称为n级排列.记作i1 i2…i nn级排列共有n!个.n级排列中任意两个数,如果大数排在小数之前,则称这两个数构成一个逆序,否则称为顺序.一个n级排列i1 i2…i n的逆序总数称为此排列的逆序数,记作 (i1i2…i n).逆序数为奇数的排列称为奇排列;逆序数为偶数的排列称为偶排列.因 τ(1 2 … n )= 0,所以排列1 2 … n 是偶排列。

线性代数重要知识点及典型例题答案

线性代数重要知识点及典型例题答案

线性代数知识点总结第一章行列式二三阶行列式N阶行列式:行列式中所有不同行、不同列的n个元素的乘积的和a j n=迟(-1)"" "a ij i a2j2...a nj n j l j2 j n(奇偶)排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变。

(转置行列式D=D T)②行列式中某两行(列)互换,行列式变号。

推论:若行列式中某两行(列)对应元素相等,则行列式等于零。

③常数k乘以行列式的某一行(列),等于k乘以此行列式。

推论:若行列式中两行(列)成比例,则行列式值为零;推论:行列式中某一行(列)元素全为零,行列式为零。

④行列式具有分行(列)可加性⑤将行列式某一行(列)的 k倍加到另一行(列)上,值不变行列式依行(列)展开:余子式皿厂代数余子式A j =(-1)厲皿耳定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。

克莱姆法则:D j非齐次线性方程组:当系数行列式D式0时,有唯一解:X j =—=1、2……n)D齐次线性方程组:当系数行列式D=1^0时,则只有零解逆否:若方程组存在非零解,则D等于零特殊行列式:a ii a i2 a i3 a ii a2i a3i①转置行列式:a2i a 22 a23 T a i2 a22 a32a3i a 32 a 33 a i3 a23 a33②对称行列式:a j = a j i③反对称行列式:a j = -a ji奇数阶的反对称行列式值为零⑤上(下)三角形行列式: 行列式运算常用方法(主要)行列式定义法(二三阶或零元素多的) 化零法(比例)化三角形行列式法、降阶法、升阶法、归纳法、lA* B = ( a ik )m*l * (b kj )l*n 二(•— a ik b kj ) m*n乘法1注意什么时候有意义般AB=BA ,不满足消去律;由 AB=0,不能得 A=0或B=0方幕:A kl A k ^ A k1 k2(A kl )k2 = A kl k2对角矩阵:若 AB 都是 N 阶对角阵,k 是数,则 kA 、A+B 、数量矩阵:相当于一个数(若……) 单位矩阵、上 (下)三角形矩阵(若……) 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方是0a 11 a 12 a 13④三线性行列式:a 21 a 22a 31a 33方法:用k022把a 2i 化为零,。

第1章线性代数

第1章线性代数

第一节 二阶、三阶行列式
第一章 行列式
hang lie shi
二阶、三阶行列式的概念在中学已有介绍,在此进一步复习巩固。
一、二阶行列式
对于二元线性方程组
aa1211xx11

a12 x2 a22 x2

b1 , b2 ,
由消元法得
((aa1111aa2222

a12a21 )x1 a12a21 )x2
第一章 行列式
第一章 行列式
行列式的概念是由解线性方程组 引入的,是线性代数中最基本的内容, 也是学习矩阵与线性方程组的理论基 础。本章主要包括行列式的概念、性 质、展开及应用——克莱姆法则。
目录
1 第一节 二阶、三阶行列式 2 第二节 n阶行列式 3 第三节 行列式的性质 4 第四节 行列式的展开 5 第五节 行列式的应用
研究问题的简捷,引入记号
第一章 行列式
hang lie shi
a11 a12 a13 D a21 a22 a23
a31 a32 a33
来表示变形方程(1-3)中 x1的系数,它是由未知量系数排成三行三列构成的,
称为三阶行列式,即
a11 a12 a13
D a21 a22 a23 a11a22a33 a12a23a31 a13a21a32 a13a22a31 a12a21a33 a11a23a32
显然, D1 ,D2 可看作是以 b1 ,b2 为一列分别取代D中第1列、第2列得到。
于是,方程组的解可表示为
x1

D1 D



x2

D

由此,二元线性方程组可通过其未知量系数、常数项构成的二阶行列式

线代1-1

线代1-1
D a11 a21 an1 0 0 a22 a2 n a a a ; 11 22 nn 0 0 ann
例8 证明
a21 a22 0 D
an1 an 2 ann
下三角行列式
a11
上三角行列式
N ( j1 j2 jn )

a21 D
0 a22
a11
a12 a1n
1 2 n 1 2 n
N( j j j ) a21 a22 a2 n a1 j a2 j anj 1 D

an1 an 2 ann
11
线性代数 第一章 行列式
主对角线下(上)方元素都为0 的行列式叫做上(下)三角行列式
a11 0 0 0 0 a a a ; 11 22 nn
第一章 行列式
§1.1 n 阶行列式的定义
§1.2 行列式的性质 §1.3 行列式按行(列)展开 §1.4 克莱姆法则
线性代数 第一章 行列式
1
§1.1
一.二阶和三阶行列式 1.二阶行列式 记号
n阶行列式的定义
a11 a21
a12 为二阶行列式,表示代数和 a11a22 a12a21 a22 a12 a11a22 a12 a21 a22
1
N ( n( n 1 )21 )
a1n a2 ,n1 an1
n
1
12 n
证毕
线性代数 第一章 行列式
13
进一步的结论 : 1)行列式的某行(或某列)元素全为0,则此行列式的值为0。
a11 a12 a1n a21 a22 a2 n
2)
D

解 P3 3 2 1 6

线性代数第一章行列式课件

线性代数第一章行列式课件

a11
a12
a1n
a11 a12
a1n a11 a12
a1n
ai1 bi1 ai2 bi2
ain bin ai1 ai2
ain bi1 bi2
bin
an1
an2
ann
an1 an2
ann an1 an2
ann
性质5 将行列式的某一行(列)的所有元素同乘以 一个数 k 加到另外一行(列)上,行列式不变,即
a1,n1 a2,n1
a1n a2n
a11 a21
a12 a22
a1,n1 a2,n1
an1,1 0
an1,2 0
an1,n1 0
an1,n 1
a a n1,1
n1,2
an1,n1
其中等号左端的行列式是一个 n 阶行列式;等号右端
的行列式是左端 n 阶行列式的前 n-1 行前 n-1 列的元
素所组成的 n-1 阶行列式,即左端行列式第 n 行第 n
j 1, 2, , n
ann
a1n
(1)i j aij
ai 1,1 ai1,1
ai1, j1 ai1, j1
ai1, j1 ai1, j1
ai1,n ai1,n
an1
an, j1
an, j1
ann
定理4 设
a11 a12
a1n
D a21 a22
a2n
an1 an2
ann
是一个 n 阶行列式, Aij 为 D 的第 i 行第 j 列元素 aij 的代数余子式,则有
1
2
n ( n 1)
(1) 2 12 n
n
二、行列式的基本性质
定义6 设

第一章 行列式

第一章  行列式

6
λ2 ⋰
λ1
n ( n −1)
= (−1) 2 λ1λ2 ⋯λn
λn
例 1.5 计算上三角行列式
a11 a12 ⋯ a1n
D=
a22 ⋯ a2n ⋱⋮
ann
解 由于当 i > j 时, aij = 0 ,故 D 中可能不为 0 的元素 aipi ,其下标应有
pi ≥ i ,即 p1 ≥ 1, p2 ≥ 2, ⋯, pn ≥ n 。
(1.7)式简记为 det(aij ) ,数 aij 称为行列式 det(aij ) 的元素。 例 1.4 计算行列式
1 2 D= 3 4 解 这是一个四阶行列式,按定义 1.5 展开得
∑ D = (−1)τ a a 1p1 2 p2 a a 3 p3 4 p4
在展开式中应该有 4!= 24 ,注意到,当 p1 ≠ 4 时 a1p1 = 0 ,从而这一项就等
1
类似地,(1.2)式的分子也可写成二阶行列式
b1a22
− a12b2
=
b1 b2
a12 a22
, a11b2
− b1a21
=
a11 a21
b1 b2
那么(1.2)式可写成
b1 a12
a11 b1
x1 =
b2 a11
a22 a12
, x2
=
a12 a11
b2 a12
a21 a22
a21 a22
二、三阶行列式的定义
如果比 pi 大的且排在 pi 前面的元素有τ i 个,就是说 pi 这个元素的逆序数是τ i ,
3
全体元素的逆序数的总数
就是这个排列的逆序数。
n
∑ τ = τ1 + τ 2 + ⋯ + τ n = τ i

线性代数 行列式

线性代数 行列式
线性代数
同济大学
第一章 行列式
§1 二、三阶行列式
n
用消元法解线性方程组
a11 x1 + a12 x2 = b1 a21 x1 + a22 x2 = b2
n

( a11a22 − a12a21 ) x1 = b1a22 − b2a12 ( a11a22 − a12a21 ) x2 = b2a11 − b1a21
=

2 2 − 3 4 r3 −2 r2 , r4 + r2 = − 2 3 7 −1 5 6
2 −1 1 2 2 −1 1 2 c3 ↔ c4 0 1 4 − 3 r4 +10 r3 0 1 4 − 3 = = 0 0 −1 9 0 0 −1 9 0 = 92 0 10 2 0 0 0 92
例2
2 6 −4 D= 3 2 0 4 1 5
2 6 −4 2 6 −4 3a 2a 0 = a3 2 0 = aD 4 1 5 4 1 5
推论
n
n
n
(1)行列式某行(列)有公因式,可提 到行列式前面 (2)如果行列式两行(列)元素对应成 比例,该行列式为零 (3)如果行列式有零行(列),行列式 结果为零
a + ( n − 1)b b L a b a−b O a−b L b = [a + (n − 1)b]( a − b) n −1
=
例4
a D4 = b c a +b+c d a +b+c +d
ri −ri−1,i=4,3,2
a b =
c
d a +b+c
a a +b
0 a a +b

线性代数-行列式(完整版)

线性代数-行列式(完整版)

a11a22 a12a21
数a( ij i, j 1,2)称为它的元素。
今后对任何行列式,横 排称为行, 竖排称为列 ,
aij中i称为行标, j称为列标, aij 表示第i行第j列元素, 左上角到右下角表示主对角线,
4
右上角到左下角表示次对角线, 例1
5 1 3 2
5 2 (1) 3 13
a21 a22 a31 a32
可以用对角线法则来记忆如下.
8
主对角线法
a11
a12
a13 a23 a11a22a33 a12a23a31 a13a21a32 a33 a13a22a31 a12a21a33 a11a23a32
a21 a22 a31 a32
9
例4 计算三阶行列式
定理1.1:任一排列经过一个对换后奇偶性改变。
证明:
19

对换在相邻两数间发生,即
设排列 …jk… (1) 经j,k对换变成 …kj… (2) 此时,排列(1)、(2)中j,k与其他数是否构成逆序的情形未 发生变化;而j与k两数构成逆序的情形有变化: 若(1)中jk构成逆序,则(2)中不构成逆序(逆序数减少1) 若(1)中jk不构成逆序,则(2)中构成逆序(逆序数增加1)
n!个) 称为一个n级排列(总数为 . 如:由1,2,3可组成的三级排列有3!=6个: 123 132 213 231 312 321 注意:上述排列中只有第一个为自然顺序(小大),其 他则或多或少地破坏了自然顺序(元素大小与位置相
反)——构成逆序.
15
(2)排列的逆序数

定义: 在一个n 级排列i1i2…in中,若某两数的前 后位置与大小顺序相反,即is>it(t>s),则称这两数构 成一个逆序.排列中逆序的总数,称为它的逆序数, 记为N (i1i2…in).

线性代数第一章行列式

线性代数第一章行列式

04
式可以表示为三个向量的向量积的 二倍,即 |a b c| = 2abc。
向量积的符号由行列式的值决定,当行列式 值为正时,向量积为正;当行列式值为负时, 向量积为负。
行列式可以用来判断平行四边形的 形状,当行列式值为正时,平行四 边形为锐角;当行列式值为负时, 平行四边形为钝角。
行列式与平行四边形面积的关系
行列式可以表示平行四边形的面积,即 |a b| = ab/2。
当行列式值为正时,平行四边形的面积为正; 当行列式值为负时,平行四边形的面积为负。
行列式可以用来判断平行四边形的方向,当行 列式值为正时,平行四边形为顺时针方向;当 行列式值为负时,平行四边形为逆时针方向。
行列式与空间向量的关系
01
02
03
行列式可以表示空间向量的模长,即 |a b c| = abc。
当行列式值为正时,空间向量的模长 为正;当行列式值为负时,空间向量 的模长为负。
行列式可以用来判断空间向量的方向 ,当行列式值为正时,空间向量为右 手系;当行列式值为负时,空间向量 为左手系。
05
行列式的应用实例
在线性方程组中的应用
定义
代数余子式是去掉一个元素所在的行和列后,剩 下的元素构成的二阶行列式。
性质
代数余子式与去掉的元素所在的行和列的符号有 关。
计算方法
可以通过二阶行列式的计算法则来计算代数余子 式。
行列式的展开定理
01
定理内容
一个n阶行列式等于它的任一行 (或列)的所有元素与其对应的 代数余子式的乘积之和。
02
03
定性。
求解线性方程组
03
在求解线性方程组时,可以利用展开定理计算系数矩阵的行列
式值,从而判断方程组是否有解。

经济数学基础线性代数之第1章行列式

经济数学基础线性代数之第1章行列式

第一单元 行列式的定义一、学习目标通过本节课学习,理解行列式的递归定义,掌握代数余子式的计算,知道任何一个行列式就是代表一个数值,是可以经过特定的运算得到其结果的.二、内容讲解行列式 行列式的概念什么叫做行列式呢?譬如,有4个数排列成一个行方块,在左右两边加竖线。

即2153-称为二阶行列式;有几个概念要清楚,即上式中,横向称行,共有两行;竖向称列,共有两列; 一般用ija 表示第i 行第j 列的元素,如上例中的元素311=a ,512=a ,121-=a ,222=a .再看一个算式075423011--称为三阶行列式,其中第三行为5,-7,0;第二列为–1,2,-7;元素423=a ,531=a又如1321403011320---,是一个四阶行列式.而11a 的代数余子式为()07421111111--=-=+M A代数余子式就是在余子式前适当加正负号,正负号的规律是-1的指数是该元素的行数加列数.()43011322332-=-=+M A问题思考:元素ija 的代数余子式ijA 是如何定义的? 代数余子式ijA 由符号因子j i +-)1(与元素ij a 的余子式ij M 构成,即()ijji ijM A +-=1三、例题讲解例题1:计算三阶行列式542303241---=D分析:按照行列式的递归定义,将行列式的第一行展开,使它成为几个二阶行列式之和, 二阶行列式可以利用对角相乘法,计算出结果.解:()()()5233145430112111---⋅-+--⋅=++D ()42031231--⋅++7212294121=⋅+⋅+⋅=四、课堂练习计算行列式hg f ed c b a D 00000004=利用n 阶行列式的定义选择答案.将行列式中的字母作为数字对待,利用递归定义计算.注意在该行列式的第一行中,有两个零元素,因此展开式中对应的两项不用写出来了.4D =⋅-⋅+11)1(a h f ed c 00+41)1(+-⋅b 000g f ed c ⋅五、课后作业1.求下列行列式的第二行第三列元素的代数余子式23A(1)210834021-- (2)3405122010141321---2.计算下列行列式(1)622141531-- (2)612053124200101---3.设00015413010212014=D(1)由定义计算4D ;(2)计算2424232322222121A a A a A a A a +++,即按第二行展开; (3)计算3434333332323131A a A a A a A a +++,即按第三行展开;(4)按第四行展开.1.(1)1021)1(32--+ (2)305120121)1(32---+2.(1)20 (2)243.(1)1 (2)1 (3)1 (4)1第二单元 行列式的性质一、学习目标通过本节课的学习,掌握行列式的性质,并会利用这些性质计算行列式的值.二、内容讲解 行列式的性质用定义计算行列式的值有时是比较麻烦的,利用行列式的性质能够使计算变的比较容易了.行列式的性质有七条,下面讲一讲几条常用的性质.在讲这些性质前,先给出一个概念:把行列式D 中的行与列按原顺序互换以后得到的行列式,称为D 的转置行列式,记为TD .如987654321=D ,963852741T =D1.行列式的行、列交换,其值不变.如264536543-==这条性质说明行列式中,行与列的地位是一样的.2.行列式的两行交换,其值变号.如243656543-=-=3.若行列式的某一行有公因子,则可提出.如d c b a dc ba333=注意:一个行列式与一个数相乘,等于该数与行列式的某行(列)的元素相乘. 4.行列式对行的倍加运算,其值不变.如倍加运算就是把一行的常数倍加到另一行上2113-- 5513-=注意:符号“À+2Á”放在等号上面,表示行变换,放在等号下面表示列变换. 问题1:将n 阶行列式的最后一行轮换到第一行, 这两个行列式的值有什么关系?答案设n 阶行列式nD ,若将nD 的最后一行轮换到第一行,得另一个n 阶行列式nC ,那么这两个行列式的值的关系为: n C =n nD 1)1(--问题2:如果行列式有两行或两行以上的行都有公因子,那么按性质3应如何提取? 答案按顺序将公因子提出.三、例题讲解例1计算行列式dc b a 675081004000--.分析:利用性质6,行列式可以按任一行(列)展开.本题按第一行逐步展开,计算出结果.解:dc b a 675081004000--=dc b a 670800-=d c ab 60=abcdÀ+2Á我们将行列式中由左上角至右下角的对角线, 称为主对角线.如例1中,行列式在主对角线以上的元素全为零,则称为下三角行列式. 由例1的计算过程,可得这样规律:下三角行列式就等于主对角线元素的积. 同理,主对角线以下元素全为零的行列式,则称为上三角行列式,且上三角行列式也等于主对角线元素之积.今后,上、下三角行列式统称为三角行列式.例2 计算行列式4977864267984321----分析:原行列式中第三行的元素是第一行的2倍,因此,利用行列式的倍加运算(性质5),使第三行的元素都变为0,得到行列式的值.解:4977864267984321----497700067984321----= 0例3 计算行列式2211132011342211----分析:利用行列式的倍加运算(性质5),首先将某行(列)的元素尽可能化为0,再利用行列式可以按任一行(列)展开的性质(性质6),逐步将原行列式化为二阶行列式,计算出结果.解:2211132011342211---- 2411142010342011---Â+Ã111142010342011----=111134211)1(433-----⨯+1101312104----⨯=1121)1(412----⨯+12)21(4=---=通过此例可知,行列式两行成比例,则行列式为零.三、课堂练习练习1 若d a a a a a a a a a =333231232221131211,求行列式232221131211313231222333a a a a a a a a a ---利用行列式的性质3,将第一行的公因子3、第二行的公因子(-1)、第三行的公因子2提出.利用行列式的性质3和性质2,将所要计算的行列式化为已知的行列式,再求其值.练习2 计算行列式540554129973219882310391----由性质4,若行列式中某列的元素均为两项之和,则可将其拆写成两个行列式之和.在着手具体计算前,先观察一下此行列式有否特点?有,其第三列的数字较大,但又都分别接近100、200、300和400,故将第三列的元素分别写成两项之和, 再利用行列式的性质4将其写成两个行列式之和.注意,将第三列的元素分别写成两À+Á项之和时,还要考虑到结论“行列式中两列元素相同(或成比例),则该行列式的值为0”的利用.五、课后作业1.计算下列行列式(1)75701510--- (2)253132121-(3) ww w w ww22111 (0≠w ) (4)38790187424321--2.证明(1)0=---------cb b a ac b a a c c b a c c b b a (2)()32211122b a b b a a b ab a -=+1.(1)0 (2) -2 (3) 22)1(--w w (4)02. (1)提示:利用性质5,将第一行化成零行.(2)提示:利用性质5,将第三行的元素化成“0 0 1”,再按第三行展开,并推出等号右边结果.第三单元 行列式的计算一、学习目标通过本节课的学习,掌握行列式的计算方法.二、内容讲解行列式的计算行列式=按任何一行(列)展开 下面用具体例子说明.d c b a =bc ad -1156)1(5232153=+=-⋅-⋅=-一个具体的行列式就是代表具体的一个数.再看一个三阶行列式.75423011--可以按任何一行(列)展开按第一行展开=752300543107421-⨯+⨯+-⨯=02028+-=8 按第三列展开=231107511475230-⨯+--⨯--⨯=0)57(40++-⨯-=8注意:1.行列式计算一般按零元素较多的行(列)展开.2.代数余子式的正负号是有规律的,一正一负相间隔.问题:试证 2222222211110000d c b a d c b a d c b a d c dc b a b a =答案左边=222211122222111100)1(00)1(d c b a b a bc d c b a d c d a ++-+-222211)1(d c b a ad +-=222211)1(d c b a cb +--22222222)(d c b a d c b a d c b a cb ad =-==右边三、例题讲解例 计算行列式214200131000211---分析:由性质6可知,行列式可以按任何一行(列)展开来求值.因为第二、三行,第四列的零元素都较多,所以可选择其一展开,再进一步将其展成二阶行列式,并计算结果.解:按第三行展开214200131000211---=214100211)1(2021315021)1(14313----⨯+----⨯++=1411)1()1(22121)1(33232--⨯-⨯----⨯++==10)41(2)22(3-=+--⨯-四、课堂练习练习1 计算行列式dcb a 100110011001---根据定义,按第一行展开,使其成为两个三阶行列式之和.因为行列式第一行有较多的零元素,所以可采用“降阶法”,即先按第一行展开,使其成为两个三阶行列式之和,然后再计算两个三阶行列式降阶,最后求出结果.dcb a 100110011001--- =dcd cb a 101011101101-----练习2 计算行列式24524288251631220223------为了避免分数运算,先作变换“第一行加上第二行的2倍,即À+Á 2;第三行加上第二行的-2倍,即Â+Á(-2);第四行加上第二行的-2倍,即Ã+Á(-2)”.该行列式没有明显特点,采用哪种方法计算都可以,这里用“化三角行列式”的方法进行计算.注意尽量避免分数运算.21524288251631220223------111042011631212401----五、课后作业1.计算下列行列式:(1)881441221---- (2)4222232222222221À+Á2 Â+Á(-2(3) 4321651065311021 (4)00312007630050131135362432142.计算n阶行列式xaaa x a a a x/media_file/jjsx/4_1/3/khzy/khzy.htm - #1.(1)48 (2)4 (3)-3 (4)-3402. ])1[()(1x a n a x n +---第四单元 克拉默法则一、学习目标克拉默法则是行列式在解线性方程组中的一个应用,通过本节课的学习,要知道克拉默法则求线性方程组解的条件,了解克拉默法则的结论.二、内容讲解克拉默法则设n 个未知数的线性方程组为 ⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111 (1)记行列式nnn n n na a a a a a a a a D 212222111211=称为方程组(1)的系数行列式.将D 中第j 列的元素njj j a ,,a ,a 21分别换成常数n b ,,b ,b 21而得到的行列式记作jD .克拉默法则 如果线性方程组(1)的系数行列式0≠D ,那么它有惟一解D D x D Dx D D x n n ===,,,2211 (2)证将(2)式分别代入方程组(1)的第i 个方程的左端的nx x x ,,,21 中,有D D a D Da D D a n in i i +++ 2211(3)将(3)中的jD 按第j 列展开, 再注意到j D中第j 列元素的代数余子式和D 中第j 列元素的代数余子式ij A是相同的, 因此有),,2,1(2211n j A b A b A b D njn j j j =+++= (4)把(4)代入(3),有D D a D Da D D a n in i i +++ 2211(){1121211111n n i i i A b A b A b A b a D+++=()222221212n n i i i A b A b A b A b a ++++…+…()}nn n in i n n in A b A b A b A b a ++++2211把小括弧打开重新组合得(){()()()}i nn in n i n i n in in i i i i i n in i i n in i i b A a A a A a b A a A a A a b A a A a A a b A a A a A a b D=+++++++++++++++++=2211221122222112112211111因由性质6和性质7⎩⎨⎧=≠=+++k i D ki A a A a A a kn in k i k i 02211 故上式等于i b ,即i n in i i b D D a D Da D D a =+++ 2211下面再证明方程组(1)的解是惟一的.设nn c x c x c x ===,,,2211为方程组(1)的任意一组解.于是 ⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++n n nn n n n n n n b c a c a c a b c a c a c a b c a c a c a 22112222212111212111 (5)用j A 1,j A 2,…j n A 分别乘以(5)式的第一、第二、…、第n 个等式,再把n 个等式两边相加,得++++11221111)(c A a A a A a nj n j j +++++j nj nj j j j j c A a A a A a )(2211n nj nn j n j n c A a A a A a )(2211++++ njn j j A b A b A b +++= 2211根据性质6和性质7,上式即为),,2,1(n j D c D j j ==因为0≠D ,所以),,2,1(n j DD c j j ==克拉默法则有以下两个推论:推论1 如果齐次线性方程组的系数行列式0≠D , 那么 它只有零解.推论2 齐次线性方程组有非零解的必要条件是系数行列式0=D . 问题:对任一线性方程组都可用克拉默法则求解吗?答案 不对.当线性方程组中的未知量个数与方程个数不一样;或未知量个数与方程个数相同,但其系数行列式等于零时,不能使用克拉默法则.三、例题讲解例 利用克拉默法则解下列方程组⎩⎨⎧-=-=+-7526432121x x x x分析:这是一个两个变量、两个方程的方程组,它满足了克拉默法则一个条件.克拉默法则的另一个条件是要求系数行列式的值不等于零.因此,先求出方程组的系数行列式的值,若它的值不等于零,说明该方程组有惟一解,然后求常数项替代后的行列式的值,再用克拉默法则给出的公式求出解. 解:因为系数行列式()()24535243⨯--⨯-=--=D 07815≠=-= 且257461-=--=D ,972632=--=D ,所以7211-==D D x ,7922==D D x四、课堂练习k 取什么值时,下列方程组有唯一解?有唯一解时求出解.⎪⎩⎪⎨⎧=+--=++-=++0211321321321x x x x kx x kx x x对行列式作变换“第二行加上第一行的1倍,即Á+À;第三行加上第一行的-1倍,即Â+À(-1)”.这是三个未知量三个方程的线性方程组,由克拉默法则知,当系数行列式D ≠0时,方程组有唯一解.所以,先求系数行列式的值.2111111--=kk Dkk k k --++2211011五、课后作业用克莱姆法则解下列方程组1.⎪⎩⎪⎨⎧=+=++=-12 142 23232121x x x x x x x 2.⎪⎪⎩⎪⎪⎨⎧-=+++-=+-+=---=+++422222837432143214314321x x x x x x x x x x x x x x x 1.31=x ,42=x ,233-=x ,2. 21-=x ,3352=x ,2103=x ,204-=x。

线性代数第一章课件

线性代数第一章课件

(五)性质5:把行列式的某一列(行) 的各元素乘以同一数,然后加到另一列 (行)对应的元素上去,行列式不变.
(以数 k 乘第 j 列加到第 i 列上,记作:ci kc j 以数 k 乘第


j 行加到第 i 行上,记作: ri krj )
a11 a21 an1
a1i a2i ani
a11
aij
的第一个下标i称为行标,表明该元
素位于第i行,第二个下标j称为列标,表明 该元素位于第j列,位于第i行第j列的元素称
为行列式的 i, j 元


a11 到 a22 的实联线称为主对角

线, a12
a21
的虚联线称为副对
角线 。
3、二元线性方程组的解
a11 x1 a12 x2 b1 的解为 a21 x1 a22 x2 b2
第一章 行列式 § 1-1 n阶行列式的定义
一、二阶与三阶行列式 ㈠ 二阶行列式与二元线性方程组 1、二阶行列式计算式:
D
a11
a12
a21 a22
a11a22 a12 a21
2、相关名称 a11 a12 在二阶行列式 中,把数 a21 a22
aij i 1.2; j 1.2 称为行列式的元素,元素
注意不要与绝对值记号相混淆。
a a
2、n阶行列式展开式的特点 (1)行列式由n!项求和而成 (2)每项是取自不同行、不同列的n个 元素乘积,每项各元素行标按自然顺序 排列后就是行列式的一般形式,
1
j1 j2
jn
a1 j1 a2 j2
anjn
(3)若行列式每项各元素的行标按自然 数的顺序排列,列标构成n级排列 j1 j2 jn j1 j2 jn 则该项的符号为 1

线性代数 第一章 第一节 n阶行列式的定义

线性代数  第一章 第一节 n阶行列式的定义
2 当 k为偶数时,排列为偶排列,


k
21 k 1k 1
2 k k ,
当 k 为奇数时,排列为奇排列.
23:10 24
小结
1 n 个不同的元素的所有排列种数为 n!.
2 排列具有奇偶性.
3 计算排列逆序数常用的方法有2 种. 4 n 阶全排列逆序数的范围: 最小的逆序总数: 最大的逆序总数:
23:10 23
3 2k 12k 122k 232k 3k 1k

2k 1 2k 1 2 2k 2 3 2k 3k 1 k





0 1
1
2
2
t 0 1 1 2 2 k 1 k 1 k
计算物理教研室201831811n阶行列式的定义111二三阶行列式的定义112n阶行列式的定义12行列式的主要性质13行列式按行列展开131按一行列展开行列式132拉普拉斯定理第一章行列式2018318一内容提要行列式是研究线性代数的一个重要工具近代被广泛运用到理工科各个领域特别在工程技术和科学研究中有很多问题需要用到行列式这个数学工具
2 2 3 1 D2 3 2 1 (1) 7, 1 2
二元一次方程组的解为:
23:10
1 2 5 2 8,
D1 8 x1 D 11 ; D 7 x2 2 . D 11
9
类似地,为了得出关于三元线性方程组:
a11 x1 a12 x2 a13 x3 b1 a21 x1 a22 x2 a23 x3 b2 a x a x a x b 3 31 1 32 2 33 3
a 21 b2

线性代数第1章行列式n阶行列式的定义

线性代数第1章行列式n阶行列式的定义

行列式中如果有两行( 列)元素成比例,则此 行列式等于零。
把行列式的某一列(行 )的各元素乘以同一数 然后加到另一列(行) 对应的元素上去,行列 式不变。
行列式的计算
80%
直接计算法
按照定义直接计算,适用于低阶 行列式。
100%
降阶法
利用性质将高阶行列式降为低阶 行列式计算,适用于高阶行列式 。
80%
将深入讲解特征值与特征向量的定义、性质以及 计算方法等。
向量与线性方程组
将探讨向量的概念、向量的线性组合与线性方程 组的关系等内容。
二次型与正定矩阵
将介绍二次型的概念、正定矩阵的判定以及二次 型的标准化等内容。
学习建议与要求
熟练掌握行列式的定义、性 质和计算方法,能够灵活运 用所学知识解决相关问题。
线性代数第1章行列式n阶行列 式的定义

CONTENCT

• 引言 • n阶行列式的定义 • 行列式的性质与计算 • 克莱姆法则 • 行列式的应用 • 总结与展望
01
引言
线性代数的重要性
02
01
03
是数学的一个分支,研究线性方程组、向量空间、矩 阵等概念和性质。
在计算机科学、物理学、工程学等领域有广泛应用, 如计算机图形学、量子力学、电路分析等。
本章内容与目标
01
掌握n阶行列式的定义和性质,理解行列式与矩阵的关系。
02
学会计算低阶行列式,了解高阶行列式的计算方法和技巧。
03
了解克拉默法则及其在线性方程组中的应用,理解行列式在 解决实际问题中的意义和作用。
02
n阶行列式的定义
行列式的概念
行列式是数学中的一个基本概念,表示一个方阵的 数值特征。

线性代数 第一章 行列式

线性代数 第一章 行列式

a22
an 2 ann
思考题
已知 f x
x 1 3 1
1 x
1 1
2 1 1 1
2 x 1 2x
,求 x 3的系数.
33

含 x 3的项有两项,即
f x
x 1 3 1
1 x
1 1
2 1 1 1
2 x 1 2x
对应于
(1) (1)t (Fra bibliotek234)a11a22a33a44 (1)t 1243 a11a22a34a43 a11a22a33a44 x ,
线性代数(第五版)
第一章

行列式
内容提要
§1 §2 §3 §4 §5 §6 §7 二阶与三阶行列式 全排列及其逆序数 行列式的概念. n 阶行列式的定义 对换(选学内容) 行列式的性质及计算. 行列式的性质 行列式按行(列)展开 克拉默法则 —— 线性方程组的求解.
2
§1
二阶与三阶行列式
我们从最简单的二元线性方程组出发,探 求其求解公式,并设法化简此公式.
规律:
1. 三阶行列式共有6项,即3!项.
2. 每一项都是位于不同行不同列的三个元素的乘积.
3. 每一项可以写成 a1 p1 a2 p2 a3 p3 (正负号除外),其中 p1 p2 p3 是1、2、3的某个排列.
4. 当 p1 p2 p3 是偶排列时,对应的项取正号;
当 p1 p2 p3 是奇排列时,对应的项取负号.
其中
p1 p2 p3

表示对1、2、3的所有排列求和.
二阶行列式有类似规律.下面将行列式推广到一般的情形.
二、n 阶行列式的定义
D a11 a21 a n1 a12 a22 an 2 a1n a2 n ann

线性代数第1章n阶行列式

线性代数第1章n阶行列式
乘法性质可以用数学表达式表示为:C = A * B。
乘法性质在计算行列式和解决线性方程组时非常有用,因为它可以简化计算过程。
行列式的加法性质
01
行列式的加法性质是指两个同阶行列式相加时,其结果的行列式等于将这两个 行列式对应元素相加得到的行列式。即,如果A和B都是n阶行列式,那么它们 的和C也是一个n阶行列式,且C的值等于将A和B对应元素相加得到的行列式。
02
加法性质可以用数学表达式表示为:C = A + B。
03
加法性质在计算行列式和解决线性方程组时非常有用,因为它可以简化计算过 程。同时,它也表明行列式是一个线性空间中的元素,具有线性性质。
03
n阶行列式的展开
二阶行列式的展开
• 二阶行列式由两个元素组成,按照对角线法则,可以展开 为两个一元一次方程的乘积。
具体地,对于n阶行列式,其展开结果为若干个一元一次 方程的乘积之和。
04
行列式的计算方法
代数余子式
定义
在n阶行列式中,去掉某行和某列后所得 到的(n-1)阶行列式,与原来的n阶行列式 相比,该(n-1)阶行列式前面多了一个负号 ,这个(n-1)阶行列式称为代数余子式。
性质
代数余子式与原来的n阶行列式中的 元素有关,并且代数余子式的符号由 去掉的行和列的元素的排列顺序决定。
感谢您的观看
转置运算可以用数学表达式表示为:D' = D。
转置运算在行列式中非常重要,因为它可以简化计算过程,并且有助于理解行列式 与其他数学概念之间的关系。
行列式的乘法性质
行列式的乘法性质是指两个行列式相乘时,其结果的行列式等于将其中一个行列式的行与另 一个行列式的列相乘得到的行列式。即,如果A和B都是n阶行列式,那么它们的乘积C也是 一个n阶行列式,且C的值等于将A的行与B的列相乘得到的行列式。

线性代数课件第一章

线性代数课件第一章
一个标准次序(例如 n 个不同的自然数,可规定由小到 大为标准次序),于是在这 n 个元素的任一排列中,当 某两个元素的先后次序与标准次序不同时,就说有 1 个
逆序. 一个排列中所有逆序的总数叫做这个排列的逆 序数.
在一个 n 阶排列中,任何一个数对不是构成逆序 就是构成顺序.如果我们把顺序的个数称为顺序数,则 一个 n 阶排列的顺序数与逆序数的和为 n(n –1)/2 .
a12a21) a12a21)
x1 x2
b1a22 a11b2
a12b2 b1a21
, .
当 a11a22 – a12a21 0 时,求得方程组(1)的解为
x1
x2
b1a22
a11a22 a11b2
a11a22
a12b2
a12a21 b1a21
a12a21
, .
(2)
为了记忆该公式,引入记号
(为偶排列). 带负号的三项列标排列:132 , 213 , 321
(为奇排列). 故三阶行列式可以写成
a11 a12 a13
a21 a22 a23 (1)t a1p1 a2 p2 a3 p3 ,
a31 a32 a33
其中 t 为排列 p1p2p3 的逆序数, 表示对1,2,3 三个 数的所有排列 p1p2p3 求和.
a11 a21
a12 a22
a11a22 a12a21
并称之为二阶行列式.其中 aij 称为行列式的元素,
aij 的两个下标表示该元素在行列式中的位置,第一个下
标称为行标, 表示该元素所在的行,第二个下标称为列
标,表示该元素所在的列,常称 aij 为行列式的(i , j ) 元1由a11成a11baaa1a1111b122二12二aaa22122b222阶22阶22ba1abaa行行11112aa22baa22ba11a1列12列22a22122baaa112式12式1222,.1b12的,,. 定即bb12 义aa,12(22 ,(22a)11b)2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例3 证明 n 阶上三角行列式
a11 a12
Un
a22
a1n a2n a11a22 ann
ann
例4 证明 n 阶行列式
1
2
n ( n 1)
(1) 2 12 n
n
二、行列式的基本性质
定义6 设
a11 a12
a1n
D a21 a22
a2n
an1 an2
ann
是一个 n 阶行列式,如果把行列式 D 的行列互换(行
线性代数是高等院校理工和经管各专业本科生的一 门必修的数学基础课程,它既是其它数学课程的必备基 础,也是解决实际问题的重要工具.
本课程主要是介绍线性代数理论的经典内容,包括 行列式、矩阵、线性空间、线性方程组、线性变换、特 征值和特征向量、二次型等,并以附录形式简单介绍了 欧氏空间.
第一章 行列式
第一节 行列式的基本概念
一、行列式的定义
1. 排列及逆序数
定义1 将 n 个不同的自然数 m1, m2 ,
一个有序数组称为一个 n 级排列.
, mn组成的
定义1' 将自然数 1, 2, , n 组成的一个有序数组称 为一个 n 级排列.
例1 试写出所有的 3 级排列.
1 2 3, 13 2, 213, 2 31, 31 2, 3 21
不同列的 n 个数的乘积
的代数和,
a a a 1 j1 2 j2
njn
(2)
其中 j1 j2 jn 是 1, 2, , n 的一个 n 级排列,并且
对每一个乘积项(2)式冠以正负号,规定:
当 j1 j2 当 j1 j2
于是
jn 是偶排列时,(2)式带正号; jn 是奇排列时,(2)式带负号.
a11 a12 D a21 a22
an1 an2
a1n
a2n
(1) a a ( j1 j2 jn ) 1 j1 2 j2
anjn
j1 j2 jn
ann
(3)
其中 表示对所有 n 级排列的求和. j1 j2 jn
定义5 在(1)式中,将 a11a22 ann 所在的那条对
角线称为行列式的主对角线; 而另外一条对角线称为
变为列,列变为行),就得到一个新的行列式
a11 a21
an1
DT a12 a22
an2
a1n a2n
ann
将行列式 DT 称为 D 的转置行列式.
性质1 行列式与它的转置行列式相等,即
a11 a12
a1n a11 a21
an1
a21 a22
a2n a12 a22
an2
an1 an2
ann a1n a2n
1)一阶行列式 | a | a
注意:这个符号不要与绝对值的符号相混淆. 2)二阶行列式
a11 a21
a12 a22
(1) (12) a11a22 (1) (21) a12a21 a11a22 a12a21
主对角线上的两个元素的乘积减去副对角线上两个
元素的乘积.
对角线法则
a11 a12 a21 a22
3)三阶行列式
对角线法则
a11 a12 a13 a21 a22 a23 a11a22a33 a12a23a31 a13a21a32 a31 a32 a33 a13a22a31 a12a21a33 a11a23a32 .
注意 实线上三元素的乘积冠以正号,虚线上三元素 的乘积冠以负号.
(1)n( j1 j2 jn ) (1) ( j1 j2 jn )
2. 行列式的定义
定义4 将由 n2 个数 aij (i, j 1, 2, , n) 组成的算式
a11 a12
a1n
D a21 a22
a2n
(1)
an1 an2
ann
称为 n 阶行列式,算式 D 定义为所有取自不同行
例2 计算三阶行列式
1 3 2 D 3 2 2
2 1 1
解 由对角线法则,有
D 1 2 (1) 3 2 2 (2) (3) 1 1 21 3 (3) (1) (2) 2 2
2 12 6 2 9 8 13
符号 ( i,ห้องสมุดไป่ตู้j ) 表示.
定理 1 任何一个对换都可以改变排列的奇偶性,也 就是说,经过一次对换,偶排列变成奇排列,奇排列 变成偶排列.
定理2 设 j1 j2 jn 是任意一个 n 级排列,则
j1 j2 jn 与 1 2 n 可以经过一系列对换互变,
并且所作对换的个数 n( j1 j2 jn ) 的奇偶性与逆序 数 ( j1 j2 jn ) 的奇偶性相同, 即
一般地,可利用如下方法计算 n 级排列的逆序数:
设 j1 j2 jn 是一个 n 级排列,如果把排在 ji
( i 1, 2, , n )前面且比 ji 大的数的个数记为 si,
则 j1 j2 jn 的逆序数为
例如
( j1 j2 jn ) s1 s2 sn
(2 3 5 41) 0 0 0 1 4 5
ann
提示:此性质说明,行列式中的行与列是对称的, 即行和列具有同等的地位.对行成立的性质,对 列也成立;对列成立的性质,对行也成立.
性质2 交换行列式两行(列)的位置得到的新行列 式与原行列式相差一个负号.
副对角线,即
a1na2,n1 an1
所在的对角线.将除了主对角线以外元素全为 0 的行
列式称为对角行列式;将主对角线以下都是 0 的行列 式称为上三角行列式, 即
当 i j 时,aij 0 ; 将主对角线以上都是0的行列式称为下三角行列式,即
当 i j 时,aij 0.
低阶行列式的计算
(3 2 5 41) 0 1 0 1 4 6
(1 2 n) 0 0 0 0.
定义3 在一个 n 级排列中,如果把这个排列里的任
意两个数 i 和 j 交换一下位置,而其余的数保持不
动,那么就得到了一个新的 n 级排列.对排列施行 这样的一个变化称为 n 级排列的一次对换,并且用
定义 2 在一个 n 级排列中,如果某两个数的前后 位置与大小顺序相反,即前面的数大于后面的数, 那么就称它们为一个逆序,一个排列中逆序的总数 就称为这个排列的逆序数.
通常,将 j1 j2 jn 的逆序数记成 ( j1 j2 jn ), 并且我们将逆序数为奇数的排列称为奇排列,将逆 序数为偶数的排列称为偶排列.
相关文档
最新文档