多相流动理论模型和数值方法
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
并行计算技术
方程本身是精确的,不含任何认为假设 和经验常数,仅有的误差只是由数值方 直接模拟 (DNS) 法引入的误差 。 技术的应用
多相流体动力学
湍流流场涡结构图
小尺度涡
大尺度涡
湍流旋涡结构包括大尺度涡和小尺度涡
多相流体动力学
湍 流 大 涡 模 拟 简 介
大尺度涡 流 场 小尺度涡 决定湍流流场的基本形态和性质; 流场质量、能量的主要携带者; 高度各向异性,无法建立统一模型。 由大涡非线性作用产生; 流场能量的主要耗散者; 近似各向同性,可以考虑建立统一模型。
非线性 k
依靠理论与经验的接合,引进一 Reynolds 应力模型(RSM) 系列模型假设,从而建立一组描 写湍流平均量的方程组。
代数应力模型(ASM) FLT模型
SSG模型
多相流体动力学
湍流模式理论局限性
对经验数据的依赖性; 将脉动运动的全部细节一律抹平从 而丢失大量重要信息;
目前各Βιβλιοθήκη Baidu模型,都只能适用于解决 一种或者几种特定的湍流运动。
多相流体动力学
拟流体模型数值方法
多相流体动力学
湍流流场数值模拟方法简介
传统模 式理论 常用数值 模拟方法
格子气 直接 模拟
多相流体动力学
大涡模拟
离散涡方法
湍流模式理论简介
模型 k 模型 双方程模型 多尺度 湍流模式理论以Reynolds 时均运 RNG k 模型 动方程和脉动运动方程为基础,
稀疏悬浮流 稠密悬浮流
r1 / p 1
r1 / p 1
多相流体动力学
主要内容(气固多相流)
长期以来,气固两相流动的研究中按照对颗粒的处理方 式不同,主要有两大类模型
离散介质模型
单颗粒动力学模型(SPD模型) 颗粒轨道模型(PT模型) 确定轨道模型 随机轨道模型
小滑移模型(SS模型)
•周力行教授对双流体模型进行了深入的研究。他 们针对各向同性流动,提出了颗粒湍动能输运方程 的模型[2]。针对各向异性流动,则将单相湍流流动 的RSM模型推广至气固两相流中,提出了统一二阶 矩模型(USM)[3]。
多相流体动力学
拟流体模型(连续-连续介质模型)
•前提:
•在流体中弥散的颗粒相也是一种连续的流体;
•气相和颗粒相是两种相互渗透的连续相,各 自满足连续性方程、动量方程和能量守恒方 程。
多相流体动力学
无滑移模型(No-slip Model)
•基本假设:
• 颗粒群看作连续介质,颗粒群只有尺寸差别,不 同尺寸代表不同相; • 颗粒与流体相间无相对速度; • 各颗粒相的湍流扩散系数取流体相扩散系数相等; • 相间相互作用等同于流体混合物间各成分相互作 用,相间阻力不计。
滑移-扩散的颗粒群模型
(Slip-diffusion Model)
•基本假设:
• 各相时均速度差异造成滑移的主要部分,由于各 相的初始动量不同引起; • 扩散漂移造成滑移的小部分; • 空间各点各尺寸组的速度、尺寸、温度等物理参 数均不相同。
多相流体动力学
拟流体模型小结
• 无滑移模型:颗粒相的宏观运动而引起的质量迁 移是由流体运动引起的; • 小滑移模型:混合物运动引起的 • 滑移-扩散模型:颗粒相自身的宏观运动引起了 质量迁移
(c n r )
2 1 p p
•颗粒间碰撞时间:
p l p / up
u
p
1
多相流体动力学
r1 / f 1
无滑移流(平衡流)
r1 / f 1
r / T 1
强滑移流(冻结流)
扩散——冻结流
r / T 1
扩散——平衡流
多相流体动力学
小滑移连续介质模型 (Soo-drew Slip Model)
•基本假设:
• 颗粒群看作连续介质,不同尺寸组代表不同相; • 各组尺寸颗粒群速度不等于当地的流体相速度, 各颗粒相之间的速度亦不相等,即各颗粒相间、 与流体相间有相对速度; • 相间的相互作用类似于流体混合物中各种组分 之间的相互作用,颗粒相和流体相间的阻力忽 略不计; • 颗粒的运动是由流体的运动而引起的,颗粒相 的滑移是由于颗粒相对于多相流整体的湍流扩 散所致,故这种小滑移也称为湍流飘移; • 多相混合物整体与各相之间的关系,仍类似于 多组分流体混合物和各流体组分间的关系. 多相流体动力学
多相流体动力学
•湍流直接模拟(DNS)简介
出现大型并行计算机 计算机发展 Petaflops (1015)级 不用任何湍流模型,直接数值求解完整
的三维非定常的N-S方程组;
有限差分 小波变换 数值算法发展 计算包括脉动运动在内的湍流所有瞬时 谱方法 ; 自适应网格 流动量在三维流场中的时间演变
有限元
小滑移模型
连续介质
不考虑
有 (滑移=扩散)
欧拉
无滑移模型
连续介质
部分考虑
无(动力学平衡, 欧拉 热力学平衡或冻 结) 有 欧拉
拟流体(多流 连续介质 体)模型
全部考虑
多相流体动力学
按各种模型提出的时间大致顺序
•无滑移模型 •小滑移连续介质模型 •滑移-扩散的颗粒群模型
•双流体模型
•分散颗粒群模型 •颗粒轨道模型
连续介质模型 无滑移模型(NS模型) 拟流体(多流体)模型(MF模型)
多相流体动力学
本章要义
各种颗粒模型的一些基本观点
颗粒相模型 基本观点 颗粒对流 体的影响 不考虑 有 相间滑移 坐标系 颗粒相输运性 质 无,扩散冻结
单颗粒动力学 离散体系 模型 颗粒轨道模型 离散体系
拉格朗日
考虑
有
拉格朗日
无(确定轨 道);有(随 机轨道模型) 有 (扩散=滑移) 有 (扩散平衡) 有
直接模拟计算量太大,很难计算工程实际高雷诺数湍流流场。
大涡 模拟 思想
对大尺度涡进行直接模拟
为 什 么 要大 涡 模 拟?
小尺度涡对大涡的影响用模型进行模拟
多相流体动力学
拟流体模型现状
•为了能更完整地考虑颗粒相各种湍流输运特性以 及相间的滑移和耦合,Spalding等[1]首先提出了双 流体模型。
第二章 多相流动基础理论
2.1.4 多相流动理论模型和数值方法
多相流体动力学
特征时间
•流动时间(停留时间): f L / •扩散驰豫时间:
2 r dp p / 18
•平均运动驰豫时间:
r1 r (1 Re / 6)
2/3 p
1
•流体脉动时间:
T l / u k /