毕奥 萨伐尔定律

合集下载

毕奥萨伐尔定律内容及公式(一)

毕奥萨伐尔定律内容及公式(一)

毕奥萨伐尔定律内容及公式(一)毕奥萨伐尔定律内容及公式毕奥萨伐尔定律简介毕奥萨伐尔定律(也称作毕奥-斯沃特定律)是电磁学中的一个重要定律,描述了电流所产生的磁场的特性。

由法国物理学家安德烈-玛丽-安普尔毕奥和德国物理学家卡尔-戴维德斯洛特共同发现并命名。

毕奥萨伐尔定律公式在真空中,毕奥萨伐尔定律可以用公式表达为:B = μ0 * I * (l / 2πr)其中, - B 是磁场的磁感应强度,单位为特斯拉(T); - I 是载流导线的电流,单位为安培(A); - l 是载流导线的长度,单位为米(m); - r 是从载流导线测量到的点的距离,单位为米(m);- μ0(读作mu-null)是磁导率,也称真空磁导率,约等于4π * 10^-7 T·m/A。

毕奥萨伐尔定律的解释与示例毕奥萨伐尔定律表明,电流所产生的磁场的强度与电流强度、导线长度以及距离的关系。

以下是一些示例来解释毕奥萨伐尔定律的应用:•示例一假设一段10米长的电缆中有电流流过,电流强度为5安培。

现在我们想要计算距离电缆1米处的磁场强度。

使用毕奥萨伐尔定律的公式,代入I=5A,l=10m,r=1m,以及μ0≈4π * 10^-7 T·m/A,我们可以计算得到:B = 4π *10^-7 * 5 * (10 / 2π * 1) = * 10^-6 T•示例二假设在一个闭合导线圈中有电流流过,导线圈的半径为米,电流强度为10安培。

现在我们想要计算导线圈中心的磁场强度。

使用毕奥萨伐尔定律的公式,代入I=10A,l=2π * (周长),r=,以及μ0≈4π * 10^-7 T·m/A,我们可以计算得到:B = 4π * 10^-7 * 10 * (2π * / 2π * ) = * 10^-6 T这些示例展示了应用毕奥萨伐尔定律计算不同条件下的磁场强度的过程。

通过理解该定律,我们可以更好地研究和应用电磁学中与磁场相关的现象和设备。

毕奥---萨伐尔定律

毕奥---萨伐尔定律
毕奥---萨伐尔定律 毕奥 萨伐尔定律
两电流元之间的安培定律也可表示成 两电流元之间的安培定律也可表示成
u r r uur u r ˆ I1 I 2 dl2 × (dl1 × r12 ) d F12 = k = I 2 dl2 × dB1 2 r 12
电流元 I1d l1产生的磁场
ˆ ˆ Idl × r µ0 Idl × r dB = k = 2 2 r 4π r
• 求二阶导数
d 2B 在O 令x = 0处的 2 = 0 ⇒ 在O点附近磁场最均匀的条件 dx µ0 d 2B 2a 2 − 2 R 2 = 6π R 2 I = 0 ⇒ a2 = R2 7 2 dx 2 x =0 4π 2 a 2 2 R + 4
a=R
例1、无限长载流直导线弯成如图形状
大小
µ0 Idl dB = 4π r2
r r 方向 Idl × r0
分析对称性、 分析对称性、写出分量式
r r B⊥ = ∫ dB = 0

µ0 Idl sinα Bx = ∫ dBx = ∫ 4π r2
统一积分变量
µ0 Idl sinα Bx = ∫ dBx = ∫ 4π r2 µ0IR µ0IR dl = π = ⋅2 R 3 ∫ 3 4 r 4 r π π
a


P T
µ0I 3 BL′A = (cos π − cosπ ) 4πa 4
µ0I π BLA = (cos0 − cos ) 方向 ⊗ 4 a 4 π
方向 ⊗
T点
Bp = BLA + BL′A = 2.94×10−5T 方向 ⊗
r 电流元 Idl
——右手定则 右手定则 r r r µ0 Idl ×r 毕奥-萨伐尔定律 毕奥 萨伐尔定律 dB = 4 π r3 r r r r µ0 Idl ×r 对一段载流导线 B = ∫ dB = ∫ 4π L r3

毕奥-萨伐尔定律

毕奥-萨伐尔定律

1.若 ,(无限长的 无限长的) 1.若 l >>R ,(无限长的)螺线管的中心处
β1 = π , β2 = 0
2.若 在管端口处: 2.若 l >>R ,在管端口处:
B = µ0nI
1 B = µ0nI 2
µ 0 nI
2
β1 = π/2 , β2 = 0 ; β1 = π, β2 = π/2
B
µ 0 nI
第五章 稳恒电流的磁场
17
v r
P
v dB
v r
v dB
v dB
v Idl
r
v I vdl
磁场为: 对任何一载流导线在某点产生的磁场为:
v B=
v ∫ dB
v v ˆ µ0 Idl × er B=∫ 4π r 2 L
先化为分量式后分别积分。 先化为分量式后分别积分。
3 µ0I 2 π 3µ0I B2 = ⋅ = 2R 2π 8R
I 1 3
方向垂直纸面向外
B3 =
µ0I
4πR
3µ0I µ0I + 8R 4πR
方向垂直纸面向外
B = B1 + B2 + B3 =
方向垂直纸面向外
12
第五章 稳恒电流的磁场
例4:载流螺旋管在其轴上的磁场。 :载流螺旋管在其轴上的磁场。 求半径为R,总长度 求半径为 ,总长度l ,导线电 流为I,单位长度上的匝数为n 流为 ,单位长度上的匝数为 的 螺线管在其轴线上一点的磁场? 螺线管在其轴线上一点的磁场? 解:采用“并排圆电流”模型简化。 采用“并排圆电流”模型简化。
4π r2
P
方向为垂直向里。且所有电流元在 点的磁感应强 方向为垂直向里。且所有电流元在P点的磁感应强 度方向相同(垂直向里)。 度方向相同(垂直向里)。

毕奥萨伐尔定律介绍课件

毕奥萨伐尔定律介绍课件

定律的物理意义
物理意义
毕奥-萨伐尔定律揭示了电流在空间 中产生磁场的基本规律,对于电磁场 理论的发展和应用具有重要意义。
应用举例
在电磁学、电机学、变压器、电磁铁 等领域中,毕奥-萨伐尔定律被广泛应 用于分析和计算磁场分布。
Part
02
毕奥萨伐尔定律的推导
毕奥萨伐尔的生平与贡献
毕奥出生于1774年,是 法国物理学家和数学家。
在物理学中的应用
01
02
03
描述磁场分布
毕奥-萨伐尔定律可以用来 描述磁场在空间中的分布 ,特别是在电流和磁铁附 近产生的磁场。
计算磁场力
根据毕奥-萨伐尔定律,可 以计算磁场对电流和磁铁 的作用力,即洛伦兹力和 安培力。
解决电磁问题
在解决电磁学问题时,毕 奥-萨伐尔定律常与其他电 磁学定律一起使用,以完 整地描述电磁场的行为。
毕奥萨伐尔定律介绍 课件
• 毕奥萨伐尔定律概述 • 毕奥萨伐尔定律的推导 • 毕奥萨伐尔定律的应用 • 毕奥萨伐尔定律的实验验证 • 毕奥萨伐尔定律的扩展与展望
目录
Part
01
毕奥萨伐尔定律概述
定义与公式
定义
毕奥-萨伐尔定律描述了电流在空间中产生的磁场分布,特别是电流元在空间中产生的磁 场。
公式
毕奥和萨伐尔通过实验观 测到电流在空间中产生磁 场的现象。
毕奥萨伐尔定律的数学表达形式
毕奥萨伐尔定律可以用数学公式 表示,描述了电流产生的磁场的
大小和方向。
这个定律在电磁学中非常重要, 是研究电磁场和电磁力的基础。
通过应用毕奥萨伐尔定律,可以 解决许多与电流和磁场相关的问
题。
Part
03
毕奥萨伐尔定律的应用

6-3毕奥—萨伐尔定律

6-3毕奥—萨伐尔定律

0 I 1 l r1 r2 0 I 2 l d r1 ln ln 2 r1 2 d r1 r2
2.26 10 6 Wb
运动电荷的磁场
三、 运动电荷的磁场
形成
电荷运动
电 流
磁 场
设电流元 Idl ,横截面积S,单位体积内有n 个定向运动的正电荷 , 每个电荷电量为 q ,定向 速度为v。

L
I d l er 2 r
二、毕奥—萨伐尔定律的应用 先将载流导体分割成许多电流元 Idl 写出电流元 Idl 在所求点处的磁感应强度,然后
按照磁感应强度的叠加原理求出所有电流元在该点 磁感应强度的矢量和。 实际计算时要应先建立合适的坐标系,求各电流元的 分量式。即电流元产生的磁场方向不同时,应先求出 各分量 dBx dBy dBz 然后再对各分量积分,
0 I sin B 2R 2 4r
I dl
R
r
d B


dB
IO
2 2
x
2
P
d B//
R R r R x ; sin 2 2 12 r (R x ) 0 IR 2 0 IS B 2 2 32 2 2 32 2 ( R x ) 2( R x )
0 qv sin dB B dN 4 r2
矢量式:
0 qv er B 2 4 r
其方向根 据 右手螺 旋法则, B 垂直 v 、r 组成的平面。 q 为正, B 为 v 的方向;q为 r 负, B 与 v r 的方向 相反。
1.71 105 T
方向
S点
L

0 I 1 1 BLA (sin sin ) 方向 4a 4 2 L 0 I 1 1 BAL (sin sin ) 方向 4a 2 4

10.3 毕奥-萨伐尔定律

10.3 毕奥-萨伐尔定律

毕奥—萨伐尔定律 10.3 毕奥 萨伐尔定律 讨 论
第十章 真空中的稳恒磁场
B=
µ0 nI
2
(cos β 2 − cos β1 )
π β1 = , β 2 = 0 2 1 B = µ 0 nI 2
(1) 无限长的螺线管 无限长的螺线管
(2)半无限长螺线管端点处 )
β1 = π , β 2 = 0
B = µ 0 nI
v dB
P *
v r
θ
v Idl
I
v r
任意载流导线在点 P 处的磁感强度
v v v v µ0 I dl × r0 磁感强度叠加原理 B = dB = ∫ ∫ 4 π r2 (多采用分量式计算 多采用分量式计算) 多采用分量式计算
毕奥—萨伐尔定律 10.3 毕奥 萨伐尔定律
*二 运动电荷的磁场 二
R2
*o
B0 =
µ0 I
8R
B0 =
µ0 I
4 R2

µ0 I
4 R1

µ0 I
4π R1
毕奥—萨伐尔定律 10.3 毕奥 萨伐尔定律
第十章 真空中的稳恒磁场
例3 载流直螺线管轴线上的磁场 如图所示,有一长为 半径为R的载流密绕直螺 如图所示,有一长为l , 半径为 的载流密绕直螺 线管,螺线管单位长度的匝数为n,通有电流I. 线管,螺线管单位长度的匝数为 ,通有电流 设把 螺线管放在真空中,求管内轴线上一点处的磁感强度. 螺线管放在真空中,求管内轴线上一点处的磁感强度
v dB 方向均沿
y
D
dl
I
C
z
4π r µ0 Idl sin α B = ∫ dB = ∫ 2 CD α 4π r v sinα = cos β r v r = a sec β l dB β2 l = a tan β dl = a sec2 β dβ β * x o a β1 µ 0 I β2 P B= ∫β1 cosβ dβ 4πa

毕奥萨伐尔定律

毕奥萨伐尔定律
• 我们只计算了轴线上的磁场分布,轴线以外磁场分布的计算比 较复杂, 略。为了给同学们一个较全面的印象,下左图显示 了通过圆线圈轴线的平面上磁感应线的分布图。可以看出, 磁感应线是一些套连在圆电流环上的闭合曲线。
• 下右图给出另一个右手定则,用它可以判断载流线 圈的磁感应线方向。这右手定则是:用右手弯曲的 四指代替圆线圈中电流的方向,则伸直的姆指将沿着 轴线上B的方向。
生的磁感应强度的大小 • 与电流元Idl的大小成正比, • 与电流元和从电流元到P点的位矢之间的夹
角θ的正弦成正比, • 与位矢r的大小的平方成反比。即:
一、毕奥---萨伐尔定律
dB的方向 垂直于dl和r所确定的平面,沿
dl×r的方向,用右手螺旋法 则来判定。
矢量表示为: d B 0 Id l r 4 r 3
• 其中:S=πR2为圆线圈的面积。
三、载流圆环导线轴线上的磁场
• 圆线圈轴线上各点的磁感应强度都沿着轴线方向, 与电流方向组成右手螺旋关系。
• 下面讨论两种特殊的情况: • 1、在圆心O处,即a=0处的磁感应强度为: •
• 2、在远离线圈处,即 a>>R,轴线上各点的磁感 应强度约为:
三、载流圆环导线轴线上的磁场
• 由图
cos 1
x L 2
R2 (x L )2 2
cos 2
x L 2
R2 (x L)2 2
代入即得螺线管轴线上任一点P的磁感应强度。
B随x变化关系见上图中的曲线,由这曲线可以看出,当 L>>R时,在螺线管内部很大一个范围内磁场近于均匀, 只在端点附近B值才显著下降。
• 其中 40为比例系数, • μ0 称 为 真 空 磁 导 率 , :

11-3毕奥-萨伐尔定律及应用

11-3毕奥-萨伐尔定律及应用

真空的磁导率: π×10 真空的磁导率:o=4π× -7 π× 点的距离. (2) r是电流元 到P点的距离. ) 是电流元Idl 点的距离 r是从电流元 指向 点的单位矢量. 是从电流元Idl 指向P点的单位矢量 点的单位矢量. 是从电流元
上页 下页
(3)磁场的大小: )磁场的大小:
o Idl sin θ dB = 2 θ是Idl与r 之间的夹角 与 之间的夹角. 4π r
在薄片中取弧长为dl的窄条, 在薄片中取弧长为 的窄条, 的窄条 其中通过的微元电流为: 其中通过的微元电流为:
I
I I dI = dl = dθ πR π
上页 下页
y
在俯视图上建立如图坐标, 在俯视图上建立如图坐标, 电流元在O点激发的磁感应 电流元在 点激发的磁感应 强度为: 强度为:
o
dB
θ
毕奥-萨伐尔定律及应用 §11-3 毕奥 萨伐尔定律及应用
毕奥-萨伐尔定律 一, 毕奥 萨伐尔定律
d 真空中,电流元 真空中,电流元Idl 在P点产 B 点产 生的磁场为
o Idl ×r dB = 2 4π r
说明
P
r
θ
I
Idl
上式称为毕奥 萨伐尔定律 上式称为毕奥-萨伐尔定律 毕奥
(1)公式中的系数是 制要求的. 制要求的. )公式中的系数是SI制要求的
x R
0 0 I dB = dI = 2 dθ 2πR 2π R
所以: 所以:
π

方向如图所示. 方向如图所示.
0 I Bx = dBx = 2 ∫0 π R
即:
0 I dBx = dBsinθ = 2 sinθdθ 2π R
By = ∫ dB = 0

毕奥-萨伐尔定律

毕奥-萨伐尔定律
结果对比
将实验结果与毕奥-萨伐尔定律的理论值进行对比,评估定律的准确性。
结果分析
分析实验误差来源,如设备精度、环境干扰等,提高实验的可靠性和准确性。
05
毕奥-萨伐尔定律的扩展与 推广
对三维空间的推广
总结词
毕奥-萨伐尔定律最初是在二维空间中 推导出来的,但通过引入矢量运算, 该定律可以扩展到三维空间中。
Idl
电流元,表示电流的一 部分。
r
观察点到电流元的径矢 ,表示观察点与电流元
之间的距离。
03
毕奥-萨伐尔定律的应用场 景
电场与磁场的关系
磁场是由电流产生的,而电场是由电 荷产生的。毕奥-萨伐尔定律描述了 电流和磁偶极子产生的磁场,以及变 化的电场产生的磁场。
毕奥-萨伐尔定律揭示了电场和磁场之 间的相互关系,表明它们是电磁场的 两个方面,而不是独立存在的。
THANKS
对微观尺度的适用性问题
毕奥-萨伐尔定律在描述微观尺度的电磁场时,其精确度受 到限制。在量子尺度下,电磁场的涨落和量子效应可能导 致定律的不适用。
未来研究需要进一步探索毕奥-萨伐尔定律在微观尺度下 的适用性和修正,以更好地描述量子电磁场的行为。
对超导态物质的适用性问题
毕奥-萨伐尔定律在描述超导态物质的 电磁场时,可能存在局限性。超导态 物质的电磁行为与常规物质有所不同, 需要更复杂的理论模型来描述。
电流与磁场的相互作用
根据毕奥-萨伐尔定律,电流产生磁场,而磁场对电流有作用 力。这种作用力被称为洛伦兹力,它描述了电流在磁场中所 受到的力。
毕奥-萨伐尔定律是电动机和发电机等电气设备工作的基础, 它解释了电流如何在磁场中受到作用力,从而产生旋转或线 性运动。
磁力线的描绘

7-4 毕奥-萨伐尔定律

7-4 毕奥-萨伐尔定律

z r0 cot , r r0 / sin
dz r0d / sin 2
z
D
2
dz
B
dB
*
0 I
4 π r0

2
1
sin d
r
I
z
1
x
C
o r0
P
y
B 的方向沿 x 轴负方向
0 I (cos1 cos 2 ) 4 π r0
B
I
R1
B0
0 I
4 R2

0 I
4 R1
* o
0 I
4 π R1
例如 右图中,求O 点的磁感应强度 解 B1 0
B2
4R 2 3 0 I 8R 0 I B3 (cos 1 cos 2 )
4R 0 I θ 2 θ 1 2 4R
0 I 3
dB
0
2
R
1
R 2 Indx
2
x
2 3/ 2

N n l
R

2
x1 O*
x2 x
×× × ×× × ×× × ×× ×× ×
x Rcot
B dB
2
dx R csc d
2
0 nI
2
2 2
R
x1
x2
R dx
2
2
x
2 3/ 2

R x R csc
2 0, B 向右
R
0, B 向左
例3 载流直螺线管内部的磁场. 如图所示,有一长为l ,半径为R的载 流密绕直螺线管,螺线管的总匝数为N, 通有电流I. 设把螺线管放在真空中,求管 内轴线上一点处的磁感强度.

毕奥萨伐尔定律

毕奥萨伐尔定律
电磁炉具有加热速度快、热效率高、安全可靠等优点,广泛 应用于家庭和餐饮行业。
磁力发电机
磁力发电机是一种利用磁场产生电能的装置。根据毕奥萨 伐尔定律,当导体在磁场中运动时,会在导体中产生感应 电流。磁力发电机通过转子产生的旋转磁场与定子绕组相 对运动,使定子绕组中产生感应电流,实现发电的目的。
磁力发电机广泛应用于风力发电、水力发电、汽车发动机 等领域,为可再生能源的开发和节能减排做出了重要贡献 。
06
毕奥萨伐尔定律的未来研 究与展望
磁场产生的原因与机制
磁场产生的原因
毕奥-萨伐尔定律指出,运动电荷或电流会产生磁场,这是磁场产生的根本原因。
磁场产生的机制
磁场的产生与电荷或电流的运动有关,当电荷或电流运动时,会激发周围的磁场 ,磁场的大小和方向与电荷或电流的运动状态有关。
磁场对物质的作用与影响
核磁共振成像等磁现象在医疗领域具有广泛的应用前景,同时磁 约束核聚变等前沿技术也在积极探索中。
磁现象在太阳能领域的应用
太阳能电池板在吸收太阳能时,利用磁性原理可以提高太阳能利 用率。
感谢您的观看
THANKS
磁场强度的方向与单位
磁场强度的方向
在右手螺旋定则中,拇指指向电流的方向 ,四指环绕的方向就是磁场的方向。
VS
磁场强度的单位
安培/米(A/m),国际单位制中,磁场强度 的单位是安培/米。
03
毕奥萨伐尔定律的实验验 证
实验设计思路
确定实验目标
验证毕奥萨伐尔定律在特定情况下 的适用性,即通过实验手段测量物 理量以验证理论的准确性。
总结词
描述电磁场基本规律的方程组。
详细描述
麦克斯韦方程组是描述电磁场基本规律的方程组,其 中包括了电场、磁场和电荷密度等物理量的关系。毕 奥萨伐尔定律是麦克斯韦方程组的一个推论,它描述 了磁场与电流之间的关系。此外,麦克斯韦方程组还 预言了电磁波的存在,即光、无线电波等。

毕奥撒法尔定律

毕奥撒法尔定律

毕奥撒法尔定律
毕奥-萨伐尔定律(也被称为电场定律)是电学中的一个重要定律,它描述了电荷之间的相互作用力与它们所带电荷量的乘积以及它们之间距离之间的关系。

具体来说,毕奥-萨伐尔定律表明在真空中,静止的点电荷所产生的电场强度与它们所带电荷量成正比,与它们之间的距离的平方成反比。

公式表示为:$\frac{E}{q} = \frac{k}{r^{2}}$,其中E是电场强度,q是源电荷的电荷量,k是常数,r是源电荷与试探电荷之间的距离。

这个定律是英国物理学家约瑟夫·安培的学生,法国物理学家奥古斯汀·毕奥和其时的科学家萨伐尔共同发现的。

他们在研究电流产生的磁场时,通过实验和理论推导得出了这个定律。

这个定律不仅适用于点电荷产生的电场,还适用于任何形状的电荷分布产生的电场,以及多个电荷共同产生的电场。

需要注意的是,毕奥-萨伐尔定律是在静止电荷产生的电场中得出的,对于随时间变化的磁场,需要使用麦克斯韦方程组来描述。

毕奥-萨伐尔定律

毕奥-萨伐尔定律

x
l 2
17
B
I0 I0
从以上分析可以看出长直载流螺线管的磁场 分布情况:在螺线管中心区域为均匀磁场,在 管端口处,磁场等于中心处的一半,在螺线管 外部距管轴中心约七个管半径处,磁场就几乎 等于零了。
18
例4. 在半径R=2cm的无限长的半圆形金属薄片中, 有电流I=6A自下而上的通过,如图求 圆柱轴线上任一点的磁感应强度。
位矢量,指向与电流的方向满足右螺旋关系。
多匝平面线圈电流I 应以线圈的总匝数与每匝
线圈的电流的乘积代替。
0 m m 0 圆电流 B n 3 3 2π x 2x
10
三 磁矩
m ISen
2
I
例2 中圆电流磁感强度 公式也可写成
S
en
m
B
0 IR
2x
3
0 IR 2
0 IR 2
a
4π a
25
例7 在玻尔的氢原子模型中,电子绕原子核运动相 当于一个圆电流,具有相应的磁矩(称为轨道磁 矩)。求轨道磁矩 与轨道角动量之间的关系。 解: 设电子的轨道半径为r,每秒转速为ν。 电流:
I e 2 磁矩: IS e πr
圆电流面积: S π r 2
4π d
R
o ( 3) I R
B0
0 I
4R
R2
*o
B0
o
0 I
8R
B0
0 I
4 R2

0 I
4 R1

0 I
4π R1
13
例3 载流直螺线管的磁场 如图所示,有一长为 l , 半径为R的载流密绕直螺 线管,螺线管的总匝数为N,通有电流 I. 设把螺线管 放在真空中,求管内轴线上一点处的磁感强度.

磁学 3-2 毕奥-萨伐尔定律

磁学 3-2 毕奥-萨伐尔定律

B
0m 2x3
类似于电偶极子电场强度
m S en
I
B
磁偶极子
E
电偶极子
三、运动电荷产生的磁场
电流是大量电荷定向运动形 成的,所以从本质上说电流 产生的电场就是运动电荷所 产生的磁场。
I
qv
I = nqSv
S
P
在载流 导线中选取一段电流
dl
元 Idl ,其电流 I = nqSv
代入毕奥-萨伐尔定律,得
大小为
dB
0 4
Idl sin
r2
θ2
Id l
θ
r
l
Oa
θ1
B
P
由右手螺旋法则知其方向 垂直于纸面向内。因直导 线上所有电流元在 P 点产 生的磁感应强度方向均相
B
dB
0 4
Idl sin r2
l a cot ( ) a cot
同,故 P 点总的磁感应强
dl ad / sin 2
磁场叠加原理:任意形状的载流导线的磁场是所有
电流元的磁场的矢量和
B dB
0
L
L 4
Idl
r2
er
积分遍及整 个载流导线
实际上不存在孤立的电流元,毕奥-萨伐尔定律是基 于特殊情形的实验结果从数学上倒推出来的。但从 此定律出发推出任意恒定电流的磁场都与实验结果 相符,从而验证了毕奥-萨伐尔定律的正确性。
B 0I 4a
(3)直电流延长线上 B = 0
直线电流的 磁感应线
例 2 载流圆线圈半径为 R,电流强度为 I,求圆线圈 中轴线上与圆心 O 距离为 x 处 P 点的磁感应强度。
解:如图建立坐标 系
任取一电流元 Idl,注意到

毕奥-萨伐尔定律

毕奥-萨伐尔定律

半无限长载流长直导线的磁场
1
π 2
2 π
BP
0I
4π r
I
o r *P
例2 圆形载流导线的磁场.
真空中 , 半径为R 的载流导线 , 通有电流I , 称圆
电流. 求其轴线上一点 p 的磁感强度的方向和大小.
Idl
B
o
R
r
dB
pB
*
x
I
dB 0 Idl
4π r 2
解 根据对称性分析 B Bx dB sin
x2
x + + + + + + + + + + + + + + +
dB 0 2
R 2 Indx R2 x2 3/2
x Rcot
dx R csc2 d
B
dB 0nI
2
x2 x1
R2dx R2 x2 3/2
R2 x2 R2 csc2
B 0nI
2
2 R3csc2 d 1 R3 csc3 d
Idl
cos R r
R
r
dB r2 R2 x2
o
x
*p x
B 0I

cosdl
l r2
dB 0

Idl r2
dBx
0

I cosdl
r2
B
0IR
4π r3
2π R
dl
0
B
0IR2
(2 x2 R2)32
I
R
ox
B
*x
B
0IR2
(2 x2 R2)32

7-2毕奥-萨伐尔定律

7-2毕奥-萨伐尔定律

= ∫ dB⋅ sin θ
I dB dl dl θ x θ P dB x dB y
R θ d µo ( I) πR =∫ sin θ 2πR π µo I =∫ sin θ ⋅ dθ 2 2π R 0
µo I = 2 π R
结束
返回
例6. 载流圆线圈轴线上的磁场 0 µ o Idl sinα α = 90 dB = 2 r 4 π y dB µ o Idl I dl θ =4 2 π r r R P θ I 由对称性: 由对称性: x x rz B y = B z =0 dB I dl µoI B = ∫ dB x = ∫ dB sinθ = r 2 ∫ sinθ dl 4 π µoI = θ ∫ dl 2 sin 结束 4 r π
dl 方向决定上下限
µoI B= a
π 4
µ o I ( sinβ sinβ ) ∫β 1 cosβ dβ = 4π a 2 1
β2
B=
µoI
( sinβ 2 sinβ 1 ) 4π a
讨论: 讨论: 当直线电流为“无限长” 当直线电流为“无限长”时 β1
I
π β2 2
µo I B= 2 a

π
µ oI
Φ m = ∫∫S B . dS a +b µ o I
, dS = l dx 2 x π x B l dx b
结束
返回
取面法线方向与B的方向相同 取面法线方向与 l 的方向相同 = ∫ a 2 x dx I π x µ o I l a +b = 2 ln a π a
例8*. 有限长载流螺线管轴线上 点的磁场 有限长载流螺线管轴线上P点的磁场 B=
内外半径分别为a 的圆环, 例2: 内外半径分别为 、b 的圆环,其上均 匀带有面密度为σ 圆环以角速度ω 匀带有面密度为 的电荷 ,圆环以角速度 环中心垂直于环面的轴转动, 绕通过圆 环中心垂直于环面的轴转动 , 求 : 圆环中心处的磁感强度大小。 圆环中心处的磁感强度大小。 µ oI ω dB = 2r R2 dq σ 2π rdr I = = T T σ 2π r ω dr o = = σω rdr r R1 2π R2 µ0 µ0 B = ∫ σω dr = σω ( R2 − R1 ) 2 2 R1

毕奥-萨伐尔定律介绍

毕奥-萨伐尔定律介绍
毕奥-萨伐尔定律介绍
$number {01}
目 录
• 毕奥-萨伐尔定律的背景 • 毕奥-萨伐尔定律的内容 • 毕奥-萨伐尔定律的应用 • 毕奥-萨伐尔定律的推导与证明 • 毕奥-萨伐尔定律的局限性与发展
01
毕奥-萨伐尔定律的背景
发现过程
毕奥和萨伐尔的研究
毕奥和萨伐尔在19世纪初对磁力和 电力进行研究,通过实验和观察,他 们发现电流在其周围空间产生磁场, 磁场的方向与电流的方向有关。
THANKS
对未来研究的展望
探索新型材料
实验验证与修正
随着新型材料的不断涌现,研究这些 材料在磁场中的行为,以及如何利用 毕奥-萨伐尔定律描述其磁效应,是未 来的研究重点之一。
通过实验验证毕奥-萨伐尔定律的准确 性,并对定律进行必要的修正,以适 应不断发展的研究和应用需求。
跨学科应用
毕奥-萨伐尔定律在物理学、工程学等 领域有广泛的应用,未来可以进一步 探索其在其他学科领域的应用,如生 物学、医学等。
在其他领域的应用
生物医学工程
在生物医学工程中,毕奥-萨伐尔定律 可用于研究生物体内的电流和磁场, 如心电、脑电等领域。
地球物理学
在地球物理学中,毕奥-萨伐尔定律可 用于研究地球内部的磁场分布和变化, 如地磁场的起源、变化规律等。
04
毕奥-萨伐尔定律的推导与 证明
推导过程
毕奥-萨伐尔定律的数学模型
基于电流元相互作用原理,通过微积分和矢量分析的方法,推导出两个电流元在空间中产生的磁 场分布。
电流元的位置和方向
考虑电流元的位置和方向的变化,对每个电流元分别进行推导,得出其在空间中产生的磁场分布 。
磁场分布的叠加
根据磁场分布的叠加原理,将各个电流元产生的磁场分布进行叠加,得到整个电流回路在空间中 产生的总磁场分布。

.毕奥-萨伐尔定律

.毕奥-萨伐尔定律

.毕奥-萨伐尔定律
摘要:
1.毕奥- 萨伐尔定律的定义
2.毕奥- 萨伐尔定律的发现历程
3.毕奥- 萨伐尔定律的数学表达式
4.毕奥- 萨伐尔定律的应用领域
5.毕奥- 萨伐尔定律在我国的研究现状与前景
正文:
毕奥- 萨伐尔定律,又称毕萨定律,是电磁学中的一个基本定律,描述了电流在磁场中受力的规律。

该定律由法国物理学家让- 巴蒂斯特·毕奥(Jean-Baptiste Biot)和法国数学家费尔南德·萨伐尔(Ferdinand de Saussure)在1820 年同时独立发现,故以两位科学家的名字命名。

毕奥- 萨伐尔定律的数学表达式为:F = I * d * B,其中F 表示电流在磁场中受到的安培力,I 表示电流强度,d 表示电流元的长度,B 表示磁感应强度。

根据这个公式,可以计算出电流在磁场中所受的力。

毕奥- 萨伐尔定律在许多领域都有广泛的应用,如电磁制动、电磁起重机、电磁继电器等。

此外,在现代科技领域,如磁悬浮列车、电动汽车、风力发电等方面,毕奥- 萨伐尔定律的应用也越来越重要。

在我国,对毕奥- 萨伐尔定律的研究始于上世纪50 年代。

经过几十年的发展,我国在电磁学领域的研究已经取得了世界领先的成果。

目前,我国正加大对电磁学领域的研究力度,致力于推动电动汽车、磁悬浮列车等新型产业发
展,为我国经济建设和科技进步做出贡献。

总之,毕奥- 萨伐尔定律作为电磁学的基本定律之一,对我国科技发展具有重要意义。

大学物理毕奥-萨伐尔定律

大学物理毕奥-萨伐尔定律

1
2
2
I
2 B
B 0I
4πr
3)延长线上的磁场
B=0
I
A
B
1
A
→r
r
*p
B
+P
2、圆形载流导线(圆电流)轴线上的磁场(R, I)
Id l
o
IR
r dB d B
x
*
p dBx
x
dB'
解: (1)如图建立坐标系
(2)在导线上取电流元 Idl
dB
0

Idl sin 900 r2
0 4
Idl r2
20
2
0, B 向外
0, B 向内
例7(例11-2) 一半径为R的无限长的半圆形金属薄片,沿轴 通有I 的电流,设电流在金属片上均匀分布,试求圆柱轴线上 任意一点P的磁感应强度.
解:将电流分割成许多无限长载流直导
线,电流为dI
I
利用无限长载流直导线的磁感应强度公式
B 0I
2πr
dB 0dI 2R
电流元中的运动电荷数
dN nSdl
电流元
Idl vSnqdl qv dN

Idl qv dN
代入上式得
从微观上看,电流元的dB就是dN个运动电荷共同产生的磁场
运动电荷的磁场
B
dB
0
qv r0
dN 4π r2
r0为电荷q到场点的矢径方向的单位矢量, 方向垂直于V,r确定的平面
是低速(v c)情形下匀速运动点电荷产生的磁场。
电流元 在空间P点产生的 磁感应强度 为
dB
k
Idl r2
r
0

毕奥萨伐尔定律介绍课件

毕奥萨伐尔定律介绍课件
02
该定律主要描述了电流元在空间 中产生的磁场分布规律,对于理 解电磁场的产生、传播以及电磁 感应等电磁现象具有重要意义。
毕奥萨伐尔定律的重要性
毕奥萨伐尔定律是电磁学核心理论之一,为研究电磁场的性质和行为提供了重要的 基础。
该定律对于现代电磁技术,如电磁感应、电磁波传播、电子设备等,都具有重要的 应用价值。
力学
在研究天体运动和物体运 动时,毕奥萨伐尔定律可 以用来描述物体的运动轨 迹和相对运动。
量子力学
在量子力学中,毕奥萨伐 尔定律可以用来描述微观 粒子的波粒二象性。
在工程中的应用
航空航天工程
毕奥萨伐尔定律在航空航天工程 中有重要的应用,如计算飞行器
的轨迹和空气动力学性能。
机械工程
在机械设计中,毕奥萨伐尔定律 可以用来分析机器的运动状态和
毕奥萨伐尔定律的物理意义
磁场产生
毕奥萨伐尔定律揭示了电流在空间中 产生磁场的过程,当电流通过导线或 导线网络时,会在周围空间产生磁场 。
磁场方向
根据毕奥萨伐尔定律,磁场的方向与 电流的方向垂直,可以用右手定则来 判断。
毕奥萨伐尔定律的适用条件
真空或电介质
毕奥萨伐尔定律适用于真空中的电流在空间中产生磁场的情况,或者适用于电 介质中的情况。
实验验证
介绍了毕奥萨伐尔定律的实验验证方法和结果,以及该定律在实验 中的应用。
毕奥萨伐尔定律在现代的应用
经典应用
介绍了毕奥萨伐尔定律在经典物理学中的应用, 如电磁学、光学和力学等。
现代应用
重点介绍了毕奥萨伐尔定律在现代物理学中的应 用,如量子力学、相对论和宇宙学等。
应用前景
探讨了毕奥萨伐尔定律在未来科技中的应用前景 ,如新材料、新能源和生物医学等领域。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 0 2
B
I 0

oa
B
+
1
p
2πa
A
I

B
I
X B
太原理工大学大学物理
2)半无限长载流长直导线的磁场
B

0I
4πa
(cos1

cos2
)
I
2
B
1


2
2
B
I 0
4πa
3)载流长I 直导线延长线rr上的*磁p 场
A
1
a
B=0
B
+P
A
太原理B工大学大学物理
2. 圆形载流导线的磁场
真空中 ,半径为R 的载流导线,通有电流I,称圆电流.
求其轴线上一点 p 的磁感强度的方向和大小.

Idl

R
r
dB
o
x
*p x
解:根据对称性分析
B 0
B Bx
太原理工大学大学物理
Idl sin 900
dB 0
dBx dB sin

r2
Idl
rv0
毕奥—萨伐尔定律
4π r2
思考: 判断下列各点磁感强度的方向和大小.
1
1、5 点 :dB 0
8 7
+2
Idl + 3
3、7点
:dB

0 Idl
4π R2
2、4、6、8 点 :
R
6
+ 4
5
dB

0 Idl
4π R2
sin
450
太原理工大学大学物理
二、毕——萨定律应用举例
1. 载流长直导线的磁场
太原理工大学大学物理
实验表明:磁感应强度B遵从叠加原理.
任意载流导线在点 P 处的磁感强度
磁感强度叠加原理
B

dB
0 4

l
Idl r2
r0
电流元的磁场 + 磁场叠加原理
任意载流导 体的磁场
注意
v
B
v dB

B

dB
的区别
太原理工大学大学物理
v dB
0
v Idl

设1圆弧电阻R1 , 2圆弧电阻R2 因此B0 = 0
太原理工大学大学物理
例3 如图,正三角形导线框的边长为L,电阻均匀 分布. 求线框中心O点处的磁感应强度.
解:以三角形的任意两个顶点为 b I c
电流的输入、输出端,则三角形中 电流在中心产生磁场为零
B线框 0
I
O
Bao 0
a
Bbc

cos 1
B

0nI
2
(cos
2

cos
1)
太原理工大学大学物理
讨论
B

0nI
2
cos2

c os 1
1)无限长的螺线管1 π , 2 0 B 0nI
2)半无限长螺线管
1

π 2
,

2
0
B

1 2
0nI
1 2
0nI
B 0nI
O
x
太原理工大学大学物理
距p点x处取长为dx的元段,其上有ndx匝线
圈,相当于dI=nIdx的圆电流。
太原理工大学大学物理
dI在P点产生的磁感强度大小为
dB

R2dI 0
2(x2 + R) 2 3/2
dI N Idx nIdx L
各个元段在P点产生的磁感强度方向相,整 个螺旋线圈在P点产生的磁感强度为
B
dB 0nI
2
x2 x1
R2dx R2 + x2 3/2
太原理工大学大学物理
1
x1 o p
2
x2
++ + + + +x+ + + + + + + + +
B

0nI
2

x2
+
R2 + x22
x1

R2 + x12

x2 R2 + x22
cos 2
x1 R2 + x12
三、运动电荷的磁场
y 直导线AB长度为L,通有电流I,p点到直
B
导线的距离为a。如图建立坐标
dy r
y
oa
电流元的磁场
dB
* p
大小:
x
dB
0 4
Idy s in
r2
AI
方向:垂直于纸面向里
太原理工大学大学物理
y
B
2
dy r
y
oa
A 1
I
B

dB

0 4
B Idysin
A r 2
2( x2 + R )2 3/2
2)圆电流中心的磁场 B 0 I
2R
3)一段圆弧电流圆心处
I
R
o
太原理工大学大学物理
例1 如图所示,求o点的磁感应强度
解:Bab

0I 4R
ab
I
R
Bbc

1 4
0I
2R
oc
d
Bcd 0 方向垂直纸面向里
B
Bab
+ Bbc

0I 4R
+
0I
8R
太原理工大学大学物理
例2 两根导线沿半径方向引到铁环上A、B两点,并
在很远处与电源相连 ,求环心O 的磁感应强度. 解: O点的磁感应强度为 1、 2、 3、4、5段载流导线在O点产生 的磁感应强度的矢量和:
O点在3和4的延长线上, 5离O 点可看作无限远,故:
太原理工大学大学物理
设1圆弧弧长l1 , 2圆弧弧长l2 ,圆的周长为l
sin R

r
R o
r

x
dB
x * p
dB

0
Idl R
x 4π r2 r
r2 R2 + x2
B

IR 0
4πr3
2πR
0
dl

0 IR 2
2(x2 + R )2 3/ 2
太原理工大学大学物理
圆形载流导线的磁场分布
太原理工大学大学物理
讨论: 1)若线圈有N匝
B N 0IR2
y a cot, r a / sin

dB p*
x
dy ad / sin2
B 0I 2 sind 4 π a 1
B

0I
4πa
(cos1

cos2
)
太原理工大学大学物理
B

0I
4πa
(cos1

c os2 )
讨论:
I 2
B
1)无限长载流长直导线的磁场
0I 4 bo

30 I 4 L
bo
3L 2

2 3
太原理工大学大学物理
3.载流直螺线管的磁场
一长为L , 半径为R的载流密绕直螺线管,总 匝数为N,电流I. 求管内轴线上的磁感强度.
Ro p*
dx x
x
+++++++++++++ +
由圆形电流磁场公式
B

0IR 2
(2 x2 + R2)3/ 2

太原理工大学大学物理
毕—萨定律的数学表达式
v
v Idl

rv0
dB k
r2
dB
P
k 0 4
v dB
0 4
v Idl

rv0
r2
r
Id l
真空磁导率0 4π 107 N A2
在以Idl为轴线的任一圆周上 的各个点,由于距离r一定,θ也一 定,故dB的大小都相同,方向处处 沿圆周的切线方向.
§11.3 毕奥—萨伐尔定律
一、毕奥—萨伐尔定律
Idl
dB
把闭合电流分成许多 r
小段r,元段dl内电流密度 j
r
dB
I
与 dl同向, 乘积称为电
流元.
P*
r 电流元在空间任一P点产

Idl
生的磁场dB与r、θ有关
dB的大小
Idl sin
dB k r2
dB的方向 r 垂直于 与 组r 成的平
相关文档
最新文档