新苏科初二下学期数学期末考试卷及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新苏科初二下学期数学期末考试卷及答案
一、选择题
1.为了解2019年泰兴市八年级学生的视力情况,从中随机调查了500名学生的视力情况.下列说法正确的是()
A.2016年泰兴市八年级学生是总体B.每一名八年级学生是个体
C.500名八年级学生是总体的一个样本D.样本容量是500
2.下列图案中,是中心对称图形的是()
A.B.
C.D.
3.如图,在平面直角坐标系中,菱形OABC的顶点A的坐标为(4,3),点D是边OC上的一点,点E在直线OB上,连接DE、CE,则DE+CE的最小值为()
A.5B7+1C.5D.24 5
4.若顺次连接四边形ABCD各边的中点得到一个矩形,则四边形ABCD一定是()A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形
5.下列调查中,适合普查方式的是()
A.调查某市初中生的睡眠情况B.调查某班级学生的身高情况
C.调查南京秦淮河的水质情况D.调查某品牌钢笔的使用寿命
6.某校共有2000名学生,为了解学生对“七步洗手法”的掌握情况,现采用抽样调查,如果按10%的比例抽样,则样本容量是()
A.2000 B.200 C.20 D.2
7.某种商品原价200元,连续两次降价a%后,售价为148元.下列所列方程正确的是()
A.200(1+ a%)2=148 B.200(1- a%)2=148
C.200(1- 2a%)=148 D.200(1-a2%)=148
8.关于x的一元二次方程x2+(a2﹣2a)x+a﹣1=0的两个实数根互为相反数,则a的值为()
A.2 B.0 C.1 D.2或0
9.一个事件的概率不可能是()
A.3
2
B.1 C.
2
3
D.0
10.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()
A.24
5
B.
12
5
C.5 D.4
二、填空题
11.如图,在ABCD中,对角线AC、BD相交于点O.如果AC=6,BD=8,AB=x,那么x 的取值范围是__________.
12.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是_____.
13.48与最简二次根式23
a 是同类二次根式,则a=_____.
14.在整数20200520中,数字“0”出现的频率是_________.
15.如图,在矩形ABCD中,AC、BD交于点O,DE⊥AC于点E,若∠AOD=110°,则
∠CDE=________°.
16.如图,点E在正方形ABCD的边CD上,以CE为边向正方形ABCD外部作正方形CEFG,O、O′分别是两个正方形的对称中心,连接OO′.若AB=3,CE=1,则OO′=
________.
17.若分式方程211x m x x
-=--有增根,则m =________. 18.如图,△ABC 中,∠BAC =20°,△ABC 绕点A 逆时针旋转至△AED ,连接对应点C 、D ,AE 垂直平分CD 于点F ,则旋转角度是_____°.
19.如图,在矩形ABCD 中,5AB =,12BC =,点E 是BC 边上一点,连接AE ,将ABE ∆沿AE 折叠,使点B 落在点B ′处.当CEB ∆'为直角三角形时,BE =__.
20.如图,已知22AB =,C 为线段AB 上的一个动点,分别以AC ,CB 为边在AB 的同侧作菱形ACED 和菱形CBGF ,点C ,E ,F 在一条直线上,120D ∠=︒,P 、Q 分别是对角线AE ,BF 的中点,当点C 在线段AB 上移动时,线段PQ 的最小值为________.
三、解答题
21.如图,平行四边形ABCD 中,已知BC =10,CD =5.
(1)试用无刻度的直尺和圆规在AD 边上找一点E ,使点E 到B 、D 两点的距离相等(不要求写作法,但要保留清晰的作图痕迹);
(2)求△ABE 的周长.
22.如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:
(1)以A点为旋转中心,将△ABC绕点A顺时针旋转90°得△AB1C1,画出△AB1C1.(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2.
(3)作出点C关于x轴的对称点P.若点P向右平移x(x取整数)个单位长度后落在
△A2B2C2的内部,请直接写出x的值.
23.如图,在□ABCD 中,对角线 AC 与 BD 相交于点 O ,点 E , F 分别为 OB , OD 的中点,延长 AE 至 G ,使 EG =AE ,连接 CG .
(1)求证:△ABE≌△CDF ;
(2)当 AB 与 AC 满足什么数量关系时,四边形 EGCF 是矩形?请说明理由.
24.在矩形ABCD中,AB=3,BC=4,点E为BC延长线上一点,且BD=BE,连接DE,Q 为DE的中点,有一动点P从B点出发,沿BC以每秒1个单位的速度向E点运动,运动时间为t秒.
(1)如图1,连接DP、PQ,则S△DPQ=(用含t的式子表示);
(2)如图2,M、N分别为AD、AB的中点,当t为何值时,四边形MNPQ为平行四边形?请说明理由;
(3)如图3,连接CQ,AQ,试判断AQ、CQ的位置关系并加以证明.
25.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣3,﹣1)、B(﹣1,0)、C(0,﹣3)
(1)点A关于坐标原点O对称的点的坐标为.
(2)将△ABC绕点C顺时针旋转90°,画出旋转后得到的△A1B1C,A1A的长为.
26.我校对本校的八年级学生对待学习的态度进行了一次抽样调查,结果分成“非常感兴趣”、“比较感兴趣”、“一般般”、“不感兴趣”四种类型,分别记为A、B、C、D.根据调查结果绘制了如下尚不完整的统计图.
根据所给数据,解答下列问题:
(1)本次问卷共随机调查了_________名学生,扇形统计图中m_________,扇形D所对应的圆心角为_________°;
(2)请根据数据信息补全条形统计图;
(3)若该校有2000名学生,估计选择“非常感兴趣”、“比较感兴趣”共约有多少人?27.如图,为6×6的正方形网格,每个小正方形的顶点均为格点,在图中已标出线段AB,A,B均为格点,按要求完成下列问题.
(1)以AB为对角线画一个面积最小的菱形AEBF,且E,F为格点;
(2)在(1)中该菱形的边长是,面积是;
(3)以AB为对角线画一个菱形AEBF,且E,F为格点,则可画个菱形.