药物分析气相色谱基础.ppt
合集下载
气相色谱分析法在药物分析中的应用课件
,确保目标成分充分提取。
净化步骤
去除干扰物质,提高检测准确性 和灵敏度,常用方法有柱层析、
固相萃取等。
浓缩与定容
采用合适的方法对提取液进行浓 缩和定容,便于后续进样分析。
色谱条件选择与优化
色谱柱选择
01
根据药物成分的性质和分离要求选择合适的色谱柱,如C18柱、
C8柱等。
流动相组成及梯度洗脱程序
02
气相色谱分析法在药物分析中的应 用课件
• 气相色谱分析法概述 • 药物分析基础知识 • 气相色谱仪器与操作技巧 • 药物成分检测实例分析 • 数据处理与结果解读 • 方法验证与质量控制策略
01
气相色谱分析法概述
定义与原理
定义
气相色谱分析法是一种以气体为流动相,通过色谱柱将各组分分离,然后进行 检测和测量的分析方法。
应用领域与优势
应用领域
气相色谱分析法被广泛应用于环境监测、食品安全、石油化工、医药等领域。例如,在环境监测领域,可以用于 检测空气、水体和土壤中的污染物;在食品安全领域,可以用于检测食品中的添加剂、农药残留等有害物质;在 医药领域,可以用于药物成分的分析和质量控制。
优势
气相色谱分析法具有分离效果好、分析速度快、灵敏度高、选择性好等优点。同时,该方法还可以与其他技术联 用,如质谱技术、光谱技术等,以进一步提高分析的准确性和可靠性。
强化人员培训
加强人员培训,提高分析人员的专业 素质和操作技能,确保气相色谱分析 法的规范实施。
定期仪器维护
定期对气相色谱仪进行维护和校准, 确保仪器性能的稳定性和准确性。
数据审核与异常处理
加强数据审核,对异常数据进行分析 和处理,确保分析结果的准确性和可 靠性。
THANKS
净化步骤
去除干扰物质,提高检测准确性 和灵敏度,常用方法有柱层析、
固相萃取等。
浓缩与定容
采用合适的方法对提取液进行浓 缩和定容,便于后续进样分析。
色谱条件选择与优化
色谱柱选择
01
根据药物成分的性质和分离要求选择合适的色谱柱,如C18柱、
C8柱等。
流动相组成及梯度洗脱程序
02
气相色谱分析法在药物分析中的应 用课件
• 气相色谱分析法概述 • 药物分析基础知识 • 气相色谱仪器与操作技巧 • 药物成分检测实例分析 • 数据处理与结果解读 • 方法验证与质量控制策略
01
气相色谱分析法概述
定义与原理
定义
气相色谱分析法是一种以气体为流动相,通过色谱柱将各组分分离,然后进行 检测和测量的分析方法。
应用领域与优势
应用领域
气相色谱分析法被广泛应用于环境监测、食品安全、石油化工、医药等领域。例如,在环境监测领域,可以用于 检测空气、水体和土壤中的污染物;在食品安全领域,可以用于检测食品中的添加剂、农药残留等有害物质;在 医药领域,可以用于药物成分的分析和质量控制。
优势
气相色谱分析法具有分离效果好、分析速度快、灵敏度高、选择性好等优点。同时,该方法还可以与其他技术联 用,如质谱技术、光谱技术等,以进一步提高分析的准确性和可靠性。
强化人员培训
加强人员培训,提高分析人员的专业 素质和操作技能,确保气相色谱分析 法的规范实施。
定期仪器维护
定期对气相色谱仪进行维护和校准, 确保仪器性能的稳定性和准确性。
数据审核与异常处理
加强数据审核,对异常数据进行分析 和处理,确保分析结果的准确性和可 靠性。
THANKS
气相色谱基础知识.ppt
序号 保留时间 名称 浓度 峰面积
───────────────────────
1 2.132 Y14 18.34 144020
2 2.570 Y5 10.23 66579
3 2.699 Y10 9.021 88460
4 3.032 Y8 18.15 159398
5 3.110 Y32 3.821 25539
气相色谱基础知识
讲解人:马婷
气相色谱发展背景
植物学家茨维特在研究植物色素的过程中,在 一根玻璃管的底部塞上一团棉花,在管中填入粉末 状吸附剂,例如碳酸钙等,然后把该吸附柱与吸虑 瓶连接,把有色植物的叶子的石油醚萃取液倾注到 柱内的吸附剂上面,然后用纯净的石油醚洗脱。植 物叶中的几种色素就在柱上展开了, 在管内的碳 酸钙上形成三种颜色的5个色带。当时茨维特把这 种色带称之为“色谱”(Chromatography)。其 中玻璃管相当于色谱柱,碳酸钙为固定相,纯净的 石油醚为流动相。
检测器的分类
根据检测器的响应原理,可将其分为浓度型和 质量型检测器。 浓度型:检测的是载气中组分浓度的瞬间变
化,即响应值与浓度成正比。 质量型:检测的是载气中组分进入检测器中速
度变化,即响应值与单位时间 进入检 测器的量成正比。
氢火焰离子化检测器(FID)
火焰离子化检测器(FID)
又称氢焰离子化检测器。主要用 于可在H2-Air火焰中燃烧的有机 化合物(如烃类物质)的检测。
1、柱分离系统是色谱分析的心脏部分。分离柱包括填充 柱和开管柱(或称毛细管柱)。柱材料包括金属、玻璃、融
熔石英、Teflon等
2、开管柱:分为涂壁、多孔层和涂载体开管柱。内径0.1-
0.5mm,长达几十至100m。通常弯成直径10-30cm的螺旋状。 开管柱因渗透性好、传质快,因而分离效率高(n可达106)、
色谱分析—气相色谱(分析化学课件)
③分子扩散项与流速有关,流速↓,滞留时间↑,扩散↑ ④选择分子量大的载气(如N2),以减小纵向扩散,增加柱效
速率理论
C ·u-传质阻力项
降低固定相液膜厚度,并增加组分在固定相中的扩散系数,可以减少传质 阻力,提高柱效。
塔板理论
将色谱分离过程比作蒸馏过程,将连续的色谱分离过程 分割成多次的平衡过程的重复(类似于蒸馏塔塔板上的平衡 过程)。 塔板理论的假设: (1)在每一个平衡过程间隔内,平衡可以迅速达到; (2)将载气看作成脉冲(间歇)过程; (3)试样沿色谱柱方向的扩散可忽略; (4)每次分配的分配系数相同。
其同分异构体,选择性地测定维生素E。 内标法为定量分析依据。
维生素E的含量测定
二、实验仪器及试剂: 仪器:气相色谱仪、HP-5石英毛细管色谱柱(30.0m×320 μm )、火焰 离子化检测器(FID)和氢气钢瓶等; 试剂:正三十二烷、正己烷、维生素E对照品和维生素E软胶囊。
维生素E的含量测定
三、实验步骤: 1.测定的色谱条件与系统适应性试验:
4、标准溶液的配制: 精密称取维生素E对照品20mg,量取正三十二烷内标物10mL,定
容至100mL,得标准溶液; 5、供试液的制备: 精密称取维生素E胶丸20mg,加内标物10mL,定 容至100mL,得供试品溶液; 6、测定:待基线平直后,分取供试液和标准溶液各1-3 μL注入气相色 谱仪,记录峰面积,再计算含量。
色谱图
3.分配系数和分配比
分配系数 色谱过程中,处于动态平衡时组分在固定相与流动相中的
浓度之比为分配系数。
组分在固定相中的浓度 K = 组分在流动相中的浓度
= cs cm
K随温度变化而变化,与固定相、流动相的体积无关。
色谱图
速率理论
C ·u-传质阻力项
降低固定相液膜厚度,并增加组分在固定相中的扩散系数,可以减少传质 阻力,提高柱效。
塔板理论
将色谱分离过程比作蒸馏过程,将连续的色谱分离过程 分割成多次的平衡过程的重复(类似于蒸馏塔塔板上的平衡 过程)。 塔板理论的假设: (1)在每一个平衡过程间隔内,平衡可以迅速达到; (2)将载气看作成脉冲(间歇)过程; (3)试样沿色谱柱方向的扩散可忽略; (4)每次分配的分配系数相同。
其同分异构体,选择性地测定维生素E。 内标法为定量分析依据。
维生素E的含量测定
二、实验仪器及试剂: 仪器:气相色谱仪、HP-5石英毛细管色谱柱(30.0m×320 μm )、火焰 离子化检测器(FID)和氢气钢瓶等; 试剂:正三十二烷、正己烷、维生素E对照品和维生素E软胶囊。
维生素E的含量测定
三、实验步骤: 1.测定的色谱条件与系统适应性试验:
4、标准溶液的配制: 精密称取维生素E对照品20mg,量取正三十二烷内标物10mL,定
容至100mL,得标准溶液; 5、供试液的制备: 精密称取维生素E胶丸20mg,加内标物10mL,定 容至100mL,得供试品溶液; 6、测定:待基线平直后,分取供试液和标准溶液各1-3 μL注入气相色 谱仪,记录峰面积,再计算含量。
色谱图
3.分配系数和分配比
分配系数 色谱过程中,处于动态平衡时组分在固定相与流动相中的
浓度之比为分配系数。
组分在固定相中的浓度 K = 组分在流动相中的浓度
= cs cm
K随温度变化而变化,与固定相、流动相的体积无关。
色谱图
气相色谱讲议 课件
2、进样口衬管:多为玻璃或石英 材料制成。这里强调几个普遍性 的问题:
26
第三节 进样系统 (衬管)
▪ ①衬管能起到保护色谱柱的作用。在分流/ 不分流进样时,不挥发的样品组分会滞留在 衬管中而不进入色谱柱。如果这些污染物在 衬管内积存一定量后,就会对分析产生直接 影响。比如,它会吸附极性样品组分而造成 峰拖尾,甚至峰分裂,还会出现鬼峰。因此, 一定要保持衬管干净,注意及时清洗和更换。
30
第三节 进样系统(手动进样)
▪ (3)避免样品之间的相互干扰 : 如果进样时 注射器内有上一个样 品的残留组分,就会 干扰下一个样品的分析,带来定量误差。在 色谱 中这叫做记忆效应,是必须消除的。 具体办法是洗针。取样前先用样品溶剂洗针 至少3次(抽满针管的三分之二,再排出)。再 用要分析的 样品洗针至少3次,然后取样(多 次上下抽动),这样基本上可消除记 忆效应。
6
二、 气相色谱的分析过程
气相色谱首先是一种分离技术。实际工 作中要分析的样品往往是多组分的混合物。 对含有未知组分的样品,首先必须将其分 离,然后才能对有关组分进行进一步的分 析。
气相色谱主要是利用物质的沸点、极性 和吸附性质的差异来实现混合物的分离。
7
▪ 气相色谱分离过程如下图:
8
气相色谱图
37
第四节 色谱柱系统(填充柱)
▪ 要制备一根分离效能较高的色谱柱, 必须把载体涂上一层薄而均匀的液 膜,再把涂好的固定相均匀而紧密 地填充到色谱柱中 。
▪ 由于目前市场上已有涂渍好的各种 类型的固定相商品,我们只需要买 来自已装一下柱子就成了。
38
第四节 色谱柱系统(毛细管柱)
▪ 毛细管色谱柱的类型与选择:毛细管色谱柱, 内径0.2~0.8毫米,长度30~300米,其柱 材料大多用熔融石英,即所谓弹性石英柱。 柱内径越小,分离效率越高,但细的色谱柱 柱容量小,容易超载。
26
第三节 进样系统 (衬管)
▪ ①衬管能起到保护色谱柱的作用。在分流/ 不分流进样时,不挥发的样品组分会滞留在 衬管中而不进入色谱柱。如果这些污染物在 衬管内积存一定量后,就会对分析产生直接 影响。比如,它会吸附极性样品组分而造成 峰拖尾,甚至峰分裂,还会出现鬼峰。因此, 一定要保持衬管干净,注意及时清洗和更换。
30
第三节 进样系统(手动进样)
▪ (3)避免样品之间的相互干扰 : 如果进样时 注射器内有上一个样 品的残留组分,就会 干扰下一个样品的分析,带来定量误差。在 色谱 中这叫做记忆效应,是必须消除的。 具体办法是洗针。取样前先用样品溶剂洗针 至少3次(抽满针管的三分之二,再排出)。再 用要分析的 样品洗针至少3次,然后取样(多 次上下抽动),这样基本上可消除记 忆效应。
6
二、 气相色谱的分析过程
气相色谱首先是一种分离技术。实际工 作中要分析的样品往往是多组分的混合物。 对含有未知组分的样品,首先必须将其分 离,然后才能对有关组分进行进一步的分 析。
气相色谱主要是利用物质的沸点、极性 和吸附性质的差异来实现混合物的分离。
7
▪ 气相色谱分离过程如下图:
8
气相色谱图
37
第四节 色谱柱系统(填充柱)
▪ 要制备一根分离效能较高的色谱柱, 必须把载体涂上一层薄而均匀的液 膜,再把涂好的固定相均匀而紧密 地填充到色谱柱中 。
▪ 由于目前市场上已有涂渍好的各种 类型的固定相商品,我们只需要买 来自已装一下柱子就成了。
38
第四节 色谱柱系统(毛细管柱)
▪ 毛细管色谱柱的类型与选择:毛细管色谱柱, 内径0.2~0.8毫米,长度30~300米,其柱 材料大多用熔融石英,即所谓弹性石英柱。 柱内径越小,分离效率越高,但细的色谱柱 柱容量小,容易超载。
气相色谱基本知识PPT课件
分离系统是指把混合样品中各组分分离的装置,它由色谱柱 组成
色谱柱的分类:
1)填充柱 由不锈钢、玻璃和聚四氟乙烯等材料制成,常用 的为不锈钢柱,柱管内径为2-6mm,柱长1-5m。柱形 有U型和螺旋型二种。
2)毛细管柱又叫空心柱,分为涂壁、多孔层和涂载体空心柱。空 心毛细管柱材质为玻璃或石英。内径一般为,长度30-300m, 呈螺旋型。
第十八页,共53页。
3.进样的速度
1)对于有的样品,进样速度要快
2)留针:对于粘滞的样品,先刺入隔垫,进针2/3,推针不马上进 行,待升温使其溶解后再推针.
4. 泄漏:
进样垫和柱泄漏会改变保留时间和峰面积。样品可能从泄漏处跑掉, 空气会扩散入进样口造成柱损伤。定期更换进样垫并在第一次发 生问题时检查柱连接。
第三十五页,共53页。
10.进行气体检漏:
当我们对进样口和检测器进行载气检漏时,使用电子检测计 (Electronic Leak Detector)是最为有效的方法之一.
11.确定载气流量,再对色谱柱的安装进行检查 . 12.色谱柱的老化:
对色谱柱升温到一恒定温度,通常为其温度上限。超过温 度上限,那样极易损坏色谱柱。升温速度一定要快,不要将 程序升温的速度设太慢。当达到老化温度后,记录并观察基 线。比例放大基线,以便容易观察。
4)选择混合固定液:对于难分离的复杂样品,可选用两种或两 种以上的固定液。
第二十九页,共53页。
常用的基质:
无机载体(如硅藻土、玻璃粉末或微球、金属粉末或微球、 金属化合物)和有机载体(如聚四氟乙烯、聚乙烯、聚乙 烯丙烯酸酯)
第三十页,共53页。
❖ 2. 气-固色谱
气-固色谱的固定相是固体吸附剂,分离是基于样品分子在 固定相表面的吸附能力的差异而实现的。
色谱柱的分类:
1)填充柱 由不锈钢、玻璃和聚四氟乙烯等材料制成,常用 的为不锈钢柱,柱管内径为2-6mm,柱长1-5m。柱形 有U型和螺旋型二种。
2)毛细管柱又叫空心柱,分为涂壁、多孔层和涂载体空心柱。空 心毛细管柱材质为玻璃或石英。内径一般为,长度30-300m, 呈螺旋型。
第十八页,共53页。
3.进样的速度
1)对于有的样品,进样速度要快
2)留针:对于粘滞的样品,先刺入隔垫,进针2/3,推针不马上进 行,待升温使其溶解后再推针.
4. 泄漏:
进样垫和柱泄漏会改变保留时间和峰面积。样品可能从泄漏处跑掉, 空气会扩散入进样口造成柱损伤。定期更换进样垫并在第一次发 生问题时检查柱连接。
第三十五页,共53页。
10.进行气体检漏:
当我们对进样口和检测器进行载气检漏时,使用电子检测计 (Electronic Leak Detector)是最为有效的方法之一.
11.确定载气流量,再对色谱柱的安装进行检查 . 12.色谱柱的老化:
对色谱柱升温到一恒定温度,通常为其温度上限。超过温 度上限,那样极易损坏色谱柱。升温速度一定要快,不要将 程序升温的速度设太慢。当达到老化温度后,记录并观察基 线。比例放大基线,以便容易观察。
4)选择混合固定液:对于难分离的复杂样品,可选用两种或两 种以上的固定液。
第二十九页,共53页。
常用的基质:
无机载体(如硅藻土、玻璃粉末或微球、金属粉末或微球、 金属化合物)和有机载体(如聚四氟乙烯、聚乙烯、聚乙 烯丙烯酸酯)
第三十页,共53页。
❖ 2. 气-固色谱
气-固色谱的固定相是固体吸附剂,分离是基于样品分子在 固定相表面的吸附能力的差异而实现的。
气相色谱培训PPT课件
快速气化(Flash-vaporization)
• 对于浓度较高或较脏的样品。 • 色谱柱连接在进样口底部。 • 色谱柱完全填充。 • 样品在玻璃内衬中气化 • 进样口至少高于柱温箱50C。 • 能够用于大口径的毛细管。
毛细管进样
• 只需要少的进样量 – 需要特别的进样技术-分流/不分流/柱上进样
• 柱上进样(On Column) • 快速气化(Flash-vaporization)
柱上进样(On column)
• 液体样品直接注射进柱头上 • 消除了气化时样品损失。 • 消除了传输过程中从进样口到色谱柱之间的样品损失。 • 可用于热不稳定物质的分析。 • 定量分析精度好。 • 最好用于干净稀释的样品。
样品组分分离示意图
2. 气相色谱系统
3. 气相色谱理论
色谱图
• 检测信号和时间的关系图 • 不同的色谱峰对应相应的组分 • 可以得到相应组分的保留时间和峰面积信息。 • 保留时间– 定性分析
峰面积 – 定量分析
CH4
基本术语
保留时间(Retention time):
组份从进样到出现最大值所需要的时间,tR
Septum purge
Gas in Splitter vent to filter, then to solenoid valve
分流进样规则
• 进样口温度比样品中最高沸点的温度至少高20C,以便 高效且得到好的重现性。
• 针头不用预热,快速进样,并迅速拔出针头。自动进样 器一般为1µL或更少。对高沸点的样品应在进样口停留12s.
Model 1041
可用于填充柱和0.53毛细管 柱
标准配制如右图,用于 0.53mm的毛细管柱
如用于填充柱,则将右图中 的“530 micron insert”拆下 ,将填充柱装到顶
气相色谱分析法ppt课件
色谱过程动画
四、气相色谱图及常用术语
流出曲线(色谱图):电信号强度随时间变化曲线
色谱图
No Image
(一)色谱流出曲线和色谱峰
chromatogram and chromatography peak
1、色谱图
混合物样品(A+B)→色谱柱中分离 →检测器→记录下来。
组分从色谱柱流出时,各个组分在检 测器上所产生的信号随时间变化,所形 成的曲线叫色谱图。记录了各个组分流 出色谱柱的情况,又叫色谱流出曲线。
缺点:对于难挥发和热不稳定的物质难以分析;定性 能力较弱,不能直接给出定性结果,一般要求有已知纯 物质作对照。
二、气相色谱的一般流程 Classification and characteristic
气相色谱流程
载气系统
进样系统
色谱柱
检测系统
温控系统
1、载气系统:包括气源、气体净化、气体流速的控制和测量; 2、进样系统:包括进样器、气化室; 3、色谱柱系统:柱体、固定相; 4、检测系统:包括检测器、控温装置 5、记录系统:放大器、记录仪、数据处理装置。
Sanitary Chemistry
第一节 气相色谱法概述 第二节 气相色谱基本理论 第三节 气相色谱柱 第四节 分离操作条件的选择 第五节 气相色谱检测器 第六节 定性定量分析
气相色谱法 Gas chromatography
岛津毛细管气相色谱仪GC-2010型
岛津气相色谱14C系列
第一节 气相色谱法概述
➢流出曲线(色谱图):电信号强度随时间变化曲线。 ➢色谱峰:流出曲线上突起部分。
2、基线—在实验操作条
件下,色谱柱后没有组 分流出的曲线叫基线。
稳定情况下,一条直 线。
色谱法基本理论PPT课件
阐述本ppt课件的目的,即帮助学习者 系统了解和掌握色谱法的基本原理、 技术和应用,提高分析问题和解决问 题的能力。
02 色谱法的基本原理
分离原理
分离原理
色谱法的基本原理是利用不同物质在固定相和流动相之间的分配平衡来实现分离。当流动 相经过固定相时,与固定相发生相互作用,使得不同物质在固定相和流动相之间的分配平 衡不同,从而实现分离。
开发新型色谱技术
研究和发展新型色谱技术,如微流控芯片色谱、超临界流体色谱等, 以适应不同类型和规模的样品分析。
联用技术结合
将色谱法与其他分析技术(如质谱、光谱等)联用,可以实现更复杂 样品的高效分离和鉴定。
自动化和智能化发展
通过自动化和智能化技术的引入,实现色谱分析的远程控制、实时监 测和数据分析,提高分析效率和准确性。
感谢您的观看
分配平衡
色谱法中的分配平衡是指物质在固定相和流动相之间的分布情况。物质在两相之间的分配 平衡受到多种因素的影响,如物质的性质、温度、压力等。
相互作用
物质在固定相和流动相之间的相互作用是影响分配平衡的重要因素。不同的物质与固定相 和流动相之间的相互作用力不同,因此表现出不同的分配平衡,从而实现分离。
固定相和流动相
保留机制
01
保留机制
保留机制是指物质在色谱法中通过固定相的保留作用而滞留在固定相中
的过程。物质的保留机制主要取决于物质与固定相之间的相互作用力和
性质差异。
02
竞争吸附
在色谱法中,多种物质会竞争吸附到固定相上,形成竞争吸附现象。竞
争吸附会影响物质的保留时间和分离效果,因此在选择固定相和流动相
时需要考虑竞争吸附的影响。
色谱法可用于研究化学反应动力学,通过分析反应中间产物和产物, 揭示反应机理和速率常数。
02 色谱法的基本原理
分离原理
分离原理
色谱法的基本原理是利用不同物质在固定相和流动相之间的分配平衡来实现分离。当流动 相经过固定相时,与固定相发生相互作用,使得不同物质在固定相和流动相之间的分配平 衡不同,从而实现分离。
开发新型色谱技术
研究和发展新型色谱技术,如微流控芯片色谱、超临界流体色谱等, 以适应不同类型和规模的样品分析。
联用技术结合
将色谱法与其他分析技术(如质谱、光谱等)联用,可以实现更复杂 样品的高效分离和鉴定。
自动化和智能化发展
通过自动化和智能化技术的引入,实现色谱分析的远程控制、实时监 测和数据分析,提高分析效率和准确性。
感谢您的观看
分配平衡
色谱法中的分配平衡是指物质在固定相和流动相之间的分布情况。物质在两相之间的分配 平衡受到多种因素的影响,如物质的性质、温度、压力等。
相互作用
物质在固定相和流动相之间的相互作用是影响分配平衡的重要因素。不同的物质与固定相 和流动相之间的相互作用力不同,因此表现出不同的分配平衡,从而实现分离。
固定相和流动相
保留机制
01
保留机制
保留机制是指物质在色谱法中通过固定相的保留作用而滞留在固定相中
的过程。物质的保留机制主要取决于物质与固定相之间的相互作用力和
性质差异。
02
竞争吸附
在色谱法中,多种物质会竞争吸附到固定相上,形成竞争吸附现象。竞
争吸附会影响物质的保留时间和分离效果,因此在选择固定相和流动相
时需要考虑竞争吸附的影响。
色谱法可用于研究化学反应动力学,通过分析反应中间产物和产物, 揭示反应机理和速率常数。
《气相色谱》幻灯片
不同规格的专用注射器,填充柱色谱常用10μL; 毛细管色谱常用1μL;新型仪器带有全自动液体进样 器,清洗、润冲、取样、进样、换样等过程自动完 成,一次可放置数十个试样。
气化室:将液体试样瞬间气化的 装置。无催化作用。
10
(3) 色谱柱系统〔别离柱〕
色谱柱:色谱仪的核心部件。
柱材质:不锈钢管或玻璃管,内径3-6毫米。长度可根 据
需要确定。
柱填料:粒度为60-80或80-100目的色谱固定相。
液-固色谱:固体吸附剂
液-液色谱:担体+固定液
柱制备对柱效有较大影响,填料装填太紧,柱前压力大, 流速慢或将 柱堵死,反之空隙体积大,柱效低。
有关固定液性质及其选择见下一节。
11
(4) 检测系统
色谱仪的眼睛, 通常由检测元件、放大器、显示记录三局部组成; 被色谱柱别离后的组分依次进入检测器,按其浓度或质 量随时间的变化,转化成相应电信号,经放大后记录和显示, 给出色谱图; 检测器:广普型——对所有物质均有响应;
出峰
峰,
的先出
沸点相同则沸点相同则极性峰
极性组分先组分后出峰
出峰
16
4.固定液的最高最低使用温度
高于最高使用温度易分解,温度低呈固体。 5. 混合固定相
对于复杂的难别离组分通常采用特殊固定液或将两种甚 至两种以上配合使用。
17
(二) 载体〔担体〕 solid support 1. 对载体的要求:
= K2 / K1 = k2 / k1
42
影响R的因素:
• n:峰的宽度
• :峰间距
• k:峰位
43
色谱柱的性质
固定相粒度及厚度、 柱填充均匀程度、柱长
n
载气流速
气化室:将液体试样瞬间气化的 装置。无催化作用。
10
(3) 色谱柱系统〔别离柱〕
色谱柱:色谱仪的核心部件。
柱材质:不锈钢管或玻璃管,内径3-6毫米。长度可根 据
需要确定。
柱填料:粒度为60-80或80-100目的色谱固定相。
液-固色谱:固体吸附剂
液-液色谱:担体+固定液
柱制备对柱效有较大影响,填料装填太紧,柱前压力大, 流速慢或将 柱堵死,反之空隙体积大,柱效低。
有关固定液性质及其选择见下一节。
11
(4) 检测系统
色谱仪的眼睛, 通常由检测元件、放大器、显示记录三局部组成; 被色谱柱别离后的组分依次进入检测器,按其浓度或质 量随时间的变化,转化成相应电信号,经放大后记录和显示, 给出色谱图; 检测器:广普型——对所有物质均有响应;
出峰
峰,
的先出
沸点相同则沸点相同则极性峰
极性组分先组分后出峰
出峰
16
4.固定液的最高最低使用温度
高于最高使用温度易分解,温度低呈固体。 5. 混合固定相
对于复杂的难别离组分通常采用特殊固定液或将两种甚 至两种以上配合使用。
17
(二) 载体〔担体〕 solid support 1. 对载体的要求:
= K2 / K1 = k2 / k1
42
影响R的因素:
• n:峰的宽度
• :峰间距
• k:峰位
43
色谱柱的性质
固定相粒度及厚度、 柱填充均匀程度、柱长
n
载气流速
《气相色谱》PPT课件
2021/8/17
49
• 但是它仅对含碳有机化合物有响 应,对某些物质,如永久性气体、 水、一氧化碳、二氧化碳、氮的 氧化物、硫化氢等不产生信号或 者信号很弱。
2021/8/17
50
2021/8/17
51
2021/8/17
52
• 试样被带入检测器,在氢火焰能 源的作用下离子化。产生的离子 在发射极和收集极的外电场作用 下定向运动,形成电流。
2021/8/17
59
(Ⅳ)火焰光度检测器
• 火焰光度检测器(FPD)又叫硫 磷检测器。它是一种对含磷、硫 的有机化合物具有高选择性和高 灵敏度的检测器。检测器主要由 火焰喷嘴、滤光片、光电倍增管 构成。
2021/8/17
60
• 在火焰光度检测器上,有机硫、 磷的检测限比碳氢化合物的干扰,
非常有利于痕量磷、硫化合物的 分析。
2021/8/17
14
第一节 气相色谱仪
气路系统 进样系统 分离系统 温控系统 检测器
2021/8/17
15
图1 气相色谱过程示意图
1—载气钢瓶;2—减压阀;3—净化器;4—气流调节阀;
2021/8/17 5—转子流速计;6—气化室;7—色谱柱;8—检测器
16
气相色谱仪的工作过程
• 气化室与进样口相接,它的作用 是?
36
• 3线性范围 是指其信号与被测物质 浓度成线性关系的范围,用样品浓度 上下限的比值来表示。
2021/8/17
37
(Ⅰ)、热导池检测器
热导池检测器是一种结构简单、 性能稳定、线性范围宽、对无机、 有机物质都有响应、灵敏度适宜 的检测器,因此在气相色谱中得 到广泛的应用。
2021/8/17
《气相色谱》PPT课件 (2)
A区:预热区 B层:点燃火焰 C层:热裂解区: 温度最高 D层:反应区
30
(3) 影响氢焰检测器灵敏度的因素
①各种气体流速和配比的选择 N2流速的选择主要考虑分离效能,
H2 N2 = 1 1~ 1.5 1 氢气 空气=1 10。 ②极化电压 正常极化电压选择在50~300V范围内。
31
特点:
10
4.固定液的选择:
固定液的极性直接影响组分与固定液分子间的作 用力的类型和大小,固定液的选择很重要
(1)按相似相溶原则选择
固定液与被测组分极性“相似相溶”,K大,选择性 好
非极性组分——选非极性固定液,
按沸点顺序出柱,低沸点的先出柱
中等极性组分——选中等极性固定液,
基本按沸点顺序出柱
强极性组分——选极性固定液
1.作用:承载固定液的作用 2.要求:
比表面积大,孔径均匀(多涂渍固定液) 化学惰性(不与样品发生化学反应) 热稳定性好 一定的机械强度 有合适的孔隙结构,最好是球状颗粒 无吸附性(不吸附被测组分)
14
3.分类: 载体类型 大致可分为硅藻土(常用) 非硅藻土
硅藻土载体 由硅藻土煅烧而成
红色载体 白色载体
2.分类: (1)化学分类法
(2)极性分类法
7
➢化学分类法
A.烃类:烷烃,芳烃
✓ 例 角鲨烷——标准的非极性固定液
B.硅氧烷类:应用最广的通用型固定液 可分为甲基、苯基、氟烷基、氰基硅氧烷
C.醇类(氢键型固定液)
D.酯类:中强极性固定液
8
➢ 极性分类法:
按固定液的相对极性或特征常数分类 ➢ 常用麦氏(McReynolds)特征常数分类法: ➢ 以标准物质m在某一固定液和标准固定液(通
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在一定温度和压力下,组分在固定相和流动相
间达到分配平衡时的浓度比值,用K表示。 。
2、容量因子(capacity factor)
在一定温度和压力下,组分在固定相和流动相 之间分配达到平衡时的质量比,称为容量因子,也 称分配比,用k表示。
K cs
cm
k csVs cmVm
cs、cm分别为组分在固定相和流动相的浓度 (g/ml);V m为色谱柱中流动相的体积,近似 等于死体积, Vs为色谱柱中固定相的体积。
气相色谱分析
色谱法(chromatography):以试样组分在固 定相和流动相间的溶解、吸附、分配、离子交 换或其他亲和作用的差异为依据而建立起来的 各种分离分析方法称色谱法。
色谱柱:进行色谱分离用的细长管。
固定相:(stationary phase) 管内保持固
定、起分离作用的填充物。
流动相:(mobile phase)流经固定相的空隙
RM
VM
M
V R k VM
VR kVM KVS
VR KVS VM
色谱分离的基本理论
1、塔板理论( Martin and Synge 1941)
塔板理论认为,一根柱子可以分为n段,在每段
内组分在两相间很快达到平衡,把每一段称为一块理
论塔板。设柱长为L,理论塔板高度为H,则
H=L/n
式中n为理论塔板数。
最大值时流动相通过的体积称为死体积(dead
volume) ,VM。(F0为柱尾载气体积流量)
VM = tM F 0
调整保留值: 1) 调整保留时间:扣除死时间后的保留时间。
tR =׳tR – tM 2) 调整保留体积:扣除死体积后的保留体积。
VR = ׳VR – VM 或 VR = ׳tR ׳F0
保留值:
1) 保留时间 :从进样至被测组分出现浓度最
大值时所需时间tR。
2) 保留体积 :从进样至被测组分出现最大浓 度时流动相通过的体积,VR。
死时间:
不被固定相滞留的组分,从进样至出现浓度
最大值时所需的时间称为死时间(dead time),tM。
死体积:
不被固定相滞留的组分,从进样至出现浓度
相对保留值(relative retention)
在相同的操作条件下,待测组分与参比组
分的调整保留值之比,用ri,s 表示
ri,s
tR (i) tR (s)
VR(i) VR(s)
色谱分析的实验依据:
1、根据色谱峰的位置(保留时间)可 以进行定性分析。
2、根据色谱峰的面积或峰高可以进行 定量分析。
Phase ratio(相比,): VM / VS, 反映各种色谱柱柱型 及其结构特征
填充柱(Packing column):
6~35
毛细管柱(Capillary column): 50~1500
色谱过程的基本方程式:
tR k tMtRFra bibliotektM k
tM K
Vs VM
t t t (1 K Vs ) (1 k)
或表面的冲洗剂。
按固定相的几何形式分类:
1.柱色谱法,
2.纸色谱法,
3.薄层色谱法 。
按两相所处的状态分类 :
气相色谱法 气-固色谱法 气-液色谱法
液相色谱法 液-固色谱法 液-液色谱法
气相色谱仪通常由五部分组成:
Ⅰ 载气系统:气源、气体净化器、供气控
制阀门和仪表。
Ⅱ 进样系统:进样器、汽化室。
范第姆特方程式(Van Deemter equation)
H A B Cu u
A项为涡流扩散项;B/ u项为分子扩散项;C u为传 质项,;u为载气线速度,单位为cm/s。
3、根据色谱峰的展宽程度,可以对某 物质在实验条件下的分离特性进行评价。
由此可知:相对保留值应该与柱长、 柱径、填充情况、流动相流速等条件 无关,而仅与温度、固定相种类有关。 当ri,s =1时两个组分不能分离。
气相色谱分析理论基础
一、分配平衡的几个参数:
1、分配系数(distribution coefficient)
Ⅲ 分离系统:色谱柱、控温柱箱。
Ⅳ 检测系统:检测器、检测室。
Ⅴ 记录系统:放大器、记录仪、
色谱工作站。
皂膜流量计
调整仪,标 准仪
转字流量计
Setup of Gas Chromatograph
A B KA>KB
图1 、色谱过程
图2、 色谱图
色谱图(chromatogram):
试样中各组分经色谱柱分离后,按先后次序经过检测 器时,检测器就将流动相中各组分浓度变化转变为相 应的电信号,由记录仪所记录下的信号——时间曲线 或信号——流动相体积曲线,称为色谱流出曲线,
常用术语:
基线: 在操作条件下,仅有纯流动相进
入检测器时的流出曲线。
峰高与峰面积:色谱峰顶点与峰底之间的
垂直距离称为峰高(peak height)。用h表示。
峰与峰底之间的面积称为峰面积(peak area),
用A表示。 峰的区域宽度:
a、峰底宽 b、半高峰宽 c、标准偏差峰宽
WD = 4σ=1.70 Wh/2 Wh/2=2.355σ W0.607h=2σ
理论塔板数(n)可根据色谱图上所测得的保留
时间(tR)和峰底宽(w)或半峰宽( wh/2 )按下式 推算:
n 16( tR )2 或 W
n 5.54( tR )2 Wh
2
有效塔板数(neff)的计算公式为;
neff
5.54( tR )2 wh / 2
16(tR )2 w
Heff=L/neff
n=
1+k k
2
• neff
通常用有效塔板数(neff)来评价柱
的效能比较符合实际。 neff 越大或
Heff越小,则色谱柱的柱效越高。
2、速率理论 (J. J. Van Deemter 1956) 速率理论认为,单个组分粒子在色
谱柱内固定相和流动相间要发生千万次转移, 加上分子扩散和运动途径等因素,它在柱内的 运动是高度不规则的,是随机的,在柱中随流 动相前进的速度是不均一的。
3、分配系数和分配比之间的关系
分配系数K 与柱中固定相和流动相的体积无 关,而取决于组分及两相的性质,并随柱温、 柱压变化而变化。
容量因子k 决定于组分及固定相的热力学性 质,随柱温、柱压的变化而变化,还与流动 相及固定相的体积有关。
理论上可以推导出:
k K VS K 1
VM
k tR VR tM VM