南宁中考数学试题及答案
2020年广西南宁市中考数学试卷【含答案】
2020年广西南宁市中考数学试卷一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)1. 下列实数是无理数的是()A.√2B.1C.0D.−52. 下列图形是中心对称图形的是()A. B. C. D.3. 2020年2月至5月,由广西教育厅主办,南宁市教育局承办的广西中小学“空中课堂”是同期全国服务中小学学科最齐、学段最全、上线最早的线上学习课程,深受广大师生欢迎.其中某节数学课的点击观看次数约889000次,则数据889000用科学记数法表示为()A.88.9×103B.88.9×104C.8.89×105D.8.89×1064. 下列运算正确的是()A.2x2+x2=2x4B.x3⋅x3=2x3C.(x5)2=x7D.2x7÷x5=2x25. 以下调查中,最适合采用全面调查的是()A.检测长征运载火箭的零部件质量情况B.了解全国中小学生课外阅读情况C.调查某批次汽车的抗撞击能力D.检测某城市的空气质量6. 一元二次方程x2−2x+1=0的根的情况是()A.有两个不等的实数根B.有两个相等的实数根C.无实数根D.无法确定7. 如图,在△ABC中,BA=BC,∠B=80∘,观察图中尺规作图的痕迹,则∠DCE的度数为()A.60∘ B.65∘ C.70∘ D.75∘8. 一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是()A.16B.14C.13D.129. 如图,在△ABC中,BC=120,高AD=60,正方形EFGH一边在BC上,点E,F 分别在AB,AC上,AD交EF于点N,则AN的长为()A.15B.20C.25D.3010. 甲、乙两地相距600km,提速前动车的速度为vkm/ℎ,提速后动车的速度是提速前的1.2倍,提速后行车时间比提速前减少20min,则可列方程为()A.600v−13=6001.2vB.600v=6001.2v−13C.600v−20=6001.2vD.600v=6001.2v−2011. 《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),则AB 的长是( )A.50.5寸B.52寸C.101寸D.104寸12. 如图,点A ,B 是直线y =x 上的两点,过A ,B 两点分别作x 轴的平行线交双曲线y =1x (x >0)于点C ,D .若AC =√3BD ,则3OD 2−OC 2的值为( )A.5B.3√2C.4D.2√3二、填空题(本大题共6小题,每小题3分,共18分.) 13. 如图,在数轴上表示的x 的取值范围是________.14. 计算:√12−√3=________.15. 某射击运动员在同一条件下的射击成绩记录如下:(结果保留小数点后一位).16. 如图,某校礼堂的座位分为四个区域,前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,前区最后一排与后区各排的座位数相同,后区一共有10排,则该礼堂的座位总数是________.17. 以原点为中心,把点M (3, 4)逆时针旋转90∘得到点N ,则点N 的坐标为________. 18. 如图,在边长为2√3的菱形ABCD 中,∠C =60∘,点E ,F 分别是AB ,AD 上的动点,且AE =DF ,DE 与BF 交于点P .当点E 从点A 运动到点B 时,则点P 的运动路径长为________.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19. 计算:−(−1)+32÷(1−4)×2.20. 先化简,再求值:x+1x ÷(x−1x),其中x=3.21. 如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF.(1)求证:△ABC≅△DEF;(2)连接AD,求证:四边形ABED是平行四边形.22. 小手拉大手,共创文明城.某校为了了解家长对南宁市创建全国文明城市相关知识的知晓情况,通过发放问卷进行测评,从中随机抽取20份答卷,并统计成绩(成绩得分用x表示,单位:分),收集数据如下:90 82 99 86 98 96 90 100 89 83 87 88 81 90 93 100 100 96 92 100整理数据:分析数据:(1)直接写出上述表格中a,b,c的值;(2)该校有1600名家长参加了此次问卷测评活动,请估计成绩不低于90分的人数是多少?(3)请从中位数和众数中选择一个量,结合本题解释它的意义.23. 如图,一艘渔船位于小岛B的北偏东30∘方向,距离小岛40nmile的点A处,它沿着点A的南偏东15∘的方向航行.(1)渔船航行多远距离小岛B最近(结果保留根号)?(2)渔船到达距离小岛B最近点后,按原航向继续航行20√6nmile到点C处时突然发生事故,渔船马上向小岛B上的救援队求救,问救援队从B处出发沿着哪个方向航行到达事故地点航程最短,最短航程是多少(结果保留根号)?24. 倡导垃圾分类,共享绿色生活.为了对回收的垃圾进行更精准的分类,某机器人公司研发出A型和B型两款垃圾分拣机器人,已知2台A型机器人和5台B型机器人同时工作2ℎ共分拣垃圾3.6吨,3台A型机器人和2台B型机器人同时工作5ℎ共分拣垃圾8吨.(1)1台A型机器人和1台B型机器人每小时各分拣垃圾多少吨?(2)某垃圾处理厂计划向机器人公司购进一批A型和B型垃圾分拣机器人,这批机器人每小时一共能分拣垃圾20吨.设购买A型机器人a台(10≤a≤45),B型机器人b台,请用含a的代数式表示b;(3)机器人公司的报价如下表:w最少?请说明理由.25. 如图,在△ACE中,以AC为直径的⊙O交CE于点D,连接AD,且∠DAE=∠ACE,连接OD并延长交AE的延长线于点P,PB与⊙O相切于点B.(1)求证:AP是⊙O的切线;(2)连接AB交OP于点F,求证:△FAD∽△DAE;(3)若tan∠OAF=12,求AEAP的值.26. 如图1,在平面直角坐标系中,直线l1:y=x+1与直线l2:x=−2相交于点D,点A 是直线l2上的动点,过点A作AB⊥l1于点B,点C的坐标为(0, 3),连接AC,BC.设点A的纵坐标为t,△ABC的面积为s.(1)当t=2时,请直接写出点B的坐标;(2)s关于t的函数解析式为s={14t2+bt−54,t<−1t>5a(t+1)(t−5),−1<t<5,其图象如图2所示,结合图1、2的信息,求出a与b的值;(3)在l2上是否存在点A,使得△ABC是直角三角形?若存在,请求出此时点A的坐标和△ABC的面积;若不存在,请说明理由.参考答案与试题解析2020年广西南宁市中考数学试卷一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)1.A2.D3.C4.D5.A6.B7.B8.C9.B10.A11.C12.C二、填空题(本大题共6小题,每小题3分,共18分.)13.x<114.√315.0.816.556个17.(−4, 3)18.43π三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.原式=1+9÷(−3)×2=1−3×2=1−6=−5.20.原式=x+1x÷(x2x−1x)=x+1x÷x2−1x=x+1x⋅x(x+1)(x−1)=1x−1,当x=3时,原式=13−1=12.21.证明:∵ BE=CF,∴ BE+EC=CF+EC,∴ BC=EF,在△ABC和△DEF中,{AB=DEAC=DFBC=EF,∴ △ABC≅△DEF(SSS);证明:由(1)得:△ABC≅△DEF,∴ ∠B=∠DEF,∴ AB // DE,又∵ AB=DE,∴ 四边形ABED是平行四边形.22.将这组数据重新排列为:81,82,83,86,87,88,89,90,90,90,92,93,96,96,98,99,100,100,100,100,∴ a=5,b=90+922=91,c=100;估计成绩不低于90分的人数是1600×1320=1040(人);中位数,在被调查的20名学生中,中位数为91分,有一半的人分数都是再91分以上. 23.过B 作BM ⊥AC 于M ,由题意可知∠BAM =45∘,则∠ABM =45∘,在Rt △ABM 中,∵ ∠BAM =45∘,AB =40nmile , ∴ BM =AM =√22AB =20√2nmile , ∴ 渔船航行20√2nmile 距离小岛B 最近; ∵ BM =20√2nmile ,MC =20√6nmile , ∴ tan ∠MBC =MC BM=√620√2=√3,∴ ∠MBC =60∘,∴ ∠CBG =180∘−60∘−45∘−30∘=45∘,在Rt △BCM 中,∵ ∠CBM =60∘,BM =20√2nmile , ∴ BC =BMcos 60=2BM =40√2nmile ,故救援队从B 处出发沿点B 的南偏东45∘的方向航行到达事故地点航程最短,最短航程是40√2nmile .24.1台A 型机器人和1台B 型机器人每小时各分拣垃圾x 吨和y 吨, 由题意可知:{(2x +5y)×2=3.6(3x +2y)×5=8 ,解得:{x =0.4y =0.2,答:1台A 型机器人和1台B 型机器人每小时各分拣垃圾0.4吨和0.2吨. 由题意可知:0.4a +0.2b =20, ∴ b =100−2a(10≤a ≤45). 当10≤a <30时, 此时40≤b ≤80,∴ w =20×a +0.8×12(100−2a)=0.8a +960, 当a =10时,此时w 有最小值,w =968万元, 当30≤a ≤35时,此时30≤b ≤40,∴ w =0.9×20a +0.8×12(100−2a)=−1.2a +960, 当a =35时,此时w 有最小值,w =918万元, 当35<a ≤45时, 此时10≤b <30,∴ w =0.9×20a +12(100−2a)=−6a +1200 当a =45时,w 有最小值,此时w =930,答:选购A 型号机器人35台时,总费用w 最少,此时需要918万元. 25.∵ AC 为直径, ∴ ∠ADC =90∘, ∴ ∠ACD +∠DAC =90∘, ∵ ∠DAE =∠ACE ,∴ ∠DAC +∠DAE =90∘, 即∠CAE =90∘, ∴ AP 是⊙O 的切线; 连接DB ,如图1, ∵ PA 和PB 都是切线,∴ PA=PB,∠OPA=∠OPB,PO⊥AB,∵ PD=PD,∴ △DPA≅△DPB(SAS),∴ AD=BD,∴ ∠ABD=∠BAD,∵ ∠ACD=∠ABD,又∠DAE=∠ACE,∴ ∠DAF=∠DAF,∵ AC是直径,∴ ∠ADE=∠ADC=90∘,∴ ∠ADE=∠AFD=90∘,∴ △FAD∽△DAE;∵ ∠AFO=∠OAP=90∘,∠AOF=∠POA,∴ △AOF∽△POA,∴ OFOA =AFPA,∴ OAPA =OFAF=tan∠OAF=12,∴ PA=2AO=AC,∵ ∠AFD=∠CAE=90∘,∠DAF=∠ABD=∠ACE,∴ △AFD∽△CAE,∴ FDAE =AFCA,∴ FDAF=AECA=AEAP,∵ tan∠OAF=OFAF=12,不妨设OF=x,则AF=2x,∴ OD=OA=√5x,∴ FD=OD−OE=(√5−1)x,∴ FDAF=(√5−1)x2x=√5−12,∴ AEAP=√5−12.26.如图1,连接AG,当t=2时,A(−2, 2),设B(x, x+1),在y=x+1中,当x=0时,y=1,∴ G(0, 1),∵ AB⊥l1,∴ ∠ABG=90∘,∴ AB2+BG2=AG2,即(x+2)2+(x+1−2)2+x2+(x+1−1)2=(−2)2+(2−1)2,解得:x1=0(舍),x2=−12,∴ B(−12, 12);如图2可知:当t =7时,s =4,把(7, 4)代入s =14t 2+bt −54中得:494+7b −54=4, 解得:b =−1,如图3,过B 作BH // y 轴,交AC 于H ,由(1)知:当t =2时,A(−2, 2),B(−12, 12), ∵ C(0, 3),设AC 的解析式为:y =kx +b , 则{−2k +b =2b =3 ,解得{k =12b =3 , ∴ AC 的解析式为:y =12x +3, ∴ H(−12, 114), ∴ BH =114−12=94,∴ s =12BH ⋅|x C −x A |=12×94×2=94,把(2, 94)代入s =a(t +1)(t −5)得:a(2+1)(2−5)=94, 解得:a =−14;存在,设B(x, x +1), 分两种情况:①当∠CAB =90∘时,如图4,∵ AB ⊥l 1,∴ AC // l 1,∵ l 1:y =x +1,C(0, 3), ∴ AC:y =x +3, ∴ A(−2, 1), ∵ D(−2, −1),在Rt △ABD 中,AB 2+BD 2=AD 2,即(x +2)2+(x +1−1)2+(x +2)2+(x +1+1)2=22, 解得:x 1=−1,x 2=−2(舍),∴ B(−1, 0),即B 在x 轴上,∴ AB =√12+12=√2,AC =√22+22=2√2,∴ S△ABC=12AB⋅AC=12⋅√2⋅2√2=2;②当∠ACB=90∘时,如图5,∵ ∠ABD=90∘,∠ADB=45∘,∴ △ABD是等腰直角三角形,∴ AB=BD,∵ A(−2, t),D(−2, −1),∴ (x+2)2+(x+1−t)2=(x+2)2+(x+1+1)2,(x+1−t)2=(x+2)2,x+1−t=x+2或x+1−t=−x−2,解得:t=−1(舍)或t=2x+3,Rt△ACB中,AC2+BC2=AB2,即(−2)2+(t−3)2+x2+(x+1−3)2=(x+2)2+(x+1−t)2,把t=2x+3代入得:x2−3x=0,解得:x=0或3,当x=3时,如图5,则t=2×3+3=9,∴ A(−2, 9),B(3, 4),∴ AC=√22+(9−3)2=2√10,BC=√32+(4−3)2=√10,∴ S△ABC=12AC⋅BC=12⋅√10⋅2√10=10;当t=0时,如图6,此时,A(−2, 3),AC=2,BC=2,∴ S△ABC=12AC⋅BC=12×2×2=2.。
2023年广西南宁市中考数学试题及参考答案
2023年广西南宁市中考数学试题及参考
答案
一、选择题
1. 一台电视机原价5000元,先降价20%,然后又降价10%,
现在的价格是多少元?
A. 4000元
B. 4400元
C. 4500元
D. 4600元
2. 在一个几何图形中,如果一个角为90°,则这个角是什么角?
A. 顶角
B. 平角
C. 直角
D. 钝角
3. 图1是一个正方形,边长为40厘米。
其中的线段AB为边长的1/5,线段CD为边长的1/3,求线段BE的长度是多少厘米?
![图1](image1.png)
A. 20
B. 15
C. 12
D. 10
二、填空题
1. 某公司制作计划生产个产品,已完成7956个产品的制作,
还剩下____个产品未完成。
2. 某股票第1天涨了5%,第2天下跌了10%,那么第2天的
收盘价相对于第1天的涨跌幅为____。
3. 若a=5、b=3,则a的平方加b的平方等于____。
三、解答题
1. 某超市促销活动,购买3件相同商品可以打折,原价100元,现在以90元的价格销售,如果购买5件相同商品,应付多少元?
2. 现有一条长为28厘米的线段,将它分成3段,比为1:3:4,求第一段的长度是多少厘米?
四、参考答案
一、选择题
1. B
2. C
3. D
二、填空题
1. 4566
2. -4%
3. 34
三、解答题
1. 150元
2. 4厘米
以上是2023年广西南宁市中考数学试题及参考答案。
广西南宁市(六市同城)中考数学真题试题(含解析)
h3 3 3 广西南宁市(六市同城)xx 年中考数学真题试题(考试时间:120 分钟 满分:120 分)注意事项:1. 本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两部分,请在答题卡上作答,在试卷上作答无效。
2. 答题前,请认真阅读答题卡上的注意事项。
3. 不能使用计算器,考试结束前,将本试卷和答题卡一并交回。
一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中只有一项是符合要求的,用 2B 铅笔把答题卡上对应题目的答案标号涂黑.)1. -3 的倒数是 A. -3B. 3C. -1D. 1【答案】C【考点】倒数定义,有理数乘法的运算律,【解析】根据倒数的定义,如果两个数的乘积等于 1,那么我们就说这两个数互为倒数.除 0 以外的数都存在倒数。
因此-3 的倒数为-1【点评】主要考察倒数的定义2. 下列美丽的壮锦图案是中心对称图形的是【答案】A【考点】中心对称图形【解析】在平面内,如果把一个图形绕某个点旋转 180°后,能与自身重合,那么这个图形就叫做中心对称图形。
【点评】掌握中心对称图形的概念,中心对称图形是要寻找对称中心,旋转 180 度后两部分重合.3.xx 年俄罗斯世界杯开幕式于 6 月 14 日在莫斯科卢日尼基球场举行,该球场可容纳 81000名观众,其中数据 81000 用科学计数法表示为()A. 81103B.8.1104C.8.1105D. 0.81105【答案】B【考点】科学计数法【解析】81000 8.1104,故选 B【点评】科学计数法的表示形式为a 10n的形式,其中1 a 10,n为整数4.某球员参加一场篮球比赛,比赛分 4 节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为()A.7 分B.8 分C.9 分D.10 分【答案】 B【考点】求平均分 【解析】124 10 684【点评】本题考查用折线图求数据的平均分问题5. 下列运算正确的是A. a (a +1)=a 2+1B. (a 2)3=a 5C. 3a 2+a =4a 3D. a 5÷a 2=a 3【答案】D【考点】整式的乘法;幂的乘方;整式的加法;同底数幂的除法【解析】选项 A 错误,直接运用整式的乘法法则,用单项式去乘多项式的每一项,再把结果相加,可得 a (a +1)=a 2+a ;选项 B 错误,直接运用幂的乘方法则,底数不变,指数相乘,可得(a 2)3=a 6; 选项 C 错误,直接运用整式的加法法则,3a 2 和 a 不是同类项,不可以合并;选项 D 正确,直接运用同底数幂的除法,底数不变,指数相减,可得 a 5÷a 2=a 3. 【点评】本题考查整式的四则运算,需要记住运算法则及其公式,属于基础题。
南宁市中考数学试题及答案(详细解析版)
(A)4(B)5 (C)6(D)7
答案:C
考点:圆和三角形、轴对称(最短路径)(初二上-轴对称,初三上-圆)。
【海壁分析】关键是找到点M关于AB对称点C,连接CN,则与AB的交点就是我们要找的点P,此时PM+PN最小。ΔPMN的周长最小。
答案:
考点:菱形的性质,反比例函数。(初二下-四边形;初三下-反比例函数)
【海壁分析】这是海壁总结题型中常见的求解析式题型。设菱形的边长为 ,根据菱形的性质,可知A( ),再根据AB// 轴,可知B点的坐( ),因为点A在 上,
所以 ,解得 = ,A( )
答案:
考点:概率(初三上-概率)
【海壁分析】奇数有1、3、5总共3个,所以取出奇数的概率是 。
16.如图7,在正方形ABCD的外侧,作等边△ADE,则 BED的度数是.
答案:
考点:正方形和等边三角形性质。(初二上-轴对称;初二下-四边形)
【海壁分析】这是海壁总结特殊三角形与四边形的经典模型之一,利用正方形四边相等,AB=AD等
答案:A
考点:等腰三角形角度计算(初二上-轴对称)。
8.下列运算正确的是().
(A) (B) (C) (D)
答案:C
考点:幂的乘方、积的乘方,整式和二次根式的化简(初二上-整式乘除,幂的运算;初二下-二次根式)。
9.一个正多边形的内角和为540°,则这个正多边形的每个外角等于().
(A)60°(B)72°(C)90° (D)108°
三、(本大题共2小题,每小题满分6分,共12分)
19.计算: .
原式=1+1-2 1+2=2
考点:零指数幂;负数的乘方;三角函数值;二次根式;实数。(初一上-有理数,初二下-二次根式,初三下-三角函数)
2024年广西中考数学试卷及答案解析
2024年广西中考数学试卷一、单项选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑。
)1.(3分)下列选项记录了我国四个直辖市某年一月份的平均气温,其中气温最低的是()A.北京﹣4.6℃B.上海5.8℃C.天津﹣3.2℃D.重庆8.1℃2.(3分)端午节是中国传统节日,下列与端午节有关的文创图案中,成轴对称的是()A.B.C.D.3.(3分)广西壮族自治区统计局发布的数据显示,2023年全区累计接待国内游客8.49亿人次.将849000000用科学记数法表示为()A.0.849×109B.8.49×108C.84.9×107D.849×1064.(3分)榫卯是我国传统建筑及家具的基本构件.燕尾榫是“万榫之母”,为了防止受拉力时脱开,榫头成梯台形,形似燕尾.如图是燕尾榫的带榫头部分,它的主视图是()A.B.C.D.5.(3分)不透明袋子中装有白球2个,红球1个,这些球除了颜色外无其他差别.从袋子中随机取出1个球,取出白球的概率是()A.1B.C.D.6.(3分)如图,2时整,钟表的时针和分针所成的锐角为()A.20°B.40°C.60°D.80°7.(3分)如图,在平面直角坐标系中,点O为坐标原点,点P的坐标为(2,1),则点Q的坐标为()A.(3,0)B.(0,2)C.(3,2)D.(1,2)8.(3分)激光测距仪L发出的激光束以3×105km/s的速度射向目标M,t s后测距仪L收到M反射回的激光束.则L到M的距离d km与时间t s的关系式为()A.d=t B.d=3×105t C.d=2×3×105t D.d=3×106t9.(3分)已知点M(x1,y1),N(x2,y2)在反比例函数y=的图象上,若x1<0<x2,则有()A.y1<0<y2B.y2<0<y1C.y1<y2<0D.0<y1<y210.(3分)如果a+b=3,ab=1,那么a3b+2a2b2+ab3的值为()A.0B.1C.4D.911.(3分)《九章算术》是我国古代重要的数学著作,其中记载了一个问题,大致意思为:现有田出租,第一年3亩1钱,第二年4亩1钱,第三年5亩1钱.三年共得100钱.问:出租的田有多少亩?设出租的田有x亩,可列方程为()A.++=1B.++=100C.3x+4x+5x=1D.3x+4x+5x=10012.(3分)如图,边长为5的正方形ABCD,E,F,G,H分别为各边中点.连接AG,BH,CE,DF,交点分别为M,N,P,Q,那么四边形MNPQ的面积为()A.1B.2C.5D.10二、填空题(本大题共6小题,每小题2分,共12分。
2021年广西南宁市中考数学试卷(附答案详解)
2021年广西南宁市中考数学试卷(附答案详解)2021年广西南宁市中考数学试卷一、选择题(共12小题,共36.0分)1.下列各数中是有理数的是()A.πB.√2C.3√3D.2.如图是一个几何体的主视图,则该几何体是()A。
B。
C。
D.3.如图,XXX从A入口进入博物馆参观,参观后可从B、C、D三个出口走出,他恰好从C出口走出的概率是()A。
4 B。
3 C。
2 D。
34.我国天问一号火星探测器于2021年5月15日成功着陆火星表面。
经测算,地球跟火星最远距离约xxxxxxxx0千米,其中数据xxxxxxxx0科学记数法表示为()A。
4×109 B。
40×107 C。
4×108 D。
0.4×1095.如图是某市一天的气温随时间变化的情况,下列说法正确的是()A。
这一天最低温度是−4℃B。
这一天12时温度最高C。
最高温比最低温高8℃ D。
时至8时气温呈下降趋势6.下列运算正确的是()A。
π2⋅π3=π5 B。
(π2)3=π5 C。
π6÷π2=π3 D。
3π2−2π=π27.平面直角坐标系内与点π(3,4)关于原点对称的点的坐标是()A。
(−3,4) B。
(−3,−4) C。
(3,−4) D。
(4,3)8.如图,⊙XXX的半径OB为4,ππ⊥ππ于点D,∠πππ=30°,则OD的长是()A。
√2 B。
√3 C。
2 D。
39.一次函数π=2π+1的图象不经过()A。
第一象限 B。
第二象限 C。
第三象限 D。
第四象限10.《九章算术》是人类科学史上应用数学的“算经之首”,书中记载:今有三人共车,二车空;二人共车,九人步。
问:人与车各几何?译文:若3人坐一辆车,则两辆车是空的;若2人坐一辆车,则9人需要步行,问:人与车各多少?设有x辆车,人数为y,根据题意可列方程组为()A。
{π=2π+9π=3π−2B。
y=2x+9y=3(x-2)C.y=2x-9y=3x-2D.y=2x-9y=3(x-2)11.(2021·广西壮族自治区崇左市·历年真题) 如图,矩形纸片ABCD,A。
2022年广西南宁市中考数学真题及答案
2022年广西南宁市中考数学真题及答案本试卷分第一卷和第二卷,总分值120分,考试时间120分钟。
第一卷〔选择题,共36分〕一、选择题〔本大题共12小题,每题3分,共36分〕1. 如果水位升高3m 时水位变化记作+3m ,那么水位下降3m 时水位变化记作 ( )(A)-3m (B)3 m (C)6 m (D) -6 m2.以下列图形中,是轴对称图形的是 ( )(A ) 〔B 〕〔C 〕〔D 〕3. 南宁东高铁火车站位于南宁市青秀区凤岭北路,火车站总建筑面积约为267000平方米,其中数据267000用科学记数法表示为 ( )〔A 〕26.7×104〔B 〕2.67×104〔C 〕2.67×105〔D 〕0.267×1064. 要使二次根式2+x 在实数范围内有意义,那么实数x 的取值范围是( ) 〔A 〕x >2〔B 〕x ≥2〔C 〕x >2-〔D 〕x ≥2-5.以下运算正确的选项是( )〔A 〕2a ·3a = 6a 〔B 〕()32x =6x 〔C 〕6m ÷2m =3m 〔D 〕6a -4a =26.在直径为200cm 的圆柱形油槽内装入一些油以后,截面如图1所示,假设油面的宽AB =160cm ,那么油的最大深度为 ( )〔A 〕40cm 〔B 〕60cm 〔C 〕80cm 〔D 〕100cm 7.数据1,2,4,0,5,3,5的中位数和众数分别是( ) 〔A 〕3和2 〔B 〕3和3 〔C 〕0和5 〔D 〕3和58.如图2所示把一张长方形纸片对折,折痕为AB ,再以AB 的中点O 为顶点,把平角∠AOB 三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O 为顶点的直角三角形,那么剪出的直角三角形全部展开铺平后得到的平面图形一定是 ( ) 图2(A )正三角形 〔B 〕正方形 〔C 〕正五边形 〔D 〕正六边形9.“黄金1号〞玉米种子的价格为5元/千克,如果一次购置2千克以上的种子,超过2千克局部的种子的价格打6折,设购置种子数量为x 千克,付款金额y 为元,那么y 与x 的函数关系的图像大致是 ( )〔A 〕〔B 〕〔C 〕〔D 〕10.如图3,二次函数y =x x 22+-,当1-<x <a 时,y 随x 的增大而增大,那么实数a 的取值范围是 ( ) 〔A 〕a >1〔B 〕1-<a ≤1〔C 〕a >0 〔D 〕1-<a <1 11.如图4,在ABCD 中,点E 是AD 的中点,延长BC到点F ,使CF : BC =1 : 2,连接DF ,EC .假设AB=5,AD =8,sin B =54,那么DF 的长等于 ( )〔A 〕10〔B 〕15〔C 〕17〔D 〕5212.点A 在双曲线y x2-=上,点B 在直线4-=x y 上,且A ,B 两点关于y 轴对称,设点A 的坐标为〔m ,n 〕,那么n m +mn的值是( )〔A 〕-10 〔B 〕-8 〔C 〕6 〔D 〕4第二卷〔非选择题,共84分〕二、填空题〔本大题共6小题,每题3分,共18分〕 13.比较大小: 5-3〔填“>〞“<〞或“=〞〕.14.如图5,直线a ∥b ,∠1=120°,那么∠2的度数是°. 15.因式分解:a a 622-=.16.第45届世界体操锦标赛将于2022年10月3日至12日在南宁市隆重举行,届时某校将从小记者团内负责体育赛事报道的3名同学〔2男1女〕中任选2名前往采访,那么选出的2名同学恰好是一男一女的概率是.17.如图6,一渔船由西往东航行,在A 点测得海岛C 位于北偏东60°的方向,前进20海里到达B 点,此时,测得海岛C 位于北偏东30° 的方向,那么海岛C 到航线AB 的距离CD 等于海里. 18. 如图7,△ABC 是等腰直角三角形,AC =BC =a ,以斜边AB 上的点 O 为圆心的圆分别与AC ,BC 相切与点E ,F , 与AB 分别交于点 G ,H ,且 EH 的延长线和 CB 的延长线交于点D ,那么CD 的长为.三、〔本大题共2小题,每题总分值6分,共12分〕 19. 计算:()21-︒-45sin 4+3-+820. 解方程:2-x x 422--x 1=四、〔本大题共2小题,每题总分值8分,共16分〕 21. 如图8,△ABC 三个顶点的坐标分别为A 〔1,1〕,B 〔4,2〕,C 〔3,4〕.(1) 请画出△ABC 向左平移5个单位长度后得到的△A 1B 1C 1;A 2B 2C 2; (2) 请画出△ABC 关于原点对称的△ (3) 在x 轴上求作一点P ,使△PAB 的周长最小,请画出△PAB ,并直接写...出.P 的坐标. 22.考试前,同学们总会采用各种方式缓解考试压力,以最正确状态迎接考试. 某校对该校九年级的局部同学做了一次内容为“最适合自己的考前减压方式〞的调查活动,学校将减压方式分为五类,同学们可根据自己的情况必选且只选其中一类,学校收集整理数据后,绘制了图19-和图29-两幅不完整的统计图,请根据统计图中的信息解答以下问题:(1) 这次抽样调查中,一共抽查了多少名学生? (2) 请补全条形统计图;(3) 请计算扇形统计图中“享受美食〞所对应扇形的圆心角的度数;(4) 根据调查结果,估计该校九年级500名学生中采用“听音乐〞的减压方式的人数. 五、〔本大题总分值8分〕23.如图10,AB ∥FC ,D 是AB 上一点,DF 交AC 于点E ,DE =FE ,分别延长FD 和CB 交于点G .(1) 求证:△ADE ≌△CFE ;图10(2) 假设GB =2,BC =4,BD =1,求AB 的长. 六、〔本大题总分值10分〕24.“保护好环境,拒绝冒黑烟〞.某市公交公司将淘汰某一条线路上“冒黑烟〞较严重的公交车,方案购置A 型和B 型两种环保节能公交车共10辆. 假设购置A 型公交车1辆,B 型公交车2辆,共需400万元;假设购置A 型公交车2辆,B 型公交车1辆,共需350万元. (1) 求购置A 型和B 型公交车每辆各需多少万元?(2) 预计在该线路上A 型和B 型公交车每辆年均载客量分别为60万人次和100万人次.假设该公司购置A 型和B 型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客量总和不少于680万人次,那么该公司有哪几种购车方案?哪种购车方案的总费用最少?最少总费用是多少?七、〔本大题总分值10分〕25. 如图111-,四边形ABCD 是正方形,点E 是边BC 上一点,点F 在射线CM 上,∠AEF =90°,AE =EF ,过点F 作射线BC 的垂线,垂足为H ,连接AC . (1) 试判断BE 与FH 的数量关系,并说明理由; (2) 求证:∠ACF =90°;(3) 连接AF ,过A ,E ,F 三点作圆,如图211-.假设EC =4,∠CEF =15°,求 AE 的长. 八、〔本大题总分值10分〕26.在平面直角坐标系中, 抛物线=y 2x +()k x k --1与直线1+=kx y 交于A ,B 两点,点A 在点B的左侧.(1) 如图112-,当1=k 时,直接写出....A ,B 两点的坐标;(2) 在(1)的条件下,点P 为抛物线上的一个动点,且在直线AB 下方,试求出△ABP 面积的最大值及此时点P 的坐标;(3) 如图212-,抛物线=y 2x +()k x k --1()0>k 与x 轴交于C ,D 两点〔点C 在点D 的左侧〕.在直线1+=kx y 上是否存在唯一一点Q ,使得∠OQC =90°?假设存在,请求出此时k 的值;假设不存在,请说明理由.试卷答案1.答案:A 由正数负数的概念可得。
广西南宁市兴宁区达标名校2024届中考联考数学试卷含解析
广西南宁市兴宁区达标名校2024学年中考联考数学试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是()A.B.C.D.2.如图,在△ABC中,过点B作PB⊥BC于B,交AC于P,过点C作CQ⊥AB,交AB延长线于Q,则△ABC的高是()A.线段PB B.线段BC C.线段CQ D.线段AQ3.下列计算正确的是().A.(x+y)2=x2+y2B.(-12xy2)3=-16x3y6C.x6÷x3=x2D.2(2)=24.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=()A.20°B.30°C.40°D.50°5.如图,Rt△ABC中,∠C=90°,∠A=35°,点D在边BC上,BD=2CD.把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=()A.35°B.60°C.70°D.70°或120°6.如图,正方形ABCD的边长为4,点M是CD的中点,动点E从点B出发,沿BC运动,到点C时停止运动,速度为每秒1个长度单位;动点F从点M出发,沿M→D→A远动,速度也为每秒1个长度单位:动点G从点D出发,沿DA运动,速度为每秒2个长度单位,到点A后沿AD返回,返回时速度为每秒1个长度单位,三个点的运动同时开始,同时结束.设点E的运动时间为x,△EFG的面积为y,下列能表示y与x的函数关系的图象是()A.B.C.D.7.在3,0,-2,-四个数中,最小的数是()A.3 B.0 C.-2 D.-8.下面调查中,适合采用全面调查的是()A.对南宁市市民进行“南宁地铁1号线线路”B.对你安宁市食品安全合格情况的调查C.对南宁市电视台《新闻在线》收视率的调查D.对你所在的班级同学的身高情况的调查9.下列四个几何体中,左视图为圆的是( )A .B .C .D .10.已知一元二次方程ax 2+ax ﹣4=0有一个根是﹣2,则a 值是( ) A .﹣2B .23C .2D .4二、填空题(共7小题,每小题3分,满分21分)11.如图,在平面直角坐标系中,Rt △ABO 的顶点O 与原点重合,顶点B 在x 轴上,∠ABO=90°,OA 与反比例函数y=kx的图象交于点D ,且OD=2AD ,过点D 作x 轴的垂线交x 轴于点C .若S 四边形ABCD =10,则k 的值为 .12.计算a 3÷a 2•a 的结果等于_____. 13.下图是在正方形网格中按规律填成的阴影,根据此规律,则第n 个图中阴影部分小正方形的个数是 .14.三角形的每条边的长都是方程2680x x -+=的根,则三角形的周长是 .15.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2019次运动后,动点P 的坐标是_______.16.如图,在菱形ABCD 中,点E 、F 在对角线BD 上,BE=DF=13BD ,若四边形AECF 为正方形,则tan ∠ABE=_____.17.8的算术平方根是_____. 三、解答题(共7小题,满分69分)18.(10分)一定数量的石子可以摆成如图所示的三角形和四边形,古希腊科学家把1,3,6,10,15,21,…,称为“三角形数”;把1,4,9,16,25,…,称为“正方形数”.将三角形、正方形、五边形都整齐的由左到右填在所示表格里: 三角形数 1 3 6 10 15 21 a … 正方形数 1 4 9 16 25 b 49 … 五边形数151222C5170…(1)按照规律,表格中a=___,b=___,c=___.(2)观察表中规律,第n 个“正方形数”是________;若第n 个“三角形数”是x ,则用含x 、n 的代数式表示第n 个“五边形数”是___________.19.(5分)某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x 元,每星期的销售量为y 件.(1)求y 与x 之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?20.(8分)如图,用红、蓝两种颜色随机地对A ,B ,C 三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法(画树状图或列表)求A ,C 两个区域所涂颜色不相同的概率.21.(10分)如图,要修一个育苗棚,棚的横截面是Rt ABC ,棚高 1.5m AB =,长10m d =,棚顶与地面的夹角为27ACB ∠=︒.求覆盖在顶上的塑料薄膜需多少平方米(结果保留小数点后一位).(参考数据:sin 270.45︒=,cos270.89︒=,tan 270.51︒=)22.(10分)在平面直角坐标系xOy 中,将抛物线21:23G y mx =+(m ≠0)向右平移3个单位长度后得到抛物线G 2,点A 是抛物线G 2的顶点. (1)直接写出点A 的坐标;(2)过点(0,3)且平行于x 轴的直线l 与抛物线G 2交于B ,C 两点. ①当∠BAC =90°时.求抛物线G 2的表达式; ②若60°<∠BAC <120°,直接写出m 的取值范围.23.(12分)如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD .小明在山坡的坡脚A 处测得宣传牌底部D 的仰角为60°,沿山坡向上走到B 处测得宣传牌顶部C 的仰角为45°.已知山坡AB 的坡度i =1:,AB =10米,AE =15米,求这块宣传牌CD 的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.414,≈1.732)24.(14分)如图,在四边形ABCD 中,∠ABC =90°,AB =3,BC =4,CD =10,DA =55,求BD 的长.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解题分析】此题运用圆锥的性质,同时此题为数学知识的应用,由题意蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短,就用到两点间线段最短定理.【题目详解】解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM′上的点(P′)重合,而选项C还原后两个点不能够重合.故选D.点评:本题考核立意相对较新,考核了学生的空间想象能力.2、C【解题分析】根据三角形高线的定义即可解题.【题目详解】解:当AB为△ABC的底时,过点C向AB所在直线作垂线段即为高,故CQ是△ABC的高,故选C.【题目点拨】本题考查了三角形高线的定义,属于简单题,熟悉高线的作法是解题关键.3、D【解题分析】分析:根据完全平方公式、积的乘方法则、同底数幂的除法法则和算术平方根的定义计算,判断即可.详解:(x+y)2=x2+2xy+y2,A错误;(-12xy2)3=-18x3y6,B错误;x6÷x3=x3,C错误;=2,D正确;故选D.点睛:本题考查的是完全平方公式、积的乘方、同底数幂的除法以及算术平方根的计算,掌握完全平方公式、积的乘方法则、同底数幂的除法法则和算术平方根的定义是解题的关键.4、C【解题分析】由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.【题目详解】∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°−50°=40°.故选C.【题目点拨】本题主要考查平行线的性质,熟悉掌握性质是关键.5、D【解题分析】①当点B落在AB边上时,根据DB=DB1,即可解决问题,②当点B落在AC上时,在RT△DCB2中,根据∠C=90°,DB2=DB=2CD可以判定∠CB2D=30°,由此即可解决问题.【题目详解】①当点B落在AB边上时,∵,∴,∴,②当点B 落在AC 上时, 在中,∵∠C=90°, ,∴,∴,故选D. 【题目点拨】本题考查的知识点是旋转的性质,解题关键是考虑多种情况,进行分类讨论. 6、A 【解题分析】当点F 在MD 上运动时,0≤x <2;当点F 在DA 上运动时,2<x≤4.再按相关图形面积公式列出表达式即可. 【题目详解】解:当点F 在MD 上运动时,0≤x <2,则: y=S 梯形ECDG -S △EFC -S △GDF =()()()2421144224222x x x x x x x -+⨯--+-⨯-=+, 当点F 在DA 上运动时,2<x≤4,则: y=()142244162x x ⎡⎤--⨯⨯=-+⎣⎦, 综上,只有A 选项图形符合题意,故选择A. 【题目点拨】本题考查了动点问题的函数图像,抓住动点运动的特点是解题关键. 7、C 【解题分析】根据比较实数大小的方法进行比较即可.根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解. 【题目详解】因为正数大于负数,两个负数比较大小,绝对值较大的数反而较小, 所以,所以最小的数是, 故选C. 【题目点拨】此题主要考查了实数的大小的比较,正数都大于0,负数都小于0,两个负数绝对值大的反而小.8、D【解题分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【题目详解】A、对南宁市市民进行“南宁地铁1号线线路”适宜采用抽样调查方式;B、对你安宁市食品安全合格情况的调查适宜采用抽样调查方式;C、对南宁市电视台《新闻在线》收视率的调查适宜采用抽样调查方式;D、对你所在的班级同学的身高情况的调查适宜采用普查方式;故选D.【题目点拨】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9、A【解题分析】根据三视图的法则可得出答案.【题目详解】解:左视图为从左往右看得到的视图,A.球的左视图是圆,B.圆柱的左视图是长方形,C.圆锥的左视图是等腰三角形,D.圆台的左视图是等腰梯形,故符合题意的选项是A.【题目点拨】错因分析较容易题.失分原因是不会判断常见几何体的三视图.10、C【解题分析】分析:将x=-2代入方程即可求出a的值.详解:将x=-2代入可得:4a-2a-4=0,解得:a=2,故选C.点睛:本题主要考查的是解一元一次方程,属于基础题型.解方程的一般方法的掌握是解题的关键.二、填空题(共7小题,每小题3分,满分21分)11、﹣1【解题分析】∵OD=2AD,∴23 ODOA=,∵∠ABO=90°,DC⊥OB,∴AB∥DC,∴△DCO∽△ABO,∴23 DC OC ODAB OB OA===,∴22439 ODCOABSS⎛⎫==⎪⎝⎭,∵S四边形ABCD=10,∴S△ODC=8,∴OC×CD=8,OC×CD=1,∴k=﹣1,故答案为﹣1.12、a1【解题分析】根据同底数幂的除法法则和同底数幂乘法法则进行计算即可.【题目详解】解:原式=a3﹣1+1=a1.故答案为a1.【题目点拨】本题考查了同底数幂的乘除法,关键是掌握计算法则.13、n1+n+1.【解题分析】试题解析:仔细观察图形知道:每一个阴影部分由左边的正方形和右边的矩形构成,分别为:第一个图有:1+1+1个,第二个图有:4+1+1个,第三个图有:9+3+1个,…第n 个为n 1+n+1.考点:规律型:图形的变化类.14、6或2或12【解题分析】首先用因式分解法求得方程的根,再根据三角形的每条边的长都是方程2680x x -+=的根,进行分情况计算.【题目详解】由方程2680x x -+=,得x =2或1.当三角形的三边是2,2,2时,则周长是6;当三角形的三边是1,1,1时,则周长是12;当三角形的三边长是2,2,1时,2+2=1,不符合三角形的三边关系,应舍去;当三角形的三边是1,1,2时,则三角形的周长是1+1+2=2.综上所述此三角形的周长是6或12或2.15、(2019,2)【解题分析】分析点P 的运动规律,找到循环次数即可.【题目详解】分析图象可以发现,点P 的运动每4次位置循环一次.每循环一次向右移动四个单位.∴2019=4×504+3当第504循环结束时,点P 位置在(2016,0),在此基础之上运动三次到(2019,2)故答案为(2019,2).【题目点拨】本题是规律探究题,解题关键是找到动点运动过程中,每运动多少次形成一个循环.16、13【解题分析】 利用正方形对角线相等且互相平分,得出EO=AO=12BE ,进而得出答案. 【题目详解】解:∵四边形AECF为正方形,∴EF与AC相等且互相平分,∴∠AOB=90°,AO=EO=FO,∵BE=DF=13 BD,∴BE=EF=FD,∴EO=AO=12 BE,∴tan∠ABE=AOBO=13.故答案为:1 3【题目点拨】此题主要考查了正方形的性质以及锐角三角函数关系,正确得出EO=AO=12BE是解题关键.17、2.【解题分析】试题分析:本题主要考查的是算术平方根的定义,掌握算术平方根的定义是解题的关键.依据算术平方根的定义回答即可.由算术平方根的定义可知:8882,∴8的算术平方根是2故答案为2.考点:算术平方根.三、解答题(共7小题,满分69分)18、1 2 3 n2n2 +x-n【解题分析】分析:(1)、首先根据题意得出前6个“三角形数”分别是多少,从而得出a的值;前5个“正方形数”分别是多少,从而得出b的值;前4个“正方形数”分别是多少,从而得出c的值;(2)、根据前面得出的一般性得出答案.详解:(1)∵前6个“三角形数”分别是:1=122⨯、3=232⨯、6=342⨯、10=452⨯、15=562⨯、21=672⨯,∴第n个“三角形数”是()12n n+,∴a=7×82=17×82=1.∵前5个“正方形数”分别是:1=12,4=22,9=32,16=42,25=52,∴第n个“正方形数”是n2,∴b=62=2.∵前4个“正方形数”分别是:1=()13112⨯⨯-,5=()23212⨯⨯-,12=()33312⨯⨯-,22=()43412⨯⨯-,∴第n个“五边形数”是n(3n−1)2n(3n−1)2,∴c=() 53512⨯⨯-=3.(2)第n个“正方形数”是n2;1+1-1=1,3+4-5=2,6+9-12=3,10+16-22=4,…,∴第n个“五边形数”是n2+x-n.点睛:此题主要考查了图形的变化类问题,要熟练掌握,解答此类问题的关键是首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.19、(1)y=﹣30x+1;(2)每件售价定为55元时,每星期的销售利润最大,最大利润2元;(3)该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.【解题分析】(1) 每星期的销售量等于原来的销售量加上因降价而多销售的销售量, 代入即可求解函数关系式;(2) 根据利润=销售量⨯(销售单价-成本) , 建立二次函数, 用配方法求得最大值.(3) 根据题意可列不等式, 再取等将其转化为一元二次方程并求解, 根据每星期的销售利润所在抛物线开口向下求出满足条件的x的取值范围, 再根据(1) 中一元一次方程求得满足条件的x的取值范围内y的最小值即可.【题目详解】(1)y=300+30(60﹣x)=﹣30x+1.(2)设每星期利润为W元,W=(x﹣40)(﹣30x+1)=﹣30(x﹣55)2+2.∴x=55时,W最大值=2.∴每件售价定为55元时,每星期的销售利润最大,最大利润2元.(3)由题意(x﹣40)(﹣30x+1)≥6480,解得52≤x≤58,当x=52时,销售300+30×8=540,当x=58时,销售300+30×2=360,∴该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.【题目点拨】本题主要考查一次函数的应用和二次函数的应用,注意综合运用所学知识解题.20、1 2 .【解题分析】试题分析:先根据题意画出树状图或列表,由图表求得所有等可能的结果与A,C两个区域所涂颜色不相同的的情况,利用概率公式求出概率.试题解析:解:画树状图如答图:∵共有8种不同的涂色方法,其中A,C两个区域所涂颜色不相同的的情况有4种,∴P(A,C两个区域所涂颜色不相同)=41 82 =.考点:1.画树状图或列表法;2.概率.21、33.3【解题分析】根据解直角三角形的知识先求出AC的值,再根据矩形的面积计算方法求解即可. 【题目详解】解:∵AC=sin ABACB∠=1.5sin27︒=1.50.45=103∴矩形面积=10⨯103≈33.3(平方米)答:覆盖在顶上的塑料薄膜需33.3平方米【题目点拨】本题考查了解直角三角形的应用,掌握正弦的定义是解题的关键.<<22、(1);(2)①y=x2+;②m【解题分析】(1)先求出平移后是抛物线G2的函数解析式,即可求得点A的坐标;(2)①由(1)可知G2的表达式,首先求出AD的值,利用等腰直角的性质得出,从而求出点B的坐标,代入即可得解;②分别求出当∠BAC=60°时,当∠BAC=120°时m的值,即可得出m的取值范围.【题目详解】(1)∵将抛物线G1:y=mx2+m≠0个单位长度后得到抛物线G2,∴抛物线G2:y=m(x2+∵点A是抛物线G2的顶点.∴点A.(2)①设抛物线对称轴与直线l交于点D,如图1所示.∵点A是抛物线顶点,∴AB=AC.∵∠BAC=90°,∴△ABC为等腰直角三角形,∴CD=AD∴点C的坐标为(.∵点C在抛物线G2上,m(2+解得:m=②依照题意画出图形,如图2所示.同理:当∠BAC=60°时,点C1;当∠BAC=120°时,点C+3.∵60°<∠BAC<120°,1G23G2上方,∴()()22313233333233 mm⎧+-+>⎪⎨⎪+-+<⎩,解得:339m-<<-.【题目点拨】此题考查平移中的坐标变换,二次函数的性质,待定系数法求二次函数的解析式,等腰直角三角形的判定和性质,等边三角形的判定和性质,熟练掌握坐标系中交点坐标的计算方法是解本题的关键,利用参数顶点坐标和交点坐标是解本题的难点.23、2.7米【解题分析】解:作BF⊥DE于点F,BG⊥AE于点G在Rt△ADE中∵tan∠ADE=,∴DE="AE" ·tan∠ADE=15∵山坡AB的坡度i=1:,AB=10∴BG=5,AG=,∴EF=BG=5,BF=AG+AE=+15 ∵∠CBF=45°∴CF=BF=+15∴CD=CF+EF —DE=20—10≈20—10×1.732=2.68≈2.7答:这块宣传牌CD 的高度为2.7米.24、BD =41【解题分析】作DM ⊥BC ,交BC 延长线于M ,连接AC ,由勾股定理得出AC 2=AB 2+BC 2=25,求出AC 2+CD 2=AD 2,由勾股定理的逆定理得出△ACD 是直角三角形,∠ACD=90°,证出∠ACB=∠CDM ,得出△ABC ∽△CMD ,由相似三角形的对应边成比例求出CM=2AB=6,DM=2BC=8,得出BM=BC+CM=10,再由勾股定理求出BD 即可.【题目详解】作DM ⊥BC ,交BC 延长线于M ,连接AC ,如图所示:则∠M =90°,∴∠DCM+∠CDM =90°,∵∠ABC =90°,AB =3,BC =4,∴AC 2=AB 2+BC 2=25,∵CD =10,AD =55,∴AC 2+CD 2=AD 2,∴△ACD 是直角三角形,∠ACD =90°,∴∠ACB+∠DCM =90°,∴∠ACB =∠CDM ,∵∠ABC =∠M =90°,∴△ABC ∽△CMD , ∴12AB CM =, ∴CM =2AB =6,DM =2BC =8,∴BM =BC+CM =10,∴BD =22BM DM +22108+=241【题目点拨】本题考查了相似三角形的判定与性质、勾股定理、勾股定理的逆定理;熟练掌握相似三角形的判定与性质,证明由勾股定理的逆定理证出△ACD是直角三角形是解决问题的关键.。
广西南宁二中学2024届中考联考数学试题含解析
广西南宁二中学2024年中考联考数学试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)1.如图,数轴上有A ,B ,C ,D 四个点,其中表示互为相反数的点是A .点A 和点CB .点B 和点DC .点A 和点D D .点B 和点C2.在△ABC 中,点D 、E 分别在边AB 、AC 上,如果AD=1,BD=3,那么由下列条件能够判断DE ∥BC 的是( ) A .31DE BC = B .DE1BC 4= C .31AE AC = D .AE 1AC 4=3.关于x 的方程x 2+(k 2﹣4)x+k+1=0的两个根互为相反数,则k 值是( )A .﹣1B .±2C .2D .﹣24.若正六边形的边长为6,则其外接圆半径为( )A .3B .32C .33D .65.在同一平面直角坐标系中,一次函数y =kx ﹣2k 和二次函数y =﹣kx 2+2x ﹣4(k 是常数且k ≠0)的图象可能是() A . B .C .D .6.一个几何体的三视图如图所示,这个几何体是( )A .三菱柱B .三棱锥C .长方体D .圆柱体7.一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是()A.x>1 B.x≥1C.x>3 D.x≥38.用加减法解方程组323415x yx y-=⎧⎨+=⎩①②时,如果消去y,最简捷的方法是()A.①×4﹣②×3 B.①×4+②×3 C.②×2﹣①D.②×2+①9.在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠A的正切值为()A.3 B.13C.1010D.3101010.如图,在四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,分别以AB、BC、DC为边向外作正方形,它们的面积分别为S1、S2、S1.若S2=48,S1=9,则S1的值为()A.18 B.12 C.9 D.1二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,AB,AC分别为⊙O的内接正六边形,内接正方形的一边,BC是圆内接n边形的一边,则n等于_____.12.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B-C-D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是( )A.B.C.D.13.现在网购越来越多地成为人们的一种消费方式,天猫和淘宝的支付交易额突破67000000000元,将67000000000元用科学记数法表示为_____.14.分解因式:2x2-8x+8=__________.15.二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(12,﹣2);⑤当x<12时,y随x的增大而减小;⑥a+b+c>0中,正确的有______.(只填序号)16.⊙M的圆心在一次函数y=12x+2图象上,半径为1.当⊙M与y轴相切时,点M的坐标为_____.三、解答题(共8题,共72分)17.(8分)如图,AB是⊙O直径,BC⊥AB于点B,点C是射线BC上任意一点,过点C作CD切⊙O于点D,连接AD.求证:BC=CD;若∠C=60°,BC=3,求AD的长.18.(8分)先化简,再求值1xx-÷(x﹣21xx-),其中x=76.19.(8分)已知P是⊙O外一点,PO交⊙O于点C,OC=CP=2,弦AB⊥OC,∠AOC的度数为60°,连接PB.求BC的长;求证:PB是⊙O的切线.20.(8分)已知平行四边形.尺规作图:作的平分线交直线于点,交延长线于点(要求:尺规作图,保留作图痕迹,不写作法);在(1)的条件下,求证:.21.(8分)某商场计划从厂家购进甲、乙、丙三种型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍.具体情况如下表:甲种乙种丙种进价(元/台)1200 1600 2000售价(元/台)1420 1860 2280经预算,商场最多支出132000元用于购买这批电冰箱.(1)商场至少购进乙种电冰箱多少台?(2)商场要求甲种电冰箱的台数不超过丙种电冰箱的台数.为获得最大利润,应分别购进甲、乙、丙电冰箱多少台?获得的最大利润是多少?22.(10分)(1)计算:(﹣2)2﹣8+(2+1)2﹣4cos60°;(2)化简:2321x xx x-+-÷(1﹣1x)23.(12分)如图,在平面直角坐标系中,函数的图象经过点,直线与x轴交于点.求的值;过第二象限的点作平行于x轴的直线,交直线于点C,交函数的图象于点D.①当时,判断线段PD与PC的数量关系,并说明理由;②若,结合函数的图象,直接写出n的取值范围.24.先化简,再求值:22111211a a a a a a ---÷----,其中21a =.参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解题分析】根据相反数的定义进行解答即可.【题目详解】解:由A 表示-2,B 表示-1,C 表示0.75,D 表示2.根据相反数和为0的特点,可确定点A 和点D 表示互为相反数的点.故答案为C.【题目点拨】本题考查了相反数的定义,掌握相反数和为0是解答本题的关键.2、D【解题分析】如图,∵AD=1,BD=3, ∴AD 1AB 4=, 当AE 1AC 4=时,AD AE AB AC=,又∵∠DAE=∠BAC,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,而根据选项A、B、C的条件都不能推出DE∥BC,故选D.3、D【解题分析】根据一元二次方程根与系数的关系列出方程求解即可.【题目详解】设方程的两根分别为x1,x1,∵x1+(k1-4)x+k-1=0的两实数根互为相反数,∴x1+x1,=-(k1-4)=0,解得k=±1,当k=1,方程变为:x1+1=0,△=-4<0,方程没有实数根,所以k=1舍去;当k=-1,方程变为:x1-3=0,△=11>0,方程有两个不相等的实数根;∴k=-1.故选D.【题目点拨】本题考查的是根与系数的关系.x1,x1是一元二次方程ax1+bx+c=0(a≠0)的两根时,x1+x1=−ba,x1x1=ca,反过来也成立.4、D【解题分析】连接正六边形的中心和各顶点,得到六个全等的正三角形,于是可知正六边形的边长等于正三角形的边长,为正六边形的外接圆半径.【题目详解】如图为正六边形的外接圆,ABCDEF是正六边形,∴∠AOF=10°, ∵OA=OF, ∴△AOF是等边三角形,∴OA=AF=1.所以正六边形的外接圆半径等于边长,即其外接圆半径为1.故选D.【题目点拨】本题考查了正六边形的外接圆的知识,解题的关键是画出图形,找出线段之间的关系.5、C【解题分析】根据一次函数与二次函数的图象的性质,求出k的取值范围,再逐项判断即可.【题目详解】解:A、由一次函数图象可知,k>0,∴﹣k<0,∴二次函数的图象开口应该向下,故A选项不合题意;B、由一次函数图象可知,k>0,∴﹣k<0,-22k-=1k>0,∴二次函数的图象开口向下,且对称轴在x轴的正半轴,故B选项不合题意;C、由一次函数图象可知,k<0,∴﹣k>0,-22k-=1k<0,,∴二次函数的图象开口向上,且对称轴在x轴的负半轴,一次函数必经过点(2,0),当x=2时,二次函数值y=﹣4k>0,故C选项符合题意;D、由一次函数图象可知,k<0,∴﹣k>0,-22k-=1k<0,,∴二次函数的图象开口向上,且对称轴在x轴的负半轴,一次函数必经过点(2,0),当x=2时,二次函数值y=﹣4k>0,故D选项不合题意;故选:C.【题目点拨】本题考查一次函数与二次函数的图象和性质,解决此题的关键是熟记图象的性质,此外,还要主要二次函数的对称轴、两图象的交点的位置等.6、A【解题分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【题目详解】由于左视图和俯视图为长方形可得此几何体为柱体,由主视图为三角形可得为三棱柱.故选:B.【题目点拨】此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.7、C【解题分析】试题解析:一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是x>1.故选C.考点:在数轴上表示不等式的解集.8、D【解题分析】试题解析:用加减法解方程组323415x yx y-=⎧⎨+=⎩①②时,如果消去y,最简捷的方法是②×2+①,故选D.9、A【解题分析】【分析】根据锐角三角函数的定义求出即可.【题目详解】∵在Rt△ABC中,∠C=90°,AC=1,BC=3,∴∠A的正切值为31BCAC==3,故选A.【题目点拨】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义的内容是解此题的关键.10、D【解题分析】过A作AH∥CD交BC于H,根据题意得到∠BAE=90°,根据勾股定理计算即可.【题目详解】∵S2=48,∴BCA作AH∥CD交BC于H,则∠AHB=∠DCB.∵AD∥BC,∴四边形AHCD是平行四边形,∴CH=BH=AD,AH=CD=1.∵∠ABC+∠DCB=90°,∴∠AHB+∠ABC=90°,∴∠BAH=90°,∴AB2=BH2﹣AH2=1,∴S1=1.故选D.【题目点拨】本题考查了勾股定理,正方形的性质,平行四边形的判定和性质,正确的作出辅助线是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、12【解题分析】连接AO,BO,CO,如图所示:∵AB、AC分别为⊙O的内接正六边形、内接正方形的一边,∴∠AOB=36060o=60°,∠AOC=3604o=90°,∴∠BOC=30°,∴n=36030oo=12,故答案为12.12、C【解题分析】分出情况当P点在BC上运动,与P点在CD上运动,得到关系,选出图象即可【题目详解】由题意可知,P从B开始出发,沿B—C—D向终点D匀速运动,则当0<x≤2,s=1 2 x当2<x≤3,s=1所以刚开始的时候为正比例函数s=12x 图像,后面为水平直线,故选C 【题目点拨】 本题主要考查实际问题与函数图像,关键在于读懂题意,弄清楚P 的运动状态13、106.710⨯【解题分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【题目详解】67000000000的小数点向左移动10位得到6.7,所以67000000000用科学记数法表示为106.710⨯,故答案为:106.710⨯.【题目点拨】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.14、2(x-2)2【解题分析】先运用提公因式法,再运用完全平方公式.【题目详解】:2x 2-8x+8=()()2224422x x x -+=-. 故答案为2(x-2)2.【题目点拨】本题考核知识点:因式分解.解题关键点:熟练掌握分解因式的基本方法.15、①②③⑤【解题分析】根据图象可判断①②③④⑤,由x=1时,y <0,可判断⑥【题目详解】由图象可得,a >0,c <0,b <0,△=b 2﹣4ac >0,对称轴为x=1,2∴abc >0,4ac <b 2,当12x <时,y 随x 的增大而减小.故①②⑤正确,∵11,22bxa=-=<∴2a+b>0,故③正确,由图象可得顶点纵坐标小于﹣2,则④错误,当x=1时,y=a+b+c<0,故⑥错误故答案为:①②③⑤【题目点拨】本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.16、(1,52)或(﹣1,32)【解题分析】设当⊙M与y轴相切时圆心M的坐标为(x,12x+2),再根据⊙M的半径为1即可得出y的值.【题目详解】解:∵⊙M的圆心在一次函数y=12x+2的图象上运动,∴设当⊙M与y轴相切时圆心M的坐标为(x, 12x+2),∵⊙M的半径为1,∴x=1或x=−1,当x=1时,y=52,当x=−1时,y=3 2 .∴P点坐标为:(1, 52)或(−1,32).故答案为(1, 52)或(−1,32).【题目点拨】本题考查了切线的性质与一次函数图象上点的坐标特征,解题的关键是熟练的掌握切线的性质与一次函数图象上点的坐标特征.三、解答题(共8题,共72分)17、(1)证明见解析;(2)3.【解题分析】(1)根据切线的判定定理得到BC是⊙O的切线,再利用切线长定理证明即可;(2)根据含30°的直角三角形的性质、正切的定义计算即可.【题目详解】(1)∵AB是⊙O直径,BC⊥AB,∴BC是⊙O的切线,∵CD切⊙O于点D,∴BC=CD;(2)连接BD,∵BC=CD,∠C=60°,∴△BCD是等边三角形,∴BD=BC=3,∠CBD=60°,∴∠ABD=30°,∵AB是⊙O直径,∴∠ADB=90°,∴AD=BD•tan∠ABD=3.【题目点拨】本题考查了切线的性质、直角三角形的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.18、6【解题分析】【分析】括号内先通分进行分式加减运算,然后再与括号外的分式进行乘除运算,化简后代入x的值进行计算即可得.【题目详解】原式=2121 x x xx x--+÷=()211x x x x -⋅- =11x -, 当x=76,原式=1716-=6. 【题目点拨】本题考查了分式的化简求值,根据所给的式子确定运算顺序、熟练应用相关的运算法则是解题的关键.19、(1)BC=2;(2)见解析【解题分析】试题分析:(1)连接OB ,根据已知条件判定△OBC 的等边三角形,则BC=OC=2;(2)欲证明PB 是⊙O 的切线,只需证得OB ⊥PB 即可.(1)解:如图,连接OB .∵AB ⊥OC ,∠AOC=60°,∴∠OAB=30°,∵OB=OA ,∴∠OBA=∠OAB=30°,∴∠BOC=60°,∵OB=OC ,∴△OBC 的等边三角形,∴BC=OC .又OC=2,∴BC=2;(2)证明:由(1)知,△OBC 的等边三角形,则∠COB=60°,BC=OC .∵OC=CP ,∴BC=PC ,∴∠P=∠CBP .又∵∠OCB=60°,∠OCB=2∠P ,∴∠P=30°,∴∠OBP=90°,即OB ⊥PB .又∵OB 是半径,∴PB 是⊙O 的切线.考点:切线的判定.20、(1)见解析;(2)见解析.【解题分析】试题分析:(1)作∠BAD的平分线交直线BC于点E,交DC延长线于点F即可;(2)先根据平行四边形的性质得出AB∥DC,AD∥BC,故∠1=∠2,∠3=∠1.再由AF平分∠BAD得出∠1=∠3,故可得出∠2=∠1,据此可得出结论.试题解析:(1)如图所示,AF即为所求;(2)∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC,∴∠1=∠2,∠3=∠1.∵AF平分∠BAD,∴∠1=∠3,∴∠2=∠1,∴CE=CF.考点:作图—基本作图;平行四边形的性质.21、(1)商场至少购进乙种电冰箱14台;(2)商场购进甲种电冰箱28台,购进乙种电冰箱14(台),购进丙种电冰箱38台.【解题分析】(1)设商场购进乙种电冰箱x台,则购进甲种电冰箱2x台,丙种电冰箱(80-3x)台,根据“商场最多支出132000元用于购买这批电冰箱”列出不等式,解之即可得;(2)根据“总利润=甲种冰箱利润+乙种冰箱利润+丙种冰箱利润”列出W关于x的函数解析式,结合x的取值范围,利用一次函数的性质求解可得.【题目详解】(1)设商场购进乙种电冰箱x台,则购进甲种电冰箱2x台,丙种电冰箱(80﹣3x)台.根据题意得:1200×2x+1600x+2000(80﹣3x)≤132000,解得:x≥14,∴商场至少购进乙种电冰箱14台;(2)由题意得:2x≤80﹣3x且x≥14,∴14≤x≤16,∵W=220×2x+260x+280(80﹣3x)=﹣140x+22400,∴W随x的增大而减小,∴当x=14时,W取最大值,且W最大=﹣140×14+22400=20440,此时,商场购进甲种电冰箱28台,购进乙种电冰箱14(台),购进丙种电冰箱38台.【题目点拨】本题主要考查一次函数的应用与一元一次不等式的应用,解题的关键是理解题意找到题目蕴含的不等关系和相等关系,并据此列出不等式与函数解析式.22、(1)5(2)11 x【解题分析】(1)根据实数的运算法则进行计算,要记住特殊锐角三角函数值;(2)根据分式的混合运算法则进行计算. 【题目详解】解:(1)原式=4﹣2+2+2+1﹣4×=7﹣2=5;(2)原式=÷=•=.【题目点拨】本题考核知识点:实数运算,分式混合运算. 解题关键点:掌握相关运算法则.23、(1).(2)①判断:.理由见解析;②或.【解题分析】(1)利用代点法可以求出参数;(2)①当时,即点P的坐标为,即可求出点的坐标,于是得出;②根据①中的情况,可知或再结合图像可以确定的取值范围;【题目详解】解:(1)∵函数的图象经过点,∴将点代入,即,得:∵直线与轴交于点,∴将点代入,即,得:(2)①判断:.理由如下:当时,点P的坐标为,如图所示:∴点C的坐标为,点D的坐标为∴,.∴.②由①可知当时所以由图像可知,当直线往下平移的时也符合题意,即,得;当时,点P的坐标为∴点C的坐标为,点D的坐标为∴,∴当时,即,也符合题意,所以的取值范围为:或.【题目点拨】本题主要考查了反比例函数和一次函数,熟练求反比例函数和一次函数解析式的方法、坐标与线段长度的转化和数形结合思想是解题关键.24、1a-1,22【解题分析】先根据完全平方公式进行约分化简,再代入求值即可.【题目详解】原式=2a 1--2a-11a-1⋅()=21-a-1a-1=1a-1,将a +1. 【题目点拨】本题主要考查了求代数式的值、分式的运算,解本题的要点在于正确化简,从而得到答案.。
南宁初升高数学题库及答案
南宁初升高数学题库及答案一、选择题1. 若a,b,c是三角形的三边,且满足a^2 + b^2 = c^2,那么该三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定答案:B2. 一个圆的半径为r,其面积是:A. πr^2B. 2πrC. πrD. r^2答案:A3. 如果一个数的平方根等于它本身,那么这个数是:A. 0B. 1C. -1D. 以上都不是答案:A二、填空题4. 一个长方体的长、宽、高分别是3cm,4cm,5cm,那么它的体积是________cm³。
答案:605. 一个正数的倒数是1/5,那么这个数是________。
答案:56. 若x^2 - 5x + 6 = 0,那么x的值为________。
答案:2或3三、计算题7. 计算下列表达式的值:(1) (3x - 2y)(3x + 2y)(2) (2a + 3b)(2a - 3b)答案:(1) 9x^2 - 4y^2(2) 4a^2 - 9b^28. 解方程:(1) 2x + 5 = 3x - 1(2) 3x^2 + 6x - 8 = 0答案:(1) x = 6(2) x = -4 或 x = 2/3四、解答题9. 某工厂生产一种产品,每件产品的成本为50元,销售价格为100元。
如果工厂希望获得的利润为总销售额的20%,求工厂每月需要销售多少件产品才能达到目标?答案:设每月需要销售x件产品,则总销售额为100x元,总成本为50x元。
利润 = 总销售额 - 总成本 = 100x - 50x = 50x元。
根据题意,利润 = 总销售额的20%,即50x = 20% * 100x。
解得x = 20%,即x = 0.2 * 100 = 20件。
10. 在一个直角三角形中,斜边长为c,两直角边分别为a和b,已知a = 5,b = 12,求斜边c的长度。
答案:根据勾股定理,c^2 = a^2 + b^2。
代入已知数值,c^2 = 5^2 + 12^2 = 25 + 144 = 169。
2022年广西南宁市中考数学试卷(解析版)
2022年广西南宁市中考数学试卷一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)1.(3分)(2022•广西)﹣的相反数是()A.B.﹣C.3D.﹣32.(3分)(2022•广西)2022北京冬残奥会的会徽是以汉字“飞”为灵感来设计的,展现了运动员不断飞跃,超越自我,奋力拼搏,激励世界的冬残奥精神.下列的四个图中,能由如图所示的会徽经过平移得到的是()A.B.C.D.3.(3分)(2022•广西)空气由多种气体混合而成,为了直观介绍空气中各成分的百分比,最适合使用的统计图是()A.条形图B.折线图C.扇形图D.直方图4.(3分)(2022•广西)如图,数轴上的点A表示的数是﹣1,则点A关于原点对称的点表示的数是()A.﹣2B.0C.1D.25.(3分)(2022•广西)不等式2x﹣4<10的解集是()A.x<3B.x<7C.x>3D.x>76.(3分)(2022•广西)如图,直线a∥b,∠1=55°,则∠2的度数是()A.35°B.45°C.55°D.125°7.(3分)(2022•广西)下列事件是必然事件的是()A.三角形内角和是180°B.端午节赛龙舟,红队获得冠军C.掷一枚均匀骰子,点数是6的一面朝上D.打开电视,正在播放神舟十四号载人飞船发射实况8.(3分)(2022•广西)如图,某博物馆大厅电梯的截面图中,AB的长为12米,AB与AC 的夹角为α,则高BC是()A.12sinα米B.12cosα米C.米D.米9.(3分)(2022•广西)下列运算正确的是()A.a+a2=a3B.a•a2=a3C.a6÷a2=a3D.(a﹣1)3=a3 10.(3分)(2022•广西)《千里江山图》是宋代王希孟的作品,如图,它的局部画面装裱前是一个长为2.4米,宽为1.4米的矩形,装裱后,整幅图画宽与长的比是8:13,且四周边衬的宽度相等,则边衬的宽度应是多少米?设边衬的宽度为x米,根据题意可列方程()A.=B.=C.=D.=11.(3分)(2022•广西)如图,在△ABC中,CA=CB=4,∠BAC=α,将△ABC绕点A 逆时针旋转2α,得到△AB′C′,连接B′C并延长交AB于点D,当B′D⊥AB时,的长是()A.πB.πC.πD.π12.(3分)(2022•广西)已知反比例函数y=(b≠0)的图象如图所示,则一次函数y=cx﹣a(c≠0)和二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.二、填空题(本大题共6小题,每小题2分,共12分.)13.(2分)(2022•广西)化简:=.14.(2分)(2022•广西)当x=时,分式的值为零.15.(2分)(2022•广西)如图,一个质地均匀的正五边形转盘,指针的位置固定,当转盘自由转动停止后,观察指针指向区域内的数(若指针正好指向分界线,则重新转一次),这个数是一个奇数的概率是.16.(2分)(2022•广西)古希腊数学家泰勒斯曾利用立杆测影的方法,在金字塔影子的顶部直立一根木杆,借助太阳光测金字塔的高度.如图,木杆EF长2米,它的影长FD是4米,同一时刻测得OA是268米,则金字塔的高度BO是米.17.(2分)(2022•广西)阅读材料:整体代值是数学中常用的方法.例如“已知3a﹣b=2,求代数式6a﹣2b﹣1的值.”可以这样解:6a﹣2b﹣1=2(3a﹣b)﹣1=2×2﹣1=3.根据阅读材料,解决问题:若x=2是关于x的一元一次方程ax+b=3的解,则代数式4a2+4ab+b2+4a+2b﹣1的值是.18.(2分)(2022•广西)如图,在正方形ABCD中,AB=4,对角线AC,BD相交于点O.点E是对角线AC上一点,连接BE,过点E作EF⊥BE,分别交CD,BD于点F,G,连接BF,交AC于点H,将△EFH沿EF翻折,点H的对应点H′恰好落在BD上,得到△EFH′.若点F为CD的中点,则△EGH′的周长是.三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)(2022•广西)计算:(﹣1+2)×3+22÷(﹣4).20.(6分)(2022•广西)先化简,再求值:(x+y)(x﹣y)+(xy2﹣2xy)÷x,其中x=1,y =.21.(10分)(2022•广西)如图,在▱ABCD中,BD是它的一条对角线.(1)求证:△ABD≌△CDB;(2)尺规作图:作BD的垂直平分线EF,分别交AD,BC于点E,F(不写作法,保留作图痕迹);(3)连接BE,若∠DBE=25°,求∠AEB的度数.22.(10分)(2022•广西)综合与实践【问题情境】数学活动课上,老师带领同学们开展“利用树叶的特征对树木进行分类”的实践活动.【实践发现】同学们随机收集芒果树、荔枝树的树叶各1片,通过测量得到这些树叶的长y(单位:cm),宽x(单位:cm)的数据后,分别计算长宽比,整理数据如下:123456789103.8 3.7 3.5 3.4 3.84.0 3.6 4.0 3.6 4.0芒果树叶的长宽比2.0 2.020 2.4 1.819 1.8 2.0 1.3 1.9荔枝树叶的长宽比【实践探究】分析数据如下:平均数中位数众数方差3.74m4.00.0424芒果树叶的长宽比1.912.0n0.0669荔枝树叶的长宽比【问题解决】(1)上述表格中:m=,n=;(2)①A同学说:“从树叶的长宽比的方差来看,我认为芒果树叶的形状差别大.”②B同学说:“从树叶的长宽比的平均数、中位数和众数来看,我发现荔枝树叶的长约为宽的两倍.”上面两位同学的说法中,合理的是(填序号);(3)现有一片长11cm,宽5.6cm的树叶,请判断这片树叶更可能来自于芒果、荔枝中的哪种树?并给出你的理由.23.(10分)(2022•广西)打油茶是广西少数民族特有的一种民俗.某特产公司近期销售一种盒装油茶,每盒的成本价为50元,经市场调研发现,该种油茶的月销售量y(盒)与销售单价x(元)之间的函数图象如图所示.(1)求y与x的函数解析式,并写出自变量x的取值范围;(2)当销售单价定为多少元时,该种油茶的月销售利润最大?求出最大利润.24.(10分)(2022•广西)如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E,延长BA交⊙O于点F.(1)求证:DE是⊙O的切线;(2)若=,AF=10,求⊙O的半径.25.(10分)(2022•广西)已知抛物线y=﹣x2+2x+3与x轴交于A,B两点(点A在点B的左侧).(1)求点A,点B的坐标;(2)如图,过点A的直线l:y=﹣x﹣1与抛物线的另一个交点为C,点P为抛物线对称轴上的一点,连接P A,PC,设点P的纵坐标为m,当P A=PC时,求m的值;(3)将线段AB先向右平移1个单位长度,再向上平移5个单位长度,得到线段MN,若抛物线y=a(﹣x2+2x+3)(a≠0)与线段MN只有一个交点,请直接写出a的取值范围.26.(10分)(2022•广西)已知∠MON=α,点A,B分别在射线OM,ON上运动,AB=6.(1)如图①,若α=90°,取AB中点D,点A,B运动时,点D也随之运动,点A,B,D的对应点分别为A′,B′,D′,连接OD,OD′.判断OD与OD′有什么数量关系?证明你的结论;(2)如图②,若α=60°,以AB为斜边在其右侧作等腰直角三角形ABC,求点O与点C的最大距离;(3)如图③,若α=45°,当点A,B运动到什么位置时,△AOB的面积最大?请说明理由,并求出△AOB面积的最大值.2022年广西南宁市中考数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)1.(3分)(2022•广西)﹣的相反数是()A.B.﹣C.3D.﹣3【分析】根据只有符号不同的两个数互为相反数求解后选择即可.【解答】解:﹣的相反数是.故选:A.【点评】本题主要考查了互为相反数的定义,是基础题,熟记概念是解题的关键.2.(3分)(2022•广西)2022北京冬残奥会的会徽是以汉字“飞”为灵感来设计的,展现了运动员不断飞跃,超越自我,奋力拼搏,激励世界的冬残奥精神.下列的四个图中,能由如图所示的会徽经过平移得到的是()A.B.C.D.【分析】平移是指在同一平面内,将一个图形整体按照某个直线方向移动一定的距离,这样的图形运动叫做平移,平移不改变图形的形状大小.【解答】解:根据平移的性质可知:能由如图经过平移得到的是D,故选:D.【点评】本题考查了利用平移设计图案,解决本题的关键是熟记平移的定义.确定一个基本图案按照一定的方向平移一定的距离,连续作图即可设计出美丽的图案.通过改变平移的方向和距离可使图案变得丰富多彩.3.(3分)(2022•广西)空气由多种气体混合而成,为了直观介绍空气中各成分的百分比,最适合使用的统计图是()A.条形图B.折线图C.扇形图D.直方图【分析】扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频数分布直方图,清楚显示在各个不同区间内取值,各组频数分布情况,易于显示各组之间频数的差别.【解答】解:根据题意,得要求直观反映空气的组成情况,即各部分在总体中所占的百分比,结合统计图各自的特点,应选择扇形统计图.故选:C.【点评】此题考查扇形统计图、折线统计图、条形统计图各自的特点.4.(3分)(2022•广西)如图,数轴上的点A表示的数是﹣1,则点A关于原点对称的点表示的数是()A.﹣2B.0C.1D.2【分析】关于原点对称的数是互为相反数.【解答】解:∵关于原点对称的数是互为相反数,又∵1和﹣1是互为相反数,故选:C.【点评】本题考查数轴和相反数的知识,掌握基本概念是解题的关键.5.(3分)(2022•广西)不等式2x﹣4<10的解集是()A.x<3B.x<7C.x>3D.x>7【分析】根据解一元一次不等式的方法可以求得该不等式的解集.【解答】解:2x﹣4<10,移项,得:2x<10+4,合并同类项,得:2x<14,系数化为1,得:x<7,故选:B.【点评】本题考查解一元一次不等式,解答本题的关键是明确解一元一次不等式的方法.6.(3分)(2022•广西)如图,直线a∥b,∠1=55°,则∠2的度数是()A.35°B.45°C.55°D.125°【分析】根据两直线平行,同位角相等可得∠3=∠1,再根据对顶角相等可得∠2=∠3.【解答】解:如图,∵a∥b,∴∠3=∠1=55°,∴∠2=∠3=55°.故选:C.【点评】本题考查了平行线的性质,对顶角相等的性质,熟记性质是解题的关键.7.(3分)(2022•广西)下列事件是必然事件的是()A.三角形内角和是180°B.端午节赛龙舟,红队获得冠军C.掷一枚均匀骰子,点数是6的一面朝上D.打开电视,正在播放神舟十四号载人飞船发射实况【分析】根据三角形内角和定理,随机事件,必然事件,不可能事件的定义,逐一判断即可解答.【解答】解:A、三角形内角和是180°,是必然事件,故A符合题意;B、端午节赛龙舟,红队获得冠军,是随机事件,故B不符合题意;C、掷一枚均匀骰子,点数是6的一面朝上,是随机事件,故C不符合题意;D、打开电视,正在播放神舟十四号载人飞船发射实况,是随机事件,故D不符合题意;故选:A.【点评】本题考查了三角形内角和定理,随机事件,熟练掌握随机事件,必然事件,不可能事件的定义是解题的关键.8.(3分)(2022•广西)如图,某博物馆大厅电梯的截面图中,AB的长为12米,AB与AC的夹角为α,则高BC是()A.12sinα米B.12cosα米C.米D.米【分析】直接根据∠A的正弦可得结论.【解答】解:Rt△ABC中,sinα=,∵AB=12,∴BC=12sinα.故选:A.【点评】本题考查了解直角三角形的应用,掌握正弦的定义是解本题的关键.9.(3分)(2022•广西)下列运算正确的是()A.a+a2=a3B.a•a2=a3C.a6÷a2=a3D.(a﹣1)3=a3【分析】按照整式幂的运算法则逐一计算进行辨别.【解答】解:∵a与a2不是同类项,∴选项A不符合题意;∵a•a2=a3,∴选项B符合题意;∵a6÷a2=a4,∴选项C不符合题意;∵(a﹣1)3=()3=,∴选项D不符合题意,故选:B.【点评】此题考查了整式幂的相关运算能力,关键是能准确理解并运用该计算法则.10.(3分)(2022•广西)《千里江山图》是宋代王希孟的作品,如图,它的局部画面装裱前是一个长为2.4米,宽为1.4米的矩形,装裱后,整幅图画宽与长的比是8:13,且四周边衬的宽度相等,则边衬的宽度应是多少米?设边衬的宽度为x米,根据题意可列方程()A.=B.=C.=D.=【分析】根据题意可知,装裱后的长为2.4+2x,宽为1.4+2x,再根据整幅图画宽与长的比是8:13,即可得到相应的方程.【解答】解:由题意可得,,故选:D.【点评】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的分式方程.11.(3分)(2022•广西)如图,在△ABC中,CA=CB=4,∠BAC=α,将△ABC绕点A 逆时针旋转2α,得到△AB′C′,连接B′C并延长交AB于点D,当B′D⊥AB时,的长是()A.πB.πC.πD.π【分析】根据旋转的性质可得AC′∥B′D,则可得∠C′AD=∠C′AB′+∠B′AB=90°,即可算出α的度数,根据已知可算出AD的长度,根据弧长公式即可得出答案.【解答】解:根据题意可得,AC′∥B′D,∵B′D⊥AB,∴∠C′AD=∠C′AB′+∠B′AB=90°,∵∠C′AD=α,∴α+2α=90°,∴α=30°,∵AC=4,∴AD=AC•cos30°=4×=2,∴,∴的长度l==.故选:B.【点评】本题主要考查了弧长的计算及旋转的性质,熟练掌握弧长的计算及旋转的性质进行求解是解决本题的关键.12.(3分)(2022•广西)已知反比例函数y=(b≠0)的图象如图所示,则一次函数y=cx﹣a(c≠0)和二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.【分析】本题形数结合,根据二次函数y=(b≠0)的图象位置,可判断b>0;再由二次函数y=ax2+bx+c(a≠0)的图象性质,排除A,B,再根据一次函数y=cx﹣a(c ≠0)的图象和性质,排除C.【解答】解:∵反比例函数y=(b≠0)的图象位于一、三象限,∴b>0;∵A、B的抛物线都是开口向下,∴a<0,根据同左异右,对称轴应该在y轴的右侧,故A、B都是错误的.∵C、D的抛物线都是开口向上,∴a>0,根据同左异右,对称轴应该在y轴的左侧,∵抛物线与y轴交于负半轴,∴c<0由a>0,c<0,排除C.故选:D.【点评】此题考查一次函数,二次函数及反比例函数中的图象和性质,因此,掌握函数的图象和性质是解题的关键.二、填空题(本大题共6小题,每小题2分,共12分.)13.(2分)(2022•广西)化简:=2.【分析】应用二次根式的化简的方法进行计算即可得出答案.【解答】解:===2.故答案为:2.【点评】本题主要考查了二次根式的化简,熟练掌握二次根式的化简的计算方法进行求解是解决本题的关键.14.(2分)(2022•广西)当x=0时,分式的值为零.【分析】根据分式值为0的条件:分子为0,分母不为0,可得2x=0且x+2≠0,然后进行计算即可解答.【解答】解:由题意得:2x=0且x+2≠0,∴x=0且x≠﹣2,∴当x=0时,分式的值为零,故答案为:0.【点评】本题考查了分式值为0的条件,熟练掌握分式值为0的条件是解题的关键.15.(2分)(2022•广西)如图,一个质地均匀的正五边形转盘,指针的位置固定,当转盘自由转动停止后,观察指针指向区域内的数(若指针正好指向分界线,则重新转一次),这个数是一个奇数的概率是.【分析】根据题意可写出所有的可能性,然后再写出其中指向的区域内的数是奇数的可能性,从而可以计算出指向的区域内的数是一个奇数的概率.【解答】解:由图可知,指针指向的区域有5种可能性,其中指向的区域内的数是奇数的可能性有3种,∴这个数是一个奇数的概率是,故答案为:.【点评】本题考查概率公式,解答本题的关键是明确题意,求出相应的概率.16.(2分)(2022•广西)古希腊数学家泰勒斯曾利用立杆测影的方法,在金字塔影子的顶部直立一根木杆,借助太阳光测金字塔的高度.如图,木杆EF长2米,它的影长FD是4米,同一时刻测得OA是268米,则金字塔的高度BO是134米.【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.【解答】解:据相同时刻的物高与影长成比例,设金字塔的高度BO为x米,则可列比例为,,解得:x=134,答:金字塔的高度BO是134米,故答案为:134.【点评】本题主要考查同一时刻物高和影长成正比.考查利用所学知识解决实际问题的能力.17.(2分)(2022•广西)阅读材料:整体代值是数学中常用的方法.例如“已知3a﹣b=2,求代数式6a﹣2b﹣1的值.”可以这样解:6a﹣2b﹣1=2(3a﹣b)﹣1=2×2﹣1=3.根据阅读材料,解决问题:若x=2是关于x的一元一次方程ax+b=3的解,则代数式4a2+4ab+b2+4a+2b﹣1的值是14.【分析】根据x=2是关于x的一元一次方程ax+b=3的解,可得:b=3﹣2a,直接代入所求式即可解答.【解答】解:∵x=2是关于x的一元一次方程ax+b=3的解,∴2a+b=3,∴b=3﹣2a,∴4a2+4ab+b2+4a+2b﹣1=4a2+4a(3﹣2a)+(3﹣2a)2+4a+2(3﹣2a)﹣1=4a2+12a﹣8a2+9﹣12a+4a2+4a+6﹣4a﹣1=14.故答案为:14.【点评】此题主要考查了一元一次方程的解和代数式求值,要熟练掌握,解答此题的关键是判断出a、b的关系.18.(2分)(2022•广西)如图,在正方形ABCD中,AB=4,对角线AC,BD相交于点O.点E是对角线AC上一点,连接BE,过点E作EF⊥BE,分别交CD,BD于点F,G,连接BF,交AC于点H,将△EFH沿EF翻折,点H的对应点H′恰好落在BD上,得到△EFH′.若点F为CD的中点,则△EGH′的周长是5+.【分析】作辅助线,构建全等三角形,先根据翻折的性质得△EGH'≌△EGH,所以△EGH′的周长=△EGH的周长,接下来计算△EGH的三边即可;证明△BME≌△FNE (ASA)和△BEO≌△EFP(AAS),得OE=PF=2,OB=EP=4,利用三角函数和勾股定理分别计算EG,GH和EH的长,相加可得结论.【解答】解:如图,过点E作EM⊥BC于M,作EN⊥CD于N,过点F作FP⊥AC于P,连接GH,∵将△EFH沿EF翻折得到△EFH′,∴△EGH'≌△EGH,∵四边形ABCD是正方形,∴AB=CD=BC=4,∠BCD=90°,∠ACD=∠ACB=45°,∴BD=BC=8,△CPF是等腰直角三角形,∵F是CD的中点,∴CF=CD=2,∴CP=PF=2,OB=BD=4,∵∠ACD=∠ACB,EM⊥BC,EN⊥CD,∴EM=EN,∠EMC=∠ENC=∠BCD=90°,∴∠MEN=90°,∵EF⊥BE,∴∠BEF=90°,∴∠BEM=∠FEN,∵∠BME=∠FNE,∴△BME≌△FNE(ASA),∴EB=EF,∵∠BEO+∠PEF=∠PEF+∠EFP=90°,∴∠BEO=∠EFP,∵∠BOE=∠EPF=90°,∴△BEO≌△EFP(AAS),∴OE=PF=2,OB=EP=4,∵tan∠OEG==,即=,∴OG=1,∴EG==,∵OB∥FP,∴∠OBH=∠PFH,∴tan∠OBH=tan∠PFH,∴=,∴==2,∴OH=2PH,∵OP=OC﹣PC=4﹣2=2,∴OH=×2=,在Rt△OGH中,由勾股定理得:GH==,∴△EGH′的周长=△EGH的周长=EH+EG+GH=2+++=5+.故答案为:5+.【点评】本题考查了正方形的判定和性质,全等三角形的判定和性质,解直角三角形,图形的翻折等知识,本题十分复杂,解决问题的关键是关注特殊性,添加辅助线,需要十分扎实的基础和很强的能力.三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)(2022•广西)计算:(﹣1+2)×3+22÷(﹣4).【分析】先算乘方,再算括号里面的和乘除法,最后算加减.【解答】解:原式=1×3+4÷(﹣4)=3﹣1=2.【点评】本题考查了有理数的混合运算,掌握有理数的运算法则和运算律是解决本题的关键20.(6分)(2022•广西)先化简,再求值:(x+y)(x﹣y)+(xy2﹣2xy)÷x,其中x=1,y =.【分析】根据平方差公式和多项式除以单项式,可以将题目中的式子化简,然后将x、y 的值代入化简后的式子计算即可.【解答】解:(x+y)(x﹣y)+(xy2﹣2xy)÷x=x2﹣y2+y2﹣2y=x2﹣2y,当x=1,y=时,原式=12﹣2×=0.【点评】本题考查整式的混合运算—化简求值,解答本题的关键是明确整式混合运算的运算法则,注意平方差公式的应用.21.(10分)(2022•广西)如图,在▱ABCD中,BD是它的一条对角线.(1)求证:△ABD≌△CDB;(2)尺规作图:作BD的垂直平分线EF,分别交AD,BC于点E,F(不写作法,保留作图痕迹);(3)连接BE,若∠DBE=25°,求∠AEB的度数.【分析】(1)由平行四边形的性质得出AB=CD,AD=BC,再由BD=BD,即可证明△ABD≌△CDB;(2)利用线段垂直平分线的作法进行作图即可;(3)由垂直平分线的性质得出EB=ED,进而得出∠DBE=∠BDE=25°,再由三角形外角的性质即可求出∠AEB的度数.【解答】(1)证明:如图1,∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∵BD=BD,∴△ABD≌△CDB(SSS);(2)如图所示,(3)解:如图3,∵EF垂直平分BD,∠DBE=25°,∴EB=ED,∴∠DBE=∠BDE=25°,∵∠AEB是△BED的外角,∴∠AEB=∠DBE+∠BDE=25°+25°=50°.【点评】本题考查了平行四边形的性质,全等三角形的判定,线段垂直平分线的性质,基本作图,三角形外角的性质,掌握平行四边形的性质,全等三角形的判定方法,线段垂直平分线的作法,线段垂直平分线的性质,三角形外角的定义与性质是解决问题的关键.22.(10分)(2022•广西)综合与实践【问题情境】数学活动课上,老师带领同学们开展“利用树叶的特征对树木进行分类”的实践活动.【实践发现】同学们随机收集芒果树、荔枝树的树叶各1片,通过测量得到这些树叶的长y(单位:cm),宽x(单位:cm)的数据后,分别计算长宽比,整理数据如下:12345678910芒果树叶3.8 3.7 3.5 3.4 3.84.0 3.6 4.0 3.6 4.0的长宽比2.0 2.020 2.4 1.819 1.8 2.0 1.3 1.9荔枝树叶的长宽比【实践探究】分析数据如下:平均数中位数众数方差芒果树叶的长宽3.74m4.00.0424比1.912.0n0.0669荔枝树叶的长宽比【问题解决】(1)上述表格中:m= 3.75,n= 2.0;(2)①A同学说:“从树叶的长宽比的方差来看,我认为芒果树叶的形状差别大.”②B同学说:“从树叶的长宽比的平均数、中位数和众数来看,我发现荔枝树叶的长约为宽的两倍.”上面两位同学的说法中,合理的是B(填序号);(3)现有一片长11cm,宽5.6cm的树叶,请判断这片树叶更可能来自于芒果、荔枝中的哪种树?并给出你的理由.【分析】(1)根据中位数和众数的定义解答即可;(2)根据题目给出的数据判断即可;(3)根据树叶的长宽比判断即可.【解答】解:(1)把10片芒果树叶的长宽比从小到大排列,排在中间的两个数分别为3.7、3.8,故m==3.75;10片荔枝树叶的长宽比中出现次数最多的是2.0,故n=2.0;故答案为:3.75;2.0;(2)∵0.0424<0.0669,∴芒果树叶的形状差别小,故A同学说法不合理;∵荔枝树叶的长宽比的平均数1.91,中位数是2.0,众数是2.0,∴B同学说法合理.故答案为:B;(3)∵一片长11cm,宽5.6cm的树叶,长宽比接近2,∴这片树叶更可能来自荔枝.【点评】本题考查了众数,中位数,平均数和方差,掌握相关定义是解答本题的关键.23.(10分)(2022•广西)打油茶是广西少数民族特有的一种民俗.某特产公司近期销售一种盒装油茶,每盒的成本价为50元,经市场调研发现,该种油茶的月销售量y(盒)与销售单价x(元)之间的函数图象如图所示.(1)求y与x的函数解析式,并写出自变量x的取值范围;(2)当销售单价定为多少元时,该种油茶的月销售利润最大?求出最大利润.【分析】(1)可用待定系数法来确定y与x之间的函数关系式,根据图象可得x的取值范围即可;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润.【解答】解:(1)设函数解析式为y=kx+b,由题意得:,解得:,∴y=﹣5x+500,当y=0时,﹣5x+500=0,∴x=100,∴y与x之间的函数关系式为y=﹣5x+500(50<x<100);(2)设销售利润为w元,w=(x﹣50)(﹣5x+500)=﹣5x2+750x﹣25000=﹣5(x﹣75)2+3125,∵抛物线开口向下,∴50<x<100,∴当x=75时,w有最大值,是3125,∴当销售单价定为75元时,该种油茶的月销售利润最大,最大利润是3125元.【点评】本题考查了一次函数的应用,二次函数的最值问题,在本题中,还需注意的是自变量的取值范围.24.(10分)(2022•广西)如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E,延长BA交⊙O于点F.(1)求证:DE是⊙O的切线;(2)若=,AF=10,求⊙O的半径.【分析】(1)连接OD,进而判断出OD∥AB,即可得出结论;(2)设AE=2m,DE=3m,进而表示出AD=m,再判断出△ABD∽△ADE,得出比例式,进而表示出AB=m,BD=m,再判断出△ADB∽△CFB,得出比例式建立方程求出m,最后根据勾股定理求出AC=26,即可求出答案.【解答】(1)证明:如图1,连接OD,则OD=OC,∴∠ODC=∠OCD,∵AB=AC,∴∠B=∠OCD,∴∠B=∠ODC,∴OD∥AB,∵DE⊥AB,∴OD⊥DE,∵OD为⊙O的半径,∴DE是⊙O的切线;(2)解:如图2,连接AD,∵=,∴设AE=2m,DE=3m,∵DE⊥AB,∴∠AED=∠BED=90°,在Rt△ADE中,根据勾股定理得,AD==m,∵AC为直径,∴∠ADB=∠ADC=90°=∠AED,∴∠A=∠A,∴△ABD∽△ADE,∴=,∴,∴AB=m,BD=m,∵AB=AC,∠ADC=90°,∴DC=m,BC=2BD=3m,连接AF,则∠ADB=∠F,∵∠B=∠B,∴△ADB∽△CFB,∴,∵AF=10,∴BF=AB+AF=m+10,∴,∴m=4,∴AD=4,CD=6,在Rt△ADC中,根据勾股定理得,AC==26,∴⊙O的半径为AC=13.【点评】此题是圆的综合题,主要考查了切线的判定,平行线的性质,相似三角形的判定和性质,勾股定理,作出辅助线构造出相似三角形是解本题的关键.25.(10分)(2022•广西)已知抛物线y=﹣x2+2x+3与x轴交于A,B两点(点A在点B的左侧).(1)求点A,点B的坐标;(2)如图,过点A的直线l:y=﹣x﹣1与抛物线的另一个交点为C,点P为抛物线对称轴上的一点,连接P A,PC,设点P的纵坐标为m,当P A=PC时,求m的值;(3)将线段AB先向右平移1个单位长度,再向上平移5个单位长度,得到线段MN,若抛物线y=a(﹣x2+2x+3)(a≠0)与线段MN只有一个交点,请直接写出a的取值范围.【分析】(1)令y=0,从而﹣x2+2x+3=0,解方程进而求得结果;(2)设点P(1,m),根据P A=PC列出方程,进一步求得结果;(3)分为a>0和a<0两种情形.当a>0时,抛物线的顶点等于5及x=0时,y>0,当a<0时,将x=4代入抛物线解析式,y的值大于等于5,从而求得结果.【解答】解:(1)当y=0时,﹣x2+2x+3=0,∴x1=﹣1,x2=3,∴A(﹣1,0),B(3,0);(2)∵抛物线对称轴为:x==1,∴设P(1,m),由﹣x2+2x+3=﹣x﹣1得,x3=﹣1(舍去),x4=4,当x=4时,y=﹣4﹣1=﹣5,∴C(4,﹣5),由P A2=PC2得,22+m2=(4﹣1)2+(m+5)2,∴m=﹣3;(3)可得M(0,5),N(4,5),当a>0时,∵y=﹣a(x﹣1)2+4a,∴抛物线的顶点为:(1,4a),当4a=5时,只有一个公共点,∴a=,当x=0时,y>5,∴3a>5,∴a>,∴a>或a=,当a<0时,(﹣16+8+3)a≥5,∴a≤﹣1,综上所述:a>或a=或a≤﹣1.【点评】本题考查二次函数图象与x轴的交点与一元二次方程的关系,勾股定理列方程,分类讨论等知识思想,解决问题的关键是正确分类.26.(10分)(2022•广西)已知∠MON=α,点A,B分别在射线OM,ON上运动,AB=6.(1)如图①,若α=90°,取AB中点D,点A,B运动时,点D也随之运动,点A,B,D的对应点分别为A′,B′,D′,连接OD,OD′.判断OD与OD′有什么数量关系?证明你的结论;(2)如图②,若α=60°,以AB为斜边在其右侧作等腰直角三角形ABC,求点O与点C的最大距离;(3)如图③,若α=45°,当点A,B运动到什么位置时,△AOB的面积最大?请说明理由,并求出△AOB面积的最大值.【分析】(1)根据“直角三角形斜边中线等于斜边一半”可得OD=,OD′=,进而得出结论;(2)作△AOB的外接圆I,连接CI并延长,分别交⊙I于O′和D,当O运动到O′时,OC最大,求出CD和等边三角形AO′B上的高O′D,进而求得结果;(3)作等腰直角三角形AIB,以I为圆心,AI为半径作⊙I,取AB的中点C,连接CI 并延长交⊙I于O,此时△AOB的面积最大,进一步求得结果.【解答】解:(1)OD=OD′,理由如下:在Rt△AOB中,点D是AB的中点,∴OD=,同理可得:OD′=,∵AB=A′B′,∴OD=OD′;(2)如图1,作△AOB的外接圆I,连接CI并延长,分别交⊙I于O′和D,当O运动到O′时,OC最大,此时△AOB是等边三角形,∴BO′=AB=6,OC最大=CO′=CD+DO′=+BO′=3+3;(3)如图2,作等腰直角三角形AIB,以I为圆心,AI为半径作⊙I,∴AI==3,∠AOB=,则点O在⊙I上,取AB的中点C,连接CI并延长交⊙I于O,此时△AOB的面积最大,∵OC=CI+OI=AB+3=3+3,∴S△AOB最大==9+9.【点评】本题考查了直角三角形性质,等腰三角形性质,确定圆的条件等知识,解决问题的关键是熟练掌握“定弦对定角”的模型.。
南宁中考数学试题及答案
南宁中考数学试题及答案今年南宁市中考数学试题涵盖了多个知识点,包括代数、几何、概率等。
考试题目难度适中,要求考生综合运用所学知识解决实际问题。
以下是南宁中考数学试题及答案的详细内容:一、选择题1. 设函数 f(x) = 3x^2 + 2x - 5,则 f(2) = ?A. 9B. 14C. 17D. 192. 一条直线上有三个点 A(-3, 2)、B(1, -4)、C(5, -10),则这三个点是否共线?A. 是B. 否3. 设集合 A = {x | -3 ≤ x ≤ 3},集合 B = {y | y = 2x + 1},则A ∩ B = ?A. {-3, 3}B. {-1, 1}C. {-2, 2}D. {-∞, +∞}4. 甲、乙两人摇掷一颗骰子,同时进行。
甲的目标是出现奇数点数,乙的目标是出现偶数点数。
则两人获胜的概率之和为?A. 1/3B. 2/3C. 5/9D. 7/9二、填空题1. 已知直线 y = 2x + 3,点 P(1, 5) 在直线上,求直线上另一个点的坐标。
2. 南宁市某中学学生身高数据如下:140, 145, 150, 155, 160, 165, 170, 175, 180。
求学生身高的平均数。
三、解答题1. 已知平行四边形 ABCD 中,边 AD 的长度为 6cm,且通过点 M 在 BD 上作线段 MN,使得 AM:AD = 2:1。
求线段 MN 的长度。
解答步骤:根据平行四边形的性质,平行四边形的对角线互相平分。
所以,由题意可知线段 BM 的长度为 6cm。
根据 AM:AD = 2:1 可以推出 AM 的长度为 4cm。
根据 BM:BN = AM:AD,可以得出 BN = 2cm。
由此可知线段 MN 的长度为 4cm + 2cm = 6cm。
2. 有一圆的半径为4cm,一只苍蝇从圆的某一点出发,每秒沿着圆的边缘随机行走1cm的距离。
当苍蝇的路径第一次围绕圆一周回到起点时,求苍蝇行走的总路径长度。
2020年广西南宁市中考数学试卷【含答案;word版本试题;可编辑】
2020年广西南宁市中考数学试卷一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)1. 下列实数是无理数的是()A.√2B.1C.0D.−52. 下列图形是中心对称图形的是()A. B. C. D.3. 2020年2月至5月,由广西教育厅主办,南宁市教育局承办的广西中小学“空中课堂”是同期全国服务中小学学科最齐、学段最全、上线最早的线上学习课程,深受广大师生欢迎.其中某节数学课的点击观看次数约889000次,则数据889000用科学记数法表示为()A.88.9×103B.88.9×104C.8.89×105D.8.89×1064. 下列运算正确的是()A.2x2+x2=2x4B.x3⋅x3=2x3C.(x5)2=x7D.2x7÷x5=2x25. 以下调查中,最适合采用全面调查的是()A.检测长征运载火箭的零部件质量情况B.了解全国中小学生课外阅读情况C.调查某批次汽车的抗撞击能力D.检测某城市的空气质量6. 一元二次方程x2−2x+1=0的根的情况是()A.有两个不等的实数根B.有两个相等的实数根C.无实数根D.无法确定7. 如图,在△ABC中,BA=BC,∠B=80∘,观察图中尺规作图的痕迹,则∠DCE的度数为()A.60∘ B.65∘ C.70∘ D.75∘8. 一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是()A.16B.14C.13D.129. 如图,在△ABC中,BC=120,高AD=60,正方形EFGH一边在BC上,点E,F 分别在AB,AC上,AD交EF于点N,则AN的长为()A.15B.20C.25D.3010. 甲、乙两地相距600km,提速前动车的速度为vkm/ℎ,提速后动车的速度是提速前的1.2倍,提速后行车时间比提速前减少20min,则可列方程为()A.600v−13=6001.2vB.600v=6001.2v−13C.600v−20=6001.2vD.600v=6001.2v−2011. 《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),则AB 的长是( )A.50.5寸B.52寸C.101寸D.104寸12. 如图,点A ,B 是直线y =x 上的两点,过A ,B 两点分别作x 轴的平行线交双曲线y =1x (x >0)于点C ,D .若AC =√3BD ,则3OD 2−OC 2的值为( )A.5B.3√2C.4D.2√3二、填空题(本大题共6小题,每小题3分,共18分.) 13. 如图,在数轴上表示的x 的取值范围是________.14. 计算:√12−√3=________.15. 某射击运动员在同一条件下的射击成绩记录如下:(结果保留小数点后一位).16. 如图,某校礼堂的座位分为四个区域,前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,前区最后一排与后区各排的座位数相同,后区一共有10排,则该礼堂的座位总数是________.17. 以原点为中心,把点M (3, 4)逆时针旋转90∘得到点N ,则点N 的坐标为________. 18. 如图,在边长为2√3的菱形ABCD 中,∠C =60∘,点E ,F 分别是AB ,AD 上的动点,且AE =DF ,DE 与BF 交于点P .当点E 从点A 运动到点B 时,则点P 的运动路径长为________.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19. 计算:−(−1)+32÷(1−4)×2.。
南宁市中考数学试题及答案
南宁市中考数学试题及答案一、选择题(每小题4分,共40分)1. 设正数a、b满足a+2b=12,若a的值范围是()。
A. (1, 10)B. (4, 8)C. (2, 10)D. (4, 6)答案:C2. 以下各数的乘积中最大的是()。
A. (-\frac{1}{2})^3B. (-\frac{1}{3})^4C. (-\frac{7}{4})^3 D. (-\frac{3}{2})^2答案:D3. 在△ABC中,∠B=90°,若AB=3cm,BC=4cm,则AC的值是()。
A. 5cmB. 7cmC. 3cmD. 6cm答案:A4. 若\sqrt{a^2+b^2}=5,且a^2-b^2=3,则a的值是()。
A. 4B. 3C. 2D. 1答案:B5. 已知函数y=kx+b与直线y=-2x+3相切,那么k的值是()。
A. -2B. 1C. 2D. -1答案:A6. 下列函数中可能表示两者合作比例的是()。
A. y=-2x+3B. y=-\frac{3}{2}x+3C. y=2x+3D.y=\frac{3}{2}x+3答案:D7. 若(PQR)分别是(x+2)(x+3)、(2x+1)、(3x-4)三个多项式,那么P的值是()。
A. (x+2)(x+3)B. (x+2)(2x+1)C. (x+2)^2D.(x+3)^2答案:A8. 在份额分配中,下列不可能的分配结果是()。
A. 2:3:5B. 3:2:4C. 1:1:2D. 5:3:2答案:D9. 如图,圆O的半径是5cm,AO、BO是两根割线,长分别为4cm、6cm,那么AB的值是()。
A. 4cmB. 5cmC. 7cmD. 9cm答案:C10. 用字母P表示集合A={医生,教师,工人};字母Q表示集合B={科学家,导演},则集合P∪Q的表示式是()。
A. {医生,教师,工人}B. {科学家}C. {医生,教师,工人,科学家,导演}D. {医生,教师,工人,科学家}答案:C二、填空题(每小题4分,共20分)1. 已知函数y=f(x)的图像是抛物线,对称轴为x=3,且经过点(1, 4),则f(x)的方程是_____________。
广西南宁市(六市同城)中考数学试题(PDF版,含解析)
3 33 2021 年广西六市同城初中毕业升学统一考试试卷解析数学(考试时间:120 分钟 满分:120 分)注意事项:1. 本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两部分,请在答题卡上作答,在试卷上作答无效。
2. 答题前,请认真阅读答题卡上的注意事项。
3. 不能使用计算器,考试结束前,将本试卷和答题卡一并交回。
一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中只有一项是符合要求的,用 2B 铅笔把答题卡上对应题目的答案标号涂黑.)1. -3 的倒数是 A. -3B. 3C. -1D. 1【答案】C【考点】倒数定义,有理数乘法的运算律,【解析】根据倒数的定义,如果两个数的乘积等于 1,那么我们就说这两个数互为倒数.除 0 以外的数都存在倒数。
因此-3 的倒数为-1【点评】主要考察倒数的定义2.下列美丽的壮锦图案是中心对称图形的是【答案】A【考点】中心对称图形【解析】在平面内,如果把一个图形绕某个点旋转180°后,能与自身重合,那么这个图形就叫做中心对称图形。
【点评】掌握中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180 度后两部分重合.3.2018 年俄罗斯世界杯开幕式于6 月14 日在莫斯科卢日尼基球场举行,该球场可容纳81000 名观众,其中数据81000 用科学计数法表示为()A. 81⨯103B. 8.1⨯104C. 8.1⨯105D. 0.81⨯105【答案】B【考点】科学计数法【解析】81000 = 8.1⨯104,故选B【点评】科学计数法的表示形式为a ⨯10n的形式,其中1 ≤a < 10,n为整数4.某球员参加一场篮球比赛,比赛分4 节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为()A.7 分B.8 分C.9 分D.10 分【答案】B【考点】求平均分【解析】12 + 4 +10 + 6 = 84【点评】本题考查用折线图求数据的平均分问题5. 下列运算正确的是A. a(a+1)=a2+1B. (a2)3=a5C. 3a2+a=4a3D. a5÷a2=a3【答案】D【考点】整式的乘法;幂的乘方;整式的加法;同底数幂的除法【解析】选项A 错误,直接运用整式的乘法法则,用单项式去乘多项式的每一项,再把结果相加,可得a(a+1)=a2+a;选项B 错误,直接运用幂的乘方法则,底数不变,指数相乘,可得(a2)3=a6;选项C 错误,直接运用整式的加法法则,3a2 和a 不是同类项,不可以合并;选项D 正确,直接运用同底数幂的除法,底数不变,指数相减,可得a5÷a2=a3.【点评】本题考查整式的四则运算,需要记住运算法则及其公式,属于基础题。
2020年广西南宁市中考数学试卷(附答案解析)
2020年广西南宁市中考数学试卷一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)1.(3分)下列实数是无理数的是()A.B.1C.0D.-52.(3分)下列图形是中心对称图形的是()A.B.C.D.3.(3分)2020年2月至5月,由广西教育厅主办,南宁市教育局承办的广西中小学“空中课堂”是同期全国服务中小学学科最齐、学段最全、上线最早的线上学习课程,深受广大师生欢迎.其中某节数学课的点击观看次数约889000次,则数据889000用科学记数法表示为()A.88.9×103B.88.9×104C.8.89×105D.8.89×1064.(3分)下列运算正确的是()A.2x2+x2=2x4B.x3•x3=2x3C.(x5)2=x7D.2x7÷x5=2x2 5.(3分)以下调查中,最适合采用全面调查的是()A.检测长征运载火箭的零部件质量情况B.了解全国中小学生课外阅读情况C.调查某批次汽车的抗撞击能力D.检测某城市的空气质量6.(3分)一元二次方程x2-2x+1=0的根的情况是()A.有两个不等的实数根B.有两个相等的实数根C.无实数根D.无法确定7.(3分)如图,在△ABC中,BA=BC,∠B=80°,观察图中尺规作图的痕迹,则∠DCE的度数为()A.60°B.65°C.70°D.75°8.(3分)一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是()A.B.C.D.9.(3分)如图,在△ABC中,BC=120,高AD=60,正方形EFGH一边在BC上,点E,F分别在AB,AC上,AD交EF于点N,则AN的长为()A.15B.20C.25D.3010.(3分)甲、乙两地相距600km,提速前动车的速度为vkm/h,提速后动车的速度是提速前的1.2倍,提速后行车时间比提速前减少20min,则可列方程为()A.-=B.=-C.-20=D.=-2011.(3分)《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),则AB的长是()A.50.5寸B.52寸C.101寸D.104寸12.(3分)如图,点A,B是直线y=x上的两点,过A,B两点分别作x轴的平行线交双曲线y=(x>0)于点C,D.若AC=BD,则3OD2-OC2的值为()A.5B.3C.4D.2二、填空题(本大题共6小题,每小题3分,共18分.)13.(3分)如图,在数轴上表示的x的取值范围是______.14.(3分)计算:-=______.15.(3分)某射击运动员在同一条件下的射击成绩记录如下:射击次数20401002004001000“射中9环以上”的次数153378158231801“射中9环以上”的频率0.750.830.780.790.800.80(结果保留小数点后两位)根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率是______(结果保留小数点后一位).16.(3分)如图,某校礼堂的座位分为四个区域,前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,前区最后一排与后区各排的座位数相同,后区一共有10排,则该礼堂的座位总数是______.17.(3分)以原点为中心,把点M(3,4)逆时针旋转90°得到点N,则点N的坐标为______.18.(3分)如图,在边长为2的菱形ABCD中,∠C=60°,点E,F分别是AB,AD上的动点,且AE=DF,DE与BF交于点P.当点E从点A运动到点B时,则点P的运动路径长为______.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)计算:-(-1)+32÷(1-4)×2.20.(6分)先化简,再求值:÷(x-),其中x=3.21.(8分)如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF.(1)求证:△ABC≌△DEF;(2)连接AD,求证:四边形ABED是平行四边形.22.(8分)小手拉大手,共创文明城.某校为了了解家长对南宁市创建全国文明城市相关知识的知晓情况,通过发放问卷进行测评,从中随机抽取20份答卷,并统计成绩(成绩得分用x表示,单位:分),收集数据如下:90 82 99 86 98 96 90 100 89 83 87 88 81 90 93 100 100 96 92 100整理数据:80≤x<8585≤x<9090≤x<9595≤x<10034a8分析数据:平均分中位数众数92b c根据以上信息,解答下列问题:(1)直接写出上述表格中a,b,c的值;(2)该校有1600名家长参加了此次问卷测评活动,请估计成绩不低于90分的人数是多少?(3)请从中位数和众数中选择一个量,结合本题解释它的意义.23.(8分)如图,一艘渔船位于小岛B的北偏东30°方向,距离小岛40nmile的点A 处,它沿着点A的南偏东15°的方向航行.(1)渔船航行多远距离小岛B最近(结果保留根号)?(2)渔船到达距离小岛B最近点后,按原航向继续航行20nmile到点C处时突然发生事故,渔船马上向小岛B上的救援队求救,问救援队从B处出发沿着哪个方向航行到达事故地点航程最短,最短航程是多少(结果保留根号)?24.(10分)倡导垃圾分类,共享绿色生活.为了对回收的垃圾进行更精准的分类,某机器人公司研发出A型和B型两款垃圾分拣机器人,已知2台A型机器人和5台B型机器人同时工作2h共分拣垃圾3.6吨,3台A型机器人和2台B型机器人同时工作5h共分拣垃圾8吨.(1)1台A型机器人和1台B型机器人每小时各分拣垃圾多少吨?(2)某垃圾处理厂计划向机器人公司购进一批A型和B型垃圾分拣机器人,这批机器人每小时一共能分拣垃圾20吨.设购买A型机器人a台(10≤a≤45),B型机器人b台,请用含a的代数式表示b;(3)机器人公司的报价如下表:型号原价购买数量少于30台购买数量不少于30台A型20万元/台原价购买打九折B型12万元/台原价购买打八折在(2)的条件下,设购买总费用为w万元,问如何购买使得总费用w最少?请说明理由.25.(10分)如图,在△ACE中,以AC为直径的⊙O交CE于点D,连接AD,且∠DAE=∠ACE,连接OD并延长交AE的延长线于点P,PB与⊙O相切于点B.(1)求证:AP是⊙O的切线;(2)连接AB交OP于点F,求证:△F AD∽△DAE;(3)若tan∠OAF=,求的值.26.(10分)如图1,在平面直角坐标系中,直线l1:y=x+1与直线l2:x=-2相交于点D,点A是直线l2上的动点,过点A作AB⊥l1于点B,点C的坐标为(0,3),连接AC,BC.设点A的纵坐标为t,△ABC的面积为s.(1)当t=2时,请直接写出点B的坐标;(2)s关于t的函数解析式为s=,其图象如图2所示,结合图1、2的信息,求出a与b的值;(3)在l2上是否存在点A,使得△ABC是直角三角形?若存在,请求出此时点A的坐标和△ABC的面积;若不存在,请说明理由.【试题答案】一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)1.A【解答】解:无理数是无限不循环小数,而1,0,-5是有理数,因此是无理数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二00九年南宁市中等学校招生考试数 学本试卷分第Ⅰ卷和第Ⅱ卷,满分120分,考试时间120分钟.注意:答案一律填写在答题卷上,在试题卷上作答无效..........考试结束,将本试卷和答题卷一并交回.第Ⅰ卷(选择题 共36分)一、选择题:(本大题共12小题,每小题3分,共36分)每小题都给出代号为A 、B 、C 、D 的四个结论,其中只有一个是正确的.使用机改卷的考生........,请用2B 铅笔在答题卷上将选定的答案标号涂黑;使用非机改卷的六县考生...........,请用黑(蓝黑)墨水笔将每小题选定的答案的序号填写在答题卷相应的表格内.1.13的相反数是( ) A .3B .13C .3-D .13-2.图1是一个五边形木架,它的内角和是( )A .720°B .540°C .360°D .180°3.今年6月,南宁市举行了第五届泛珠三角区域经贸合作洽谈会.据估算,本届大会合同投资总额达2260亿元.将2260用科学记数法表示为(结果保留2个有效数字)( ) A .32.310⨯B .32.210⨯C .32.2610⨯D .40.2310⨯4.与左边三视图所对应的直观图是( )5.不等式组11223x x ⎧⎪⎨⎪-<⎩≤的解集在数轴上表示为( )6.要使式子1x x+有意义,x 的取值范围是( ) A .1x ≠ B .0x ≠ C .10x x >-≠且 D .10x x ≠≥-且7.如图2,将一个长为10cm ,宽为8cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( )-1 01 2 A .-1 01 2 B .-1 01 2 C .-1 01 2 D .A .B .C .D .A .210cm B .220cmC .240cmD .280cm8.把多项式2288x x -+分解因式,结果正确的是( ) A .()224x -B .()224x -C .()222x -D .()222x +9.在反比例函数1ky x-=的图象的每一条曲线上,y x 都随的增大而增大,则k 的值可以是( ) A .1- B .0C .1D .210.如图3,AB O 是⊙的直径,弦30CD AB E CDB O ⊥∠=于点,°,⊙,则弦CD 的长为( ) A .3cm 2B .3cm C. D .9cm11.已知二次函数2y ax bx c =++(0a ≠)的图象如图4所示,有下列四个结论:20040b c b ac <>->①②③④0a b c -+<,其中正确的个数有( )A .1个B .2个C .3个D .4个12.从2、3、4、5这四个数中,任取两个数()p q p q ≠和,构成函数2y px y x q =-=+和,并使这两个函数图象的交点在直线2x =的右侧,则这样的有序数对()p q ,共有( ) A .12对B .6对C .5对D .3对A BCD图2图3CABOE D图4第Ⅱ卷(非选择题,共84分)二、填空题:(本大题共6小题,每小题2分,共12分)13.如图5,直线a 、b 被c 所截,且11202a b ∠=∠=∥,°,则 °. 14.计算:()22a ba ÷ .15.三角尺在灯泡O 的照射下在墙上形成影子(如图6所示).现测得20cm 50cm OA OA '==,,这个三角尺的周长与它在墙上形成的影子的周长的比是 .16.有五张分别印有圆、等腰三角形、矩形、菱形、正方形图案的卡片(卡片中除图案不同外,其余均相同),现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有中心对称图案的卡片的概率是 .17.如图7,一艘海轮位于灯塔P 的东北方向,距离灯塔A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则海轮行驶的路程AB 为 _____________海里(结果保留根号).18.正整数按图8的规律排列.请写出第20行,第21列的数字 .考生注意:第三至第八大题为解答题,要求在答题卷...上写出解答过程. 三、(本大题共2小题,每小题满分6分,共12分) 19.计算:()1200911sin 602-⎛⎫-+-- ⎪⎝⎭°20.先化简,再求值:cab 12 图5 图6 A A O 灯 三角尺 投影 图7 BA C P 东北45° 30° 第一行第二行 第三行 第四行 第五行 第一列 第二列 第三列 第四列 第五列1 2 5 10 17 … 4 3 6 11 18 … 9 8 7 12 19 … 16 15 14 1320 … 25 24 23 22 21 … ……图8()2111211x x x ⎛⎫+÷-- ⎪--⎝⎭,其中x = 四、(本大题共2小题,每小题满分10分,共20分)21.为迎接国庆60周年,某校举行以“祖国成长我成长”为主题的图片制作比赛,赛后整请根据以上图表提供的信息,解答下列问题:(1)表中m n 和所表示的数分别为:__________m n ==,__________; (2)请在图9中,补全频数分布直方图; (3)比赛成绩的中位数落在哪个分数段?(4)如果比赛成绩80分以上(含80分)可以获得奖励,那么获奖率是多少?22.已知ABC △在平面直角坐标系中的位置如图10所示. (1)分别写出图中点A C 和点的坐标;(2)画出ABC △绕点C 按顺时针方向旋转90A B C '''°后的△;(3)求点A 旋转到点A '所经过的路线长(结果保留π).图9 频数分数(分)图1023.如图11,PA 、PB 是半径为1的O ⊙的两条切线,点A 、B 分别为切点,60APB OP AB C O D ∠=°,与弦交于点,与⊙交于点.(1)在不添加任何辅助线的情况下,写出图中所有的全等三角形;(2)求阴影部分的面积(结果保留π).六、(本大题满分10分)24.南宁市狮山公园计划在健身区铺设广场砖.现有甲、乙两个工程队参加竞标,甲工程队铺设广场砖的造价y 甲(元)与铺设面积()2m x 的函数关系如图12所示;乙工程队铺设广场砖的造价y 乙(元)与铺设面积()2m x 满足函数关系式:y kx =乙.(1)根据图12写出甲工程队铺设广场砖的造价y 甲(元)与铺设面积()2m x 的函数关系式; (2)如果狮山公园铺设广场砖的面积为21600m ,那么公园应选择哪个工程队施工更合算? 七、(本大题满分10分)25.如图13-1,在边长为5的正方形ABCD 中,点E 、F 分别是BC 、DC 边上的点,且AE EF ⊥,2BE =. (1)求EC ∶CF 的值;(2)延长EF 交正方形外角平分线CP P 于点(如图13-2),试判断AE EP 与的大小关系,并说明理由;(3)在图13-2的AB 边上是否存在一点M ,使得四边形DMEP 是平行四边形?若存在,请给予证明;若不存在,请说明理由.图11图12)2图13-1 ADCB E 图13-2BCE DAF PF26.如图14,要设计一个等腰梯形的花坛,花坛上底长120米,下底长180米,上下底相距80米,在两腰中点连线(虚线)处有一条横向甬道,上下底之间有两条纵向甬道,各甬道的宽度相等.设甬道的宽为x米.(1)用含x的式子表示横向甬道的面积;(2)当三条甬道的面积是梯形面积的八分之一时,求甬道的宽;(3)根据设计的要求,甬道的宽不能超过6米.如果修建甬道的总费用(万元)与甬道的宽度成正比例关系,比例系数是5.7,花坛其余部分的绿化费用为每平方米0.02万元,那么当甬道的宽度为多少米时,所建花坛的总费用最少?最少费用是多少万元?图142009年南宁市中等学校招生考试 数学试题参考答案与评分标准二、填空题(本大题共6小题,每小题2分,共12分)13.60 14.32a b 15.25 16.4517.()40 18.420 三、(本大题共2小题,每小题满分6分,共 12分)19.解:()1200911sin 602-⎛⎫-+-- ⎪⎝⎭°=()12-+······················································································ 4分 =12-- ········································································································ 5分 3=- ··········································································································· 6分 20.解:()2111211x x x ⎛⎫+÷-- ⎪--⎝⎭ =()()11211x x x x x +--+-· ············································································· 3分 22x =+ ······································································································· 4分当x =22=+ ········································································ 5分4= ·················································································· 6分 四、(本大题共2小题,每小题满分10分,共20分)21.解:(1)900.3m n ==,; ······································································· 4分(2)图略. ·································································································· 6分 (3)比赛成绩的中位数落在:70分~80分. ························································ 8分 (4)获奖率为:6020100200+⨯%=40%(或0.3+0.1=0.4) ····································· 10分 22.解:(1)()04A ,、()31C ,; ······································································ 2分 (2)图略. ·································································································· 6分(3)AC =···························································································· 7分¼AA '= ························································································ 9分π2=···································································································· 10分 五、(本大题满分10分) 23.解:(1)ACO BCO APC BPC PAO PBO △≌△,△≌△,△≌△ ···················· 3分 (写出一个全等式子得1分) (2)PA Q 、PB 为O ⊙的切线PO ∴平分90APB PA PB PAO ∠=∠=,,° ················· 5分 PO AB ∴⊥ ····························································· 6分 ∴由圆的对称性可知:AOD S S =阴影扇形 ························ 7分Q 在Rt PAO △中,11603022APO APB ∠=∠=⨯=︒° 90903060AOP APO ∴∠=-∠=-︒=︒°° ························································· 8分 260π1360AODS S ⨯⨯∴==阴影扇形 ·········································································· 9分π6=·················································································· 10分 六、(本大题满分10分)24.解:(1)当0500x ≤≤时,设1y k x =甲,把()50028000,代入上式得:11280002800050056500k k =∴==, 56y x ∴=甲 ··································································································· 2分当500x ≥时,设2y k x b =+甲,把()50028000,、()100048000,代入上式得:2250028000100048000k b k b +=⎧⎨+=⎩ ····················································································· 3分 解得:2408000k b =⎧⎨=⎩··························································································· 4分408000y x ∴=+甲()()560500408000500x x y x x <⎧⎪∴=⎨+⎪⎩甲≤≥ ········································································ 5分 (2)当1600x =时,401600800072000y =⨯+=甲 ·········································· 6分1600y k =乙···································································· 7分①当y y <乙甲时,即:720001600k <得:45k > ··································································································· 8分②当y y >乙甲时,即:720001600k >得:045k << ······························································································ 9分③当y y =乙甲时,即720001600k =,45k ∴=答:当45k >时,选择甲工程队更合算,当045k <<时,选择乙工程队更合算,当45k =时,选择两个工程队的花费一样. ··································································· 10分 七、(本大题满分10分) 25.解:(1)AE EF ⊥Q2390∴∠+∠=°Q 四边形ABCD 为正方形90B C ∴∠=∠=° 1390∴∠+∠=°12∠=∠ ···························································1分90DAM ABE DA AB ∠=∠==Q °,DAM ABE ∴△≌△DM AE ∴=································································································· 9分 AE EP =Q DM PE ∴=∴四边形DMEP 是平行四边形. ···································································· 10分 (备注:作平行四边形DMEP ,并计算出AM 或BM 的长度,但没有证明点M 在AB 边上的扣1分)解法②:在AB 边上存在一点M ,使四边形DMEP 是平行四边形 ························· 8分 证明:在AB 边上取一点M ,使AM BE =,连接ME 、MD 、DP . 90AD BA DAM ABE =∠=∠=,°Rt Rt DAM ABE ∴△≌△14DM AE ∴=∠=∠, ································ 9分 1590∠+∠=Q ° 4590∴∠+∠=°AE DM ∴⊥AE EP ⊥QDM EP ∴⊥∴四边形DMEP 为平行四边形 ······································································· 10分(备注:此小题若有其他的证明方法,只要证出判定平行四边形的一个条件,即可得1分) 八、(本大题满分10分)26.解:(1)横向甬道的面积为:()2120180150m 2x x += ··································· 2分 (2)依题意:2112018028015028082x x x +⨯+-=⨯⨯ ······································· 4分整理得:21557500x x -+=F A D CBE1 3 2B C E D A FP5 41M125150x x ==,(不符合题意,舍去) ····························································· 6分 ∴甬道的宽为5米.(3)设建设花坛的总费用为y 万元.()21201800.028******** 5.72y x x x x +⎡⎤=⨯⨯-+-+⎢⎥⎣⎦······································ 7分20.040.5240x x =-+当0.56.25220.04b x a =-==⨯时,y 的值最小. ··················································· 8分 因为根据设计的要求,甬道的宽不能超过6米,6x ∴=当米时,总费用最少. ·········································································· 9分最少费用为:20.0460.56240238.44⨯-⨯+=万元 ··········································· 10分。