求三角函数最小正周期的五种方法
三角函数的周期函数
如何求三角函数的周期三角函数的的周期是三角函数的重要性质,对于不同的三角函数式,如何求三角函数的周期也是一个难点,下面通过几个例题谈谈三角函数周期的求法.1、根据周期性函数的定义求三角函数的周期例1 求下列函数的周期 x y 2sin )1(= , 32tan )2(x y =. (1)分析:根据周期函数的定义,问题是要找到一个最小正数T ,对于函数定义域内的每一个x 值都能使x T x 2sin )(2sin =+成立,同时考虑到正弦函数x y sin =的周期是π2. 解:∵ )(2sin )22sin(2sin ππ+=+=x x x , 即 x x 2sin )(2sin =+π.∴ 当自变量由x 增加到π+x 时,函数值重复出现,因此x y 2sin =的周期是π.(2) 分析:根据周期函数的定义,问题是要找到一个最小正数T ,对于函数定义域内的每一个x 值都能使 32tan )(32tanx T x =+成立,同时考虑到正切函数x y tan =的周期是π. 解:∵ )23(32tan )32tan(32tanππ+=+=x x x , 即32tan )23(32tan x x =+π. ∴ 函数32tan x y =的周期是π23. 注意:1、根据周期函数的定义,周期T 是使函数值重复出现的自变量x 的增加值,如),2()2(x f T x f =+周期不是T ,而是T 21; 2、”“)()(x f T x f =+是定义域内的恒等式,即对于自变量x 取定义域内的每个值时,上式都成立.2、根据公式求周期对于函数B x A y ++=)sin(ϕω或B x A y ++=)cos(ϕω的周期公式是||2ωπ=T , 对于函数B x A y ++=)tan(ϕω或B x y ++=)cot(ϕω的周期公式是||ωπ=T . 例3 求函数)623sin(3π-=x y 的周期 解: 34232ππ==T . 3、把三角函数表达式化为一角一函数的形式,再利用公式求周期例4 求函数x x x y 2sin 2cos sin 32-=的周期 解:12cos 2sin 3sin 2cos sin 322-+=-=x x x x x y1)62sin(21)2cos 212sin 23(2-+=-+=πx x x ∴ ππ==22T . 例5 已知函数),3cos 3(sin 3sin)(x x x x f +=求周期 解:∵32sin 21)32cos 1(213cos 3sin 3sin )(2x x x x x x f +-=+= )432sin(2221)32cos 32(sin 2121π-+=-+=x x x ∴ ππ3322==T . 4、遇到绝对值时,可利用公式 2||a a =, 化去绝对值符号再求周期例6 求函数 |cos |x y =的周期解:∵ 22cos 1cos |cos |2x x x y +=== ∴ ππ==22T . 例7 求函数|cos ||sin |x x y +=的周期解:∵()x x x x x x y 2sin 1|2sin |1|cos ||sin ||cos ||sin |22+=+=+=+= )4cos 1(21124cos 11x x -+=-+= ∴ 函数|cos ||sin |x x y +=的最小正周期 242ππ==T . 5、若函数)()()(21x f x f x f y k +++= ,且)(,),(),(21x f x f x f k ,都是周期函数,且最小正周期分别为k T T T ,,21,如果找到一个正常数T , 使k k T n T n T n T ==== 2211, (k n n n ,,,21 均为正整数且互质),则T 就是)()()(21x f x f x f y k +++= 的最小正周期. 例8 求函数x x y 21cos sin +=的周期 解:∵ x sin 的最小正周期是π21=T , x 21cos的最小正周期是π42=T . ∴ 函数y 的周期2211T n T n T == ,把21T T ,代入得 21 4 2n n ππ=,即212n n =,因为21,n n 为正整数且互质, 所以 1 ,221==n n .函数x x y 21cossin +=的周期ππ42211=⨯==T n T . 例9 求函数x x y 43cos 32sin +=的周期 解: ∵ x 32s i n 的最小正周期是ππ33221==T ,x 43cos 的最小正周期是384322ππ==T , 由2211T n T n =, 2138 3n n ππ= ,2189n n = (21,n n 为正整数且互质), 得 9 ,821==n n .所以 函数x x y 43cos 32sin +=的周期是ππ243811=⨯==T n T .函数的周期性--函数的周期性不仅存在于三角函数中,在其它函数或者数列中"突然"出现的周期性问题更能考查你的功底和灵活性,本讲重点复习一般函数的周期性问题一.明确复习目标1.理解函数周期性的概念,会用定义判定函数的周期;2.理解函数的周期性与图象的对称性之间的关系,会运用函数的周期性处理一些简单问题。
最小正周期计算公式
y=Asin(ωx+ψ)或y=Acos(ωx+ψd)的最小正周期用公式计算:T=2πshu/ω。
y=Atan(ωx+ψ)或y=cot(ωx+ψ)的最小正周期用公式计算:T=π/ω。
1如何求函数的最小正周期
对于y=Asin(ωx+ψ)+B,(A≠0,ω>0)其最小正周期为:T=2π/ω。
函数的最小正周期,一般在高中遇到的都是特殊形式的函数,比如;f(a-
x)=f(x+a),这个函数的最小周期就是T=(a-x+x+a)/2=a.还有那就是三角函数y=A sin(wx+b)+t,他的最小正周期就是T=2帕/w。
2最小正周期的公式法
这类题目是通过三角函数的恒等变形,转化为一个角的一种函数的形式,用公式去求,其中正余弦函数求最小正周期的公式为T=2π/|ω| ,正余切函数T=π/|ω|。
函数f(x)=Asin(ωx+φ)和f(x)=Acos(ωx+φ)(A≠0,ω>0)的最小正周期都是;函数f(x)=Atan(ωx+φ)和f(x)=Acot(ωx+φ)(A≠0,ω>0)的最小正周期都是,运用这一结论,可以直接求得形如y=Af(ωx+φ)(A≠0,ω>0)一类三角函数的最小正周期(这里“f”表示正弦、余弦、正切或余切函数)。
例:求函数y=cotx-tanx的最小正周期.
解:y=1/tanx-tanx=(1-tan^2· x)/tanx=2*(1-tan^2·x)/(2tanx)=2cot2x ∴T=π/2
函数为两个三角函数相加,若角频率之比为有理数,则函数有最小正周期。
三角函数
三角函数王志鹏三角函数在历年的高考试题中所占的分值基本保持恒定,两个选择题 ,一个解答题,分值在22分左右,它所涉及到的问题主要有周期.奇偶性,图像平移,最大值最小值的求法,单调递增递减区间的判断等 <一> 周期 周期性正弦函数、余弦函数都是周期函数,2k π(k ∈Z 且k ≠0)都是它的周期,最小正周期是2π。
函数 x ∈R 及 Y=A ()φω+x cos x R ∈其中(ω,A ,φ均为常数,A ≠0,w>0)周期为 T 小=2π/w(1) 几种常见的三角函数的周期 ① f(x)=|sin ϖx| T 小=π/w 。
② f( x)=| ()φω+x cos | T 小=π/w 。
③ f(x)=|tan ϖx| T=π/2w④ f(x)==(1-cos2x)/2=1/2-cos2x/2 T 小=π ⑤ f(x)==(1+cos2x)/2=1/2+cos2x/2 T T 小=π ⑥ f(x)=tan 2x=tan 2(x+π/2) T 小=π/2⑦ f(x)=x x cos sin + =2sin(x+π/4 ) T 小=2π ⑧ f(x)=x x tan cos + T 小=2π ⑨ f(x)=x x tan sin + T 小=2π总结:① 一般的三角函数可以直接代入公式 T=2/w 即可求得最小正周期,加了绝对值的三角函数的周期要比没加绝对值得三角函数的周期少一半②一个加减混合的三角函数的函数中 ,此函数的周期遵循取大原则 ,即这几个三角函数谁的周期最大则该函数的周期就为它⑩ 例 1 求 y=2|sin(4x-π/3)|的最小正周期是多少?⑪ 解: 因为 y=2sin(4x-π/3)的最小正周期可直接代入公式 T 小=2π/w=2π/4=π/2 ⑫ 又因为加了绝对值周期减半 ,所以T 小=π/2⨯1/2=π/4 ⑬例 2 函数Y=sin(x+2)的最小正周期为____2_______ 解:直接代入公式 T=π/2w =2π/π=2(二) 奇偶性的判断① 定义:偶函数需满足 F(-x)=F(x) 且关于Y 轴对称 奇函数需满足 F(-x)=-F(x) 且关于原点对称 ② F(x)= x sin 为奇函数,F(x)= x cos 为偶函数例 1 Y=()1cos sin 2--x x 是( )A 最小正周期为2π的偶函数B 最小正周期为2π的奇函数C 最小正周期为π的偶函数D 最小正周期为π的奇函数解: 首先要进行化简 一般把它们化成同冥函数(正弦函数,余弦函数或正切函数等),切不可让他们混合在一起Y=sin 2x - 2sinxcosx + x 2cos =1-2sinxcosx=1-2sin2x(倍角公式) 可直接代入公式得:T 小=2π/w=2π/2=π②观察法:该函数是正弦函数,即可判断为奇函数例2 函数Y=2sin2xcos2x 是( )A 周期为π/2的奇函数B 周期为π/2的偶函数C 周期为π/4的奇函数D 周期π/4为的偶函数解:首先进行化简,利用倍角公式 Y=2sin4x T=2π/w=2π/4=π/2又因为是正弦函数,所以为奇函数<三>图像平移对x 轴而言 左加右减 对y 轴而言 上加下减例 y =x sin −−→−平移x cos 因为sin(x+π/2 )= x cos 所以要向右平移π/2 Y =x cos −−→−平移x sin 因为 x x sin 2cos =⎪⎭⎫⎝⎛-π 所以要向左平移π/2⑪看平移要求拿到这类问题,首先要看题目要求由哪个函数平移到哪个函数,这是判断移动方向的关键点,一般题目会有下面两种常见的叙述。
三角函数周期的常用求法
三角函数周期的常用求法河南 陈长松三角函数的周期是三角函数的一个重要性质,也是高考的热点.本文通过实例介绍求三角函数周期的几种常用方法,供参考. 一、公式法例1 函数)23sin(x y -=π的最小正周期是 ( ) A.π B.2π C.-4π D.4π 解:由公式,得ππ4212=-=T ,故选D. 评注:对于函数)sin(ϕω+=x A y 或)cos(ϕω+=x A y 可直接利用公式ωπ2=T 求得;对于)tan(ϕω+=x A y 或)cot(ϕω+=x A y 可直接利用公式ωπ=T 求得。
二、图像法例2 求下列函数的最小正周期① x y sin = ②x y sin解:分别作出两个函数的图像知三、解:∵ 2cos()2sin(ππk x k x +++=x x cos sin + (Z k ∈) ∴2πk 是函数x x y cos sin +=的周期.显然2πk 中最小者是2π 下面证明2π是最小正周期 假设2π不是x x y cos sin +=的最小正周期,则存在<<T 02π,使得: =+)(T x f )cos()sin(T x T x +++=x x cos sin +对R x ∈恒成立,令0=x ,则=+)0(T f T T cos sin +=10cos 0sin cos sin =+=+T T ① 但<<T 02π,∴1cos sin >+T T ②∴ ①与②矛盾, ∴ 假设不成立,∴2π是x x y cos sin +=最小正周期. 评注:这种方法依据周期函数的定义,从式子)()(x f T x f =+出发,设法找出周期T 中的最小正数(须用反证法证明).四、转化法例4 求函数x x y 66cos sin +=的最小正周期解:∵ y =)cos sin 3cos sin 3()cos (sin 4224322x x x x x x +-+=)4cos 1(831)cos (sin )cos (sin 31222x x x x x --=+- =x 4cos 8385+ ∴ 函数x x y 66cos sin +=的最小正周期是242ππ==T 评注:就是先根据三角公式已知式转化为一个脚的一个三角函数的形式,再利用公式去求.这是最常见的求周期题型,也是高考考察的热点.五、最小公倍数法例5 求函数y sin3x cos5x =+的最小整周期解:设sin3x 、cos5x 的最小整周期分别为1T 、2T , 则12T 3π=,22T 5π=,2T 1π==2π ∴y sin3x cos5x =+的最小整周期为2π评注:设()f x 与()g x 是定义在公共集合上的两个三角周期函数,1T 、2T 分别是它们的周期,且1T ≠2T ,则()f x ±()g x 的最小整周期是1T 、2T 的最小公倍数.分数的最小公倍数=分子的最小公倍数分母的最小公倍数。
三角函数周期题库
三角函数周期的求法高中数学涉及到函数周期的问题,学生往往感到比较困难。
以下是有关三角函数周期的几种求法。
1.定义法:定义:一般地y=c ,对于函数,如果存在一个不为零的常数,使得当取定义域内的每一个值时,f(x+T )=f(x)都成立,那么就把函数y=f(x)叫做周期函数;不为零的常数叫做这个函数的周期。
对于一个周期函数来说,如果在所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小的正周期。
下面我们谈到三角函数的周期时,一般指的是三角函数折最小正周期。
例1.求函数y=3sin (332π+x )的周期解:∵y=f (x )=3sin (332π+x )=3sin (332π+x +2π)=3sin (3232ππ++x )=3sin[3)3(32ππ++x ]= f (x+3π)这就是说,当自变量由x增加到x+3π,且必增加到x+3π时,函数值重复出现。
∴函数y=3sin (332π+x )的周期是T=3π。
例2:求f (x )=sin 6x+cos 6x 的周期解∵f (x+2π)= sin 6(x+2π)+ cos 6(x+2π) = cos 6x +sin 6x= f (x )∴f (x )=sin 6x+cos 6x 的周期为T=2π例3:求f (x )=xx xx 3cos cos 3sin sin ++的周期解:∵f (x+π)=)cos()cos()(3sin )sin(ππππ++++++x x x x=x cox xx 3cos 3sin sin ----=xx x x 3cos cos 3sin sin ++ = f (x )∴求f (x )=xx xx 3cos cos 3sin sin ++的周期:T=π2.公式法:(1)如果所求周期函数可化为y=Asin (ϕω+x )、y=Acos (ϕω+x )、y=tg (ϕω+x )形成(其中A 、ω、ϕ为常数,且A ≠0、ω>0、ϕ∈R ),则可知道它们的周期分别是:ωπ2、ωπ2、ωπ。
三角函数周期的求法
求三角函数的周期问题常以选择题或者填空题的形式出现,属于基础题目.很多三角函数具有周期性,三角函数的解析式不同,其周期也不相同.对于不同的三角函数解析式,我们也需要采用不同的方法来求其周期.这里介绍三种方法.一、定义法定义法是指利用函数周期的定义来解题的方法.若函数f (x )的定义域为数集D ,那么对于∀x ∈D ,有f (x +T )=f (x ),则该函数为周期函数,其中T (最小正常数)为函数f (x )的最小正周期.运用定义法求三角函数的周期,只需要找到使f (x +T )=f (x )成立的T 的值即可.例1.求三角函数y =sin 2x 的最小正周期.解:设sin 2(x +T )-sin 2x =0,则2sin2x +T 2cos T 2⋅cos 2x +T 2sin T 2=0,化简得sin(2x +T )=sin T ,所以sin(2x +T )=0或者sin T =0,当sin(2x +T )=0时T =k π-2x ,此时T 不为常数,不能作为周期,当sin T =0时,T 的最小非零正数解为T =π,所以函数y =sin 2x 的最小正周期为T =π.由题目可知该三角函数为周期函数,不妨根据三角函数周期的定义设出函数的周期T ,然后通过三角恒等变换求得T 的值.二、最小公倍数法最小公倍数法:当三角函数f (x )和g (x )的定义域都是D ,且三角函数f (x )和g (x )的周期分别为T 1、T 2,那么T 1、T 2的最小公倍数就是函数f (x )±g (x ),f (x )×g (x ),f (x )g (x )的周期.运用最小公倍数法求三角函数周期的关键是寻找两个三角函数周期的最小公倍数.例2.求三角函数f (x )=4cos x 4-5sin x5的最小正周期.解:因为cos x 4与sin x5都是周期函数,且最小正周期分别为T 1=8π,T 2=10π且T 1T 2=45为有理数.而8和10的最小公倍数为40,所以f (x )为周期函数,且最小正周期为40π.函数f (x )是两个三角函数y =4cos x 4、y =5sinx5的和,而它们的最小正周期分别为T 1=8π、T 2=10π,利用最小公倍数法,求出它们周期的最小公倍数,便可求出该三角函数的最小正周期.三、公式法当遇到较为复杂的三角函数式时,可通过三角恒等变形将原三角函数转化为y =A sin(ωx +ϕ)+h 、y =A cos(ωx +ϕ)+h 、y =A tan(ωx +ϕ)+h 的形式,再结合正弦、余弦、正切三角函数的周期公式:T =2π||ω或T =π||ω来求得三角函数的周期.例3.求三角函数y =sin 6x +cos 6x 的最小正周期.解:y =sin 6x +cos 6x =(sin 2x +cos 2x )(sin 4x -sin 2x cos 2x +cos 4x )=(sin 2x +cos 2x )2-3sin 2x cos 2x =1-34sin 22x =1-34∙1-cos 4x2=38cos 4x +58.所以三角函数y =sin 6x +cos 6x 的最小正周期为T =2π||ω=π2.该三角函数的次数比较高,运用sin 2x +cos 2x =1、正余弦的二倍角公式便可将三角函数式化简为只含有余弦函数的式子.这样便可根据余弦函数的周期公式T =2π||ω求得三角函数y =sin 6x +cos 6x 的最小正周期.求三角函数周期的方法还有很多,不仅仅局限于这三种方法.同学们在平时的学习中要注意熟悉题型,总结解题技巧,以后再遇到类似的问题就能快速解题.(作者单位:江苏省沭阳如东中学)方法集锦45Copyright©博看网 . All Rights Reserved.。
如何求三角函数的周期解读
如何求三角函数的周期三角函数的的周期是三角函数的重要性质,对于不同的三角函数式,如何求三角函数的周期也是一个难点,下面通过几个例题谈谈三角函数周期的求法.1、根据周期性函数的定义求三角函数的周期例1 求下列函数的周期 x y 2sin )1(= , 32tan )2(x y =. (1)分析:根据周期函数的定义,问题是要找到一个最小正数T ,对于函数定义域内的每一个x 值都能使x T x 2sin )(2sin =+成立,同时考虑到正弦函数x y sin =的周期是π2. 解:∵ )(2sin )22sin(2sin ππ+=+=x x x , 即 x x 2sin )(2sin =+π.∴ 当自变量由x 增加到π+x 时,函数值重复出现,因此x y 2sin =的周期是π.(2) 分析:根据周期函数的定义,问题是要找到一个最小正数T ,对于函数定义域内的每一个x 值都能使 32tan )(32tanx T x =+成立,同时考虑到正切函数x y tan =的周期是π. 解:∵ )23(32tan )32tan(32tanππ+=+=x x x , 即32tan )23(32tan x x =+π. ∴ 函数32tan x y =的周期是π23. 注意:1、根据周期函数的定义,周期T 是使函数值重复出现的自变量x 的增加值,如),2()2(x f T x f =+周期不是T ,而是T 21; 2、”“)()(x f T x f =+是定义域内的恒等式,即对于自变量x 取定义域内的每个值时,上式都成立.2、根据公式求周期对于函数B x A y ++=)sin(ϕω或B x A y ++=)cos(ϕω的周期公式是||2ωπ=T , 对于函数B x A y ++=)tan(ϕω或B x y ++=)cot(ϕω的周期公式是||ωπ=T . 例3 求函数)623sin(3π-=x y 的周期 解: 34232ππ==T . 3、把三角函数表达式化为一角一函数的形式,再利用公式求周期例4 求函数x x x y 2sin 2cos sin 32-=的周期 解:12cos 2sin 3sin 2cos sin 322-+=-=x x x x x y1)62sin(21)2cos 212sin 23(2-+=-+=πx x x ∴ ππ==22T . 例5 已知函数),3cos 3(sin 3sin)(x x x x f +=求周期 解:∵32sin 21)32cos 1(213cos 3sin 3sin )(2x x x x x x f +-=+= )432sin(2221)32cos 32(sin 2121π-+=-+=x x x ∴ ππ3322==T . 4、遇到绝对值时,可利用公式 2||a a =, 化去绝对值符号再求周期例6 求函数 |cos |x y =的周期解:∵ 22cos 1cos |cos |2x x x y +=== ∴ ππ==22T . 例7 求函数|cos ||sin |x x y +=的周期解:∵()x x x x x x y 2sin 1|2sin |1|cos ||sin ||cos ||sin |22+=+=+=+= )4cos 1(21124cos 11x x -+=-+= ∴ 函数|cos ||sin |x x y +=的最小正周期 242ππ==T . 5、若函数)()()(21x f x f x f y k +++= ,且)(,),(),(21x f x f x f k ,都是周期函数,且最小正周期分别为k T T T ,,21,如果找到一个正常数T , 使k k T n T n T n T ==== 2211, (k n n n ,,,21 均为正整数且互质),则T 就是)()()(21x f x f x f y k +++= 的最小正周期. 例8 求函数x x y 21cos sin +=的周期 解:∵ x sin 的最小正周期是π21=T , x 21cos的最小正周期是π42=T . ∴ 函数y 的周期2211T n T n T == ,把21T T ,代入得 21 4 2n n ππ=,即212n n =,因为21,n n 为正整数且互质, 所以 1 ,221==n n .函数x x y 21cossin +=的周期ππ42211=⨯==T n T . 例9 求函数x x y 43cos 32sin +=的周期 解: ∵ x 32s i n 的最小正周期是ππ33221==T ,x 43cos 的最小正周期是384322ππ==T , 由2211T n T n =, 2138 3n n ππ= ,2189n n = (21,n n 为正整数且互质), 得 9 ,821==n n .所以 函数x x y 43cos 32sin +=的周期是ππ243811=⨯==T n T .函数的周期性--函数的周期性不仅存在于三角函数中,在其它函数或者数列中"突然"出现的周期性问题更能考查你的功底和灵活性,本讲重点复习一般函数的周期性问题一.明确复习目标1.理解函数周期性的概念,会用定义判定函数的周期;2.理解函数的周期性与图象的对称性之间的关系,会运用函数的周期性处理一些简单问题。
求三角函数最小正周期的五种方法
求三角函数最小正周期的五种方法spacetzs关于求三角函数最小正周期的问题,是三角函数的重点和难点,教科书和各种教参中虽有讲解,但其涉及到的题目类型及解决方法并不多,学生遇到较为复杂一点的问题时,往往不知从何入手。
本文将介绍求三角函数最小正周期常用的五种方法,仅供参考。
一、定义法直接利用周期函数的定义求出周期。
例1.求函数y m x =-cos()56π(m ≠0)的最小正周期。
解:因为y m x =-cos()56π =-+=+-cos()cos[()]m x m x m 5625106ππππ 所以函数y m x =-cos()56π(m ≠0)的最小正周期 T m =10π||例2.求函数y x a =cot的最小正周期。
解:因为y x a x a a x a ==+=+cotcot()cot[()]ππ1 所以函数y x a=cot的最小正周期为T a =||π。
二、公式法利用下列公式求解三角函数的最小正周期。
1.y A x h =++sin()ωφ或y A x h =++cos()ωφ的最小正周期T =2πω||。
2.y A x h y A x h =++=++tan()cot()ωφωφ或的最小正周期T =πω||。
3.y x y x ==|sin ||cos |ωω或的最小正周期T =πω||。
4.y x y x ==|tan ||cot |ωω或的最小正周期T =πω||例3.求函数y x =|tan |3的最小正周期。
解:因为T ==πωω||而3 所以函数y x =|tan |3的最小正周期为T =π3。
例4.求函数y n mx =-cot()3π的最小正周期。
解:因为T n m==-πωωπ||||而, 所以函数y n m x =-cot()3π的最小正周期为T n m m n =-=ππ||||。
三、转化法对较复杂的三角函数可通过恒等变形转化为y A x h =++sin()ωφ等类型,再用公式法求解。
如何求三角函数周期
如何求三角函数的周期徐州大屯矿区第一中学 李秀学摘要:求三角函数的周期,若函数式比较简单,可利用定义或周期公式直接求解,若函数式比较复杂,则需要把函数式变形后再利用定义或周期公式求解,因此掌握方法很重要.关键词:三角函数 周期 方法三角函数的的周期是三角函数的重要性质,对于不同的三角函数式,如何求三角函数的周期也是一个难点,下面通过几个例题谈谈三角函数周期的求法.1、根据周期性函数的定义求三角函数的周期例1 求下列函数的周期 x y 2sin )1(= , 32tan )2(x y =. (1)分析:根据周期函数的定义,问题是要找到一个最小正数T ,对于函数定义域内的每一个x 值都能使x T x 2sin )(2sin =+成立,同时考虑到正弦函数x y sin =的周期是π2. 解:∵ )(2sin )22sin(2sin ππ+=+=x x x , 即 x x 2sin )(2sin =+π.∴ 当自变量由x 增加到π+x 时,函数值重复出现,因此x y 2sin =的周期是π.(2) 分析:根据周期函数的定义,问题是要找到一个最小正数T ,对于函数定义域内的每一个x 值都能使 32tan )(32tanx T x =+成立,同时考虑到正切函数x y tan =的周期是π. 解:∵ )23(32tan )32tan(32tanππ+=+=x x x , 即32tan )23(32tan x x =+π. ∴ 函数32tan x y =的周期是π23. 注意:1、根据周期函数的定义,周期T 是使函数值重复出现的自变量x 的增加值,如),2()2(x f T x f =+周期不是T ,而是T 21; 2、”“)()(x f T x f =+是定义域内的恒等式,即对于自变量x 取定义域内的每个值时,上式都成立.2、根据公式求周期对于函数B x A y ++=)sin(ϕω或B x A y ++=)cos(ϕω的周期公式是||2ωπ=T , 对于函数B x A y ++=)tan(ϕω或B x y ++=)cot(ϕω的周期公式是||ωπ=T . 例3 求函数)623sin(3π-=x y 的周期解: 34232ππ==T . 3、把三角函数表达式化为一角一函数的形式,再利用公式求周期例4 求函数x x x y 2sin 2cos sin 32-=的周期 解:12cos 2sin 3sin 2cos sin 322-+=-=x x x x x y1)62sin(21)2cos 212sin 23(2-+=-+=πx x x ∴ ππ==22T . 例5 已知函数),3cos 3(sin 3sin)(x x x x f +=求周期 解:∵32sin 21)32cos 1(213cos 3sin 3sin )(2x x x x x x f +-=+= )432sin(2221)32cos 32(sin 2121π-+=-+=x x x ∴ ππ3322==T . 4、遇到绝对值时,可利用公式 2||a a =, 化去绝对值符号再求周期例6 求函数 |cos |x y =的周期解:∵ 22cos 1cos |cos |2x x x y +=== ∴ ππ==22T . 例7 求函数|cos ||sin |x x y +=的周期解:∵()x x x x x x y 2sin 1|2sin |1|cos ||sin ||cos ||sin |22+=+=+=+= )4cos 1(21124cos 11x x -+=-+= ∴ 函数|cos ||sin |x x y +=的最小正周期 242ππ==T . 5、若函数)()()(21x f x f x f y k +++= ,且)(,),(),(21x f x f x f k ,都是周期函数,且最小正周期分别为k T T T ,,21,如果找到一个正常数T , 使k k T n T n T n T ==== 2211,(k n n n ,,,21 均为正整数且互质),则T 就是)()()(21x f x f x f y k +++= 的最小正周期. 例8 求函数x x y 21cos sin +=的周期 解:∵ x sin 的最小正周期是π21=T , x 21cos的最小正周期是π42=T . ∴ 函数y 的周期2211T n T n T == ,把21T T ,代入得 21 4 2n n ππ=,即212n n =, 因为21,n n 为正整数且互质, 所以 1 ,221==n n .函数x x y 21cossin +=的周期ππ42211=⨯==T n T . 例9 求函数x x y 43cos 32sin +=的周期 解: ∵ x 32s i n 的最小正周期是ππ33221==T ,x 43cos 的最小正周期是384322ππ==T , 由2211T n T n =, 2138 3n n ππ= ,2189n n = (21,n n 为正整数且互质), 得 9 ,821==n n .所以 函数x x y 43cos 32sin+=的周期是ππ243811=⨯==T n T .。
如何求三角函数的周期
如何求三角函数的周期(总14页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--如何求三角函数的周期三角函数的的周期是三角函数的重要性质,对于不同的三角函数式,如何求三角函数的周期也是一个难点,下面通过几个例题谈谈三角函数周期的求法.1、根据周期性函数的定义求三角函数的周期例1 求下列函数的周期 x y 2sin )1(= , 32tan )2(x y =. (1)分析:根据周期函数的定义,问题是要找到一个最小正数T ,对于函数定义域内的每一个x 值都能使x T x 2sin )(2sin =+成立,同时考虑到正弦函数x y sin =的周期是π2.解:∵ )(2sin )22sin(2sin ππ+=+=x x x , 即 x x 2sin )(2sin =+π. ∴ 当自变量由x 增加到π+x 时,函数值重复出现,因此x y 2sin =的周期是π.(2) 分析:根据周期函数的定义,问题是要找到一个最小正数T ,对于函数定义域内的每一个x 值都能使 32tan )(32tanx T x =+成立,同时考虑到正切函数x y tan =的周期是π. 解:∵ )23(32tan )32tan(32tan ππ+=+=x x x , 即32tan )23(32tan x x =+π. ∴ 函数32tan x y =的周期是π23. 注意:1、根据周期函数的定义,周期T 是使函数值重复出现的自变量x 的增加值,如),2()2(x f T x f =+周期不是T ,而是T 21; 2、”“)()(x f T x f =+是定义域内的恒等式,即对于自变量x 取定义域内的每个值时,上式都成立.2、根据公式求周期对于函数B x A y ++=)sin(ϕω或B x A y ++=)cos(ϕω的周期公式是||2ωπ=T , 对于函数B x A y ++=)tan(ϕω或B x y ++=)cot(ϕω的周期公式是||ωπ=T . 例3 求函数)623sin(3π-=x y 的周期 解: 34232ππ==T . 3、把三角函数表达式化为一角一函数的形式,再利用公式求周期例4 求函数x x x y 2sin 2cos sin 32-=的周期 解:12cos 2sin 3sin 2cos sin 322-+=-=x x x x x y1)62sin(21)2cos 212sin 23(2-+=-+=πx x x ∴ ππ==22T . 例5 已知函数),3cos 3(sin 3sin )(x x x x f +=求周期 解:∵32sin 21)32cos 1(213cos 3sin 3sin )(2x x x x x x f +-=+= )432sin(2221)32cos 32(sin 2121π-+=-+=x x x ∴ ππ3322==T . 4、遇到绝对值时,可利用公式 2||a a =, 化去绝对值符号再求周期例6 求函数 |cos |x y =的周期解:∵ 22cos 1cos |cos |2x x x y +=== ∴ ππ==22T . 例7 求函数|cos ||sin |x x y +=的周期解:∵()x x x x x x y 2sin 1|2sin |1|cos ||sin ||cos ||sin |22+=+=+=+= )4cos 1(21124cos 11x x -+=-+= ∴ 函数|cos ||sin |x x y +=的最小正周期 242ππ==T . 5、若函数)()()(21x f x f x f y k +++= ,且)(,),(),(21x f x f x f k ,都是周期函数,且最小正周期分别为k T T T ,,21,如果找到一个正常数T , 使k k T n T n T n T ==== 2211,(k n n n ,,,21 均为正整数且互质),则T 就是)()()(21x f x f x f y k +++= 的最小正周期.例8 求函数x x y 21cos sin +=的周期 解:∵ x sin 的最小正周期是π21=T , x 21cos的最小正周期是π42=T . ∴ 函数y 的周期2211T n T n T == ,把21T T ,代入得 21 4 2n n ππ=,即212n n =,因为21,n n 为正整数且互质, 所以 1 ,221==n n .函数x x y 21cossin +=的周期ππ42211=⨯==T n T . 例9 求函数x x y 43cos 32sin +=的周期 解: ∵ x 32sin 的最小正周期是ππ33221==T ,x 43cos 的最小正周期是384322ππ==T , 由2211T n T n =, 2138 3n n ππ= ,2189n n = (21,n n 为正整数且互质), 得 9,821==n n . 所以 函数x x y 43cos 32sin +=的周期是ππ243811=⨯==T n T .函数的周期性--函数的周期性不仅存在于三角函数中,在其它函数或者数列中"突然"出现的周期性问题更能考查你的功底和灵活性,本讲重点复习一般函数的周期性问题一.明确复习目标1.理解函数周期性的概念,会用定义判定函数的周期;2.理解函数的周期性与图象的对称性之间的关系,会运用函数的周期性处理一些简单问题。
最小正周期的公式
最小正周期的公式---------------------------------------------------------------------- 最小正周期的公式为:y=Atan(ωx+ψ)或y=cot(ωx+ψ)。
最小正周期的公式解析:对于y=Asin(x+ψ)+B,(A≠0,0>0) 其最小正周期为: T函数的最小正周期,一般在高中遇到的都是特殊形式的函数,比如;f(a-x)=f(x+a),这个函数的最小周期就是T=(a-x+x+a)/2=a.还有那就是三角函数y=A sin(wx+b)+t,他的最小正周期就是T=2帕/w。
公式法求最小正周期:f (x)=Atan(∞x+φ)和f (x)=Acot(wx+φ)(A≠0, w>0)的最小正周期都是,运用这一结论,可以直接求得形如y=Af(∞x+φ)(A≠0, w>0) 一类三角函数的最小正周期(这里“f”表示正弦、余弦、正切或余切函数)。
例:求函数y=cotx- tanx的最小正周期.解: y=1/tanx-tanx=(1-tan' 2●x)/tanx=2x(1- tan 2●x)/ (2ta.T=π /2函数为两个三角函数相加,若角频率之比为有理数,则函数有最小正周期。
最小正周期的定义:如果一个函数f(x)的所有周期中存在一个最小的正数,那么这个最小的正数就叫做f(x)的最小正周期,例如,正弦函数的最小正周期是2π。
对于正弦函数y=sinx, 自变量x只要并且至少增加到x+2π时,函数值才能重复取得正弦函数和余弦函数的最小正周期是2π。
y=Asin(ωx+φ), T=2π÷ω(其中ω必须>0)最小正周期的算法实例:定义法概念:根据周期函数和最小正周期的定义,确定所给函数的最小正周期。
例:求函数y=∣sinx∣+∣cosx∣的最小正周期。
解:∵y=∣s=∣-sinx∣+∣cosx∣=∣cos(x+π/2)∣+∣sin(x+π/2)∣=∣sin(x+π/2)∣+∣cos(x+π/2)∣=f(x+π/2)对定义域内的每一个x,当x增加到x+π/2时,函数值重复出现,因此函数的最小正周期是π/2。
谈三角函数的最小正周期
谈三角函数的最小正周期摘要:三角函数的周期性是三角函数的一个重要性质,它在高考中经常考查,但学生掌握不够理想,他们通常要通过繁琐的化简才能得出结论,其实,如果掌握一些结论,三角函数的周期性问题就会迎刃而解,做到即快又准; 关键词:最小正周期、绝对值、图象三角函数的周期性是三角函数的一个重要性质。
关于三角函数的最小正周期这一知识点,曾多次在高考中考查过,但在现行普通高中代数课本(人教版必修4)中并末作重点研究和讨论。
因此,本人就三角函数最小正周期来谈谈,以便学生能迅速,准确地解题;同时,以供教学参考。
一、预备知识如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有)()(x f T x f =+,那么就把函数)(x f 叫做周期函数,非零常数T 叫做这个函数的周期。
对于一个周期函数)(x f ,如果在它所有的周期中存在着一个最小的正数,那么这个最小的正数叫做)(x f 的最小正周期。
这次所谈的函数只针对于三角函数而言,且高中代数课本(人教版必修4)中关于最小正周期给出了以下结论:①函数x y sin =,x y cos =的最小正周期是π2。
②函数x y tan =,x y cot =的最小正周期是π。
③函数)sin(φω+=x A y 的最小正周期为ωπ2; R )x 0,0,A ,(∈>≠ωφω为常数,且,A 。
二、关于一般三角函数的最小正周期的求法对于单角单函数或能变形为单角单函数的最小正周期的求法是直接利用预备知识求解。
例1、(91年全国高考题)函数x x y 44sin cos -=的最小正周期是( ) ππππ4)(2)()(4)(D C B A分析: x x y 44sin cos -=x x x x x 2cos )sin )(cos sin (cos 2222=-+=ππϖπ===∴222T 选(B ) 说明:对于函数)s i n(φω+=x A y 的最小正周期是||2ωπR )x 0,0,A ,(∈≠≠ωφω为常数,且,A例2、(92年全国高考题)如果函数)cos()sin(x x y ωω=的最小正周期是π4,那么常数ω为( )(A ) 4 (B) 2 (C) 1/2 (D) 1/4 分析:)cos()sin(x x y ωω= )2s i n (21x ω= πϖπ4|2|2==∴T 即有41=ω 选(D ) 例3、函数xx xx y 4sin 4cos 4sin 4cos -+=的最小正周期是分析: )44tan(4tan 14tan 14sin 4cos 4sin 4cos x x x x x x x y +=-+=-+=π4||πϖπ==∴T 故答案为4π说明:函数x y ωtan =,x y ωcot =的最小正周期是||ϖπ=T (x 属于)(x f 的定义域内)。
最小正周期公式
最小正周期公式公式为:y=Atan(ωx+ψ)或y=cot(ωx+ψ)对于y=Asin(x+ψ)+B,(A≠0, 0>0) 其最小正周期为: T函数的最小正周期,一般在高中遇到的都是特殊形式的函数,比如;f(a-x)=f(x+a),这个函数的最小周期就是T=(a-x+x+a)/2=a.还有那就是三角函数y=A sin(wx+b)+t,他的最小正周期就是T=2帕/w。
公式法求最小正周期f (x)=Atan(∞x+φ)和f (x)=Acot(wx+φ)(A≠0, w>0)的最小正周期都是,运用这一结论,可以直接求得形如y=Af(∞x+φ)(A≠0, w>0) 一类三角函数的最小正周期(这里“f”表示正弦、余弦、正切或余切函数)。
例:求函数y=cotx- tanx的最小正周期.解: y=1/tanx-tanx=(1-tan' 2●x)/tanx=2x(1- tan 2●x)/(2ta.T=π /2函数为两个三角函数相加,若角频率之比为有理数,则函数有最小正周期。
如果一个函数f(x)的所有周期中存在一个最小的正数,那么这个最小的正数就叫做f(x)的最小正周期,例如,正弦函数的最小正周期是2π。
对于正弦函数y=sinx, 自变量x只要并且至少增加到x+2π时,函数值才能重复取得正弦函数和余弦函数的最小正周期是2π。
y=Asin(ωx+φ), T=2π÷ω(其中ω必须>0)定义法概念:根据周期函数和最小正周期的定义,确定所给函数的最小正周期。
例:求函数y=∣sinx∣+∣cosx∣的最小正周期。
解:∵y=∣s=∣-sinx∣+∣cosx∣=∣cos(x+π/2)∣+∣sin(x+π/2)∣=∣sin(x+π/2)∣+∣cos(x+π/2)∣=f(x+π/2)对定义域内的每一个x,当x增加到x+π/2时,函数值重复出现,因此函数的最小正周期是π/2。
(如果f(x+T)=f(x),那么T叫做f(x)的周期)。
如何求三角函数的最小正周期
如何用初等方法求三角函数的最小正周期在三角函数中,求最小正周期是一个重要内容,有关求三角函数最小正周期的问题,供大家参考。
一公式法函数f(x )=Asin(ωx+φ)和f(x )=Acos(ωx+φ)(A ≠0,ω>0)的最小正周期都是ωπ2;函数f(x)=A t an(ωx+φ)和f(x)=A c ot(ωx+φ)(A ≠0,ω>0)的最小正周期都是ωπ,运用这一结论,可以直接求得形如y=Af(ωx+φ)(A ≠0,ω>0)一类三角函数的最小正周期(这里“f ”表示正弦、余弦、正切或余切函数)。
例1 求下列函数的最小正周期:(1)f(x )=2sin (53πx +1)。
(2) f(x)=1-31cos(4x 3π-)。
(3) f(x)=51t a n(31x 3π-).f(x)=)62cot(21π--x 解:用T 表示各函数的最小正周期,则:(1)T =532ππ =310 T=42π=2π T=31 π=3π f(x )的最小正周期和y 1=1-2c o t(2x -6π)的最小正周期相同,为T=2π 二定义法 根据周期函数和最小正周期的定义,确定所给函数的最小正周期。
例2 求函数f (x)=2si n (21x -6π)的最小正周期。
解:把21x -6π看成是一个新的变量z ,那么2sinz 的最小正周期是2π。
由于z +2π=21x-6π=(21x +4π)-6π。
所以当自变量x 增加到x +4π且必须增加到x+4π时,函数值重复出现。
∴函数y=2sin(21x-6π)的最小正周期是4π。
例3 求函数f(x)=|sinx|-|cosx|的最小正周期。
解:根据周期函数的定义,易知2π、π都是这个的周期,下面证明π是这个函数的最小正周期。
三角函数周期的几种求法
三角函数周期的几种求法深圳市福田区皇岗中学 蔡舒敏高中数学第一册第二节中涉及到函数周期的问题,学生们往往对此类的问题感到比较困难。
本文就这个问题谈三角函数周期的几种求法。
1.定义法:定义:一般地y=c,对于函数,如果存在一个不为零的常数,使得当取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数;不为零的常数叫做这个函数的周期。
对于一个周期函数来说,如果在所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小的正周期。
下面我们谈到三角函数的周期时,一般指的是三角函数折最小正周期。
例1.求函数y=3sin()的周期解:∵y=f(x)=3sin()=3sin(+2) =3sin()=3sin[]= f(x+3)这就是说,当自变量由x增加到x+3,且必增加到x+3时,函数值重复出现。
∴函数y=3sin()的周期是T=3。
例2:求f(x)=sin6x+cos6x的周期解∵f(x+)= sin6(x+)+ cos6(x+)= cos6x +sin6x= f(x)∴f(x)=sin6x+cos6x的周期为T=例3:求f(x)=的周期解:∵f(x+)==== f(x)∴求f(x)=的周期:T=2.公式法:(1)如果所求周期函数可化为y=Asin()、y=Acos()、y=tg()形成(其中A、、为常数,且A0、>0、R),则可知道它们的周期分别是:、、。
例4:求函数y=1-sinx+cosx的周期解:∵y=1-2( sinx-cosx) =1-2(cossinx-sin cosx) =1-2sin(x-)这里=1 ∴周期T=2例5:求:y=2(sinx-cos3x)-1解:∵y=2(sinx-cos3x)-1 =2sin(3x-)-1这里=3 ∴周期为T=例6:求y=tg(1+)的周期解:这里=,∴周期为:T=/=(2)如果f(x)是二次或高次的形式的周期函数,可以把它化成sinx、cosx、tgx的形式,再确定它的周期。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求三角函数最小正周期的五种方法
一、定义法
直接利用周期函数的定义求出周期。
例1. 求函数(m≠0)的最小正周期。
解:因为
所以函数(m≠0)的最小正周期
例2. 求函数的最小正周期。
解:因为
所以函数的最小正周期为。
二、公式法
利用下列公式求解三角函数的最小正周期。
1. 或的最小正周期。
2. 的最小正周期。
3. 的最小正周期。
4. 的最小正周期
例3. 求函数的最小正周期。
解:因为
所以函数的最小正周期为。
例4. 求函数的最小正周期。
解:因为,
所以函数的最小正周期为。
三、转化法
对较复杂的三角函数可通过恒等变形转化为等类型,再用公式法求解。
例5. 求函数的最小正周期。
解:因为
所以函数的最小正周期为。
例6. 求函数的最小正周期。
解:因为
其中,
所以函数的最小正周期为。
四、最小公倍数法
由三角函数的代数和组成的三角函数式,可先找出各个加函数的最小正周期,然后找出所有周期的最小公倍数即得。
注:
1. 分数的最小公倍数的求法是:(各分数分子的最小公倍数)÷(各分数分母的最大公约数)。
2. 对于正、余弦函数的差不能用最小公倍数法。
例7. 求函数的最小正周期。
解:因为csc4x的最小正周期,的最小正周期,由于和
的最小公倍数是。
所以函数的最小正周期为。
例8. 求函数的最小正周期。
解:因为的最小正周期,最小正周期,由于和的最小公倍数是,
所以函数的最小正周期为T=。
例9. 求函数的最小正周期。
解:因为sinx的最小正周期,的最小正周期,
sin4x的最小正周期,由于,的最小公倍数是2。
所以函数的最小正周期为T=。
五、图像法
利用函数图像直接求出函数的周期。
例10. 求函数的最小正周期。
解:函数的图像为图1。
图1
由图1可知:函数的最小正周期为。