高一数学期中考试考点详解

合集下载

专题03函数的概念与性质高一数学上学期期中考点(人教A版必修第一册)课件

专题03函数的概念与性质高一数学上学期期中考点(人教A版必修第一册)课件
奇函数
偶函数
2 知识回归
知识回顾 8:幂函数的图象与性质
8.1、五个幂函数的图象 (记忆五个幂函数的图象 )
当 1, 2,3, 1 , 1 时,我们得到五个幂函数: 2
f
(x)
x

f
(x)
x2

f
(x)
x3

f
(x)
1
x2

f
(x)
x 1
2 知识回归
知识回顾 8:幂函数的图象与性质 8.2、五个幂函数的性质
3 典型例题讲与练
考点二:函数的值域
【典例
5】(2023·全国·高一专题练习)函数
f
(x)
8x x2
15 3x
4
的值域为(

A.
1 7
,
1 3
B.
8 7
,
2
C.
16 7
,
4
D.以上答案都不对
【详解】设题中函数为 y f x ,则 yx2 (3y 8)x 4y 15 0 ,
当 y 0 时, x 15 ;
2 知识回归
知识回顾 3:求函数解析式
(1)待定系数法:若已知函数的类型(如一次函数、二次函数,反比例等),
可用待定系数法.
(2)换元法:主要用于解决已知 f g x 这类复合函数的解析式,求函数 f x
的解析式的问题,在使用换元法时特别注意,换元必换范围.
(3)配凑法:由已知条件 f g x F x ,可将F x 改写成关于 g x 的表达式,
特别地,当函数 f (x) 在它的定义域上单调递增时,称它是减函数(decreasing function).

陕西省西安2023-2024学年高一上学期期中数学试题含解析

陕西省西安2023-2024学年高一上学期期中数学试题含解析

西安2023—2024学年度第一学期期中考试高一数学试题(答案在最后)(时间:120分钟满分:100分)一、选择题(本题共8小题,每小题3.5分,共28分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.集合{}N|13M x x =∈-≤<的真子集的个数是()A.3B.6C.7D.8【答案】C 【解析】【分析】根据题意,求得{}012M =,,,结合真子集的个数的计算方法,即可求解.【详解】由集合{}{}N|130,1,2M x x =∈-≤<=,所以集合M 的真子集的个数为3217-=.故选:C.2.设,a b ∈R ,则“lg lg 0a b +=”是“1ab =”的().A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据对数的运算性质,结合充分性、必要性的定义进行判断即可.【详解】由lg lg 0a b +=lg 01ab ab ⇒=⇒=且0a >且0b >,故选:A .3.已知集合{}2A x x =>,{}2B x x m =<,且R B A ⊆ð,则实数m 的取值范围是()A.()1,+∞B.[)1,+∞C.(),1-∞ D.(],1-∞【答案】A 【解析】【分析】先求出{}R |2B x x m =≥ð,再根据条件R B A ⊆ð,即可求出结果.【详解】因为{}2B x x m =<,所以{}R |2B x x m =≥ð,又{}2A x x =>,R B A ⊆ð,所以22m >,得到1m >,故选:A.4.已知8215,log 3ab ==,则32a b -=()A.25B.5C.259D.53【答案】B 【解析】【分析】先由对数公式把,a b 化简,然后代入32a b -即可求解.【详解】由题意可得2215log 15aa =⇒=,38221log 3log 3log 33b ===,所以2222221153log 153log 3log 15log 3log log 533a b ⎛⎫-=-⨯=-== ⎪⎝⎭,所以2log 53225a b -==.故选:B.5.三个数0.35a =,50.3b =,515c ⎛⎫= ⎪⎝⎭大小的顺序是()A.a b c >>B.a c b>> C.b a c>> D.c a b>>【答案】A 【解析】【分析】利用指数函数、幂函数的单调性即可求解.【详解】由5x y =为增函数,则0.30551a =>=,由5y x =为增函数,555110.35⎛⎫>> ⎪⎝⎭,所以a b c >>.故选:A6.已知0.150log 2,log 2a b ==,则21a b+=()A.-2 B.-1C.1D.2【答案】B 【解析】【分析】先取倒数,再应用对数运算律计算即可.【详解】因为0.150log 2,log 2a b ==,所以2211log 0.1,log 50a b==,2222211log 0.01log 50log 0.5log 12a b +=+===-.故选:B.7.已知:p 存在2,10x R mx ∈+≤;:q 对任意2,10x R x mx ∈++>,若p 或q 为假,则实数m 的取值范围为()A.2m ≤-B.2m ≥ C.2m ≥或2m ≤- D.22m -≤≤【答案】B 【解析】【分析】先求出p ,q 是真命题的x 的范围,由于p 或q 为假命题,得到p ,q 应该全假,即p ,q 的否定为真,列出方程组,求出m 的范围.【详解】解:若p 真则0m <;若q 真,即210x mx ++>恒成立,所以△240m =-<,解得22m -<<.因为p 或q 为假命题,所以p ,q 全假.所以有022m m m ⎧⎨-⎩或 ,所以2m .故选:B .【点睛】复合命题的真假与构成其简单命题的真假的关系是解决复合命题真假的依据:p 且q 的真假,当p ,q 全真则真,有假则假;p 或q 的真假,p ,q 中有真则真,全假则假;非p 的真假与p 的真假相反.8.一元二次不等式20ax bx c ++>的解集为()2,3,则不等式20cx bx a ++<的解集为()A .11,32⎛⎫ ⎪⎝⎭B.1123,⎛⎫-- ⎪⎝⎭C.()3,2-- D.113,,2⎛⎫⎛⎫-∞⋃+∞ ⎪⎪⎝⎭⎝⎭【答案】D 【解析】【分析】根据一元二次不等式与对应方程的关系,利用根与系数的关系,求出b 、c 与a 的关系,代入所求不等式,求出解集即可.【详解】一元二次不等式20ax bx c ++>的解集为()2,3,∴a<0,且2,3是方程20ax bx c ++=的两个实数根,∴2323b a c a ⎧+=-⎪⎪⎨⎪⨯=⎪⎩,解得5,6b a c a =-=,其中a<0;∴不等式20cx bx a ++<化为2650ax ax a -+<,即26510x x -+>,解得13x <或12x >,因此所求不等式的解集为11,,32⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭.故选:D .二、选择题(本题共4小题,每小题4分,共16分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得4分,有选错的得0分,部分选对得2分.)9.若函数()2313x ax f x +-⎛⎫= ⎪⎝⎭的图像经过点()31,,则()A.2a =- B.()f x 在()1∞-,上单调递减C.()f x 的最大值为81 D.()f x 的最小值为181【答案】AC 【解析】【分析】利用函数经过点()31,,可求出a ,再应用函数性质每个选项分别判断即可.【详解】对于A :由题意得()361313a f +⎛⎫== ⎪⎝⎭,得2a =-,故A 正确;对于B :令函数223u x x =--,则该函数在(),1-∞上单调递减,在[)1,∞+上单调递增.因为13uy ⎛⎫= ⎪⎝⎭是减函数,所以()f x 在(),1-∞上单调递增,在[)1,∞+上单调递减,故B 错误;对于C D :因为()f x 在(),1-∞上单调递增,在[)1,∞+上单调递减,所以()()max 181f x f ==,()f x 无最小值.故C 正确,D 错误;故选:AC .10.若0a b <<,那么下列不等式一定成立的是()A.11b ba a+>+ B.11a b a b -<-C.22ac bc < D.11a b>【答案】BD 【解析】【分析】利用不等式的性质即可讨论即可求解.【详解】对于A,若 1.5,0.5a b =-=-,则10.51110.53b b a a +==-<=+-,故A 不一定成立;对于B,因为0a b <<,所以11a b>,所以11a b -<-,所以11a b a b-<-,所以B 一定成立;对于C,当0,c =22ac bc =,所以C 不一定成立;对于D,因为0a b <<,所以11a b>,所以D 一定成立.故选:BD.11.下面关于函数23()2x f x x -=-的性质,说法正确的是()A.()f x 的定义域为(,2)(2,)-∞⋃+∞B.()f x 的值域为RC.()f x 在定义域上单调递减D.点(2,2)是()f x 图象的对称中心【答案】AD 【解析】【分析】由1()22f x x =+-,可知由1y x =向右平移2个单位,再向上平移2个单位得到()f x ,根据1y x =的性质得到()f x 的性质,即可判断;【详解】解:()221231()2222x x f x x x x -+-===+---由1y x =向右平移2个单位,再向上平移2个单位得到1()22f x x =+-,因为1y x=关于()0,0对称,所以()f x 关于()2,2对称,故D 正确;函数()f x 的定义域为(,2)(2,)-∞⋃+∞,值域为(,2)(2,)-∞⋃+∞,故A 正确,B 错误;函数()f x 在(,2)-∞和(2,)+∞上单调递减,故C 错误;故选:AD12.已知正数,a b 满足421a b +=,则()A.144a a +的最小值为 2 B.ab 的最大值为132C.112a b+的最小值为8 D.22164a b +的最小值为12【答案】BCD 【解析】【分析】利用基本不等式的性质,逐个选项进行判断即可,注意等号成立的条件.【详解】对于A ,0a >,所以,1424a a +≥,当且仅当1=4a 时等号成立,但此时,=0b ,与题意不符,故A 错误;对于B,421a b +=≥解得132ab ≥,当且仅当4=24+2=1a b a b ⎧⎨⎩,即1=41=8b a ⎧⎪⎪⎨⎪⎪⎩时,等号成立,故B 正确;对于C ,11114()(42)4822b aa b a b a b a b +=++=++≥,当且仅当22=44+2=1b a a b ⎧⎨⎩,即1=41=8b a ⎧⎪⎪⎨⎪⎪⎩时,等号成立,故C 正确;对于D ,由421a b +=,可得2241168b a a =+-,所以,2223281164a a a b +=-+,当18a =时,此时,14b =,所以,22164a b +的最小值为12,故D 正确.故选:BCD三、填空题(本题共4小题,每小题4分,共16分.把答案填在答题卡上的相应位置.)13.若33m m --=99m m -+的值为__________.【答案】14【解析】【分析】33m m --=.【详解】33m m --=()23312m m --=,即99212m m -+-=,解得9914m m -+=.故答案为:1414.某城市出粗车按如下方法收费:起步价6元,可行3km (含3km ),3km 后到10km (含10km )每多走1km (不足1km 按1km 计)加价0.5元,10km 后每多走1km 加价0.8元,某人坐出租车走了13km ,他应交费____________元.【答案】11.9【解析】【分析】结合已知条件,利用分段函数的概念直接计算即可.【详解】结合已知条件可知,某人坐出租车走了13km 所交费为6(103)0.5(1310)0.811.9y =+-⨯+-⨯=(元).故答案为:11.9.15.高斯是德国著名的数学家,近代数学奠基者之一,用其名字命名的“高斯函数”为:对于实数x ,符号[]x 表示不超过x 的最大整数,例如[e]3-=-,[2.1]2=,定义函数()[]f x x x =-,则函数()f x 的值域为______.【答案】[0,1)【解析】【分析】根据高斯函数的定义,可得函数()[]f x x x =-的图象,即可的解.【详解】由高斯函数的定义可得:当01x ≤<时,[]0x =,则[]x x x -=,当12x ≤<时,[]1x =,则[]1x x x -=-,当23x ≤<时,[]2x =,则[]2x x x -=-,当34x ≤<时,[]3x =,则[]3x x x -=-,易见该函数具有周期性,绘制函数图象如图所示,由图象知()f x 的值域为[0,1).故答案为:[0,1)16.已知关于x 的不等式2(1)320k x x -+-<有且仅有两个不同的整数解,则实数k 的取值范围为__________.(结果用区间表示)【答案】[)3,6【解析】【分析】根据题意,分10k -=,10k -<以及10k ->讨论,结合条件列出不等式,代入计算,即可得到结果.【详解】当10k -=时,即1k =,此时不等式为320x -<,解得23x <,则不等式有无数个整数解,不符合题意;当10k -<时,即1k <,则函数()2(1)32f k x x x -=+-的开口向下,则不等式的整数解有无数个,不符合题意;当10k ->时,即1k >,使得不等式2(1)320k x x -+-<有且仅有两个不同的整数解,则()981810k k ∆=+-=+>,且函数()2(1)32f k x x x -=+-,()020f =-<,所以0是其中的一个整数解,则另一个整数解为1或1-,而()11320f k k =-+-=>,所以1不是另一个整数解,所以另一个整数解是1-,则()()1020f f ⎧-<⎪⎨-≥⎪⎩,解得36k ≤<;综上所述,实数k 的取值范围为[)3,6.故答案为:[)3,6四、解答题(本题共5小题,共40分.解答应写出文字说明、证明过程或演算步骤.)17.(1)计算:122302132(9.6)3(1.5)48--⎛⎫⎛⎫----+ ⎪ ⎪⎝⎭⎝⎭;(2)已知lg 2a =,lg 3b =,用a ,b 表示36log 5【答案】(1)52-;(2)122aa b -+.【解析】【分析】(1)根据指数幂的运算法则,准确运算,即可求解;(2)根据对数的运算法和换底公式,准确运算,即可求解.【详解】解:(1)由指数幂的运算性质,可得:原式12232927344531()41299822--⎛⎫⎛⎫---+ ⎪ ⎪⎝⎭⎝==---=-⎭+(2)由对数的运算性质,可得:36lg 5lg10lg 21lg 21log 5lg 36lg 4lg 92lg 22lg 322aa b---====+++.18.已知集合302x A xx -⎧⎫=<⎨⎬+⎩⎭,{}22210B x x mx m =-+-<,{}2C x x m =-<.(1)若m 使幂函数()234()33m f x m m x-=-+在(0,)+∞上为减函数,求集合R A B ⋂ð;(2)已知x A ∈是x C ∈的必要不充分条件,求m 的取值范围.【答案】(1)2{|0x x -<≤或23}x ≤<(2)[]0,1【解析】【分析】(1)根据幂函数的性质,求得1m =,再由不等式的解法,求得集合,,A B C ,结合集合的运算法则,即可求解;(2)根据题意,求得集合,A C ,结合题意,转化为C 是A 的真子集,列出不等式组,即可求解.【小问1详解】解:由幂函数()234()33m f x m m x-=-+,可得2331m m -+=,即2320m m -+=,解得1m =或2m =,当1m =时,可得1()f x x -=,此时函数()f x 在(0,)+∞上为减函数,符合题意;当2m =时,可得2()f x x =,此时函数()f x 在(0,)+∞上为增函数,不符合题意,所以1m =,可得集合{}{}220|02B x x x x x =-<=<<,{}{}12|13C x x x x =-<=-<<则R {0B x =≤ð或2}x ≥,又因为{}30|232x A xx x x -⎧⎫=<=-<<⎨⎬+⎩⎭,所以R {|20A x x B =-<≤ ð或23}x ≤<.【小问2详解】解:由集合{}|23A x x =-<<,{}{}2|22C x x m x m x m =-<=-<<+,因为x A ∈是x C ∈的必要不充分条件,可得集合C 是A 的真子集,则满足2223m m -≥-⎧⎨+≤⎩且等号不能同时成立,解得01m ≤≤,即实数m 的取值范围为[]0,1.19.已知()y f x =是定义在R 上的奇函数,且0x <时,()12x f x =+(1)求函数()f x 的解析式.(2)画出函数()y f x =的图象,并写出函数()y f x =单调区间及值域.【答案】(1)()12,0{0,011,02x xx f x x x +<==-->(2)单调增区间为(-∞,0),(0,+∞);值域为{y|1<y<2或-2<y<-1或y =0}【解析】【分析】试题分析:(1)由函数为奇函数可得()00=f ,将0x >转化为0x -<,代入函数式,结合奇偶性可求得函数解析式;(2)利用函数图像可得到单调区间及值域试题解析:(1)因为y =f (x )是定义在R 上的奇函数,所以f (-0)=-f (0),所以f (0)=0,因为x<0时,f (x )=1+2x ,所以x>0时,f (x )=-f (-x )=-(1+2-x )=-1-12x,所以f (x )=12,0{0,011,02x x x x x +<=-->(2)函数f (x)的图象为根据f (x )的图象知:f (x )的单调增区间为(-∞,0),(0,+∞);值域为{y|1<y<2或-2<y<-1或y =0}.考点:函数求解析式及函数单调性最值【详解】20.已知()f x 是二次函数,且满足()02f =,()()224f x f x x +-=+,(1)求()f x 的解析式(2)当[],1x m m ∈+,其中m R ∈,求()f x 的最小值.【答案】(1)()2122f x x x =++(2)()2min 272,2223,2122,12m m m f x m m m m ⎧++≤-⎪⎪⎪=-<≤-⎨⎪⎪++>-⎪⎩【解析】【分析】(1)设()2f x ax bx c =++,利用待定系数法可求函数的解析式;(2)分类讨论二次函数的对称轴在区间的左侧,中间,右侧,结合二次函数的的性质求解函数的最值即可.【小问1详解】设()2f x ax bx c =++,因为()02f =,所以2c =又()()224f x f x x +-=+,∴22(2)(2)()24a x b x c ax bx c x ++++-++=+,即44224ax a b x ++=+,∴42424a ab =⎧⎨+=⎩,解得1,12a b ==,∴()2122f x x x =++.【小问2详解】∵()2122f x x x =++,对称轴=1x -,开口向上,故函数在区间(],1-∞-单调递减,在区间[)1,-+∞单调递增,故()()min 312f x f =-=当2m ≤-时,即11m +≤-,此时函数在区间[],1m m +上单调递减,()()2min 171222f x f m m m =+=++;当21m -<≤-时,此时函数在区间[],1m -上单调递减,在区间(]1,1m -+上单调递增,()()min 312f x f =-=;当1m >-时,此时函数在区间[],1m m +上单调递增,()()2min 22m f x f m m ==++;所以()f x 的最小值为()2min 272,2223,2122,12m m m f x m m m m ⎧++≤-⎪⎪⎪=-<≤-⎨⎪⎪++>-⎪⎩21.已知函数()21x b f x ax +=+是定义在区间[]1,1-上的奇函数,且()112f -=-.(1)求函数()f x 的解析式;(2)判断函数()f x 在区间[]1,1-上的单调性,并用函数单调性的定义证明.(3)求满足不等式()()2110f t f t -+-<的实数t 的取值范围.【答案】(1)()21x f x x =+;(2)单调递增,证明见解析;(3)[)0,1.【解析】【分析】(1)由奇函数性质及()112f -=-求得参数即可;(2)设1211x x -£<£,结合因式分解证()()120f x f x -<;(3)由[][]211,111,1t t ⎧-∈-⎪⎨-∈-⎪⎩求得定义域,由奇函数及增函数性质可得211t t -<-,求解即可【小问1详解】由奇函数性质得,()()()222200111x b x b b f x f x b ax ax a x +-+=--⇒=-⇒=⇒=++-+,又()()21112111f a a -==-⇒=--+,∴()21x f x x =+;【小问2详解】函数()f x 在区间[]1,1-上单调递增.证明如下:设1211x x -£<£,则()()()()()()121212122222121211111x x x x x x f x f x x x x x ---=-=++++,由121210,0x x x x ->-<得()()()()12120f x f x f x f x -<⇒<,故函数()f x 在区间[]1,1-上单调递增;【小问3详解】由[][]211,111,1t t t ⎧-∈-⎪⎡⇒∈⎨⎣-∈-⎪⎩,由奇函数性质得()()()()()222110111f t f t f t f t f t -+-<⇔-<--=-,由增函数性质得21121t t t -<-⇒-<<.综上,实数t 的取值范围为[)0,1。

高一数学期中考知识点总结

高一数学期中考知识点总结

高一数学期中考知识点总结作为高中一年级学生,我们在数学课上学习了许多有趣的知识点。

这篇文章将总结一些在高一数学期中考中可能会遇到的重要知识点,希望能够帮助大家更好地复习和应对考试。

一、函数与方程函数是数学中的重要概念,它描述了两个变量之间的关系。

在高一数学中,我们学习了线性函数、二次函数、指数函数、对数函数等各种类型的函数。

同时,解一元一次方程和一元二次方程也是重要的内容之一。

掌握函数和方程的性质与解法对于理解数学问题和解决实际问题具有重要意义。

二、图形的性质与变换平面几何是数学中的一个重要分支,其中涉及了许多不同类型的图形,如点、线、面等。

在高一数学中,我们学习了多边形的性质、直线与圆的性质,以及图形的平移、旋转、翻转和对称等变换。

这些知识点不仅可以帮助我们认识图形的性质,还可以应用于解决实际问题,如计算物体的表面积和体积等。

三、立体几何立体几何是平面几何的延伸,它研究的是三维空间中的图形。

在高一数学中,我们学习了诸如立体的投影、视图的折叠、表面积和体积的计算等内容。

掌握立体几何的知识对于理解空间关系和解决与三维物体相关的问题非常重要。

四、概率与统计概率与统计是实际生活中经常用到的数学知识。

在高一数学中,我们学习了事件的概率计算、概率的性质、离散型随机变量和连续型随机变量的概率分布等。

此外,统计学知识也是我们需要了解的内容,包括收集数据、制作统计图表、描述统计指标等。

掌握概率与统计的方法可以帮助我们分析和解决实际问题。

五、数列与数学归纳法数列是数学中一个重要的概念,它是一系列按照一定规律排列的数的集合。

在高一数学中,我们学习了等差数列、等比数列等常见的数列类型,以及数列的通项公式和求和公式。

数学归纳法是解决数学问题的一种常用的方法,通过证明基本情况成立和下一步推导依赖上一步来完成整体的证明。

掌握数列与数学归纳法的知识对于理解数学模型和推导问题解决方法具有重要意义。

综上所述,高一数学课程涵盖了许多知识点,并与实际生活相结合。

期中高一数学考试知识点

期中高一数学考试知识点

期中高一数学考试知识点一、函数与图像1. 函数的定义与性质函数是一种特殊的关系,将一个自变量映射到一个因变量。

函数的定义域、值域和反函数等性质需要了解。

2. 函数的图像与性质函数的图像是函数在坐标系中的表示,可以通过绘制函数的图像来分析函数的性质,包括单调性、奇偶性、周期性等。

二、数列与数列的表示1. 等差数列等差数列是指数列中的相邻项之差相等的数列。

等差数列的通项公式、前n项和公式及其性质需要掌握。

2. 等比数列等比数列是指数列中的相邻项之比相等的数列。

等比数列的通项公式、前n项和公式及其性质需要了解。

3. 递推数列递推数列是通过前一项或前几项推导出后一项的数列。

递推数列可以用递推公式或递归关系表示。

三、三角函数1. 三角函数的概念三角函数是用三角形的边长比值来定义的一组函数,包括正弦函数、余弦函数和正切函数。

2. 三角函数的性质三角函数的周期性、奇偶性、单调性等性质需要了解,并能应用到解题中。

3. 三角函数的图像与变换通过绘制三角函数的图像,了解函数图像与参数和系数的关系,以及平移、伸缩等变换对函数图像的影响。

四、平面向量1. 平面向量的概念与表示平面向量是具有大小和方向的量,可以用有向线段表示。

平面向量的模、方向角等概念需要了解。

2. 平面向量的运算平面向量的加法、减法、数量乘法等运算规则需要掌握,并能应用到解决几何问题中。

3. 平面向量的坐标表示平面向量可以用坐标表示,了解平面向量的坐标运算法则及其性质。

五、平面几何1. 直线与线段的性质直线和线段的垂直、平行、相交等性质需要了解,并能应用到证明问题中。

2. 圆的性质圆的半径、直径、弧长、圆周角等概念需要了解,以及圆内接与外接四边形的性质。

3. 三角形的性质三角形的内角和、外角和、三边关系等性质需要了解,并能应用到三角形的证明中。

六、空间几何1. 点、线、面的位置关系了解点在直线、平面上的投影,直线与直线、直线与平面、平面与平面的位置关系。

福建省厦门2024-2025学年高一上学期11月期中考试 数学含答案

福建省厦门2024-2025学年高一上学期11月期中考试 数学含答案

福建省厦门2024-2025学年高一上学期11月期中考试数学试题(答案在最后)(时间:120分钟满分:150分)注意事项:1.答卷前,考生务必将己的姓名、考生号、考场号和座位号填写在答题卡上.2.选择题答案必须用2B 铅笔将答题卡对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的签字笔作答.答案必须写在各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再写上新答案,不准使用铅笔和涂改液,不按以上方式作答无效.4.考试结束后,将答题卡交回.一、单项选择题:本题共8小题,每小题5分,共40分.每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1},{2}M xx N x x =≥=<∣∣,则R ()M N ⋂=ð()A.[1,2)B.(,1)[2,)-∞+∞ C.[0,1]D.(,0)[2,)-∞⋃+∞2.命题“20,310x x x ∃>-->”的否定是()A.20,310x x x ∃>--≤B.20,310x x x ∃≤--≤C.20,310x x x ∀>--≤ D.20,310x x x ∀≤--≤3.函数()22()log 2f x x x =--的单调递减区间是()A.1,2⎛⎫-∞ ⎪⎝⎭B.(,1)∞-- C.1,2⎛⎫+∞⎪⎝⎭D.(2,)+∞4.已知函数()()()f x x a x b =--(其中a ,b 为常数,且b a <),若()f x 的图象如图所示,则函数()x g x a b =+的图象是()A.B.C.D.5.已知132a -=,21log 3b =,121log 3c =,则().A.a b c >> B.a c b>> C.c a b>> D.c b a>>6.“函数()2()lg 1f x ax ax =-+的定义域为R ”是“04a <<”的()A .充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.若函数)3()ln1f x mx n x =++(m ,n 为常数)在区间[]1,3上有最大值7,则()f x 在区间[3,1]--上()A.有最大值6B.有最大值5C.有最小值5- D.有最小值7-8.已知函数()f x 对于任意x 、R y ∈,总有()()()2f x f y f x y +=++,且当0x >时,()2f x >,若已知()23f =,则不等式()()226f x f x +->的解集为()A.()2,∞+ B.()1,+∞ C.()3,+∞ D.4,+∞二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.设正数m ,n 满足1m n +=,则()A.12m n+的最小值为3+B.+C.的最大值为14D.44m n +的最小值为410.声强级Li (单位:dB )与声强I (单位:2/m ω)之间的关系是:010lgILi I =⨯,其中0I 指的是人能听到的最低声强,对应的声强级称为闻阈.人能承受的最大声强为21/m ω,对应的声强级为120dB ,称为痛阈.某歌唱家唱歌时,声强级范围为[]70,80(单位:dB ).下列选项中正确的是()A.闻阈的声强为1210-2/m ωB.声强级增加10dB ,则声强变为原来的2倍C.此歌唱家唱歌时的声强范围5410,10--⎡⎤⎣⎦(单位:2/m ω)D.如果声强变为原来的10倍,对应声强级增加10dB11.已知函数()21,2,5,2,xx f x a b c d x x ⎧-≤⎪=<<<⎨->⎪⎩,且()()()()f a f b f d f c ==<,则下列说法正确的是()A.1c ≥ B.0a c +<C.25a d < D.222ab d ++的取值范围为()18,34三、填空题:本题共3小题,每小题5分,共15分.12.已知幂函数()y f x =的图象过点(,则()16f =______.13.411log 2324lg lg245(64)49---+-=__________.14.已知()f x 是定义在上的偶函数,且对x ∀∈R ,都有(2)(2)f x f x -=+,且当[]2,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭.若在区间(]2,6-内关于x 的方程()()()log 201a f x x a -+=>至少有2个不同的实数根,至多有3个不同的实数根,则实数a 的取值范围是______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.在①A B A = ,②A B A = ,③A B =∅ 这三个条件中任选一个,补充到下面的问题中,求解下列问题:已知集合{}123A x a x a =-<<+,{}2280B x x x =--≤(1)当2a =时,求A B ;(2)若,求实数a 的取值范围.注:如果选择多个条件解答按第一个解答计分.16.已知函数()()log 1a f x x a =>,关于x 的不等式()1f x <的解集为(),m n ,且103m n +=.(1)求a 的值;(2)是否存在实数λ,使函数()()()2123,,93g x f x f x x λ⎡⎤⎡⎤=-+∈⎣⎦⎢⎥⎣⎦的最小值为34?若存在,求出λ的值;若不存在,说明理由.17.已知()()()1m g x f x g x -=+的定义在上的奇函数,其中()g x 为指数函数,且()g x 的图象过点()2,9.(1)求实数m 的值,并求()f x 的解析式;(2)判断()f x 的单调性,并用单调性的定义加以证明.(3)若对于任意的[]1,2t ∈,不等式()2132104f t t f mt ⎛⎫--+-≤ ⎪⎝⎭恒成立,求实数m 的取值范围.18.随着城市居民汽车使用率的增加,交通拥堵问题日益严重,而建设高架道路、地下隧道以及城市轨道公共运输系统等是解决交通拥堵问题的有效措施.某市城市规划部门为提高早晚高峰期间某条地下隧道的车辆通行能力,研究了该隧道内的车流速度v (单位:千米/小时)和车流密度x (单位:辆/千米)所满足的关系式:()60,030R 80,30120150x v k kx x <≤⎧⎪=∈⎨-<≤⎪-⎩.研究表明:当隧道内的车流密度达到120辆/千米时造成堵塞,此时车流速度是0千米/小时.(1)若车流速度v 不小于40千米/小时,求车流密度x 的取值范围;(2)隧道内的车流量y (单位时间内通过隧道的车辆数,单位:辆/小时)满足y x v =⋅,求隧道内车流量的最大值(精确到1辆/小时),并指出当车流量最大时的车流密度(精确到1辆/千米).2.236≈)19.若函数()f x 与区间D 同时满足:①区间D 为()f x 的定义域的子集,②对任意x D ∈,存在常数0M ≥,使得()f x M ≤成立,则称()f x 是区间D 上的有界函数,其中M 称为()f x 的一个上界.(注:涉及复合函数单调性求最值可直接使用单调性,不需要证明)(1)试判断函数()1923xxf x =-⋅,()22223xf x x x =-+是否为R 上的有界函数?并说明理由.(2)已知函数()121log 1x g x x +=-是区间[]2,3上的有界函数,设()g x 在区间[]2,3上的上界为M ,求M 的取值范围;(3)若函数()2313xxm f x m +⋅=+⋅,问:()f x 在区间[]0,1上是否存在上界M ?若存在,求出M 的取值范围;若不存在,请说明理由.福建省厦门2024-2025学年高一上学期11月期中考试数学试题(时间:120分钟满分:150分)注意事项:1.答卷前,考生务必将己的姓名、考生号、考场号和座位号填写在答题卡上.2.选择题答案必须用2B 铅笔将答题卡对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的签字笔作答.答案必须写在各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再写上新答案,不准使用铅笔和涂改液,不按以上方式作答无效.4.考试结束后,将答题卡交回.一、单项选择题:本题共8小题,每小题5分,共40分.每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1},{2}M xx N x x =≥=<∣∣,则R ()M N ⋂=ð()A.[1,2)B.(,1)[2,)-∞+∞ C.[0,1]D.(,0)[2,)-∞⋃+∞【答案】B 【解析】【分析】根据集合运算的定义计算.【详解】由已知{|12}M N x x =≤< 所以R (){|1M N x x ⋂=<ð或2}x ≥,故选:B .2.命题“20,310x x x ∃>-->”的否定是()A .20,310x x x ∃>--≤ B.20,310x x x ∃≤--≤C.20,310x x x ∀>--≤ D.20,310x x x ∀≤--≤【答案】C 【解析】【分析】根据存在量词命题的否定形式,即可求解.【详解】命题“20,310x x x ∃>-->”的否定是“20,310x x x ∀>--≤”.故选:C3.函数()22()log 2f x x x =--的单调递减区间是()A.1,2⎛⎫-∞ ⎪⎝⎭B.(,1)∞-- C.1,2⎛⎫+∞⎪⎝⎭D.(2,)+∞【答案】B 【解析】【分析】由对数函数性质计算出定义域后,结合复合函数单调性的判定方法计算即可得.【详解】由题意可得()()22210x x x x --=-+>,解得2x >或1x <-,由2219224y x x x ⎛⎫=--=-- ⎪⎝⎭,则其在(),1∞--上单调递减,在()2,∞+上单调递增,又2log y x =为单调递增函数,故()22()log 2f x x x =--的单调递减区间(),1∞--.故选:B.4.已知函数()()()f x x a x b =--(其中a ,b 为常数,且b a <),若()f x 的图象如图所示,则函数()x g x a b =+的图象是()A. B. C. D.【答案】A 【解析】【分析】由图可得101b a <-<<<,计算出()0g 并结合指数函数性质即可得解.【详解】由图可得101b a <-<<<,则有()0010g a b b =+=+<,且该函数为单调递减函数,故B 、C 、D 错误,A 正确.故选:A.5.已知132a -=,21log 3b =,121log 3c =,则().A.a b c >> B.a c b>> C.c a b>> D.c b a>>【答案】C 【解析】【详解】试题分析:因为13212112(0,1),log 0,log 1,33a b c -=∈==所以.b a c <<选C .考点:比较大小6.“函数()2()lg 1f x ax ax =-+的定义域为R ”是“04a <<”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【详解】若函数()2()lg 1f x ax ax =-+的定义域为,则当0a =,()lg10f x ==,符合要求;当0a ≠时,有2Δ40a a a >⎧⎨=-<⎩,解得04a <<;综上所述,04a ≤<,故“函数()2()lg 1f x ax ax =-+的定义域为”是“04a <<”的必要不充分条件.故选:B .7.若函数)3()ln1f x mx n x =++(m ,n 为常数)在区间[]1,3上有最大值7,则()f x 在区间[3,1]--上()A.有最大值6B.有最大值5C.有最小值5- D.有最小值7-【答案】C【解析】【分析】构造新函数()()1g x f x =-为奇函数,利用奇函数求解.【详解】设3()()1)g x f x mx n x =-=+,则333()))()g x mx n x mx n mx n x g x -=-+-=-+=--+=-,所以()g x 是奇函数,()f x 在[1,3]上有最大值7,则()g x 在[1,3]上有最大值6,所以()g x 在[3,1]--上有最小值6-,于是()f x 在区间[3,1]--上有最小值5-,故选:C .8.已知函数()f x 对于任意x 、R y ∈,总有()()()2f x f y f x y +=++,且当0x >时,()2f x >,若已知()23f =,则不等式()()226f x f x +->的解集为()A.()2,∞+ B.()1,+∞ C.()3,+∞ D.4,+∞【答案】A 【解析】【分析】设()()2g x f x =-,分析出函数()g x 为R 上的增函数,将所求不等式变形为()()324g x g ->,可得出324x ->,即可求得原不等式的解集.【详解】令()()2g x f x =-,则()()2f x g x =+,对任意的x 、R y ∈,总有()()()2f x f y f x y +=++,则()()()g x g y g x y +=+,令0y =,可得()()()0g x g g x +=,可得()00g =,令y x =-时,则由()()()00g x g x g +-==,即()()g x g x -=-,当0x >时,()2f x >,即()0g x >,任取1x 、2x R ∈且12x x >,则()()()12120g x g x g x x +-=->,即()()120g x g x ->,即()()12g x g x >,所以,函数()g x 在R 上为增函数,且有()()2221g f =-=,由()()226f x f x +->,可得()()2246g x g x +-+>,即()()()2222g x g x g +->,所以,()()()32224g x g g ->=,所以,324x ->,解得2x >.因此,不等式()()226f x f x +->的解集为()2,∞+.故选:A.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.设正数m ,n 满足1m n +=,则()A.12m n+的最小值为3+ B.+C.的最大值为14D.44m n +的最小值为4【答案】ABD 【解析】【分析】借助基本不等式中“1”的活用可得A ;由1m n +=+出后利用基本不等式计算可得B ;直接运用基本不等式可得C ;结合基本不等式与同底数幂的乘法运算可得D.【详解】由m ,n 为正数,且满足1m n +=,则有:对A :()121221233n m m n m n m n m n ⎛⎫+=++=+++≥++ ⎪⎝⎭,当且仅当2n mm n=,即2n ==-时,等号成立,故A 正确;对B :21m n +=-,则22122⎛++-= ⎝⎭,当且仅当12m n ==时,等号成立,即22≤+≤,故B 正确;对C :1m n +=≥,当且仅当12m n ==时,等号成立,12≤,故C 错误;对D :444m n ≥==+,当且仅当12m n ==时,等号成立,故D 正确.故选:ABD.10.声强级Li (单位:dB )与声强I (单位:2/m ω)之间的关系是:010lgILi I =⨯,其中0I 指的是人能听到的最低声强,对应的声强级称为闻阈.人能承受的最大声强为21/m ω,对应的声强级为120dB ,称为痛阈.某歌唱家唱歌时,声强级范围为[]70,80(单位:dB ).下列选项中正确的是()A.闻阈的声强为1210-2/m ωB.声强级增加10dB ,则声强变为原来的2倍C.此歌唱家唱歌时的声强范围5410,10--⎡⎤⎣⎦(单位:2/m ω)D.如果声强变为原来的10倍,对应声强级增加10dB 【答案】ACD 【解析】【分析】依题意求出0I ,即可判断A ;将70Li =、80Li =代入求声强范围判断C ;设声强变为原来的k 倍,对应声强级增加10dB ,依题意得到方程,解得k ,即可判断B 、D.【详解】解:由题意0110lg120I =,即01lg 12I =,所以120110I =,所以12010I -=2ω/m ,故1210lg(10)12010lg Li I I ==+,故A 正确;若70Li =dB ,即10lg 50I =-,则510I -=2ω/m ;若80Li =dB ,即10lg 40I =-,则410I -=2ω/m ,故歌唱家唱歌时的声强范围5410,10--⎡⎤⎣⎦(单位:2ω/m ),C 正确;设声强变为原来的k 倍,对应声强级增加10dB ,则()()12010lg 12010lg 10kI I +-+=,解得10k =,即如果声强变为原来的10倍,对应声强级增加10dB ,故D 正确,B 错误;故选:ACD11.已知函数()21,2,5,2,xx f x a b c d x x ⎧-≤⎪=<<<⎨->⎪⎩,且()()()()f a f b f d f c ==<,则下列说法正确的是()A.1c ≥ B.0a c +<C.25a d < D.222ab d ++的取值范围为()18,34【答案】CD 【解析】【分析】作出函数图像判断A ,举反例判断B ,转化为一元函数,利用二次函数的性质判断C ,指数函数的性质判断D 即可.【详解】结合函数()f x 的图象可知,()0,01,4,5a b d <<<∈,由c b >,得不出1c ≥,故A 错误,令1,2a c =-=,此时()()132f a f c =<=,但是0a c +>,故B 错误.因为215a d -=-,所以125a d -=-,所以24a d =-,则()24a d d d =-,又()4,5d ∈,所以()2244()a d d d d d f d =-=-=,由二次函数性质得()f d 在()4,5上单调递增,故()(5)5f d f <=,所以C 正确.因为2121a b-=-,所以222a b +=,故22222a b d d =+++,令2()2d g d +=,由指数函数性质得()g d 在()4,5上单调递增,所以222a b d ++的取值范围为(18,34),故D 正确.故选:CD【点睛】关键点点睛:本题考查求多变元表达式的范围,解题关键是合理利用函数图像找到变量关系,构造一元函数,然后利用指数函数的性质得到所要求的取值范围即可.三、填空题:本题共3小题,每小题5分,共15分.12.已知幂函数()y f x =的图象过点(,则()16f =______.【答案】4【解析】【分析】先由幂函数的定义用待定系数法设出其解析式,代入点的坐标,求出幂函数的解析式,再求(16)f 的值【详解】解:由题意令()a y f x x ==,由于图象过点,2a =,12a =12()y f x x∴==12(16)164f ∴==故答案为:4.【点睛】本题考查幂函数的单调性、奇偶性及其应用,解题的关键是熟练掌握幂函数的性质,能根据幂函数的性质求其解析式,求函数值,属于基础题.13.411log 2324lg lg245(64)49---+-=__________.【答案】3-【解析】【分析】根据条件,利用指对数的运算法则,即可求出结果.【详解】因为4411log 1log 232214lg lg245(64)44lg 2lg 49(lg 5lg 49)44(lg 2lg 5)43492---+-=⨯-+-+-=⨯-+-=-,故答案为:3-.14.已知()f x 是定义在上的偶函数,且对x ∀∈R ,都有(2)(2)f x f x -=+,且当[]2,0x ∈-时,()112x f x ⎛⎫=- ⎪⎝⎭.若在区间(]2,6-内关于x 的方程()()()log 201a f x x a -+=>至少有2个不同的实数根,至多有3个不同的实数根,则实数a 的取值范围是______.2a ≤<【解析】【分析】先根据题意分析函数()f x 的对称性及周期性;再利用函数的对称性和周期性作出函数()f x 在[]2,6-上的图象;最后数形结合列出不等式组求解即可.【详解】由(2)(2)f x f x -=+,可得:()()4f x f x -=+,又因为()f x 是定义在R 上的偶函数,则−=,且函数()f x 图象关于y 轴对称,所以()()4f x f x +=,即()f x 的周期为4,作出函数1()12xf x ⎛⎫=- ⎪⎝⎭在[]2,0x ∈-上的图象,根据()f x 对称性及周期为4,可得出()f x 在[]2,6-上的图象:令()()()log 21a g x x a =+>,若在区间(2,6]-内关于x 的方程()log (2)0(1)a f x x a -+=>至少有2个不同的实数根,至多有3个不同的实数根,则函数()f x 与函数()log (2)(1)a g x x a =+>在(2,6]-上至少有2个不同的交点,至多有3个不同的交点,所以()()()()2266g f g f ⎧≤⎪⎨>⎪⎩,即()()log 223log 623a a ⎧+≤⎪⎨+>⎪⎩2a ≤<.2a ≤<.【点睛】关键点点睛:本题考查函数性质的综合应用,函数与方程的综合应用及数形结合思想.解题关键在于根据题意分析出分析函数()f x 的对称性及周期性,并作出()f x 和()g x 图象;将方程根的问题转化为函数图象交点问题,数形结合解答即可.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.在①A B A = ,②A B A = ,③A B =∅ 这三个条件中任选一个,补充到下面的问题中,求解下列问题:已知集合{}123A x a x a =-<<+,{}2280B x x x =--≤(1)当2a =时,求A B ;(2)若,求实数a 的取值范围.注:如果选择多个条件解答按第一个解答计分.【答案】(1){}27A B x x ⋃=-≤<(2)答案见解析【解析】【分析】(1)代入a 的值表示出A ,求解出一元二次不等式的解集表示出B ,根据并集运算求解出结果;(2)若选①:根据条件得到A B ⊆,然后分类讨论A 是否为空集,由此列出不等式组求解出结果;若选②:根据条件得到B A ⊆,然后列出不等式组求解出结果;若选③:根据交集结果分析,A B 集合的端点值的关系,列出不等式并求解出结果.【小问1详解】当2a =时,{}17A x x =<<,{}{}228024B x x x x x =--≤=-≤≤,因此,{}27A B x x ⋃=-≤<.【小问2详解】选①,因为A B A = ,可得A B ⊆.当123a a -≥+时,即当4a ≤-时,A B =∅⊆,合乎题意;当123a a -<+时,即当4a >-时,A ≠∅,由A B ⊆可得12234a a -≥-⎧⎨+≤⎩,解得112a -≤≤,此时112a -≤≤.综上所述,实数a 的取值范围是{4a a ≤-或112a ⎫-≤≤⎬⎭;选②,因为A B A = ,可得B A ⊆.可得12234123a a a a -≤-⎧⎪+≥⎨⎪-<+⎩,此时不等式组无解,所以实数a 的取值范围是∅;选③,当123a a -≥+时,即当4a ≤-时,A =∅,A B =∅ ,满足题意;当123a a -<+时,即当4a >-时,A ≠∅,因为A B =∅ ,则232a +≤-或14a -≥,解得52a ≤-或5a ≥,此时542a -<≤-或5a ≥,综上所述,实数a 的取值范围是52a a ⎧≤-⎨⎩或}5a ≥.16.已知函数()()log 1a f x x a =>,关于x 的不等式()1f x <的解集为(),m n ,且103m n +=.(1)求a 的值;(2)是否存在实数λ,使函数()()()2123,,93g x f x f x x λ⎡⎤⎡⎤=-+∈⎣⎦⎢⎥⎣⎦的最小值为34?若存在,求出λ的值;若不存在,说明理由.【答案】(1)3a =(2)138λ=-或32【解析】【分析】(1)先根据()1f x <,求出不等式的解,结合103n m +=可得a 的值;(2)利用换元法,把函数()g x 转化为二次函数,结合二次函数区间最值法求解.【小问1详解】由log 1a x <可得1log 1a x -<<,又1a >,所以1x a a <<,又因为()1f x <的解集为(),m n ,所以1,n a m a ==,因为103n m +=,所以1103a a +=,即()()231033130a a a a -+=--=,解得3a =或13a =,因为1a >,所以3a =;【小问2详解】由(1)可得()()2331log 2log 3,,93g x x x x λ⎡⎤=-+∈⎢⎥⎣⎦,令31log ,,93t x x ⎡⎤=∈⎢⎥⎣⎦,则[]1,2t ∈-,设()[]223,1,2h t t t t λ=-+∈-,①当1λ≤-时,()h t 在[]1,2-上单调递增,则()()min 31424h t h λ=-=+=,解得138λ=-,符合要求;②当12λ-<<时,()h t 在[]1,λ-上单调递减,在[],2λ上单调递增,()()22min 3234h t h λλλ==-+=,解得32λ=±,又12λ-<<,故32λ=;③当2λ≥时,()h t 在[]1,2-上单调递减,()()min 324434h t h λ==-+=,解得25216λ=<,不合题意;综上所述,存在实数138λ=-或32符合题意.17.已知()()()1m g x f x g x -=+的定义在上的奇函数,其中()g x 为指数函数,且()g x 的图象过点()2,9.(1)求实数m 的值,并求()f x 的解析式;(2)判断()f x 的单调性,并用单调性的定义加以证明.(3)若对于任意的[]1,2t ∈,不等式()2132104f t t f mt ⎛⎫--+-≤ ⎪⎝⎭恒成立,求实数m 的取值范围.【答案】(1)1m =,()1313xxf x -=+(2)()f x 在R 上单调递减,证明见解析(3)178m ≥【解析】【分析】(1)利用待定系数法可求出()g x 的表达式,结合奇函数性质计算即可得解;(2)设12x x <,从而计算()()12f x f x -的正负即可得证;(3)由奇函数性质结合函数单调性可得212134mt t t -≥+对[]1,2t ∈恒成立,构造二次函()()21284h t t m t =+-+,结合二次函数性质可得()()1020h h ⎧≤⎪⎨≤⎪⎩,解出即可得.【小问1详解】设()()0,1x g x a a a =>≠,由()g x 的图象过点()2,9,可得29a =,∴3a =(负值舍去),即()3x g x =,故函数()()()3113xxm g x m f x g x --==++,由()f x 为奇函数,可得()()()01001011m g m f g --===++,∴1m =,即()1313xx f x -=+,满足()()13311313x x x x f x f x -----===-++,即()f x 为奇函数,故1m =;【小问2详解】()f x 在R 上单调递减,证明如下:()()2131321131313x x x x x f x -+-===-+++,设12x x <,则12033x x <<,则()()()()()211212122332213131313x x x x x x f x f x --=-=++++,结合12033x x <<,可得()212330x x ->,∴()()120f x f x ->,即()()12f x f x >,故()f x 在R 上单调递减;【小问3详解】由()2132104f t t f mt ⎛⎫--+-≤ ⎪⎝⎭且()f x 为奇函数,所以()212134f mt f t t ⎛⎫-≤+ ⎪⎝⎭,又()f x 在R 上单调递减,所以212134mt t t -≥+对[]1,2t ∈恒成立,所以()212840t m t +-+≤对[]1,2t ∈恒成立,令()()21284h t t m t =+-+,所以有()()1020h h ⎧≤⎪⎨≤⎪⎩,即1128404241640m m +-+≤⎧⎨+-+≤⎩,解得178m ≥.18.随着城市居民汽车使用率的增加,交通拥堵问题日益严重,而建设高架道路、地下隧道以及城市轨道公共运输系统等是解决交通拥堵问题的有效措施.某市城市规划部门为提高早晚高峰期间某条地下隧道的车辆通行能力,研究了该隧道内的车流速度v (单位:千米/小时)和车流密度x (单位:辆/千米)所满足的关系式:()60,030R 80,30120150x v k k x x <≤⎧⎪=∈⎨-<≤⎪-⎩.研究表明:当隧道内的车流密度达到120辆/千米时造成堵塞,此时车流速度是0千米/小时.(1)若车流速度v 不小于40千米/小时,求车流密度x 的取值范围;(2)隧道内的车流量y (单位时间内通过隧道的车辆数,单位:辆/小时)满足y x v =⋅,求隧道内车流量的最大值(精确到1辆/小时),并指出当车流量最大时的车流密度(精确到1辆/千米).2.236≈)【答案】(1)车流密度x 的取值范围是(]0,90(2)隧道内车流量的最大值约为3667辆/小时,此时车流密度约为83辆/千米.【解析】【分析】(1)根据题意得2400k =,再根据分段函数解不等式即可得答案;(2)由题意得60,030240080,30120150x x y x x x x <≤⎧⎪=⎨-<≤⎪-⎩,再根据基本不等式求解最值即可得答案.【小问1详解】解:由题意知当120x =(辆/千米)时,0v =(千米/小时),代入80150k v x=--,解得2400k =,所以60,030240080,30120150x v x x <≤⎧⎪=⎨-<≤⎪-⎩.当030x <≤时,6040v =≥,符合题意;当30120x <≤时,令24008040150x-≥-,解得90x ≤,所以3090x <≤.所以,若车流速度v 不小于40千米/小时,则车流密度x 的取值范围是(]0,90.【小问2详解】解:由题意得60,030240080,30120150x x y x x x x <≤⎧⎪=⎨-<≤⎪-⎩,当030x <≤时,60y x =为增函数,所以1800y ≤,当30x =时等号成立;当30120x <≤时,()()2150180150450024004500808080180150150150150x x x y x x x xx --+--⎡⎤⎛⎫=-==--+ ⎪⎢⎥---⎝⎭⎣⎦4800(33667≤-≈.当且仅当4500150150x x-=-,即30(583x =-≈时等号成立.所以,隧道内车流量的最大值约为3667辆/小时,此时车流密度约为83辆/千米.19.若函数()f x 与区间D 同时满足:①区间D 为()f x 的定义域的子集,②对任意x D ∈,存在常数0M ≥,使得()f x M ≤成立,则称()f x 是区间D 上的有界函数,其中M 称为()f x 的一个上界.(注:涉及复合函数单调性求最值可直接使用单调性,不需要证明)(1)试判断函数()1923x x f x =-⋅,()22223x f x x x =-+是否为R 上的有界函数?并说明理由.(2)已知函数()121log 1x g x x +=-是区间[]2,3上的有界函数,设()g x 在区间[]2,3上的上界为M ,求M 的取值范围;(3)若函数()2313xx m f x m +⋅=+⋅,问:()f x 在区间[]0,1上是否存在上界M ?若存在,求出M 的取值范围;若不存在,请说明理由.【答案】(1)()1f x 不是R 上的有界函数,()2f x 是R 上的有界函数(2)[)2log 3,+∞(3)答案见解析【解析】【分析】(1)根据有界函数的定义,分别计算出()1f x 及()2f x 的值域即可判断;(2)先求解函数()g x 的值域,进而求解()g x 的取值范围,再根据有界函数的定义确定上界M 的取值范围;(3)先求解函数()f x 及()f x ,再根据有界函数的定义,讨论m 取不同数值时,函数是否存在上界,并求解出对应的上界范围.【小问1详解】()()21923311x x x f x =-⋅=-- ,()1f x ∴的值域为[)1,-+∞()1f x ∴不是R 上的有界函数;()22223x f x x x =-+,则()200f =,当0x ≠时,()22223232x f x x x x x ==-++-,当0x >时,3x x +≥=x =则()2102f x <≤,当0x <时,33x x x x ⎛⎫+=--+≤-- ⎪-⎝⎭,当且仅当x =则()2102f x ->≥,综上可得,()211,22f x ⎡⎤+∈⎢⎥⎣⎦,即有()212f x +≤在R 上恒成立,()2f x ∴是R 上的有界函数;【小问2详解】()112212log log 111x g x x x +⎛⎫==+ ⎪--⎝⎭,易知()g x 在区间[]2,3上单调递增,∴()[][]2log 3,1,2,3g x x ∈--∈,∴()[]1221log 1,log 31x g x x +=∈-,所以上界M 构成的集合为[)2log 3,+∞;【小问3详解】()23113311x x x m f x m m +⋅==++⋅+⋅,当0m =时,()2f x =,()2f x =,此时M 的取值范围是[)2,+∞,当0m >时,()1311x f x m =++⋅在[]0,1上是单调递减函数,其值域为()232,131m m f x m m ++⎡⎤∈⎢⎥++⎣⎦,故()232,131m m f x m m ++⎡⎤∈⎢⎥++⎣⎦,此时M 的取值范围是2,1m m +⎡⎫+∞⎪⎢+⎣⎭,当0m <时,[]1331,1xm m m +⋅∈++,若()f x 在[]0,1上是有界函数,则区间[]0,1为()f x 定义域的子集,所以[]31,1m m ++不包含0,所以310m +>或10+<m ,解得:1m <-或103m -<<,0m <时,()1311x f x m =++⋅在[]0,1上是单调递增函数,此时()f x 的值域为232,131m m m m ++⎡⎤⎢⎥++⎣⎦,①232311m m m m ++≥++,即33m --≤或103m -<<时,()32323131m m f x m m ++≤=++,此时M 的取值范围是32,31m m +⎡⎫+∞⎪⎢+⎣⎭,②232311m m m m ++<++,即313m --<<-时,()2211m m f x m m ++≤=-++,此时M 的取值范围是2,1m m +⎡⎫-+∞⎪⎢+⎣⎭,综上:当0m ≥时,存在上界M ,2,1m M m +⎡⎫∈+∞⎪⎢+⎣⎭;当13m ≤--或103m -<<时,存在上界M ,32,31m M m +⎡⎫∈+∞⎪⎢+⎣⎭;当113m --<<-时,存在上界M ,2,1m M m +⎡⎫∈-+∞⎪⎢+⎣⎭,当113m -≤≤-时,此时不存在上界M .【点睛】关键点点睛,本题关键点在于求出所给函数在对应定义域范围内的值域,从而可结合定义,得到该函数是否为有界函数.。

2023-2024学年北京师范大学附属中学高一上学期期中数学试题含答案解析

2023-2024学年北京师范大学附属中学高一上学期期中数学试题含答案解析

2023北京北师大二附中高一(上)期中数学一、单选题(共10小题,每题4分,共40分)1. 已知集合{}1,0,2,3A =-,{21,}B xx k k ==-∈N ∣,那么A B = ( )A. {}1,0- B. {}1,2- C. {}0,3 D. {}1,3-2. 命题“x ∀∈R ,2230x x -+>”的否定为( )A. x ∀∈R ,2230x x -+< B. x ∀∈R ,2230x x -+≤C. x ∃∈R ,2230x x -+< D. x ∃∈R ,2230x x -+≤3. 已知0a b <<,则下列不等式中成立的是( )A.11a b< B. a b< C. 0ab < D.2ab b >4. 函数1111y x x=-+-的奇偶性是( )A. 奇函数 B. 偶函数C. 非奇非偶函数D. 既奇函数,又是偶函数5. 函数()35f x x x =--的零点所在的区间是( )A. ()0,1 B. ()1,2C. ()2,3 D. ()3,46. “14m <”是“一元二次方程20x x m ++=”有实数解的A. 充分非必要条件 B. 充分必要条件C. 必要非充分条件D. 非充分非必要条件7. 下图是王老师锻炼时所走的离家距离(S )与行走时间(t )之间的函数关系图,若用黑点表示王老师家的位置,则王老师行走的路线可能是( )是A. B.C. D.8. 函数()221xf x x =+的图象大致为( )A. B.C. D.9. 设f (x )是R 上的偶函数,且在(0,+∞)上是减函数,若x 1<0且x 1+x 2>0,则( )A. f (﹣x 1)>f (﹣x 2)B. f (﹣x 1)=f (﹣x 2)C. f (﹣x 1)<f (﹣x 2)D. f (﹣x 1)与f (﹣x 2)大小不确定10. 已知函数()12f x m x x =-+有三个零点,则实数m 的取值范围为( )A. 1m > B. 01m <<C 12m << D. 1m <-.二、填空题(共5小题,每题5分,共25分)11. 函数()f x =______.12. 函数2122x x y ++=值域是________.13. 若正实数,x y 满足:31x y +=,则xy 的最大值为________.14. 已知函数()221,111,1x x x f x x x⎧-+≤⎪=⎨->⎪⎩,则()()1f f -=______;若关于x 的方程()f x k =恰有两个不同的解,则实数k 的取值范围是______.15. 若使集合{}2()(6)(4)0,A k x kx k x x Z =---≥∈中元素个数最少,则实数k 的取值范围是 ________.三、解答题(共6小题,共85分)16. 已知全集U =R ,集合{}2230A x x x =--<,{}04B x x =<<.(1)求()U A B ⋂ð;(2)设非空集合{}23,D x a x a a =<<+∈R ,若U D A ⊆ð,求实数a 的取值范围.17. 已知函数()211f x x =+,[]2,5x ∈.(1)判断函数()f x 的单调性,并用定义证明你的结论;(2)求不等式()()121f m f m +<-的解集.18. 已知2y x x =-,且()1,1x ∈-.(1)求实数y 的取值集合M ;(2)设不等式()()20x a x a -+-<的解集为N ,若x ∈N 是x M ∈的必要条件,求a 的取值范围.19. 近年来,中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难,并不断加大对各国的施压,拉拢他们抵制华为5G ,然而这并没有让华为却步.华为在2018年不仅净利润创下记录,海外增长同样强劲.今年,我国华为某一企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本250万,每生产x (千部)手机,需另投入成本()R x 万元,且的210100,040()100007019450,40x x x R x x x x ⎧+<<⎪=⎨+-≥⎪⎩,由市场调研知,每部手机售价0.7万元,且全年生产的手机当年能全部销售完.(1)求出2020年的利润()W x (万元)关于年产量x (千部)的函数关系式,(利润=销售额—成本);(2)2020年产量为多少(千部)时,企业所获利润最大?最大利润多少?20. 已知函数()f x 为二次函数,()f x 的图象过点()0,2,对称轴为12x =-,函数()f x 在R 上最小值为74.(1)求()f x 的解析式;(2)当[]2,x m m ∈-,R m ∈时,求函数()f x 的最小值(用m 表示);(3)若函数()()1F x f x ax =--在()0,3上只有一个零点,求a 的取值范围.21. 设整数集合{}12100,,,A a a a =⋯,其中121001···205a a a ≤<<<≤ ,且对于任意(),1100i j i j ≤≤≤,若i j A +∈,则.i j a a A +∈(1)请写出一个满足条件的集合A ;(2)证明:任意{}101,102,,200,x x A ∈⋯∉;(3)若100205a =,求满足条件集合A 的个数.是的2023北京北师大二附中高一(上)期中数学一、单选题(共10小题,每题4分,共40分)1. 已知集合{}1,0,2,3A =-,{21,}B xx k k ==-∈N ∣,那么A B = ( )A. {}1,0- B. {}1,2- C. {}0,3 D. {}1,3-【答案】D 【解析】【分析】根据交集的定义可求A B ⋂.【详解】因为{21,}B xx k k ==-∈N ∣,故B 中的元素为大于或等于1-的奇数,故{}1,3A B =- ,故选:D.2. 命题“x ∀∈R ,2230x x -+>”的否定为( )A. x ∀∈R ,2230x x -+< B. x ∀∈R ,2230x x -+≤C. x ∃∈R ,2230x x -+< D. x ∃∈R ,2230x x -+≤【答案】D 【解析】【分析】根据题意,由全称命题的否定是特称命题,即可得到结果.【详解】因为命题“x ∀∈R ,2230x x -+>”,则其否定为“x ∃∈R ,2230x x -+≤”故选:D3. 已知0a b <<,则下列不等式中成立的是( )A.11a b< B. a b< C. 0ab < D.2ab b >【答案】D 【解析】【分析】根据不等式基本性质,逐一分析四个不等式关系是否恒成立,可得答案.【详解】解:0a b <<Q , 0ab ∴>,故C 错误;的两边同除ab 得:11a b>,故A 错误;a b ∴>,故B 错误;两边同乘b 得:2ab b >,故D 正确;故选D .【点睛】本题以命题的真假判断与应用为载体,考查了不等式恒成立,不等式的基本性质等知识点,难度中档.4. 函数1111y x x=-+-奇偶性是( )A. 奇函数 B. 偶函数C. 非奇非偶函数D. 既是奇函数,又是偶函数【答案】A 【解析】【分析】利用函数的奇偶性定义判定即可.【详解】由函数解析式可知{}1,R x x x ≠±∈,即定义域关于原点对称,又()()()11111111f x f x f x x x x x=-⇒-=-=-+--+,所以函数1111y x x=-+-是奇函数.故选:A5. 函数()35f x x x =--的零点所在的区间是( )A. ()0,1B. ()1,2C. ()2,3D. ()3,4【答案】B 【解析】【分析】利用转化法,结合数形结合思想进行判断即可.【详解】()33505f x x x x x =--=⇒=+函数3y x =和函数5y x =+在同一直角坐标系内图象如下图所示:的一方面()()()()()05,15,21,319,455f f f f f =-=-===,()()120f f <另一方面根据数形结合思想可以判断两个函数图象的交点只有一个,故选:B 6. “14m <”是“一元二次方程20x x m ++=”有实数解的A. 充分非必要条件 B. 充分必要条件C. 必要非充分条件 D. 非充分非必要条件【答案】A 【解析】【详解】试题分析:方程20x x m ++=有解,则11404m m ∆=-≥⇒≤.14m <是14m ≤的充分不必要条件.故A 正确.考点:充分必要条件7. 下图是王老师锻炼时所走的离家距离(S )与行走时间(t )之间的函数关系图,若用黑点表示王老师家的位置,则王老师行走的路线可能是( )A. B.C. D.【答案】C【解析】【分析】根据图象中有一段为水平线段(表示离家的距离一直不变),逐项判断此时对应选项是否满足.【详解】图象显示有一段时间吴老师离家距离是个定值,故他所走的路程是一段以家为圆心的圆弧,所以A、B、D三个选项均不符合,只有选项C符合题意.故选:C .8. 函数()221xf x x =+的图象大致为( )A. B.C. D.【答案】D 【解析】【分析】根据函数的奇偶性判断所给函数的奇偶性,再通过函数值的正负即可判断.【详解】函数()221x f x x =+,则()()()()222211x x f x f x x x --==-=-+-+,即函数为奇函数,则A 、B 错误,当0x >时,()2201xf x x =>+.故D 正确故选:D9. 设f (x )是R 上的偶函数,且在(0,+∞)上是减函数,若x 1<0且x 1+x 2>0,则( )A. f (﹣x 1)>f (﹣x 2)B. f (﹣x 1)=f (﹣x 2)C. f (﹣x 1)<f (﹣x 2)D. f (﹣x 1)与f (﹣x 2)大小不确定【答案】A 【解析】【分析】由条件可得()f x 在(),0∞-上是增函数,根据条件可得120x x >>-,所以()()12f x f x >-,从而得出答案.【详解】()f x 是R 上的偶函数,且在()0,∞+上是减函数故()f x 在(),0∞-上是增函数因为10x <且120x x +>,故120x x >>-;所以有()()12f x f x >-,又因为()()11f x f x ->所以有()()12f x f x ->-故选:A .10. 已知函数()12f x m x x =-+有三个零点,则实数m 的取值范围为( )A. 1m > B. 01m <<C 12m << D. 1m <-【答案】A 【解析】【分析】利用常变量分离法,结合数形给思想进行判断即可.【详解】令()11220f x m x m x x x =⇒=-=++,显然有0x ≠且2x ≠-且0m ≠,于是有()()()()()2,0122,,22,0x x x x x x x x m ∞⎧+>⎪=+=⎨-+∈--⋃-⎪⎩,设()()()()()()2,022,,22,0x x x g x x x x x x ∞⎧+>⎪=+=⎨-+∈--⋃-⎪⎩,它的图象如下图所示:因此要想函数()12f x m x x =-+有三个零点,只需0111m m <<⇒>,故选:A【点睛】方法点睛:解决函数零点个数问题一般的方法就是让函数值为零,然后进行常变量分离,利用数形结合思想进行求解.二、填空题(共5小题,每题5分,共25分)11. 函数()f x =______.【答案】(),1-∞.【解析】【分析】利用二次根式的意义计算即可.【详解】由题意可知101x x ->⇒<,即函数的定义域为(),1-∞.故答案为:(),1-∞12. 函数2122x x y ++=的值域是________.【答案】(0,1]【解析】【分析】根据二次函数的性质求解2()22f x x x =++的范围可得函数2122x x y ++=的值域【详解】解:由22()22(1)1f x x x x =++=++,可得()f x 的最小值为1,2122y x x ∴=++的值域为(0,1].故答案为:(0,1].【点睛】本题考查了函数值域的求法.高中函数值域求法有:1、观察法,2、配方法,3、反函数法,4、判别式法;5、换元法,6、数形结合法,7、不等式法,8、分离常数法,9、单调性法,1011、最值法,12、构造法,13、比例法.要根据题意选择.13. 若正实数,x y 满足:31x y +=,则xy 的最大值为________.【答案】112【解析】【分析】运用基本不等式得出31x y +=≥,化简求得112xy ≤即可.【详解】 正实数,x y 满足:31x y +=,31x y +=≥∴112xy ≤,当且仅当12x =,16y =时等号成立.故答案为112【点睛】本题考查了运用基本不等式求解二元式子的最值问题,关键是判断、变形得出不等式的条件,属于容易题.14. 已知函数()221,111,1x x x f x x x⎧-+≤⎪=⎨->⎪⎩,则()()1f f -=______;若关于x 的方程()f x k =恰有两个不同的解,则实数k 的取值范围是______.【答案】 ①. 34-②. ()0,1【解析】【分析】利用分段函数代入解析式求函数值即可得第一空,利用函数的单调性结合图象得第二空.【详解】易知()()()()314144f ff f -=⇒-==-,又1x ≤时,()22211y x x x =-+=-单调递减,且min 0y =,110x x >⇒>时,11y x=-单调递减,且10y -<<,作出函数()y f x =的图象如下:所以方程()f x k =有两个不同解即函数()y f x =与y k =有两个不同交点,显然()0,1k ∈.故答案为:34-;()0,115. 若使集合{}2()(6)(4)0,A k x kx k x x Z =---≥∈中元素个数最少,则实数k 的取值范围是 ________.【答案】()3,2--【解析】【分析】首先讨论k 的取值,解不等式;再由集合A 的元素个数最少,推出只有0k <满足,若集合A 的元素个数最少,由0k <,集合A =64x Z k x k ⎧⎫∈+≤≤⎨⎬⎩⎭,只需求6k k +的最大值即可,再由集合A 中x ∈Z ,只需654k k-<+<-即可求解.【详解】由题知集合A 内的不等式为2(6)(4)0,kx k x x Z ---≥∈,故当0k =时,可得{}4A x Z x =∈<;当0k >时, 2(6)(4)0kx k x ---≥可转化为24060x kx k -≥⎧⎨--≥⎩ 或24060x kx k -≤⎧⎨--≤⎩,因为64k k <+,所以不等式的解集为{4x x ≤或6x k k ⎫≥+⎬⎭,所以A ={4x Z x ∈≤或6x k k ⎫≥+⎬⎭当0k <时,由64k k +<,所以不等式的解集为64x k x k ⎧⎫+≤≤⎨⎬⎩⎭,所以A =64x Z k x k ⎧⎫∈+≤≤⎨⎬⎩⎭,此时集合A 的元素个数为有限个.综上所述,当0k ≥时,集合A 的元素个数为无限个,当0k <时,集合A 的元素个数为有限个,故当0k <时,集合A 的元素个数最少,且当6k k+ 的值越大,集合A 的元素个数越少,令6()f k k k =+(0k <),则26()1f k k'=-,令()0f k '= 解得k =,所以()f k 在(,-∞内单调递增,在()内单调递减,所以max ()(f k f ==-又因为x ∈Z ,54-<-<-,所以当654k k-<+<-,即32k -<<-时,集合A =64x Z k x k ⎧⎫∈+≤≤⎨⎬⎩⎭中元素的个数最少,故32k -<<-故答案为:()3,2--【点睛】本题主要考查集合的运算和解不等式,综合性比较强.三、解答题(共6小题,共85分)16. 已知全集U =R ,集合{}2230A x x x =--<,{}04B x x =<<.(1)求()U A B ⋂ð;(2)设非空集合{}23,D x a x a a =<<+∈R ,若U D A ⊆ð,求实数a 的取值范围.【答案】(1){}34x x ≤< (2)][()3,23,--⋃+∞【解析】【分析】(1)利用一元二次不等式解法化简集合A ,然后利用补集和交集运算求解即可;(2)根据集合关系列不等式组求解即可.【小问1详解】因为{}2230A x x x =--<,所以{}13A x x =-<<,所以{}13U A x x x =≤-≥或ð,因为{}04B x x =<<,所以(){}34U A B x x ⋂=≤<ð.【小问2详解】因为{}13U A x x x =≤-≥或ð,由题意得23231a a a <+⎧⎨+≤-⎩或233a a a <+⎧⎨≥⎩,解得32a -<≤-或3a ≥.所以实数a 的取值范围是][()3,23,--⋃+∞.17. 已知函数()211f x x =+,[]2,5x ∈.(1)判断函数()f x 的单调性,并用定义证明你的结论;(2)求不等式()()121f m f m +<-的解集.【答案】(1)()f x 在[]2,5x ∈单调递减,证明见解析 (2)322mm ⎧⎫≤<⎨⎬⎩⎭【解析】【分析】(1)根据函数单调性的定义即可作差求解,(2)由函数的单调性即可求解.【小问1详解】()f x 在[]2,5x ∈单调递减,证明如下:设1225x x ≤<≤,则()()()()()()21211222221212111111x x x x f x f x x x x x -+-=-=++++,由于1225x x ≤<≤,所以()()222121120,0,110x x x x x x ->+>++>,因此()()120f x f x ->,故()()12f x f x >,所以()f x 在[]2,5x ∈单调递减,【小问2详解】由(1)知()f x 在[]2,5x ∈单调递减,所以由()()121f m f m +<-得51212m m ≥+>-≥,解得322m ≤<,故不等式解集为322mm ⎧⎫≤<⎨⎬⎩⎭18. 已知2y x x =-,且()1,1x ∈-.(1)求实数y 的取值集合M ;(2)设不等式()()20x a x a -+-<的解集为N ,若x ∈N 是x M ∈的必要条件,求a 的取值范围.【答案】18. 124M y y ⎧⎫=-≤<⎨⎬⎩⎭19. 14a <-或94a >【解析】【分析】(1)根据二次函数的性质即可求解集合M .(2)x ∈N 是x M ∈的必要条件,即M N ⊆,对a 分类讨论,解出不等式()(2)0x a x a -+-<的解集,可得a 的取值范围.【小问1详解】221124y x x x ⎛⎫=-=-- ⎪⎝⎭,的故函数在11,2⎛⎫- ⎪⎝⎭单调递减,在1,12⎛⎫ ⎪⎝⎭,故当12x =时取最小值min 14y =-,当=1x -时,2y =,当1x =时,0y =,故124y -≤<,所以124M y y ⎧⎫=-≤<⎨⎬⎩⎭,【小问2详解】x ∈N 是x M ∈的必要条件,即M N ⊆.当1a >时,2a a >-,此时(2,)N a a =-,所以1242a a ⎧-<-⎪⎨⎪≥⎩,解得94a >;当1a =时,N 为空集,不适合题意,所以1a =舍去; 当1a <时,2a a <-,此时(,2)N a a =-,所以1422a a ⎧<-⎪⎨⎪-≥⎩,解得14a <-综上可得a 取值范围是14a <-或94a >19. 近年来,中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难,并不断加大对各国的施压,拉拢他们抵制华为5G ,然而这并没有让华为却步.华为在2018年不仅净利润创下记录,海外增长同样强劲.今年,我国华为某一企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本250万,每生产x (千部)手机,需另投入成本()R x 万元,且210100,040()100007019450,40x x x R x x x x ⎧+<<⎪=⎨+-≥⎪⎩,由市场调研知,每部手机售价0.7万元,且全年生产的手机当年能全部销售完.(1)求出2020年的利润()W x (万元)关于年产量x (千部)的函数关系式,(利润=销售额—成本);的(2)2020年产量为多少(千部)时,企业所获利润最大?最大利润是多少?【答案】(1)210600250,040()10000()9200,40x x x W x x x x ⎧-+-<<⎪=⎨-++≥⎪⎩; (2)2020年产量为100千部时,企业所获利润最大,最大利润是9000万元.【解析】【分析】(1)根据给定的函数模型,直接计算作答.(2)利用(1)中函数,借助二次函数最值及均值不等式求出最大值,再比较大小作答.【小问1详解】依题意,销售收入700x 万元,固定成本250万元,另投入成本210100,040()100007019450,40x x x R x x x x ⎧+<<⎪=⎨+-≥⎪⎩万元,因此210600250,040()700()25010000()9200,40x x x W x x R x x x x ⎧-+-<<⎪=--=⎨-++≥⎪⎩,所以2020年的利润()W x (万元)关于年产量x (千部)的函数关系式是210600250,040()10000(9200,40x x x W x x x x ⎧-+-<<⎪=⎨-++≥⎪⎩.【小问2详解】由(1)知,当040x <<时,2()10(30)87508750W x x =--+≤,当且仅当30x =时取等号,当40x ≥时,10000()(920092009000W x x x =-++≤-+=,当且仅当10000x x=,即100x =时取等号,而87509000<,因此当100x =时,max ()9000W x =,所以2020年产量为100千部时,企业所获利润最大,最大利润是9000万元.20. 已知函数()f x 为二次函数,()f x 的图象过点()0,2,对称轴为12x =-,函数()f x在R 上最小值为74.(1)求()f x 的解析式;(2)当[]2,x m m ∈-,R m ∈时,求函数()f x 的最小值(用m 表示);(3)若函数()()1F x f x ax =--在()0,3上只有一个零点,求a 的取值范围.【答案】(1)217()()24f x x =++(2)2min2171(),242713(),422373(),242m m f x m m m ⎧++<-⎪⎪⎪=-≤≤⎨⎪⎪-+>⎪⎩(3)13[,3{})3+∞⋃.【解析】【分析】(1)设出函数的解析式,结合函数的对称轴以及函数最值,求出函数的解析式即可;(2)通过讨论m 的范围,求出函数的单调区间,求出函数的最小值即可;(3)根据一元二次方程根的分布,结合零点存在性定理得到关于a 的不等式,解出即可.【小问1详解】设函数2()()f x a x h k =-+,由对称轴为12x =-,函数()f x 在R 上最小值为74可得得217()(24f x a x =++,将(0,2)代入()f x 得:1a =,故217()()24f x x =++;【小问2详解】()f x 的对称轴为12x=-,12m ≤-时,()f x 在[2m -,]m 递减,2min 17()()(24f x f m m ==++,1322m -<<时,()f x 在[2m -,12-递减,在1(2-,]m 递增,故min 17()()24f x f =-=,32m ≥时,()f x 在[2m -,]m 递增,故2min 37()(2)(24f x f m m =-=-+;综上,2min2171(),242713(),422373(),242m m f x m m m ⎧++<-⎪⎪⎪=-≤≤⎨⎪⎪-+>⎪⎩;【小问3详解】2217()()1()1(1)124F x f x ax x ax x a x =--=++--=+-+在(0,3)上只有一个零点,当Δ0=时,即()2140a ∆=--=,解得3a =或1a =-当1a =-时,2210x x ++=,=1x -不满足题意,舍去,当3a =时,2210x x -+=,1x =满足题意,当0∆>时,当()(0)30F F ⋅<,解得133a >,此时()F x 在(0,3)上只有一个零点,由于(0)1F =,当()31330F a =-=时,此时133a =,此时210()103F x x x =+=-,解得13x =或3x =(舍去),满足条件,综上可得133a ≥,综上:a 的取值范围是13[,3{})3+∞⋃.21. 设整数集合{}12100,,,A a a a =⋯,其中121001···205a a a ≤<<<≤ ,且对于任意(),1100i j i j ≤≤≤,若i j A +∈,则.i j a a A +∈(1)请写出一个满足条件的集合A ;(2)证明:任意{}101,102,,200,x x A ∈⋯∉;(3)若100205a =,求满足条件的集合A 的个数.【答案】(1){1,2,3,,100}A = (2)证明见解析 (3)16个【解析】【分析】(1)根据题目条件,令n a n =,即可写出一个集合{1,2,3,,100}A = ;(2)由反证法即可证明;(3)因为任意的{}101,102,,200,x x A ∈⋯∉,所以集合{201,202,,205}A 中至多5个元素.设100100m a b -=≤,先通过判断集合A 中前100m -个元素的最大值可以推出(1100)i a i i m =-≤≤,故集合A 的个数与集合{201,202,203,204}的子集个数相同,即可求出.【详解】(1)答案不唯一. 如{1,2,3,,100}A = ; (2)假设存在一个0{101,102,,200}x ∈ 使得0x A ∈, 令0100x s =+,其中s ∈N 且100s ≤≤1,由题意,得100s a a A +∈,由s a 为正整数,得100100s a a a +>,这与100a 为集合A 中的最大元素矛盾,所以任意{101,102,,200}x ∈ ,x A ∉.(3)设集合{201,202,,205}A 中有(15)m m ≤≤个元素,100m a b -=,由题意,得12100200m a a a -<<< ≤,10011002100200m m a a a -+-+<<<< ,由(2)知,100100m a b -=≤.假设100b m >-,则1000b m -+>.因为10010010055100b m m -+-+=<-≤,由题设条件,得100100m b m a a A --++∈,因为100100100100200m b m a a --+++=≤,所以由(2)可得100100100m b m a a --++≤,这与100m a -为A 中不超过100的最大元素矛盾,所以100100m a m --≤,第21页/共21页又因为121001m a a a -<<< ≤,i a ∈N ,所以(1100)i a i i m =-≤≤. 任给集合{201,202,203,204}的1m -元子集B ,令0{1,2,,100}{205}A m B =- , 以下证明集合0A 符合题意:对于任意,i j 00)(1i j ≤≤≤1,则200i j +≤.若0i j A +∈,则有m i j +≤100-,所以i a i =,j a j =,从而0i j a a i j A +=+∈.故集合0A 符合题意,所以满足条件的集合A 的个数与集合{201,202,203,204}的子集个数相同,故满足条件的集合A 有4216=个.【点睛】本题主要考查数列中的推理,以及反证法的应用,解题关键是利用题目中的递进关系,找到破解方法,意在考查学生的逻辑推理能力和分析转化能力,属于难题.。

安徽省安庆市2023-2024学年高一上学期11月期中考试数学试题含解析

安徽省安庆市2023-2024学年高一上学期11月期中考试数学试题含解析

安庆2023-2024学年度第一学期期中考试高一数学试题(答案在最后)(满分:150分考试时间:120分钟)一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.“02x <<”是“260x x --<”的()A.必要而不充分条件B.充分而不必要条件C .充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】分析两个集合{}|02A x x =<<和{}|23B x x =-<<的关系,从而推出命题之间的关系【详解】解不等式260x x --<,得23x -<<而集合{}|02A x x =<<是集合{}|23B x x =-<<的真子集,所以“02x <<”是“260x x --<”的充分而不必要条件故选:B2.若2x >,则函数42y x x =+-的最小值为()A.3 B.4C.5D.6【答案】D 【解析】【分析】根据题意结合基本不等式运算求解.【详解】由题意可得:()442222y x x x x =+=-++--,∵2x >,则20x ->,故()422262y x x =-++≥=-,当且仅当422x x -=-,即4x =时,等号成立.故选:D.3.下列结论正确的是()A.若ac bc >,则a b> B.若22a b >,则a b>C.若a b >,0c <,则ac bc <D.<,则a b>【答案】C 【解析】【分析】利用特殊值排除错误选项,利用差比较法证明正确选项.【详解】A 选项,ac bc >,如()()()()2111-⨯->-⨯-,而21-<-,所以A 选项错误.B 选项,22a b >,如()2210->,而10-<,所以B 选项错误.C 选项,,0,0a b a b c >-><,则()0ac bc a b c -=-<,所以ac bc <,所以C 选项正确.D <,如<,而12<,所以D 选项错误.故选:C4.下列各组中的两个函数,表示同一个函数的是()A.2x y x=与y x= B.2x y x =与1y x = C.y x =与y x= D.2y =与y x=【答案】B 【解析】【分析】根据函数的定义域,并化简函数解析式,进而判断各选项.【详解】A 选项:2x y x=定义域为()(),00,∞-+∞U ,y x =的定义域为R ,故A 选项错误;B 选项:2x y x =与1y x =的定义域均为()(),00,∞-+∞U ,且21x y x x==,故B 选项正确;C 选项:y x =与y x =的定义域均为R ,但,0,0x x y x x x ≥⎧==⎨-<⎩,故C 选项错误;D 选项:2y =的定义域为[)0,∞+,y x =的定义域为R ,故D 选项错误;故选:B.5.函数()x f x x x=+的图像是()A. B.C. D.【答案】C 【解析】【分析】化简函数为分段函数,利用解析式即判断图象.【详解】函数的定义域为{}0x x ≠,1,0()1,0x x xf x x x x x +>⎧=+=⎨-<⎩,所以C 中的图象满足题意.故选:C .【点睛】方法点睛:本题考查由解析式选函数图象问题,可由解析式研究函数的性质,如奇偶性,单调性,对称性等等,研究函数值的变化规律,特殊的函数值等等用排除法确定正确选项.6.已知不等式210ax bx --≥的解集是11,23⎡⎤--⎢⎥⎣⎦,则不等式20x bx a --<的解集是()A.()2,3 B.()(),23,-∞⋃+∞C.11,32⎛⎫ ⎪⎝⎭D.11,,32∞∞⎛⎫⎛⎫--⋃+ ⎪⎪⎝⎭⎝⎭【答案】A 【解析】【分析】根据不等式210ax bx --≥的解集是11,23⎡⎤--⎢⎥⎣⎦,可求出,a b 的值,从而求解不等式20x bx a --<的解集.【详解】因为不等式210ax bx --≥的解集是11,23⎡⎤--⎢⎥⎣⎦,所以210ax bx --=的两根为11,23--,则11111,2323b a a -⎛⎫⎛⎫--==-- ⎪⎪⎝⎭⎝⎭,解得6,5a b =-=,带入不等式20x bx a --<得2560x x -+<,即()()230x x --<,解得:{}23x x <<.故选:A7.三个数()020.30.3,0.3,2a b c =-==,则,,a b c 的关系是A.a b c <<;B.a c b <<;C.b a c <<;D.b<c<a【答案】C 【解析】【分析】由指数函数的单调性分别求出()020.30.3,0.3,2a b c =-==的取值范围,从而可得结果.【详解】因为()00.31a =-=,2000.30.31b <=<=,0.30221c =>=,三个数,,a b c 的关系是b ac <<,故选C.【点睛】本题主要考查指数函数的单调性及比较大小问题,属于难题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.8.已知函数21,0()21,0x x x f x x x ⎧++≥=⎨+<⎩.若()2()2f m f m <-,则实数m 的取值范围是()A.(,1)(2,)-∞-+∞B.(1,2)-C.(2,1)- D.(,2)(1,)-∞-+∞ 【答案】C 【解析】【分析】由题意知分段函数求值应分段处理,利用函数的单调性求解不等式.【详解】当0x ≥时,2213()1()24f x x x x =++=++单调递增,且(0)1f =,当0x <时,()21f x x =+单调递增,且()1f x <.所以函数()f x 在R 上单调递增,由()2()2f m f m <-得,22m m<-,解得21m -<<.故选:C.二、多选题(本题共4个小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9.设x ,y 为实数,满足14x ≤≤,02y <≤,则下列结论正确的是()A.16x y <+≤ B.12x y <-≤ C.08xy <≤ D.2xy≥【答案】AC 【解析】【分析】根据x ,y 的范围及基本不等关系,对选项一一分析即可.【详解】对于A ,0124x y +<+≤+,即16x y <+≤,故A 正确;对于B ,20y -≤-<,则1240x y -≤-<+,即14x y -≤-<,故B 错误;对于C ,0142xy ⨯<≤⨯,即08xy <≤,故C 正确;对于D ,由题知112y ≥,则11122x y ≥⨯=,故D 错误;故选:AC10.{}260A x x x =+-=,{}10B x mx =-=且A B B = ,则m 可能的取值为()A.0B.12C.13-D.13【答案】ABC 【解析】【分析】由题可得B A ⊆,然后讨论集合B 是否为空集,求解即得.【详解】由260x x +-=得3x =-或2x =,所以{}3,2=-A ,∵A B B = ,∴B A ⊆,①0m =时,B =∅,满足B A ⊆;②0m ≠时,1B m ⎧⎫=⎨⎬⎩⎭,又B A ⊆,所以13m =-或12m =,∴13m =-或12.综上,实数m 的值可以为0或13-或12.故选:ABC .11.我们用符号min 表示两个数中较小的数,若x ∈R ,(){}2min 2,f x x x =-,则()f x ()A.最大值为1B.无最大值C.最小值为1-D.无最小值【答案】AD 【解析】【分析】在同一平面直角坐标系中画出函数22y x =-,y x =的图象,结合图象及新定义确定函数解析式及其最值.【详解】在同一平面直角坐标系中画出函数22y x =-,y x =的图象,如图:根据题意,图中实线部分即为函数()f x 的图象.由22x x -=,解得12x =-,21x =,所以()222,2,212,1x x f x x x x x ⎧-≤-⎪=-<≤⎨⎪->⎩,∴当1x =时,()f x 取得最大值,且()max 1f x =,由图象可知()f x 无最小值,故选:AD.12.已知函数()3,0,0x x f x x x ⎧≥=⎨-<⎩,若函数()()()22R g x f x kx x k =--∈恰有4个零点,则k 的取值范围是()A.0B.1- C.3D.1【答案】BC 【解析】【分析】把问题转化为()2f x kx x =-有四个根,即()y f x =和()2h x kx x =-有四个交点,再分0,0,0k k k =<>讨论两个函数是否能有4个交点,进而得出k 的取值范围.【详解】因为函数()()()2R g x f x kx x k =--∈恰有4个零点,所以()2f x kx x =-有四个根,即()y f x =和()2h x kx x =-有四个交点.当0k =时,()y f x =与|2|2||y x x =-=图像如下:两图像有2个交点,不符合题意;当0k <时,2y kx x =-与x 轴交于两点()122120,x x x x k==<.图像如下:当1x k =时,函数2|2|y kx x =-的函数值为1k-,函数y x =-的函数值为1x k =.两图像有4个交点,符合题意;当0k >时,2|2|y kx x =-与轴交于两点()122120,x x x x k==>,在20,k ⎡⎫⎪⎢⎣⎭内函数图像有两个交点.要使两图像有4个交点,只需3y x =与22y kx x =-在2,k ⎛⎫+∞⎪⎝⎭内有两个交点即可,即322x kx x =-在2,k ⎛⎫+∞⎪⎝⎭还有两个根,就是2k x x =+在2,k ⎛⎫+∞ ⎪⎝⎭内有两个根,函数222y x x=+≥(当且仅当2x =时等号成立).所以202k<<22k >解得:22k >.综上所述:实数k 的取值范围是()(),02,-∞+∞ .故答案为:()(),02,-∞+∞ .所以A ,D 不符合,B ,C 符合.故选:BC三、填空题(本题共4小题,每小题5分,共20分)13.若集合{}21,,3A a a =+且4A ∈,则实数a 的取值为______.【答案】4或1-【解析】【分析】由题意得出关于a 的方程,求出a 的值,利用集合的互异性确定出a 的值.【详解】若4a =,此时{}1,4,19A =,符合题意;若234a +=,则1a =或1-,当1a =时,此时不满足集合中元素的互异性,舍去;则1a =-,{}1,4,1A =-,符合题意.故答案为:4或1-.14.函数()13x f x a +=-的图像恒过定点__________.【答案】(1,2)-【解析】【分析】根据指数函数过定点即可求解.【详解】因为函数()13x f x a+=-,令10x +=,解得:=1x -,0(1)322f -=-=,所以函数()13x f x a +=-的图像恒过定点(1,2)-,故答案为:(1,2)-.15.若函数()()2241f x ax a x =--+在区间()0,∞+上单调,则实数a 的取值范围是__________【答案】[]0,2【解析】【分析】对参数分0a =与0a ≠讨论,根据单调性求出a 的范围.【详解】当0a =时,()41f x x =+,则()f x 在区间()0,∞+上单调增,满足题意;当0a ≠时,()()2241f x ax a x =--+为二次函数,对称轴为21x a=-,若()f x 在区间()0,∞+上单调递增,则需满足2100aa ⎧-≤⎪⎨⎪>⎩,解得02a <≤;若()f x 在区间()0,∞+上单调递减,则需满足210a a ⎧-≤⎪⎨⎪<⎩,无解;综上:02a ≤≤.故答案为:[]0,216.已知0a >,0b >且21122a a b+=++,则a b +的最小值是______.【答案】12+【解析】【分析】由21122a a b+=++,得到221b a a =+-,则2222211a b a a a a a +=++-=++,根据基本不等式即可求出答案.【详解】解:由21122a a b+=++,得到221b a a =+-,∴222221111a b a a a a a +=++-=++≥=+,当且仅当2a a =,即a =∴12a b +≥,∴a b +的最小值是12+,12+.四、解答题(本题共6小题,17题10分,18至22题分别12分,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知{}321A x x =-≤-≤,{}12B x a x a =-≤≤+,R a ∈.(1)当a =1时,求A ∩B ;(2)若A ∪B =A ,求实数a 的取值范围.【答案】(1){}03A B x x ⋂=≤≤(2){}01a a ≤≤【解析】【分析】(1)解不等式,求出,A B ,进而求出交集;(2)根据条件得到B A ⊆,比较端点,列出不等式组,求出实数a 的取值范围.【小问1详解】321x -≤-≤,解得13x -≤≤,故{}13A x x =-≤≤,当1a =时,{}03B x x =≤≤,所以{}03A B x x ⋂=≤≤;【小问2详解】因为A B A ⋃=,所以B A ⊆,因为12a a -<+,所以B ≠∅,所以1123a a -≥-⎧⎨+≤⎩,解得:01a ≤≤,所以实数a 的取值范围为{}01a a ≤≤18.已知p :28200x x --≤;q :2211m x m -≤≤+.(1)若p 是q 的必要条件,求m 的取值范围;(2)若p ⌝是q ⌝的必要不充分条件,求m 的取值范围.【答案】(Ⅰ)⎡⎣;(Ⅱ)(,3][3,)-∞-+∞ .【解析】【详解】试题分析:(Ⅰ)求出p ,q 成立的等价条件,根据p 是q 的必要条件,建立条件关系即可.(Ⅱ)利用¬p 是¬q 的必要不充分条件,即q 是p 的必要不充分条件,建立条件关系进行求解即可.解:由x 2﹣8x ﹣20≤0得﹣2≤x ≤10,即P :﹣2≤x ≤10,又q :1﹣m 2≤x ≤1+m 2.(1)若p 是q 的必要条件,则2212110m m ⎧-≥-⎨+≤⎩,即2239m m ⎧≤⎨≤⎩,即m 2≤3,解得m ≤≤,即m 的取值范围是⎡⎣.(2)∵¬p 是¬q 的必要不充分条件,∴q 是p 的必要不充分条件.即2212110m m ⎧-≤-⎨+≥⎩,即m 2≥9,解得m ≥3或m ≤﹣3即m 的取值范围是(﹣∞,﹣3]∪[3,+∞).考点:必要条件、充分条件与充要条件的判断.19.设p :对任意的x R ∈都有22x x a ->,q :存在0x R ∈,使200220x ax a ++-=,如果命题p q ∨为真,命题p q ∧为假,求实数a 的取值范围.【答案】[)(2,1)1,a ∈--+∞【解析】【详解】试题分析:先根据恒成立得22a x x <-最小值,得p ,再根据方程有解得q ,根据命题p q ∨为真,命题p q ∧为假,得,p q 一真一假,最后分类求实数a 的取值范围.试题解析:由题意:对于命题p ,∵对任意的2,2x R x x a ∈->,∴1440a ∆=+<,即:1p a <-;对于命题q ,∵存在x R ∈,使2220x ax a ++-=,∴()224420a a ∆=--≥,即:1q a ≥或2a ≤-.∵p q ∨为真,p q ∧为假,∴,p q 一真一假,①p 真q 假时,21a -<<-,②p 假q 真时,1a ≥.综上,()[)2,11,a ∈--⋃+∞.20.已知函数()223mx f x x n+=+是奇函数,且()523f =.(1)求实数m 和n 的值;(2)判断函数()f x 在(],1-∞-上的单调性,并加以证明.【答案】(1)2m =,0n =;(2)(],1-∞-上为增函数,证明见解析【解析】【分析】(1)根据奇函数有()()f x f x -=-可得0n =,再由()523f =可得m ;(2)根据函数单调性定义法证明即可.【详解】(1)∵()f x 是奇函数,∴()()f x f x -=-.即222222333mx mx mx x n x n x n+++=-=-++--,比较得n n =-,0n =.又()523f =,∴42563m +=,解得2m =,即实数m 和n 的值分别是2和0.(2)函数()f x 在(],1-∞-上为增函数.证明如下:由(1)知()22222333x x f x x x+==+,设121x x <≤-,则()()()1212122113f x f x x x x x ⎛⎫-=-- ⎪⎝⎭()121212(1)23x x x x x x -⋅-=,()12203x x -<Q ,120x x >,1210x x ->,∴()()120f x f x -<,∴()()12f x f x <,即函数()f x 在(],1-∞-上为增函数.【点睛】本题主要考查了函数奇偶性的应用,函数单调性的定义法证明,属于中档题.21.已知关于x 的不等式2320ax x -+>的解集为{|1x x <或}x b >.(1)求a ,b 的值;(2)当0x >,0y >且满足1a b x y+=时,有222x y k k +≥++恒成立,求k 的取值范围.【答案】(1)1,2a b ==(2)[32]-,【解析】【分析】(1)根据题意得到1和b 是方程2320ax x -+=的两个实数根,再利用根与系数关系求解即可;(2)根据题意得到()2min 22x y k k +≥++,再利用基本不等式求出2x y +的最小值即可.【小问1详解】因为不等式2320ax x -+>的解集为{1x x <或}x b >,所以1和b 是方程2320ax x -+=的两个实数根,且0a >,所以3121b a b a ⎧+=⎪⎪⎨⎪⋅=⎪⎩,解得12a b =⎧⎨=⎩,即1a =,2b =.所以实数a ,b 的值分别为1,2.【小问2详解】由(1)知12a b =⎧⎨=⎩,于是有121x y +=,故()12422448y x x y x y x y x y ⎛⎫+=++=+++⎪⎝⎭≥,当且仅当4y x x y =,结合121x y +=,即24x y =⎧⎨=⎩时,等号成立,依题意有()2min 22x y k k +≥++,即282k k ≥++,得260k k +-≤,即32k -≤≤,所以k 的取值范围为[32]-,.22.某医学研究所研发一种药物,据监测,如果成人在2h 内按规定的剂量注射该药,在注射期间,血液中的药物含量呈线性增加;停止注射后,血液中的药物含量呈指数衰减,每毫升血液中的药物含量()y g μ与服药后的时间t (h )之间近似满足如图所示的曲线,其中OA 是线段,曲线段AB 是函数()2,0,,t y ka t a k a =≥>是常数的图象,且()()2,8,4,2A B .(1)写出注射该药后每毫升血液中药物含量y 关于时间t 的函数关系式;(2)据测定:每毫升血液中药物含量不少于1g μ时治疗有效,如果某人第一次注射药物为早上8点,为保持疗效,第二次注射药物最迟是当天几点钟?(3)若按(2)中的最迟时间注射第二次药物,则第二次注射后再过1.5h ,该人每毫升血液中药物含量为多少g μ 1.4≈)?【答案】(1)4,02132,22t t t y t ≤≤⎧⎪=⎨⎛⎫⨯> ⎪⎪⎝⎭⎩(2)13点(3)()6.35g μ【解析】【分析】(1)根据函数图象分段求解函数解析式即可;(2)根据题意列出不等式,求解出答案即可;(3)分别求解出第二次注射后每毫升血液中含第一次和第二次服药后的剩余量,相加即为结果.【小问1详解】当02t ≤≤时,4y t =,当2t ≥时,把()()2,8,4,2A B 代入2y ka =(2,0,,t a k a ≥>是常数)得:2482ka ka ⎧=⎨=⎩,解得:1232a k ⎧=⎪⎨⎪=⎩,∴4,02132,22t t t y t ≤≤⎧⎪=⎨⎛⎫⨯> ⎪⎪⎝⎭⎩.【小问2详解】设第一次注射药物后最迟过t 小时注射第二次药物,其中2t >.则13212t⎛⎫⨯≥ ⎪⎝⎭,解得:5t ≤,∴第一次注射药物5h 后开始第二次注射药物,即最迟13点注射药物.【小问3详解】第二次注射药物1.5h 后每毫升血液中第一次注射药物的含量: 6.5113224y ⎛⎫=⨯= ⎪⎝⎭每毫升血液中第二次注射药物的含量:24 1.56y g μ=⨯=,。

北京市延庆区2024-2025学年高一上学期期中考试数学试卷含解析

北京市延庆区2024-2025学年高一上学期期中考试数学试卷含解析

延庆区2024-2025学年第一学期期中试卷高一数学(答案在最后)本试卷共4页,满分150分,考试时间120分钟第I 卷(选择题)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1,0,1,2A =-,{}2,1,0,1B =--,则A B = ()A.{}0,1 B.{}1,0- C.{}2,1,0,1,2-- D.{}1,0,1-【答案】D 【解析】【分析】根据给定条件,利用交集的定义求解即得.【详解】集合{}1,0,1,2A =-,{}2,1,0,1B =--,所以{}1,0,1A B ⋂=-.故选:D2.若集合[]3,1A =-,()2,3B =-,则A B = ()A.(]2,1- B.[)2,1- C.(]3,3- D.[)3,3-【答案】D 【解析】【分析】根据条件,利用集合的运算,即可求解.【详解】因为[]3,1A =-,()2,3B =-,所以A B = [)3,3-,故选:D.3.已知全集{}N 6U x x =∈≤且{}25A x U x =∈≤,则集合U A ð中的元素有()A.2个B.4个C.5个D.7个【答案】B 【解析】【分析】利用列举法表示集合U ,解不等式化简集合A ,再求出U A ð即可得解.【详解】依题意,{0,1,2,3,4,5,6}U =,解不等式25x ≤,得x ≤≤,则{0,1,2}A =,所以{3,4,5,6}U A =ð,集合U A ð中的元素有4个.故选:B4.已知集合A 满足{}1A ⊆{}1,2,3,4,则A 有()A.2个 B.4个C.5个D.7个【答案】D 【解析】【分析】根据给定条件,求出集合{}2,3,4的真子集个数即可得解.【详解】集合A 满足{}1A⊆{}1,2,3,4,则集合A 可视为集合{1}与集合{}2,3,4的每个真子集的并集,而集合{}2,3,4的真子集个数为3217-=,所以A 有7个.故选:D5.若22P a a =-和24Q a =-,则P 和Q 的大小关系为()A.P Q >B.P Q< C.P Q≥ D.P Q≤【答案】C 【解析】【分析】根据条件,通过作差法,得到2(2)P Q a -=-,即可求解.【详解】因为22P a a =-,24Q a =-,所以2222(24)44(2)0P Q a a a a a a -=---=-+=-≥,当且仅当2a =时取等号,所以P Q ≥,故选:C.6.设,,a b c ∈R ,且a b <,c d <,则()A.22a b <B.d c a b> C.ac bd< D.33a b <【答案】D 【解析】【分析】举例说明判断ABC ;利用不等式的性质判断D.【详解】对于A ,取2,2a b =-=,满足a b <,而224a b ==,A 错误;对于B ,取2,1,1,4a b c d =-=-==满足,a b c d <<,而21d ca b=-<-=,B 错误;对于C ,取2,1,1,4a b c d =-=-==满足,a b c d <<,而24ac bd =->-=,C 错误;对于D ,由不等式性质知,由a b <,得33a b <,D 正确.故选:D7.下列函数中,既是偶函数又在区间(),0-∞上单调递增的是()A.21y x =B.1y x =+C.2y x =-,(),0x ∈-∞D.y x=【答案】A 【解析】【分析】利用奇偶函数的判断方法及基本函数的单调性,对各个选项逐一分析判断,即可求解.【详解】对于选项A ,因为221y x x-==,定义域为(,0)(0,)-∞+∞ ,关于原点对称,又2211()()()f x f x x x -===-,所以21y x=是偶函数,又由幂函数的性质知21y x =在区间()0,∞+上单调递减,所以21y x =在区间(),0-∞上单调递增,故选项A 正确,对于选项B ,因为1y x =+图象不关于y 轴对称,即1y x =+不是偶函数,所以选项B 错误,对于选项C ,因为2y x =-,(),0x ∈-∞的定义域不关于原点对称,即2y x =-,(),0x ∈-∞是非奇非偶函数,所以选项C 错误,对于选项D ,当(),0x ∈-∞时,y x x ==-在区间(),0-∞上单调递减,所以选项D 错误,故选:A.8.已知函数()f x 的定义域为R ,则“()f x 为奇函数”是“(0)=0f ”的A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【详解】试题分析:因函数的定义域是,故“是奇函数”是“”的充分条件;反之,若(0)0f =,则函数不一定是奇函数,“f (x )为奇函数”不是必要条件.应选A.考点:充分必要条件.9.已知函数2()2f x x ax =++有两个零点,在区间(1,2)-上是单调的,且在该区间中有且只有一个零点,则实数a 的取值范围是()A.(,)-∞-⋃+∞B.(,3)(3,)-∞-⋃+∞C.(,4](3,)-∞-+∞D.(,4][2,)-∞-+∞ 【答案】C 【解析】【分析】求出函数()f x 的单调区间,再结合集合的包含关系及零点存在性定理列式求解即得.【详解】函数2()2f x x ax =++在(,]2a -∞-上单调递减,在[,)2a-+∞上单调递增,由在区间(1,2)-上是单调的,且在该区间中有且只有一个零点,得(,](1,2)2a ∞---⊆且(1)0(2)0f f ->⎧⎨<⎩或[,)(1,22)a--+∞⊆且(1)0(2)0f f -<⎧⎨>⎩,则2230620a a a ⎧-≥⎪⎪->⎨⎪+<⎪⎩或1230620aa a ⎧-≤⎪⎪-<⎨⎪+>⎪⎩,解得4a ≤-或3a >,所以实数a 的取值范围是(,4](3,)-∞-+∞ .故选:C10.x ∀∈R ,设()f x 取41y x =+,1y x =+,24y x =-+三个函数值中的最小值,则()f x 的最大值为()A.1B.2C.3D.4【答案】B 【解析】【分析】作出函数()f x 的图象,利用图象求出其最大值.【详解】在同一坐标系内作出直线41y x =+,1y x =+,24y x =-+,由()f x 取41y x =+,1y x =+,24y x =-+三个函数值中的最小值,得()f x 的图象为下图中实线构成的折线图,则()f x 的最大值即为()f x 的图象最高点对应的纵坐标值,观察图象知,()f x 的图象最高点是直线1y x =+与24y x =-+的交点,由124y x y x =+⎧⎨=-+⎩,得12x y =⎧⎨=⎩,因此()f x 的图象最高点是(1,2),所以()f x 的最大值为2.故选:B第II 卷(非选择题)二、填空题:本大题共5小题,每小题5分,共25分.11.函数()124f x x =+______.【答案】(2,)-+∞【解析】【分析】利用函数有意义列式求出定义域.【详解】依题意,240x +>,解得2x >-,所以函数()124f x x =+的定义域是(2,)-+∞.故答案为:(2,)-+∞12.已知奇函数()f x 满足()()53f f -<-,则()5f ______()3f .【答案】大于【解析】【分析】利用奇函数的性质,结合不等式的性质求解即得.【详解】由奇函数()f x 满足()()53f f -<-,得()()53f f -<-,所以()()53f f >.故答案为:大于13.已知(],A a =-∞,(),3B =-∞,且x A ∈是x B ∈的必要不充分条件,则a 的取值范围是______【答案】3a ≥【解析】【分析】根据条件得到BA ,再利用集合间的关系,即可求解.【详解】因为x A ∈是x B ∈的必要不充分条件,则B A ,又(],A a =-∞,(),3B =-∞,所以3a ≥,故答案为:3a ≥.14.已知0x <,则812y x x=++的最大值是______,当且仅当x =______时,等号成立.【答案】①.7-②.2-【解析】【分析】根据给定条件,借助配凑的方法,利用基本不等式求出最大值及对应x 的值.【详解】由0x <,得0x ->,则81(2)17y x x =--+≤---,当且仅当82x x-=-,即2x =-时取等号,所以当2x =-时,812y x x=++取得最大值7-.故答案为:7-;2-15.已知函数2()2||1f x x x =--,给出下列四个结论:①函数()f x 是偶函数;②函数()f x 的增区间为[1,)+∞;③不等式()1f x x <-的解集是(1,3)-;④当3x >-时,令3()()g x f x x =+,则()g x 的最小值为4-.其中所有正确结论的序号是______.【答案】①④【解析】【分析】利用偶函数的定义判断①;求出函数的单调递增区间判断②;分段求出不等式的解集判断③;利用基本不等式分段求出最小值判断④.【详解】函数2()2||1f x x x =--的定义域为R ,对于①,22()()2||12||1()f x x x x x f x -=----=--=,函数()f x 是偶函数,①正确;对于②,2221,0()21,0x x x f x x x x ⎧+-≤=⎨-->⎩,函数()f x 的增区间为[1,0],[1,)-+∞,②错误;对于③,不等式()1f x x <-,则20211x x x x ≤⎧⎨+-<-⎩或20211x x x x >⎧⎨--<-⎩,解得10x -<<或03x <<,所以不等式()1f x x <-的解集是(1,0)(0,3)- ,③错误;对于④,依题意,2221,303()21,03x x x x g x x x x x ⎧+--<≤⎪⎪+=⎨--⎪>⎪+⎩,当30x -<≤时,2()(3)4443g x x x =++-≥=+,当且仅当233x x +=+,即3x =-时取等号;当0x >时,14()(3)88283x g x x =++-≥=+,当且仅当1433x x +=+,即3x =时取等号,而84)2)]0--=-+=>,即84->,所以()g x的最小值为4-,④正确.故所有正确结论的序号是①④.故答案为:①④【点睛】思路点睛:涉及分段函数解不等式问题,先在每一段上求解不等式,再求出各段解集的并集即可.三、解答题:本大题共6小题,共85分.解答应写出文字说明,证明过程或演算步骤.16.求下列方程(组)的解集..:(1)2560x x +-=(2)3ax =(3)10x +-=(4)2214112x y y x ⎧+=⎪⎪⎨⎪=+⎪⎩【答案】(1){6,1}-(2)当0a =时,解集为∅;当0a ≠时,方程解集为3a 禳镲睚镲铪.(3){3-(4){(0,1),(2,0)}-【解析】【分析】(1)解一元二次方程即可得解集.(2)对a 分类讨论即可得方程的解集.(3(0)t t =≥,把原方程化为一元二次方程,结合t 的取值范围即可得到原方程的解集.(4)利用代入消元法即可得到方程组的解集.【小问1详解】由2560x x +-=得,(6)(1)0x x +-=,解得126,1x x =-=,故方程的解集为{6,1}-.【小问2详解】当0a =时,方程无解,解集为∅,当0a ≠时,解方程得3x a =,方程解集为3a ⎧⎫⎨⎬⎩⎭.【小问3详解】(0)t t =≥,则方程可化为2210t t +-=,解方程得,1211t t =-+=-,22(13x t ==-=-{3-.【小问4详解】由2214112x y y x ⎧+=⎪⎪⎨⎪=+⎪⎩得,2240x x +=,解得120,2x x ==-,方程组的解为1101x y =⎧⎨=⎩,2220x y =-⎧⎨=⎩,故方程组解集为{(0,1),(2,0)}-.17.求下列不等式(组)的解集..:(1)2430x x -+≥(2)23210x x -++>(3)2112x x +≥+(4)221132340x x x ⎧+<⎪⎨⎪-+>⎩【答案】(1){|1x x ≤或}3x ≥(2)1|13x x ⎧⎫-<<⎨⎬⎩⎭(3){|2x x <-或 (4){}|21x x -<<【解析】【分析】(1)根据条件,因式分解得到(3)(1)0x x --≥,再利用一元二次不等式的解法,即可求解;(2)根据条件,变形得到23210x x --<,再因式分解得(31)(1)0x x +-<,即可求解;(3)先变形成102x x -≥+,再等价于(1)(2)0x x -+≥且2x ≠-,即可求解;(4)先利用绝对值不等式的解法,求2113x +<的解,再求22340x x -+>的解,再求交集,即可求解.【小问1详解】由2430x x -+≥,得到(3)(1)0x x --≥,所以1x ≤或3x ≥,故不等式2430x x -+≥的解集为{|1x x ≤或}3x ≥.【小问2详解】由23210x x -++>,即23210x x --<,得到(31)(1)0x x +-<,所以113-<<x ,故不等式23210x x -++>的解集为1|13x x ⎧⎫-<<⎨⎬⎩⎭.【小问3详解】由2112x x +≥+,得到102x x -≥+,等价于(1)(2)0x x -+≥且2x ≠-,所以2x <-或1x ≥,故不等式2112x x +≥+的解集为{|2x x <-或}1≥x .【小问4详解】由2113x +<,得到3213x -<+<,即2<<1x -,对22340x x -+>,因为9442230∆=-⨯⨯=-<,所以22340x x -+>的解集为R ,故不等式组221132340x x x ⎧+<⎪⎨⎪-+>⎩的解集为{}|21x x -<<.18.已知关于x 的方程220x x m +-=,m ∈R .(1)当1m =时,若方程的两根为1x 与2x ,求下列各式的值:①2212x x +;②12||x x -;③1222x x +;(2)若该方程的两根同号,求实数m 的取值范围.【答案】(1)①6;②;③4;(2)10m -<<.【解析】【分析】(1)把1m =代入,利用韦达定理列式,再逐一变形计算各个式子的值.(2)利用判别式及韦达定理列出不等式组求解.【小问1详解】当1m =时,方程2210x x +-=,224(1)80∆=-⨯-=>,则12122,1x x x x +=-=-,①222121212()26x x x x x x =-++=;②12||x x ==-=;③1212122()224x x x x x x ++==.【小问2详解】由方程的两根同号,得1212Δ440200m x x x x m =+>⎧⎪+=-<⎨⎪=->⎩,解得10m -<<,所以实数m 的取值范围是10m -<<.19.已知函数()21f x m x=+过点()1,2-.(1)求函数()f x 的解析式及定义域;(2)判断函数()f x 的奇偶性并证明;(3)令()()1g x f x =-,求()g x 的解析式,并证明()g x 的图像关于1x =对称.【答案】(1)()211f x x=+,定义域为{}|0x x ≠(2)偶函数,证明见解析(3)()211(1)(1)g x x x =+≠-,证明见解析【解析】【分析】(1)根据条件可得1m =,即可得()211f x x=+,由解析式可直接求出定义域,即可求解;(2)利用奇偶函数的判断方法,即可求解;(3)利用()211f x x=+,即可得()211(1)(1)g x x x =+≠-,再任取一点(,)P x y ,通过证明其关于1x =对称的点也在()g x 的图象上,即可求解.【小问1详解】因为函数()21f x m x =+过点()1,2-,则21m =+,得到1m =,所以()211f x x =+,定义域为{}|0x x ≠.【小问2详解】函数()f x 为偶函数,证明如下,因为()211f x x =+的定义域为{}|0x x ≠,关于原点对称,又()221111()()f x f x x x -=+=+=-,所以()f x 为偶函数.【小问3详解】因为()()2111(1)(1)g x f x x x =-=+≠-,设(,)P x y 是()g x 图象上任意一点,(,)P x y 关于1x =的对称点为(2,)P x y '-,因为()211(1)(1)g x x x =+≠-,所以()2221112111()(21)(1)(1)g x g x x x x -=+=+=+=----,即点(2,)P x y '-也在()g x 图象上,所以()g x 的图像关于1x =对称.20.已知函数()223f x x mx =++.(1)当1m =,[]2,2x ∈-时,求函数()f x 的值域;(2)若函数()f x 在[]22-,上是单调函数,求实数m 的取值范围;(3)当2m =时,比较()0f 与()()226f a a a -+-∈R 的次小.【答案】(1)[2,11](2)(,2][2,)-∞-+∞ (3)()2(0)26f f a a <-+-【解析】【分析】(1)利用二次函数的对称轴可求函数的单调性,求出最大值和最小值即可得到函数的值域.(2)讨论函数的单调性,利用定义域和对称轴的关系可求得参数的取值范围.(3)计算226a a -+-的取值范围,利用二次函数的单调性和对称轴可比较大小.【小问1详解】当1m =时,()223f x x x =++,对称轴为直线1x =-,()f x 在(2,1)--上为减函数,在(1,2)-上为增函数,min max ()(1)1232,()(2)44311f x f f x f =-=-+===++=,故函数()f x 的值域为[2,11].【小问2详解】函数()223f x x mx =++,对称轴为直线x m =-,当函数()f x 在[]22-,上是单调增函数时,2m -≤-,2m ≥,当函数()f x 在[]22-,上是单调减函数时,2m -≥,2m ≤-,综上得,实数m 的取值范围为(,2][2,)-∞-+∞ .【小问3详解】当2m =时,()243f x x x =++,对称轴为直线2x =-,()f x 在(,2)-∞-上为减函数,在(2,)-+∞上为增函数,且()0(4)f f =-,∵2226(1)55a a a -+-=---≤-,∴()226(5)(4)(0)f a a f f f -+-≥->-=,故()2(0)26f f a a <-+-.21.设集合(){}123,,,R,1,2,3k A a a x x x x k ==∈=,对于集合A 中的任意元素()123,,a x x x =和()123,,b y y y =及实数λ,定义:当且仅当()1,2,3i i x y i ==时a b =()112233,,a b x y x y x y +=+++;()123,,a x x x λλλλ=.若A 的子集{}123,,B a a a =满足:当且仅当1230λλλ===时,()1122330,0,0a a a λλλ++=,则称B 为A 的完美子集.(1)集合()()(){}11,0,0,0,2,0,0,0,3B =,()()(){}21,2,3,2,3,4,3,4,5B =,分别判断这两个集合是否为A 的完美子集,并说明理由;(2)集合()()(){}2,,2,,2,2,,2,2B m m m m m m m m m =---,若B 不是A 的完美子集,求m 的值.【答案】(1)1B 是A 的完美子集,2B 不是A 的完美子集,理由见解析;(2)12m =.【解析】【分析】(1)根据完美子集定义去计算验证是否当且仅当1230λλλ===时,()1122330,0,0a a a λλλ++=即可得解;(2)先计算112233a a a λλλ++()()()()1231231232,2,2222m m m m m m m m m λλλλλλλλλ=++++++---,接着由()1122330,0,0a a a λλλ++=得方程()()123042m λλλ+-=+,解该方程得12m =或1230λλλ+=+,再结合元素互异性分类讨论12m =和1230λλλ+=+这两种情况即可得解.【小问1详解】1B 是A 的完美子集,2B 不是A 的完美子集,理由如下:对于()()(){}11,0,0,0,2,0,0,0,3B =,因为()()()1231,0,0,0,2,0,0,0,3a a a ===,所以()()()()112233123123,0,00,2,00,0,3,2,3a a a λλλλλλλλλ++=+=+,所以当且仅当1230λλλ===时,()1122330,0,0a a a λλλ++=,所以1B 是A 的完美子集;对于()()(){}21,2,3,2,3,4,3,4,5B =,因为()()()1231,2,3,2,3,4,3,4,5a a a ===,所以()()()112233*********,2,32,3,43,4,5a a a λλλλλλλλλλλλ=++++()123123123,2323344,5λλλλλλλλλ=++++++,令1231231321232302*********λλλλλλλλλλλλ++=⎧⎪++=⇒==-⎨⎪++=⎩,所以123,,λλλ存在无数组解使得()1122330,0,0a a a λλλ++=,如当132222λλλ==-=-时,()1122330,0,0a a a λλλ++=,所以2B 不是A 的完美子集.【小问2详解】因为()()(){}2,,2,,2,2,,2,2B m m m m m m m m m =---,所以()()()1232,,2,,2,2,,2,2a m m m a m m m a m m m =-=--=,所以112233a a a λλλ++()()()()1231231232,2,2222m m m m m m m m m λλλλλλλλλ=++++++---,因为B 不是A 的完美子集,所以存在()()123,,0,0,0λλλ≠,使得1122330a a a λλλ+=+,即存在()()123,,0,0,0λλλ≠使得()()()123123123202202220m m m m m m m m m λλλλλλλλλ⎧++=⎪++-=⎨⎪-+-+=⎩,解方程组得()()123042m λλλ+-=+,由集合互异性可得2m m ≠且22m m ≠-,故0m ≠且2m ≠-,所以解()()123042m λλλ+-=+得12m =或1230λλλ+=+,且由12320m m m λλλ++=得12320λλλ++=,若12m =,则有123123123110221302233022λλλλλλλλλ⎧++=⎪⎪⎪+-=⇒⎨⎪⎪--+=⎪⎩1235573λλλ=-=-,所以123,,λλλ存在无数组解使得()1122330,0,0a a a λλλ++=,如当12355573λλλ=--==时,()1122330,0,0a a a λλλ++=,所以B 不是A 的完美子集,符合题意;当1230λλλ+=+且12m ≠时,则由12320λλλ++=得1230,λλλ==-,所以由()123022m m m λλλ+-=+得()320m λ--=,又2m ≠-得30λ=,故20λ=,不符合题意;综上m 的值为12.【点睛】方法点睛:解新定义题型的步骤:(1)理解“新定义”,明确“新定义”的条件、原理、方法、步骤和结论;(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”,归纳“举例”提供的解题方法,归纳“举例”提供的分类情况;(3)类比新定义中的概念、原理、方法去解决题中需要解决的问题.。

高一数学下册期中考知识点

高一数学下册期中考知识点

高一数学下册期中考知识点一、函数的基本概念函数是数学中最基本的概念之一,也是高一数学下册期中考试的重点内容之一。

函数可以看作是两个集合之间元素的一种对应关系,其中一个集合称为定义域,另一个集合则称为值域。

函数可以用多种方式表示,如显式表示、隐式表示、参数方程表示等。

在函数的概念中,我们需要掌握一些核心概念,如函数的定义、定义域和值域的概念,以及函数的特性,如奇偶性、单调性、对称性等。

此外,还需要了解常见函数的图像和性质,如线性函数、二次函数、指数函数、对数函数等。

二、数列与数列的通项公式数列是按照一定规律排列的一组数,数列中的每一个数称为数列的项。

数列中的各项之间的关系可以用一个通项公式表示,通项公式可以用于计算数列中任意一项的值。

对于数列,我们需要了解其定义、常用的数列表示方法、数列的递推公式、数列的通项公式等。

同时,还需要熟练掌握一些常见数列的性质和计算方法,如等差数列、等比数列、斐波那契数列等。

这些数列在高一数学下册期中考试中出现的频率较高。

三、三角函数与三角恒等式三角函数是研究角的变化规律的一种函数,包括正弦函数、余弦函数、正切函数等。

三角函数和三角恒等式在高一数学下册期中考试中占有重要的地位。

在三角函数中,我们需要了解三角函数的定义、性质及其在不同象限的值域等。

同时,还需要熟练掌握一些常见的三角函数图像及其变换,如正弦函数、余弦函数的图像与性质,以及正切函数的图像与性质等。

在三角恒等式中,我们需要掌握常见的三角恒等式及其证明方法。

例如,正弦函数与余弦函数的平方和等于1的三角恒等式,以及正弦函数与余弦函数的和差化积公式等。

四、平面向量与向量的运算平面向量是一个具有大小和方向的量,它可以用箭头或小写字母加箭头来表示。

在高一数学下册期中考试中,平面向量及其运算是一个重要的知识点。

在平面向量的学习中,我们需要了解平面向量的定义、向量的模、方向以及向量的相等、平行和夹角等概念。

同时,还需要熟练掌握向量的运算法则,如向量的加法、减法、数乘等运算法则,以及向量的数量积和向量积的计算方法。

高一数学期中考必考知识点

高一数学期中考必考知识点

高一数学期中考必考知识点一、整式与分式整式的概念及基本性质分式的概念及基本性质整式的加减乘除运算法则分式的加减乘除运算法则分数的化简与四则运算分式方程的基本解法二、一元一次方程与一元一次不等式一元一次方程的概念及基本解法一元一次方程的实际应用问题解答一元一次不等式的概念及基本解法一元一次不等式的实际应用问题解答一元一次方程与一元一次不等式的综合应用三、二元一次方程组与二元一次不等式组二元一次方程组的概念及基本解法二元一次方程组的实际应用问题解答二元一次不等式组的概念及基本解法二元一次不等式组的实际应用问题解答二元一次方程组与二元一次不等式组的综合应用四、函数基本概念及性质函数的概念及基本性质函数的表示方法函数的增减性与最值问题函数的奇偶性与对称问题函数与方程、不等式的联系与应用五、数列与数列的通项公式数列的概念及基本性质等差数列与等差数列的通项公式等比数列与等比数列的通项公式递推数列与递推数列的通项公式数列的求和与应用六、平面几何基本概念与性质点、线、面的基本概念角的概念及性质三角形、四边形、多边形的基本性质平面几何的证明方法与技巧七、平面向量向量的概念及基本性质向量的运算法则向量的线性相关与线性无关平面向量的坐标表示平面向量的数量积与应用八、立体几何基本概念与性质立体几何基础知识立体几何的计算问题球体的概念及性质立体几何的应用问题解答九、三角函数的基本概念与性质角度的度量与弧度制三角函数的概念及性质三角函数图像的性质与变换三角函数的基本关系式与恒等变换以上就是高一数学期中考必考的知识点,同学们在备考期中考时,应重点掌握这些内容。

每个知识点都有其独特的特点和应用,因此,在学习和复习时,请注重理解概念、掌握基本性质,并灵活运用于解题过程中。

相信通过认真的学习和实践,你一定能在数学期中考中取得好成绩!。

数学高一期中必考的知识点

数学高一期中必考的知识点

数学高一期中必考的知识点一、代数与函数在高一数学期中考试中,代数与函数是必考的知识点之一。

以下是一些你需要掌握的重要内容。

1.1 多项式运算你需要知道如何进行多项式的加法、减法、乘法和除法运算。

记住要注意合并同类项和使用分配律。

1.2 因式分解因式分解是解决多项式的重要方法之一。

你需要熟悉常见的因式分解公式,如二次三项完全平方公式、差平方公式和和差立方公式等。

1.3 方程与不等式掌握解一元一次方程、一元二次方程和一元一次不等式的方法。

要能灵活运用因式分解、二次根式和配方法等解题技巧。

1.4 函数基础知识了解函数的定义、定义域、值域、图像和性质等基本概念。

熟悉常见函数的图像,如线性函数、二次函数和指数函数等。

二、平面几何与立体几何平面几何与立体几何也是高一数学期中考试的重点内容。

以下是一些需要注意的知识点。

2.1 绝对几何基本公理熟悉平面几何的绝对几何基本公理,如点线公理、两点确定一直线、两点之间只有一条直线等。

要能够运用这些公理解决简单的证明题。

2.2 角与三角形掌握角的概念和性质,如对顶角、相邻角、余角等。

了解三角形的分类及其性质,如等边三角形、等腰三角形和直角三角形等。

2.3 圆的性质了解圆的基本性质,如圆心、半径、弧长和扇形等概念。

要能够计算圆的面积和周长,并解决与圆相关的问题。

2.4 空间几何基本概念熟悉球、柱、锥和棱柱等常见立体图形的概念和性质。

要能够计算它们的体积和表面积,同时能够判断它们之间的位置关系。

三、数列与数学归纳法数列与数学归纳法也是高一数学期中考试的重要考点。

以下是一些你需要掌握的内容。

3.1 等差数列与等比数列了解等差数列和等比数列的定义及其性质。

要能够求出数列的通项公式,并计算指定项的数值。

3.2 递归数列熟悉递归数列的概念和性质。

要能够求出递归数列的通项公式,并计算指定项的数值。

3.3 数学归纳法掌握数学归纳法的基本思想和证明方法。

要能够运用数学归纳法证明给定的命题。

高一上学期期中考重难点归纳总结(解析版)--人教版高中数学精讲精练必修一

高一上学期期中考重难点归纳总结(解析版)--人教版高中数学精讲精练必修一

【答案】B
【解析】由 A 1,3, 5 , B 3, 4, 5 ,得 A B 1,3, 4,5 ,
所以 ðU A B 2, 6 ,
故选:B
2.(2023 秋·江苏盐城·高一校联考期末)设全集U R ,集合 A x x 2 , B x x 2 或 x 6,则
A ðU B ( ) A.x x 2
秋·辽宁抚顺·高一抚顺一中校考阶段练习)已知集合
M
x∣x
m
1 6
,m
Z

N
x∣x
n
1
,
n
Z

P
x∣x
p
1 , p Z ,则 M
,N
, P 的关系为(

23
26
A. M N P
B. M N P
C. M N P
D. N P M
【答案】B
【解析】因为 M
∣ x x
m1,
m
Z
所以实数 a 的取值范围是{a | 0 a 4} .
故选:D
考点五 不等式的性质
【例 5】(2023 秋·上海浦东新 )已知 a b c d ,下列选项中正确的是( )
A. a d b c
B. a c b d
C. ad bc
D. ac bd
【答案】B
【解析】对于选项 A,因为 a 3,b 2,c 1, d 10 ,满足 a b c d ,但不满足 a d b c ,所以选项 A
数是( ) A.0
B.1
C.2
D.4
【答案】C
【解析】因为 A x, y x y 0 , B x, y | x2 2y2 1 ,
所以集合 A 是直线 x y 0 上的点的集合,集合 B 是椭圆 x2 2y2 1 上的点的集合; 因为 M A B ,所以若要求 M 中的元素个数,只需联立方程即可;

数学高一必修一期中知识点

数学高一必修一期中知识点

数学高一必修一期中知识点数学是一门抽象而又实用的学科,对于高中学生来说,学好数学是非常重要的。

高一必修一的数学课程是奠定高中数学基础的重要一年,期中考试是对学生学习成果的检验。

在本文中,我将详细介绍高一必修一期中考试的知识点,帮助同学们复习复习。

1. 平面向量平面向量是高一数学的基础,学好平面向量对于学习高中数学和解题非常重要。

在期中考试中,会出现一些与平面向量相关的题目,例如向量的加减、数量积和向量的夹角等。

同学们需要牢固掌握平面向量的定义、性质和运算法则,并能熟练运用于解题。

2. 函数与方程函数与方程也是高一必修一数学的核心内容。

学生们需要理解函数的概念、性质和图像特征,包括一次函数、二次函数、指数函数和对数函数等。

在期中考试中,可能会有关于函数的定义、性质、图像以及函数间的关系等题目。

此外,方程的概念、解法和应用也是期中考试的考察内容,例如一元一次方程、二次方程和简单的高次方程等。

同学们需要熟练掌握函数与方程相关的知识点,并能够准确地运用于解题。

3. 数列与数列求和数列是高一数学的重要内容之一,也是数学建模和实际问题求解中经常用到的工具。

在期中考试中,可能会有关于数列的定义、性质、递推公式和通项公式等题目。

同时,数列求和也是考试的一部分,需要同学们掌握常见数列(等差数列和等比数列)求和的公式和方法。

4. 相似与全等三角形在几何部分,相似与全等三角形是必修一的重点内容。

学生们需要理解相似与全等三角形的定义、性质以及判定条件。

同学们还需要通过解题来巩固对相似与全等三角形的理解,并能将其应用于实际问题的求解中。

5. 解析几何解析几何是高一必修一的难点内容,也是考试中常见的题型之一。

学生们需要熟悉平面直角坐标系的基本概念和性质,掌握直线、圆和抛物线的表示方程及其性质,并能够灵活运用解析几何知识解决几何问题。

6. 概率与统计概率与统计是必修一的最后一个模块,也是高中数学中新出现的内容。

学生们需要理解概率的概念、性质和计算方法,能够解决简单的概率问题。

高一数学期中常考知识点

高一数学期中常考知识点

高一数学期中常考知识点数学作为一门学科,在高中阶段也是非常重要的一门科目。

而高一数学期中考试是学生们验证自己学习成果的重要时刻。

为了帮助大家更好地备考,以下将对高一数学期中常考的知识点进行详细讲解。

一、函数与方程函数与方程是数学中的重要概念,也是高一数学的基础。

其中,线性函数、二次函数、指数函数、对数函数等是常考的内容。

需要掌握函数的定义、性质以及函数图像的绘制方法。

二、集合与运算在数学中,集合与运算是常见的考点。

学生需要熟练掌握集合的表示方法,如列举法和描述法,并且要能够进行集合的交、并、差与补运算。

三、数列与数列的求和数列是数学中常见的概念,需要学生能够理解数列的定义、性质以及常见数列的求和公式。

此外,还需要掌握等差数列、等比数列和斐波那契数列等特殊数列的相关知识。

四、平面向量与解析几何平面向量与解析几何是高一数学中内容相对较难的部分。

需要学生熟练掌握向量的定义、性质和运算法则,同时还需要了解平面上的点、直线与圆的相关性质,以及直线与平面的位置关系。

五、三角函数与解三角形三角函数是高中数学中的重要内容,需要学生熟练掌握正弦、余弦、正切等基本三角函数的定义和性质,以及它们的图像特征。

此外,还需要学会解三角形的相关题目,如三角形面积、角度计算等。

六、复数与二次方程复数与二次方程是高一数学中的另一个重点内容。

学生需要了解复数的定义、运算法则以及复数在平面上的表示。

此外,对于二次方程,学生需要熟练掌握求根公式、判别式和因式分解等解法方法。

七、导数与微分导数与微分是高一数学中的重要概念,是后续学习微积分的基础。

学生需要了解导数的定义、求导法则和应用,能够对各种基本函数进行求导操作,并能解决与导数相关的题目。

八、概率与统计概率与统计是高中数学中的另一部分,需要学生掌握基本的概率计算原理和统计分析方法,如事件的独立性、条件概率、样本调查和数据处理等内容。

以上所列举的知识点只是高一数学中的一部分,掌握这些知识点对于高一学生来说至关重要。

2023-2024学年北京西城区铁路第二中学高一(上)期中数学试题及答案

2023-2024学年北京西城区铁路第二中学高一(上)期中数学试题及答案

2023北京铁二中高一(上)期中数 学(试卷满分150分 考试时长120分钟)第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,迭出符合题目要求的一项.1. 已知集合{}2,A x x k k ==∈Z ,{}33B x x =−<<,那么A B =( )A. {}1,1−B. {}2,0−C.2,0,2D. {}2,1,0,1−−2. 方程组222x y x y +=⎧⎨+=⎩的解集是( ) A. {(1,﹣1),(﹣1,1)} B. {(1,1),(﹣1,﹣1)} C. {(2,﹣2),(﹣2,2)}D. {(2,2),(﹣2,﹣2)}3. 若0a b >>,0c d <<,则一定有( ). A. ac bd < B. ad bc <C. ac bd >D. ad bc >4. 函数11y x =−的定义域为( ) A. [)0,1 B. 1,C. ()()0,11,+∞D. [)()0,11,⋃+∞5. 下列函数中,既是奇函数又是增函数的是( ) A. 1y x =+B. 3y x =−C. 1y x=D. ||y x x =6. 设()338xf x x =+−,用二分法求方程3380x x +−=在()1,2x ∈内近似解的过程中得()()()10, 1.50, 1.250f f f <><,则下列必有..方程的根的区间为( ) A. ()1.5,2B. ()1,1.25C. ()1.25,1.5D. 不能确定7. 设()f x 是奇函数,且在()0,∞+内是减函数,又()30f −=,则()0x f x ⋅<的解集是( )A. {30xx −<<∣或3}x > B. {3xx <−∣或03}x << C.{30xx −<<∣或03}x << D. {3xx <−∣或3}x > 8. 0a <是函数()221f x ax x =++至少有一个负零点的( ) A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件9. 加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”,在特定条件下,可食用率p 与加工时间t (单位:分钟)满足函数关系p=at 2+bt+c (a ,b ,c 是常数),如图记录了三次实验的数据,根据上述函数模型和实验数据,可以得到最佳加工时间为A. 3.50分钟B. 3.75分钟C. 4.00分钟D. 4.25分钟10. 设()f x 为定义在R 上的函数,函数()1f x +是奇函数.对于下列四个结论:①()10f =;②()()11f x f x −=−+;③函数()f x 的图象关于原点对称; ④函数()f x 的图象关于点()1,0对称; 其中,正确结论的个数为( ) A. 1B. 2C. 3D. 4第二部分(非选择题共110分)二、填空题共6小题,每小题4分,共24分.11. 命题“0x ∀>,20x >”的否定是______.12. 已知方程2410x x −+=的两根为1x 和2x ,则2212x x +=_________ 13. 若函数()()212f x x b x =+−−是偶函数,则f b 与()2f −的大小关系为______.14. 已知函数()223x x x f =−+,当[]0,3x ∈时,()f x 的值域是______;若()f x 的值域是[]2,11,则()f x 的定义域为______.(写出满足条件的一个结论)15. 已知()222f x x ax =−+,当1,2x ⎡⎫∈+∞⎪⎢⎣⎭时,()f x a ≥恒成立,则实数a 的取值范围是______.16. 已知λ∈R ,函数f (x )=24,43,x x x x x λλ−≥⎧⎨−+<⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.三、解答题共6小题,共86分.解答应写出文字说明,演算步骤或证明过程.17. 已知全集U =R ,集合{}30,2352x A xB x x x −⎧⎫=>=+≤⎨⎬+⎩⎭∣∣.(1)求A B ⋂; (2)求()U A B .18. 设函数()4f x x x=+. (1)判断函数()f x 奇偶性并证明;(2)用单调性定义证明:函数()f x 在()2,+∞上单调递增.19. 某工厂新建员工宿舍,若建造宿舍的所有费用P (万元)和宿舍与工厂的距离x km 的关系为()0532kP x x =≤≤+,若距离为1km 时,测算宿舍建造费用为40万元.为了交通方便,工厂和宿舍之间还要修一条道路,已知铺设路面成本为6万元/km ,设y 为建造宿舍与修路费用之和, (1)求k 的值.(2)求y 关于x 的表达式.(3)宿舍应建在离工厂多远处,可使总费用y 最小,并求最小值. 20. 设a ∈R ,解关于x 的不等式()22120ax a x −++>.21. 设()23f x x ax =−+,其中R a ∈.(1)当1a =时,求函数()f x 的图象与直线3y x =交点的坐标; (2)若函数()f x 在(),0∞−上不具有单调性,求a 的取值范围: (3)当[]2,2x ∈−时,求函数()f x 的最小值.22. 设A 是实数集的非空子集,称集合{|,B uv u v A =∈且}u v ≠为集合A 的生成集. (1)当{}2,3,5A =时,写出集合A 的生成集B ;(2)若A 是由5个正实数构成的集合,求其生成集B 中元素个数的最小值; (3)判断是否存在4个正实数构成的集合A ,使其生成集{}2,3,5,6,10,16B =,并说明理由.参考答案第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,迭出符合题目要求的一项.1. 【答案】C 【分析】解不等式()323k k Z −<<∈,求得整数k 的取值,由此可求得A B ⋂. 【详解】解不等式323k −<<,得3322k −<<,k Z ∈,所以,整数k 的可能取值有1−、0、1, 因此,{}2,0,2A B =−.故选:C.【点睛】本题考查交集的计算,考查计算能力,属于基础题. 2. 【答案】A 【分析】求出方程组的解,注意方程组的解是一对有序实数.【详解】方程组2202x y x y +=⎧⎨+=⎩的解为11x y =⎧⎨=−⎩或11x y =−⎧⎨=⎩, 其解集为 {(1,1),(1,1)}−−. 故选:A .【点睛】本题考查集合的表示,二元二次方程组的解是一对有序实数,表示时用小括号括起来,表示有序,即代表元可表示为(,)x y ,一个解可表示为(1,1)−. 3. 【答案】A【分析】根据不等式的性质可判断.【详解】解:根据0c d <<,有0c d −>−>,由于0a b >>,两式相乘有,ac bd ac bd −>−<, 故选:A. 4. 【答案】D 【分析】根据偶次方根被开方数非负、分母不为0,可建立等式关系,进而可求出函数的定义域.【详解】由题意,可得010x x ≥⎧⎨−≠⎩,解得01x ≤<或1x >.所以函数11y x =−的定义域为[)()0,11,⋃+∞. 故选:D.5. 【答案】D【分析】根据函数解析式直接判断函数的奇偶性和单调性可得解. 【详解】函数1y x =+不是奇函数,故A 不正确; 函数3y x =−是奇函数,但不是增函数,故B 不正确; 函数1y x=是奇函数,但不是增函数,故C 不正确; ||y x x =22,0,0x x x x ⎧≥=⎨−<⎩的图象如图:所以函数||y x x =22,0,0x x x x ⎧≥=⎨−<⎩是奇函数且是增函数.故选:D 6. 【答案】C【分析】根据零点存在定理判断.【详解】由题可知函数()f x 为增函数,结合零点存在定理知在区间()1.25,1.5上必有根. 故选:C . 7. 【答案】D【分析】根据题意,得到函数()f x 在(0,)+∞为减函数,且()30f =,结合不等式()0x f x ⋅<,分类讨论,即可求解.【详解】由函数()f x 是奇函数,且在()0,∞+内是减函数,可得函数()f x 在(),0∞−为减函数, 又由()30f −=,可得()()330f f =−−=, 因为不等式()0x f x ⋅<,当0x >时,则()0f x <,解得3x >; 当0x <时,则()0f x >,解得3x <−,所以不等式()0x f x ⋅<的解集为{3xx <−∣或3}x >. 故选:D. 8. 【答案】A【分析】根据充分必要条件的定义判断. 【详解】a<0时,1210x x a=<,12,x x 中一正一负,充分性满足, 但当1a =时,2(1)2f x x x =++的零点是=1x −,因此不必要, 所以应为充分而不必要条件, 故选:A . 9. 【答案】B【详解】由图形可知,三点(3,0.7),(4,0.8),(5,0.5)都在函数2p at bt c =++的图象上,所以930.7{1640.82550.5a b c a b c a b c ++=++=++=,解得0.2, 1.5,2a b c =−==−,所以20.2 1.52p t t =−+−=215130.2()416t −−+,因为0t >,所以当153.754t ==时,p 取最大值, 故此时的t=3.75分钟为最佳加工时间,故选B.考点:本小题以实际应用为背景,主要考查二次函数的解析式的求解、二次函数的最值等基础知识,考查同学们分析问题与解决问题的能力. 10. 【答案】C 【分析】令()()1g x f x =+,①:根据()00g =求解出()1f 的值并判断;②:根据()g x 为奇函数可知()()g x g x −=−,化简此式并进行判断;根据()1y f x =+与()y f x =的图象关系确定出()f x 关于点对称的情况,由此判断出③④是否正确. 【详解】令()()1g x f x =+,①因为()g x 为R 上的奇函数,所以()()0010g f =+=,所以()10f =,故正确; ②因为()g x 为R 上的奇函数,所以()()g x g x −=−,所以()()11f x f x −+=−+,即()()11f x f x −=−+,故正确;因为()1y f x =+的图象由()y f x =的图象向左平移一个单位得到的,又()1y f x =+的图象关于原点对称,所以()y f x =的图象关于点()1,0对称,故③错误④正确, 所以正确的有:①②④, 故选:C.【点睛】结论点睛:通过奇偶性判断函数对称性的常见情况:(1)若()f x a +为偶函数,则函数()y f x =的图象关于直线x a =对称; (2)若()f x a +为奇函数,则函数()y f x =的图象关于点(),0a 成中心对称.第二部分(非选择题共110分)二、填空题共6小题,每小题4分,共24分.11. 【答案】000,20x x ∃>≤【分析】直接根据全称命题的否定为特称命题解答即可;【详解】命题“0x ∀>,20x >”为全称命题,又全称命题的否定为特称命题, 故其否定为“000,20x x ∃>≤”故答案为:000,20x x ∃>≤12. 【答案】14 【分析】由韦达定理可得答案.【详解】方程2410x x −+=的两根为1x 和2x ,则1x +24x =,1x 21x =,则()222121212216214x x x x x x +=+−=−=.故答案为:14.13. 【答案】()()2f b f <−【分析】根据函数奇偶性求出函数()f x ,在计算出()f b 与()2f −的值即可比较二者之间的大小关系. 【详解】因为函数()f x 是偶函数,所以()()f x f x −=,所以()()221212x b x x b x −−−=+−−,得1b =,即()22f x x =−,因为()()11f b f ==−,()22f −=, 所以()()2f b f <−, 故答案为:()()2f b f <−.14. 【答案】 ①. []2,6 ②. []2,4−(答案不唯一)【分析】利用二次函数的单调性与对称性计算即可. 根据题意令()2f x =,()11f x =,求出对应的x 值,结合二次函数的性质即可求解.【详解】由()()222312f x x x x =−+=−+,可知[]0,1x ∈,函数单调递减,当[]1,3x ∈时,函数单调递增,故1x =时,()min 2f x =,3x =时,()max 6f x =,即()[]2,6f x ∈.()f x 的值域是[]2,6. 令()2232x x f x =−+=,解得1x =;令()222311,280x x x x f x −=−−=+=,解得2x =−或4x =;由二次函数的图象与性质可得,若要使函数()223x x x f =−+的值域是[]2,11,则它的定义域是可能是[]1,4,[]2,1−,[]2,4−. 故答案为:[]2,6;[]2,4−(答案不唯一) 15. 【答案】(,1]−∞【分析】求出函数的对称轴,分类讨论区间端点与对称轴的大小,将恒成立问题转化为最值问题解决. 【详解】由()222f x x ax =−+可知,函数对称轴为x a =,当1(,)2a ∈−∞时,()f x 在1[,)2+∞上单调递增,()min 19()24f x f a ==−, 所以要使()f x a ≥恒成立,即()min f x a ≥,即91,42a a a −≥<,解得12a <; 当1[,)2a ∈+∞时,()f x 在[,)a +∞上单调递增,所以()2min ()2f x f a a ==−,则212,2a a a −≥≥,解得112a ≤≤; 综上所述,a 的取值范围是(],1∞−. 故答案为:(],1∞−16. 【答案】 ①. (1,4) ②. (1,3](4,)+∞【详解】分析:根据分段函数,转化为两个不等式组,分别求解,最后求并集.先讨论一次函数零点的取法,再对应确定二次函数零点的取法,即得参数λ的取值范围. 详解:由题意得240x x ≥⎧⎨−<⎩或22430x x x <⎧⎨−+<⎩,所以24x ≤<或12x <<,即14x <<,不等式f (x )<0的解集是(1,4),当4λ>时,()40f x x =−>,此时2()430,1,3f x x x x =−+==,即在(,)λ−∞上有两个零点;当4λ≤时,()40,4f x x x =−==,由2()43f x x x =−+在(,)λ−∞上只能有一个零点得13λ<≤.综上,λ的取值范围为(1,3](4,)+∞.点睛:已知函数有零点求参数取值范围常用的方法和思路:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.三、解答题共6小题,共86分.解答应写出文字说明,演算步骤或证明过程.17. 【答案】(1) {}42A B x x ⋂=−≤<−; (2)(){}43U A B x x ⋃=−≤≤.【分析】通过解分式不等式和绝对值不等式求出集合,A B ,结合集合的运算即可求解.【小问1详解】 根据题意:302x x −>+()()320x x +∴−>, 解得:<2x −或3x >,即{2A x x =<−或}3x >,235,5235x x +≤∴−≤+≤,解得:41x −≤≤,即{}41B x x =−≤≤;{}42A B x x ∴⋂=−≤<−;【小问2详解】{2A x x =<−或}3x >,{}23UA x x ∴=−≤≤,{}41B x x =−≤≤,(){}43UA B x x ∴⋃=−≤≤.18. 【答案】(1)()f x 为奇函数,证明如下. (2)证明如下.【分析】(1)用奇函数的性质证明即可. (2)用定义证明单调性即可. 【小问1详解】()f x 为奇函数;证明:由题意知()f x 的定义域{}|0x x ≠关于原点对称, 且44=fx xxf x xx,故得证;【小问2详解】证明:设任意的122x x <<, 则2112121212121212121212444444x x x x f x f x x x x x x x x x x x x x x x x x 因为12120,4x x x x −<>, 所以()()120f x f x −<, 故函数()f x 在()2,+∞上单调递增 19. 【答案】(1)200 (2)()20060532y x x x =+≤≤+(3)宿舍应建在离工厂83km 处,总费用最小为36万元. 【分析】(1)根据条件代入,即可求得;(2)费用之和包括函数P 、道路费用两部分,加起来即可;(3)用基本不等式求第(2)问函数的最值即可. 【小问1详解】 由题意,得40312k=⨯+,200k =【小问2详解】2006632y P x x x =+=++()05x ≤≤【小问3详解】()20020062324436 3232y x x x x =+=++−≥=++,当且仅当()20023232x x =++,且05x ≤≤,即83x =时取等号所以,宿舍应建在离工厂83km 处,总费用最小为36万元. 20. 【答案】答案不唯一,具体见解析【分析】讨论0a =、0a ≠时,不等式的解集情况,再分102a <<、12a =、12a >、a<0,求出不等式的解集即可.【详解】解:①当0a =时,原不等式为20x −+>,解得2x <; ②当0a ≠时,原不等式为()()120ax x −−>, (i )当102a <<时,12a >,解不等式()()120ax x −−>可得2x <或1x a >;(ii )当12a =时,原不等式即为()21202x −>,解得2x ≠; (iii )当12a >时,102a <<,解不等式()()120ax x −−>可得1x a<或2x >;(iv )当a<0时,102a<<,解不等式()()120ax x −−>可得12x a <<.综上所述,当a<0时,原不等式的解集为12xx a ⎧⎫<<⎨⎬⎩⎭; 当0a =时,原不等式的解集为{}2x x <; 当102a <<时,原不等式的解集为12x x x a ⎧⎫⎨⎬⎩⎭或;当12a =时,原不等式的解集为{}2x x ≠;当12a >时,原不等式的解集为12x x x a ⎧⎫⎨⎬⎩⎭或. 21. 【答案】(1)()1,3,()3,9(2)a<0 (3)答案见解析【分析】(1)联立方程直接计算;(2)根据二次函数单调性可得参数范围;(3)分类讨论结合函数的单调性求解即可.【小问1详解】当1a =时,()23f x x x =−+, 联立方程233y x x y x ⎧=−+⎨=⎩,解得:13x y =⎧⎨=⎩或39x y =⎧⎨=⎩, 即交点坐标为()1,3和()3,9.【小问2详解】函数()23f x x ax =−+在,2a ⎛⎫+∞ ⎪⎝⎭上单调递增,在,2a ⎛⎫−∞ ⎪⎝⎭上单调递减; 又函数()f x 在(),0∞−上不具有单调性, 所以02a <,即a<0. 【小问3详解】 函数()23f x x ax =−+在,2a ⎛⎫+∞ ⎪⎝⎭上单调递增,在,2a ⎛⎫−∞ ⎪⎝⎭上单调递减; 当22a ≤−时,()23f x x ax =−+在[]2,2x ∈−上单调递增,()f x 的最小值()222437f a a =++=+−. 当22a ≥时,()23f x x ax =−+在[]2,2x ∈−上单调递减,()f x 的最小值()423272f a a =−+=−. 当222a −<<时,()23f x x ax =−+在,22a ⎛⎫ ⎪⎝⎭上单调递增,在2,2a ⎛⎫− ⎪⎝⎭上单调递减,()f x 的最小值22334242aa a a f a ⎛⎫=−⨯+=− ⎪⎝⎭. 当4a ≤−,()f x 的最小值()722f a −=+.当4a ≥,()f x 的最小值()272f a =−.当44a −<<,()f x 的最小值2423a f a ⎛⎫=− ⎪⎝⎭. 22. 【答案】(1){}6,10,15B =(2)7 (3)不存在,理由见解析【分析】(1)利用集合的生成集定义直接求解.(2)设{}12345,,,,A a a a a a =,且123450a a a a a <<<<<,利用生成集的定义即可求解; (3)不存在,理由反证法说明.【小问1详解】 {}2,3,5A =,{}6,10,15B ∴=【小问2详解】设{}12345,,,,A a a a a a =,不妨设123450a a a a a <<<<<,因为41213141525355a a a a a a a a a a a a a a <<<<<<,所以B 中元素个数大于等于7个,又{}254132,2,2,2,2A =,{}34689572,2,2,2,2,2,2B =,此时B 中元素个数等于7个, 所以生成集B 中元素个数的最小值为7.【小问3详解】不存在,理由如下:假设存在4个正实数构成的集合{},,,A a b c d =,使其生成集{}2,3,5,6,10,16B =,不妨设0a b c d <<<<,则集合A 的生成集{},,,,,B ab ac ad bc bd cd =则必有2,16ab cd ==,其4个正实数的乘积32abcd =;也有3,10ac bd ==,其4个正实数的乘积30abcd =,矛盾;所以假设不成立,故不存在4个正实数构成的集合A ,使其生成集{}2,3,5,6,10,16B =【点睛】关键点点睛:本题考查集合的新定义,解题的关键是理解集合A 的生成集的定义,考查学生的分析解题能力,属于较难题.。

2024-2025学年华东师大二附中高一数学上学期期中考试卷及答案解析

2024-2025学年华东师大二附中高一数学上学期期中考试卷及答案解析

上海市华东师范大学第二附属中学2024-2025学年高一上学期期中考试数学试卷1. 用Î或Ï填空:0______f .【答案】Ï【解析】【分析】空集中没有任何元素.【详解】由于空集不含任何元素,∴0ÏÆ.故答案为Ï.【点睛】本题考查元素与集合的关系,关键是掌握空集的概念.2. 实数a ,b 满足31a -££,13b -££,则3a b -的取值范围是________.【答案】[]12,4-【解析】【分析】根据题意利用不等式的性质运算求解.【详解】因为31a -££,13b -££,则933a -££,31b -£-£,可得1234a b -£-£,所以3a b -的取值范围是[]12,4-.故答案为:[]12,4-.3. 若全集{}2,3,5U =,{}2,5A a =-,{}5A =,则a 的值是______.【答案】2或8【解析】【分析】由53a -=即可求解.【详解】因为{}2,3,5U =,{}2,5A a =-,且{}5A =,所以53a -=,解得2a =或8a =.故答案为:2或8.4. 命题“1x >”是命题“11x<”的______条件.【答案】充分不必要【解析】【分析】解出不等式11x<,根据真子集关系即可【详解】11x <,即10x x -<,即()10x x -<,即()10x x -<,解得1x >或0x <,则“1x >”能推出“1x >或0x <”,而“1x >或0x <”不能推出 “1x >”,故命题“1x >”是命题“11x<”的充分不必要条件.故答案为:充分不必要.5. 已知0x >,则812x x --的最大值为_____________.【答案】7-【解析】【分析】利用基本不等式求解即可.【详解】因为0x >,所以828x x +³=,当82x x=,即2x =时等号成立,所以881212187x x x x æö--=-+£-=-ç÷èø,即812x x--的最大值为7-,故答案为:7-.6. 已知(21)y f x =+定义域为(1,3],则(1)y f x =+的定义域为__________.【答案】(2,6]【解析】【分析】根据3217x <+£可得317x <+£,即可求解.【详解】由于(21)y f x =+定义域为(1,3],故3217x <+£,因此(1)y f x =+的定义域需满足317x <+£,解得26x <£,故(1)y f x =+的定义域为(2,6],故答案为:(2,6]7. 已知关于x 的不等式210ax bx ++<的解集为11,43æöç÷èø,则a b +=______.【答案】5【解析】【分析】由题意得11,43是方程210ax bx ++=的两个根,由根与系数的关系求出,a b 即可.【详解】由题意可知,11,43是方程210ax bx ++=的两个根,且0a >,由根与系数的关系得1134b a +=-且11134a´=,解得12,7a b ==-,则5a b +=.故答案为:58. 设1x 、2x 是关于x 的方程22242320x mx m m -++-=的两个实数根,则2212x x +的最小值为______.【答案】89【解析】【分析】根据1x 、2x 是关于x 的方程22242320x mx m m -++-=的两个实数根,由Δ≥0,解得 23m £,然后由()2212121222x x x x x x ++×=- ,将韦达定理代入,利用二次函数的性质就.【详解】因为1x 、2x 是关于x 的方程22242320x mx m m -++-=的两个实数根,所以()()22482320m m m D =-+-³,解得 23m £,所以112222322,2x x x x m m m +=×-=+,则 ()2212121222x x x x x x ++×=- ,()22232222m m m +-=-´, 2232m m =-+, 237248m æö=-+ç÷èø,所以2212x x +的最小值为2237823489æö-+=ç÷èø,故答案为:899. 若函数()f x 满足R x "Î,()()11f x f x +=-,且1x ",[)21,x Î+¥,()()()1212120f x f x x x x x ->¹-,若()()1f m f >-,则m 的取值范围是______.【答案】()(),13,-¥-È+¥【解析】【分析】由题意,()f x 在[)1,+¥上单调递增,函数图像关于1x =对称,利用单调性和对称性解不等式.【详解】因为1x ",[)21,x Î+¥,()()()1212120f x f x x x x x ->¹-,所以()f x 在[)1,+¥上单调递增,R x "Î,()()11f x f x +=-,则函数图像关于1x =对称,若()()1f m f >-,则111m ->--,解得3m >或1m <-.所以m 的取值范围是()(),13,-¥-È+¥.故答案为:()(),13,-¥-È+¥.10. 已知{}{}22230,210,0A x x x B x x ax a =+->=--£>,若A B Ç中恰含有一个整数,则实数a 的取值范围是______.【答案】【解析】【详解】试题分析:由题意,得{}{}223013A x x x x x x =+-=<-或,{}{2210,0=|B x x ax a x a x a =--£££+;因为,所以若A B Ç中恰含有一个整数,则{}2A B Ç=,则,即,两边平方,得,解得,即实数的取值范围为;故填.考点:1.集合的运算;2.一元二次不等式的解法.11. 已知函数()3(1)1f x x =-+,且()()22(1,0)f a f b a b +=>->,则121a b ++的最小值是________.【答案】2【解析】【分析】利用()3(1)1f x x =-+,单调性与对称性,可知,若有()()2f m f n +=,则必有2m n +=成立.再利用基本不等式求121a b ++的最小值即可.【详解】∵3y x =在R 为单调递增奇函数,∴3y x =有且仅有一个对称中心()0,0,∴()3(1)1f x x =-+单调递增,有且仅有一个对称中心()1,1,又∵()()22(1,0)f a f b a b +=>->,∴22a b +=,则()214a b ++=,∴()1211221141a b a b a b æö+=+++éùç÷ëû++èø()411441a b a b +éù=++êú+ë1424é³+=êêë,当且仅当()411a b a b+=+即0,2a b ==时,等号成立,∴121a b++的最小值是2.故答案为:2.12. 如图,线段,AD BC 相交于O ,且,,,AB AD BC CD 长度构成集合{}1,5,9,x,90ABO DCO Ð=Ð=°,则x 的取值个数为________.【答案】6【解析】【分析】画出等效图形,分9AD =和x 两种情况由勾股定理求出对应x 值即可;的【详解】如图,因为90ABO DCO Ð=Ð=°,且,,,AB AD BC CD 长度构成集合{}1,5,9,x ,因为直角三角形ADE 中,斜边AD 一定大于直角边AE 和DE ,所以9AD =或x ,当9AD =时,可分为AE x =,此时由勾股定理可得()222159x ++=,解得x =CE x =,此时由勾股定理可得()222159x ++=,解得5x =;CD x =,此时由勾股定理可得()222519x ++=,解得1x =;当AD x =,可分为()222915x ++=,解得x =()222195x ++=,解得x =;()222519x ++=,解得x =所以x 的取值个数为6,故答案为:6.【点睛】关键点点睛:本题的关键是能够画出等效图形再结合勾股定理解答.13. 下列各组函数中,表示同一个函数的是( )A. 2(),()x f x x g x x== B. ()(),()()f x x x R g x x x Z =Î=ÎC. ,0(),(),0x x f x x g x x x ³ì==í-<î D. 2(),()f x x g x ==【答案】C【解析】【分析】分别求得函数的定义域和对应法则,结合同一函数的判定方法,逐项判定,即可求解.【详解】对于A 中,函数()f x x =的定义域为R ,函数2()x g x x=的定义域为(,0)(0,)-¥+¥U ,两函数的定义域不同,不是同一函数;对于B 中,函数()()f x x x R =Î和()()g x x x Z =Î的定义域不同,不是同一函数;对于C 中,函数,0(),0x x f x x x x ³ì==í-<î与,0(),0x x g x x x ³ì=í-<î定义域相同,对应法则也相同,所以是同一函数;对于D 中,函数()f x x =定义域为R,2()g x =的定义域为[0,)+¥,两函数的定义域不同,不是同一函数.故选:C.【点睛】本题主要考查了同一函数的判定,其中解答中熟记两函数是同一函数的判定方法是解答的关键,着重考查推理与运算能力,属于基础题.14. 设集合A ={x |x =12m ,m ∈N *},若x 1∈A ,x 2∈A ,则( )A. (x 1+x 2)∈AB. (x 1﹣x 2)∈AC. (x 1x 2)∈AD. 12x x ∈A 【答案】C【解析】【分析】利用元素与集合的关系的进行判定.【详解】设112p x =,212q x =, 则12111222p q p qx x +=×=,因为p 、*N q Î,所以*N p q +Î,则x 1x 2∈A ,故选:C .15. 如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚在这个过程中,小球的运动速度v (m /s )与运动时间t (s )的函数图象如图②,则该小球的运动路程y (m )与运动时间t (s )之间的函数图象大致是( )的的A. B.C. D.【答案】C【解析】【分析】根据题意结合图象分析即可.【详解】由题意,小球是匀变速运动,所以图象是先缓后陡,在右侧上升时,先陡后缓.故选:C.16. 设集合A 是集合*N 的子集,对于*i ÎN ,定义1,()0,i i A A i A j Îì=íÏî,给出下列三个结论:①存在*N 的两个不同子集,A B ,使得任意*i ÎN 都满足()0i A B j =I 且()1i A B j =U ;②任取*N 的两个不同子集,A B ,对任意*i ÎN 都有()i A B j =I ()i A j g ()i B j ;③任取*N 的两个不同子集,A B ,对任意*i ÎN 都有()i A B j =U ()+i A j ()i B j ;其中,所有正确结论的序号是( )A. ①②B. ②③C. ①③D. ①②③【答案】A【解析】【分析】根据题目中给的新定义,对于*,0i i N A j Î=()或1,可逐一对命题进行判断,举实例例证明存在性命题是真命题,举反例可证明全称命题是假命题.【详解】∵对于*i ÎN ,定义1,()0,i i A A i A j Îì=íÏî,∴对于①,例如集合A 是正奇数集合,B 是正偶数集合,,*A B A B N \=Æ=I U ,()()01i i A B A B j j \==I U ;,故①正确;对于②,若()0i A B j =I ,则()i A B ÏI ,则i A Î且i B Ï,或i B Î且i A Ï,或i A Ï且i B Ï;()()0i i A B j j \×=;若()1i A B j =I ,则()i A B ÎI ,则i A Î且i B Î; ()()1i i A B j j \×=;∴任取*N 的两个不同子集,A B ,对任意*i ÎN 都有()i i A B A i B j j j =×I ()();正确,故②正确;对于③,例如:{}{}{}1232341234A B A B ===U ,,,,,,,,,,当2i =时,1i A B j =U ();()()1,1i i A B j j ==;()()()i i i A B A B j j j \¹+U ; 故③错误;∴所有正确结论的序号是:①②; 故选:A .【点睛】本题考查了简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.17. 已知关于x 的不等式122x a -£的解集为集合A ,40x B x x ìü-=£íýîþ.(1)若x A Î是x B Î的必要不充分条件,求a 的取值范围.(2)若A B =ÆI ,求a 的取值范围.【答案】(1)[]0,2(2)(](),24,-¥-+¥U 【解析】分析】(1)首先解不等式求出集合A 、B ,依题意B 真包含于A ,即可得到不等式组,解得即可;(2)首先判断A ¹Æ,即可得到240a +£或244a ->,解得即可.【小问1详解】由122x a -£,即1222x a -£-£,解得2424a x a -££+,所以{}2424|A x x a a -=££+,由40x x -£,等价于()400x x x ì-£í¹î,解得04x <£,所以{}40|04x B x x x x ìü-=£=<£íýîþ,【因为x A Î是x B Î的必要不充分条件,所以B 真包含于A ,所以244240a a +³ìí-£î,解得02a ££,即a 的取值范围为[]0,2;【小问2详解】因为A B =ÆI ,显然A ¹Æ,所以240a +£或244a ->,解得2a £-或4a >,即a 的取值范围为(](),24,-¥-+¥U .18. 已知函数()211y m x mx =+-+.(1)当5m =时,求不等式0y >的解集;(2)若不等式0y >的解集为R ,求实数m 的取值范围.【答案】(1){13x x <或x >(2)(22-+【解析】【分析】(1)根据题意易得26510x x -+>,因式分解后利用口诀“大于取两边,小于取中间”即可得解;(2)由题意易得()2110m x mx +-+>的解集为R ,分类讨论1m =-与1m ¹-两种情况,结合二次函数的图像性质即可得解.【小问1详解】根据题意,得2651y x x =-+,由0y >得26510x x -+>,即()()31210x x -->,解得:13x <或12x >,故不等式0y >的解集为{13x x <或x >【小问2详解】由题意得,()2110m x mx +-+>的解集为R ,当1m =-时,不等式可化为10x +>,解得1x >-,即()2110m x mx +-+>的解集为()1,-+¥,不符合题意,舍去;当1m ¹-时,在()211y m x mx =+-+开口向上,且与x 轴没有交点时,()2110m x mx +-+>的解集为R ,所以()210Δ410m m m +>ìí=-+<î,解得22m m >ìïí-<<+ïî22m -<<+,综上:22m -<<+,故实数m的取值范围为(22-+.19. 某化工企业生产过程中不慎污水泄漏,污染了附近水源,政府责成环保部门迅速开展治污行动,根据有关部门试验分析,建议向水源投放治污试剂,已知每投放a 个单位(04a <£且R a Î)的治污试剂,它在水中释放的浓度y (克/升)随着时间x (天)变化的函数关系式近似为()y af x =,其中()[](]1,0,5711,5,112xx xf x x x +ìÎïï-=í-ïÎïî,若多次投放,则某一时刻水中的治污试剂浓度为每次投放的治污试剂在相应时刻所释放的浓度之和,根据试验,当水中治污试剂的浓度不低于4(克/升)时,它才能治污有效.(1)若只投放一次4个单位的治污试剂,则有效时间最多可能持续几天?(2)若先投放2个单位的治污试剂,6天后再投放m 个单位的治污试剂,要使接下来的5天中,治污试剂能够持续有效,试求m 的最小值.【答案】(1)7天; (2)min 2m =.【解析】【分析】(1)根据给定的函数模型求投放一次4个单位的治污试剂的有效时间即可;(2)由题设()5=11413x g x x m x --+׳-,将问题化为()()1375x x m x --³-在[6,11]x Î上恒成立,利用基本不等式求右侧最大值,即可得求参数最小值.【小问1详解】因为一次投放4个单位的治污试剂,所以水中释放的治污试剂浓度为()44,0547222,511xx y f x x x x +죣ï==-íï-<£î,当05x ££时,()4147x x+³-,解得35x ££;当511x ££时,2224x -³,解得59x ££;综上,39x ££,故一次投放4个单位的治污试剂,则有效时间可持续7天.【小问2详解】设从第一次投放起,经过()611x x ££天后浓度为()()()16511[]117613x x g x x m x m x x+--=-+=-+×---.因为611x ££,则130x ->,50x ->,所以511413x x m x --+׳-,即()()1375x x m x --³-,令5x t -=,[]1,6t Î,所以()()281610t t m t tt --æö³-=-+ç÷èø,因为168t t+³=,所以2m ≥,当且仅当16t t =,4t =即9x =时等号成立,故为使接下来的5天中能够持续有效m 的最小值为2.20. 对于函数()f x ,若存在0R x Î,使()00f x x =成立,则称0x 为()f x 的不动点.(1)求函数23y x x =--不动点;(2)若函数()221y x a x =-++有两个不相等的不动点1x 、2x ,求1221x x x x +的取值范围;(3)若函数()()211g x mx m x m =-+++在区间(0,2)上有唯一的不动点,求实数m 的取值范围.【答案】(1)1-和3. (2)()2,+¥(3)(]1,1-U .【解析】【分析】(1)解方程23x x x --=,即可求出不动点;(2)由题意,方程()2310x a x -++=有两个不相等的实数根1x 、2x ,由0D >即可求出a 的范围,结合韦达定理和二次函数图象性质即可求出1221x x x x +的范围;的(3)由题意,()2210mx m x m -+++=在(0,2)上有且只有一个解,令()()221h x mx m x m =-+++,分()()020h h ×<,()00h =,()20h =和0D =四种情况进行讨论即可.【小问1详解】由题意知23x x x --=,即2230x x --=,则()()310x x -+=,解得11x =-,23x =,所以不动点为1-和3.【小问2详解】依题意,()221x a x x -++=有两个不相等的实1x 数根1x 、2x ,即方程()2310x a x -++=有两个不相等的实数根1x 、2x ,所以()22Δ34650a a a =+-=++>,解得5a <-,或1>-a ,且123x x a +=+,121x x =,所以()()2222121212122112232x x x x x x x x a x x x x ++==+-=+-,因为函数()232y x =+-对称轴为3x =-当3x <-时,y 随x 的增大而减小,若5x <-,则2y >;当3x >-时,y 随x 的增大而增大,若1x >-,则2y >;故()()2322,a ¥+-Î+,所以1221x x x x +的取值范围为()2,¥+.【小问3详解】由()()211g x mx m x m x =-+++=,得()2210mx m x m -+++=,由于函数()g x 在(0,2)上有且只有一个不动点,即()2210mx m x m -+++=在(0,2)上有且只有一个解,令()()221h x mx m x m =-+++,①()()020h h ×<,则()()110m m +-<,解得11m -<<;②()00h =,即1m =-时,方程可化为20x x --=,另一个根为1-,不符合题意,舍去;③()20h =,即1m =时,方程可化为2320x x -+=,另一个根为1,满足;④0D =,即()()22410m m m +-+=,解得m =(ⅰ)当m =时,方程的根为()2222m m x m m -++=-==(ⅱ)当m =()2222m m x m m -++=-==,不符合题意,舍去;综上,m 的取值范围是(]1,1-È.21. 对任意正整数n ,记集合(){1212,,,,,,n nnA a a a a a a=××××××均为非负整数,且}12n a a a n ++×××+=,集合(){1212,,,,,,n nnB b b b b b b =××××××均为非负整数,且}122n b b b n ++×××+=.设()12,,,n n a a a A a =×××Î,()12,,,n n b b b B b =×××Î,若对任意{}1,2,,i n Î×××都有i i a b £,则记a b p .(1)写出集合2A 和2B ;(2)证明:对任意n A a Î,存在n B b Î,使得a b p ;(3)设集合(){},,,n nnS A B a b a b a b =ÎÎp 求证:nS中的元素个数是完全平方数.【答案】(1)()()(){}20,2,1,1,2,0A =,()()()()(){}20,4,1,3,2,2,3,1,4,0B =(2)证明见解析 (3)证明见解析【解析】【分析】(1)根据集合n A 与n B 的公式,写出集合和即可;(2)任取()12,,,n n a a a A a =×××Î,设()11,2,3,,i i b a i n =+=×××,令()12,,,n b b b b =×××,只需证明n B b Î,即可证明结论成立;(3)任取()12,,,n n a a a A a =×××Î,()12,,,n n a a a A a =×עע΢¢,可证明n B a a +¢Î,且a a a +¢p ,a a a ¢+¢p ,再设集合n A 中的元素个数为t ,设{}12,,,n t A a a a =×××,设集合(){},1,2,,,1,2,,n i i j T i t j t a a a =+=×××=×××,通过证明n n T S Í,n n S T Í,推出n n S T =,即可完成证明.【小问1详解】()()(){}20,2,1,1,2,0A =,()()()()(){}20,4,1,3,2,2,3,1,4,0B =.【小问2详解】对任意()12,,,n n a a a A a =×××Î,设()11,2,3,,i i b a i n =+=×××,则12,,,n b b b ×××均为非负整数,且()1,2,3,,i i a b i n £=×××.令()12,,,n b b b b =×××,则12n b b b ++×××+()()()12111n a a a =++++×××++()12n a a a n=++×××++2n =,所以n B b Î,且a b p .【小问3详解】对任意()12,,,n n a a a A a =×××Î,()12,,,n n a a a A a =×עע΢¢,记()1122,,,n n a a a a a a a a +=++×××¢+¢¢¢,则11a a ¢+,22a a ¢+,…,n n a a ¢+均为非负整数,且()()()1122n n a a a a a a ++++×××++¢¢¢()()1212n n a a a a a a ¢=++×××++++××+¢×¢n n =+2n =,所以n B a a +¢Î,且a a a +¢p ,a a a ¢+¢p .设集合n A 中的元素个数为t ,设{}12,,,n t A a a a =×××.设集合(){},1,2,,,1,2,,n iijT i t j t a a a =+=×××=×××.对任意i n A a Î(1,2,,)i t =×××,都有1i a a +,2i a a +,…,i t n B a a +Î,且i i j a a a +p ,1,2,,j t =×××.所以n n T S Í.若(),n S a b Î,其中()12,,,n n a a a A a =×××Î,()12,,,n n b b b B b =×××Î,设i i i c b a =-()1,2,,i n =×××,因为i i a b £,所以0i i i c b a =-³,记()12,,,n c c c a =×××¢,则12n c c c +++L ()()()1122n n b a b a b a =-+-+-L ()()1212n n b b b a a a =++×××+-++×××+2n n n =-=,所以n A a ¢Î,并且有b a a =+¢,所以(),n T a b Î,所以n n S T Í.所以n n S T =.因为集合n T 中的元素个数为2t ,所以n S 中的元素个数为2t ,是完全平方数.【点睛】关键点点睛:集合元素的个数转换为证明两个集合相等.。

四川省内江市第六中学2023-2024学年高一下学期期中考试数学试卷 Word版含解析

四川省内江市第六中学2023-2024学年高一下学期期中考试数学试卷 Word版含解析

内江六中2023--2024学年(下)高2026届半期考试数学试题考试时间:120分钟 满分:150分第Ⅰ卷 选择题(满分60分)一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 设平面向量,则A. B. C. D. 【答案】A 【解析】【详解】∵ ∴故选A ;【考点】:此题重点考察向量加减、数乘的坐标运算;【突破】:准确应用向量的坐标运算公式是解题的关键;2. 已知复数,则的虚部为( )A 2B. C. D. 【答案】C 【解析】【分析】根据复数的概念判断即可.【详解】复数的虚部为.故选:C3. 在所在平面内,是延长线上一点且,是的中点,设,,则( )A. B. C. D. 【答案】C.()()3,5,2,1a b ==- 2a b -=()7,3()7,7()1,7()1,3()()3,5,2,1a b ==- ()()()()23,522,1345273a b -=--=+-=,,12z i =-z 2i 2-2i-12z i =-2-ABC D BC 4BD CD =E AB AB a =AC b= ED =1455a b + 3144a b +5463a b-+ 5564a b-+【解析】【分析】根据给定条件,借助向量的线性运算用 、表示即可判断作答.【详解】在所在平面内,在延长线上,且,则,又是的中点,所以.故选:C4. 若,,则( )A.B. C.D.【答案】D 【解析】【分析】由两角和与差的正切公式即可求解.【详解】.故选:D .5. 已知,则向量的夹角为( )A. B. C.D. 【答案】C 【解析】【分析】利用向量模的计算公式,化简求得,结合向量的夹角公式,即可求解.【详解】由题意,向量,可得,解得,又由,可得.故选:C.6. 在中,,是直线上的一点,若则实数的值为( )AB AC EDABC D BC 4BD CD =43BD BC =EAB 2)14141454()2332363(ED EB BD AB BC AB AC AB a b a a b =+=+=+-=+-=-+ tan 2α=tan 8(2)αβ+=tan()αβ+=101735-25617tan(2)tan 826tan()tan(2)1tan(2)tan 18217αβααβαβααβα+--+=+-===+++⨯3,1,2a b a b ==-= ,a b30 6012015032a b ⋅=- 3,1,2a b a b ==-=222224434419a b a a b b a b -=-⋅+=-⋅+= 32a b ⋅=- 1cos ,2a b a b a b⋅==-⋅,120a b = ABC 32AD DC = P BD 25AP t AB AC =+tA. B.C. D.【答案】B 【解析】【分析】依题意可得,根据平面向量共线定理的推论及平面向量基本定理计算可得.【详解】因,所以,又是直线上的一点,所以,又,所以,所以.故选:B7. 在△ABC 中,若,则△ABC 是( )A. 等腰三角形 B. 等边三角形C. 直角三角形 D. 等腰直角三角形【答案】A 【解析】【分析】根据已知,诱导公式与和、差角的余弦公式化简得到,从而得到,进而即可得出结论.【详解】在△ABC 中,由,得 ,则为13-1323-2353AC AD =32AD DC = 53AC AD =P BD ()1AP xAB x AD =+-2532AP t AB AC t AB AD =+=+ 213x tx =⎧⎪⎨-=⎪⎩13x t ==2sin sin cos 2CA B =()cos 1A B -=A B =πA B C ++=()πC A B =-+,所以,即,则,又,,则,所以,即,所以△ABC 为等腰三角形,但无法判断C 是不是直角.故选:A .8. 已知函数在区间上单调递增,则下列选项中错误的是( )A. 函数两个零点的最小距离为,则B. 若,则C. 若,则D. 若,且函数在区间有唯一零点,则【答案】C 【解析】【分析】根据题意,利用正弦型函数的周期性,单调性等有关的性质逐一进行分析,判断各项是否正确.【详解】对于A 中,函数在区间上单调递增,所以该函数的最小正周期满足,所以,当时,成立,所以的最大值为2,所以A 正确;对于B 中,因为在区间上单调递增,()()21cos 1111111cos cos πcos cos cos sin sin 222222222C C A B A B A B A B +⎡⎤==+-+=-+=-+⎣⎦111sin sin cos cos sin sin 222A B A B A B =-+cos cos sin sin 1A B A B +=()cos 1A B -=0πA <<0πB <<ππA B -<-<0A B -=A B =()()0()sin f x x ωϕω=+>π2π,63⎛⎫⎪⎝⎭()12y f x =-π32ω=π3ϕ=-504ω<≤5π012f ⎛⎫>⎪⎝⎭π2π063f f ⎛⎫⎛⎫+< ⎪ ⎪⎝⎭⎝⎭π6ϕ=()f x [0,π]1,16ω⎡∈⎤⎢⎥⎣⎦()()()sin 0f x x ωϕω=+>π2π,63⎛⎫⎪⎝⎭T π2πππ2362T ω=≥-=2ω≤5π6ϕ=-2ω=ω()()()sin 0f x x ωϕω=+>π2π,63⎛⎫⎪⎝⎭故有,当时,,所以,所以,所以,又因为,故,可得,所以B 正确;对于C 中,由于,故当时,,故C 错误;对于D 中,当,,所以,又因为函数在区间有唯一零点,所以,解得,所以D正确.故选:C二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.)9.)A.B.C.D. 【答案】ACπ2πππ22362T ωω=≥-=⇒≤π3ϕ=-π2π,63x ⎛⎫∈ ⎪⎝⎭ππ2ππ6333x ωωωϕ-<+<-πππ2π632,Z 2πππ2π332k k k ωω⎧-≥-⎪⎪∈⎨⎪-≤+⎪⎩121534k k ωω≥-⎧⎪⎨≤+⎪⎩2ω≤0k =504ω<≤π2π5ππ2π63,21263+⎛⎫=∈ ⎪⎝⎭5π012f ⎛⎫> ⎪⎝⎭π2π063f f ⎛⎫⎛⎫+> ⎪ ⎪⎝⎭⎝⎭π6ϕ=[]0,πx ∈ππππ666x ωω≤+≤+()f x []0,ππππ6ππ2π6ωω⎧+≥⎪⎪⎨⎪+<⎪⎩1,16ω⎡⎤∈⎢⎥⎣⎦+︒︒tan 21tan 24tan 21tan 24︒+︒+︒︒1tan151tan15+︒-︒2cos 15sin15cos 75︒︒-︒【解析】【分析】由两角和与差的正弦,正切公式,二倍角的余弦公式对选项一一判断即可得出答案.【详解】对于AA 正确;对于B ,因为,可得,所以,故B 错误;对于C ,C 正确;对于D ,D 错误.故选:AC .10. 已知向量,则( )A. 若,则B. 若,则C. 若,则向量与向量D. 若,则向量在向量上的投影向量为【答案】AC 【解析】【分析】利用向量共线的充要条件的坐标表示判断A ;利用向量垂直的充要条件的坐标表示判断B ;利用向量夹角的坐标表示判断C; 利用向量投影的坐标表示判断D【详解】若,则,解得,故A 正确.2⎫︒+︒=︒+︒⎪⎪⎭()()2cos 45sin15sin 45cos152sin 15452=︒︒+︒︒=︒+︒==()tan 21tan 24tan 45tan 21241tan 21tan 24︒+︒︒=︒+︒=-︒︒()tan 21tan 24tan 451tan 21tan 24︒+︒=︒-︒︒tan 21tan 24tan 21tan 24︒+︒+︒︒()tan 451tan 21tan 24tan 21tan 241=︒-︒︒+︒︒=()1tan15tan 45tan15tan 45151tan151tan 45tan15+︒︒+︒==︒+︒=-︒-︒⋅︒222cos 15sin15cos 75cos 15sin 15cos30︒-︒︒=︒-︒=︒=()(),1,4,2a x b ==a b ∥2x =a b ⊥12x =3x =ab=1x -b aa b∥240x -=2x =若,则,解得,故B 错误.若,则,又,所以向量与向量的夹角的余弦值为,故C 正确.若,则,又,所以向量在向量上投影向量为,故D 错误.故选:AC .11. 函数的部分图象如图所示,则下列说法中正确的是( )A. 的表达式可以写成B.的图象向右平移个单位长度后得到的新函数是奇函数C. 的对称中心,D. 若方程在上有且只有6个根,则【答案】ABC 【解析】【分析】利用特殊点求得函数的解析式即可判断A ,根据相位变换求得新函数解析式即可判断奇偶性,即可判断B ,先求出的解析式,然后代入正弦函数对称中心结论求的a b ⊥ 420x +=12x =-3x =()3,1a =()4,2b = a b a b a b⋅== =1x -()1,1a =-()4,2b = b a ()1,1a b a a a ⋅⋅==-()ππ)02,22f x x ωϕωϕ⎛⎫=+<≤-<< ⎪⎝⎭()f x ()24f x x π⎛⎫=- ⎪⎝⎭()f x 3π8()π14g x f x ⎛⎫=++ ⎪⎝⎭ππ,182k ⎛⎫-+ ⎪⎝⎭Z k ∈()1f x =()0,m 5π13π,24m ⎛⎫∈ ⎪⎝⎭()f x ()g x解判断C ,把问题转化为根的问题,找到第7个根,即可求解范围判断D.【详解】对A ,由,即又,所以,又的图象过点,则,即,所以,即得,,又,所以,所以,故A 正确;对B ,向右平移个单位后得,为奇函数,故B正确;对于C ,,令得,所以对称中心,,故C 正确;对于D ,由, 得,因为,所以,令,解得.又在上有6个根,则根从小到大为,再令,解得,则第7个根为,,故D 错误.πsin 24x ⎛⎫-= ⎪⎝⎭()01f =-1ϕ=-sin ϕ=ππ22ϕ-<<π4ϕ=-()f x π,08⎛⎫ ⎪⎝⎭π08f ⎛⎫= ⎪⎝⎭ππsin 084ω⎛⎫-= ⎪⎝⎭πππ84k ω-=82k ω=+Z k ∈02ω<≤2ω=π()24f x x ⎛⎫=- ⎪⎝⎭()f x 3π83π3ππ2π)884y f x x x x ⎡⎤⎛⎫⎛⎫=-=--=-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦πππ()2121444g x x x ⎡⎤⎛⎫⎛⎫=+-+=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()π2π4x k k +=∈Z ()ππ82k x k =-+∈Z ππ,182k ⎛⎫-+ ⎪⎝⎭Z k ∈()1f x =πsin 24x ⎛⎫-= ⎪⎝⎭(0,)x m ∈πππ2,2444x m ⎛⎫-∈-- ⎪⎝⎭4444444ππ3π9π11π17π19π2,,,,,m -=ππ5π3π9π5π,,,,,424242m =()0,m ππ5π3π9π5π,,,,,424242π25π244m -=13π4m =13π45π13π,24m ⎛⎤∈ ⎥⎝⎦故选:ABC .12. 在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且,则下列说法正确的是( )A. 若,则B. 若,且只有一解,则b 的取值范围为C. 若,且为锐角三角形,则周长的取值范围为D. 若为锐角三角形,,则AC 边上的高的取值范围为【答案】AC 【解析】【分析】根据正弦定理边角互化可得,即可根据余弦定理,结合不等式求解A ;根据正弦定理即可求解B ,根据正弦定理,结合三角恒等变换以及三角函数的性质即可求C ,根据余弦定理得,即可根据二次函数的性质求解D.【详解】由正弦定理可得,即因为,所以,所以,对于A ,若,由余弦定理得,由,,可得,即,当且仅当时等号成立,则面积,所以,故A 正确;对于B ,若,且,由正弦定理得,所以,2cos cos c B b C a +=π3A =ABC π4A =ABC (]0,1π3A =ABC ABC (1⎤⎦ABC 2AC =1a =235c <<sin cos sin cos sin C B B C a A +=()sin sin sin B C A a A +==0πA <<sin 0A ≠1a =π3A =22222π1cos cos 322b c a b c A bc bc+-+-===0b >0c >2212b c bc bc +=+³1bc ≤b c =ABC 11sin 22bc A ≤⨯=ABC π4A =1a =1πsin sin 4b B=πsin sin4B b ==当,时有一解,故B 错误;对于C ,若,由正弦定理得,由于为锐角三角形,故且,故,因此,故,故C 正确;对于D ,由于为锐角三角形,,,所,故AC 边上的高为,故D 错误.故选:AC第Ⅱ卷 非选择题(满分90分)三、填空题(本题共4小题,每小题5分,共20分)13. 在中,已知,则角为_________.【答案】【解析】【分析】利用余弦定理的变形形式即可求解.【详解】在中,,所以,,sin 1B =1=b =π3A =sin a A =)2π1sin sin 1sin sin 3a b c B C B B ⎫⎛⎫++=++=++- ⎪⎪⎝⎭⎭3π1sin 12sin 26B B B ⎫⎛⎫=+=++⎪ ⎪⎪⎝⎭⎭ABC π02B <<2ππ032B <-<ππ62B <<ππ2π,633B ⎛⎫+∈ ⎪⎝⎭(π12sin 16a b c B ⎛⎫⎤++=++∈+ ⎪⎦⎝⎭ABC 2AC b ==1a =2222222222222533541a b c c a c b c c c b a c ⎧⎧+>>⎪⎪+>⇒>⇒<<⎨⎨⎪⎪+>+>⎩⎩sin a C ⎫===⎪⎪⎭ABC 222c a b ab =+-C 3πABC 222c a b ab =+-222ab a b c =+-2221cos 222a b c ab C ab ab +-===又因为,所以.故答案为:【点睛】本题考查了余弦定理解三角形,考查了基本知识的掌握情况,属于基础题.14. 函数,最大值是______.【答案】2【解析】【分析】利用辅助角公式,结合定义域求解出函数的最大值.【详解】,又,,.的最大值为2.故答案为:215.如图,风景秀美的宝湖公园有一颗高大的银杏树,某研究小组为测量树的高度,在地面上选取了两点,从两点测得树尖的仰角分别为和,且两点间的距离为,则这颗银杏树的高度为_________________.【答案】【解析】的0C π<<3C π=3πsin y x x =[]0,πx ∈1sin 2sin 2y x x x x ⎛⎫=+=⋅+ ⎪ ⎪⎝⎭=πππ2cos sin sin cos 2sin 333x x x ⎛⎫⎛⎫⋅+=+ ⎪ ⎪⎝⎭⎝⎭[0,π]x ∈ ππ4π,333x ⎡⎤∴+∈⎢⎥⎣⎦πsin 3x ⎡⎤⎛⎫∴+∈⎢⎥ ⎪⎝⎭⎣⎦π2sin 23x ⎛⎫⎡⎤∴+∈ ⎪⎣⎦⎝⎭sin y x x ∴=+,A B ,A B 30 45 ,A B 20m m 1)+【分析】在中,利用余弦定理求出,再利用直角三角形的边角关系求解即得.【详解】在中,,由正弦定理得,则,在中,,因此,所以这颗银杏树的高度为.故答案为:16. 已知向量,满足,,且,若向量与的夹角为30°,则的最大值是___________.【答案】【解析】【分析】设证明四点共圆.设外接圆半径为,要使最大,所以必须过圆心,利用正弦、余弦定理求出即得解.【详解】设所以, 所以,ABC BC ABC 20,30,15AB A ACB ==∠= 1sin15sin(4530)2=-==sin 30sin15BC AB =BC ==Rt BCD 90BDC ∠= sin 451)CD BC ==+=+ 1)m +1)+a →b →1a →=b = 32a b ⋅=- - a c b c -||c →,,,OA a OB b OC c →→→→→→===,,,O A B C R ||c →OC 2R ,,,OA a OB b OC c →→→→→→===,a c CA b c CB →→→→→→-=-=30ACB ∠=所以,因为,所以所以四点共圆.设外接圆半径为,要使最大,所以必须过圆心,此时,在中,由余弦定理得.由正弦定理得.故答案为:四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 设复数,其中.(1)若是纯虚数,求的值;(2)所对应的点在复平面的第四象限内,求的取值范围.【答案】(1) (2)【解析】【分析】(1)根据纯虚数的定义可得到解方程即可;(2)根据复数对应的点在复平面的第四象限内可以得到,解不等式即可.【小问1详解】是纯虚数,只需,解得.【小问2详解】cos ,||||a ba b a b →→→→→→<>=== ,[0180]a b →→<>∈ ,,150,150.a b AOB →→<>=∴∠= ,,,O A B C R ||c →OC OAB2137,AB AB =+-=∴=2sin ABOC R AOB===∠()22276i z a a a a =+-+-+R a ∈z a z a 2-()1,62220760a a a a ⎧+-=⎨-+≠⎩2220760a a a a ⎧+->⎨-+<⎩z 2220760a a a a ⎧+-=⎨-+≠⎩2a =-由题意知,解得,故当时,所对应的点在复平面的第四象限内.18. 已知函数.(1)把化为的形式,并求的最小正周期;(2)求的单调递增区间以及对称中心.【答案】(1); (2),;,【解析】【分析】(1)先降幂,由两角和的正弦公式化函数为一个角的一个三角函数形式,然后由正弦型函数性质求解;(2)由正弦型函数的单调区间可得,根据正弦型函数的对称中心可求解对称中心.【小问1详解】,所以最小正周期为.【小问2详解】由,,解得,,所以的增区间为,.由,,2220760a a a a ⎧+->⎨-+<⎩16a <<16a <<z ()22cos cos sin f x x x x x =+-()f x sin()y A x ωϕ=+()f x ()f x ()2sin 26f x x π⎛⎫=+⎪⎝⎭ππππ,π36k k ⎡⎤-+⎢⎥⎣⎦k ∈Z ππ,0212k⎛⎫- ⎪⎝⎭k ∈Z ()2cos 2f x x x =+π2sin 26x ⎛⎫=+ ⎪⎝⎭2ππ2T ==πππ2π22π262k x k -≤+≤+k ∈Z ππππ36k x k -≤≤+k ∈Z ()f x πππ,π36k k ⎡⎤-+⎢⎥⎣⎦k ∈Z π2π6x k +=k ∈Z解得,,所以对称中心为,.19. 在中,,,边,上的点,满足,,为中点.(1)设,求实数,的值;(2)若,求边的长.【答案】(1),; (2)8.【解析】【分析】(1)根据平面向量线性运算法则及平面向量基本定理计算可得;(2)用、表示出,再根据数量积的运算律及定义计算可得.【小问1详解】因为,,所以,,所以,又,且、不共线,ππ212k x =-k ∈Z ππ,0212k⎛⎫-⎪⎝⎭k ∈Z ABC 6BC =60ACB ∠=︒AB BC M N 13BM MA =2BN NC =P AC NM CB CA λμ=+u u u r u u r u u rλμ8BP NM ⋅=-AC 512λ=14μ=CB CA BP13BM MA = 2BN NC = 14BM BA = 23BN BC = 1243NM BM BN BA BC=-=-u u u r u u u r u u u r u u r u u u r()125143124BC CA BC CB CA =+-=+u uu r u u r u u u r u u r u u r NM CB CA λμ=+u u u r u u r u u r CB CA所以,;【小问2详解】因为,所以,解得或(舍去),即边的长为.20. 在第六章平面向量初步中我们学习了向量的加法、减法和数乘向量三种运算,以及由它们组合成的线性运算那向量乘法该怎样运算呢?数学中向量的乘法有两种:数量积和向量积(又称为“·乘”,“×乘”).向量与的向量积记作:.其中的运算结果是一个向量,其方向垂直于向量与所在平面,它的长度.现在我们定义一种运算规则“”.设平面内两个非零向量而,元的夹角为,规定示.试求解下列问题:(1)已知向量,满足,,,求的值;(2)已知向量,,,求的最小值.【答案】(1)2 (2)9【解析】【分析】(1)借助新定义计算即可得;(2)借助所给定义及三角函数间的关系,计算可得,代入数据,结合基本不等式计算即可得.【小问1详解】由己知,得,512λ=14μ=12BP BC CD CB CA =+=-+u u r u u u r u u u r u u r u u r1512124BP NM CB CA CB CA ⎛⎫⎛⎫⋅=-+⋅+ ⎪ ⎪⎝⎭⎝⎭u u r u u u r u u r u u r u u r u u r 2251112248CB CB CA CA =--⋅+u u r u u r u ur u u r 225111668122428CA CA =-⨯-⨯⨯⨯+⨯=- 8CA = 7CA =-AC 8aba b ⨯ a b ⨯a bsin a b a b θ⨯= ⊗θ||||sin m n m n θ≡⊗=r r r ra b (2,1)a = 2b = 4a b ⋅= a b ⊗ 12,cos sin a αα⎛⎫= ⎪⎝⎭r 21,sin cos b αα⎛⎫=- ⎪⎝⎭r π0,2α⎛⎫∈ ⎪⎝⎭a b ⊗ 1221sin a b a b x y x y θ⊗==-()2,1a = a =所以,即,又,所以,所以;【小问2详解】法一:设,,则,,所以,所以,故,,当且仅当,即时等号成立.所以的最小值的最小是9.法二:,故.故.故cos 44a b a b θθ⋅=⋅=⇒=cos θ=0πθ<<sin θ=||||sin 2a b a b θ⊗===r r r r 11(,)a x y = 22(,)= b x y ||a =r ||b =r cos ||||a ba b θ⋅==⋅r r r rsin θ===1221||||sin ||a b a b x y x y θ⊗==-r rr r 22221414cos sin cos sin a b αααα⊗=--=+ 22222222221414sin 4cos (cos sin )5cos sin cos sin cos sin αααααααααα⎛⎫+=++=++ ⎪⎝⎭59≥+=2222sin 4cos cos sin αααα=tan α=a b ⊗ 12210cos sin sin cos a b αααα⎛⎫⋅=⋅+⋅-= ⎪⎝⎭a b ⊥ sin ,1a b = 2214sin ,cos sin a b a b a b αα⊗==+22222222221414sin 4cos (cos sin )5cos sin cos sin cos sin αααααααααα⎛⎫+=++=++ ⎪⎝⎭,当且仅当,即时等号成立.所以的最小值的最小是9.21. 为了丰富同学们的课外实践活动,某中学拟对生物实践基地(△ABC 区域)进行分区改造.△BNC 区域为蔬菜种植区,△CMA区域规划为水果种植区,蔬菜和水果种植区由专人统一管理,△MNC 区域规划为学生自主栽培区.△MNC 的周围将筑起护栏.已知m ,m ,,,设.(1)若m ,求护栏的长度(△MNC 的周长);(2)试用表示△MNC 的面积,并研究△MNC 的面积是否有最小值?若有,请求出其最小值;若没有,请说明理由.【答案】(1)(m) (2),最小值为.【解析】【分析】(1)利用余弦定理证得,从而判断得是正三角形,由此得解;(2)在与中,利用正弦定理求得与关于的表达式,从而利用三角形的面积公式得到关于的表达式,再结合三角函数的最值即可得解.【小问1详解】依题意,在中,m ,m ,,所以,则,,即,所以,又,故,所以是正三角形,则m ,m ,59≥+=2222sin 4cos cos sin αααα=tan α=a b ⊗20AC =40AB =60BAC ∠=︒30MCN ∠=︒ACM θ∠=10AM =θ30+S =(23002m -AM CM ⊥ANC ANC ACM CN CM θCMN S θAMC 20AC =10AM =60BAC ∠=︒2222cos 300CM AM AC AM AC A =+-⋅=1CM =222AC CM AM =+AM CM ⊥30ACM ∠=︒30MCN ∠=︒60ACN∠=︒ANC 20CN AN AC ===10MN AN AM =-=所以护栏的长度为(m ).【小问2详解】学生自主栽培区的面积有最小值,理由如下:设,在△ANC 中,,则,由正弦定理得,得在中,,由正弦定理得,得所以,所以当且仅当,即时,.22. 在锐角中,内角A ,B ,C 所对的边分别为a ,b ,c ,满足.(1)求证:;(2)若,求a 边的范围;(3)求的取值范围.【答案】(1)证明见解析 (2)30CMCN MN ++=+MNC (23002m -060()ACM θθ∠=︒<<︒30MCN ∠=︒()180603090ANC θθ∠=︒-︒-+︒=︒-20sin 60sin(90)cos CN AC θθ==︒︒-CN =ACM 18060120CMA θθ∠=︒-︒-=︒-sin 60sin(120)CM AC θ=︒︒-CM =1300sin 3024sin(120)cos CMN S CM CN θθ︒-︒=⋅⋅=△3004(sin120cos cos120sin )cos θθθ=︒-︒===26090θ+︒=︒15θ=︒CMN (23002m =ABC 22a b bc -=2A B =1b =112sin tan tan A B A-+(3).【解析】【分析】(1)由,进而得到,再利用正弦定理将边转化为角,利用两角和的正弦公式求解;法二:由,利用正弦定理转化为,进而得到,再利用和差化积求解.(2)由(1)知,进而得到,再根据为锐角三角形,得到,再由,利用正弦定理求解;(3)由(2)知,转化为,再令,得到求解.【小问1详解】解:因为,所以,由正弦定理可得,又因为,代入可得,即,因为,,则,故,所以或,即或(舍去),所以.法二:由正弦定理可得:,则,则,⎫⎪⎪⎭22222cos a b c bc A b bc =+-=+2cos c b b A -=22a b bc -=22sin sin sin sin A B B C -=()()sin sin sin sin sin sin A B A B B C +-=2A B =π3C B =-ABC 64ππ,B ⎛⎫∈ ⎪⎝⎭1b =ππ2,32A B ⎛⎫=∈ ⎪⎝⎭1112sin 2sin tan tan sin A A B A A -+=+sin A t =12y t t=+22222cos a b c bc A b bc =+-=+2cos c b b A -=sin sin 2sin cos C B B A -=()sin sin sin cos cos sin C A B A B A B =+=+sin cos Cos sin sin A B A B B -=()sin sin A B B -=0A <πB <sin 0B >0πA B <-<A B B -=πA B B -+=2A B =πA =2A B =22sin sin sin sin A B B C -=()()sin sin sin sin sin sin A B A B B C +-=2sincos 2sin cos sin()sin(-)sin sin 2222A B A B A B A BA B A B B C +--+⨯=+⨯=又,故,因为,,则,故,所以或,即或(舍去),【小问2详解】因为为锐角三角形,,所以,由,解得,又故.小问3详解】由(2)知.由,,令,则在上单调递增,所以,所以的取值范围为.【()sin sin 0A B C +=≠()sin sin A B B -=0A <πB <sin 0B >0πA B <-<A B B -=πA B B -+=2A B =πA =ABC 2A B =π3C B =-π02π022π0π32B B B ⎧<<⎪⎪⎪<<⎨⎪⎪<-<⎪⎩64ππ,B ⎛⎫∈ ⎪⎝⎭1b =sin 2cos sin b A a B B ==∈ππ2,32A B ⎛⎫=∈ ⎪⎝⎭11cos cos 2sin 2sin tan tan sin sin B A A A B A B A-+=-+sin()12sin 2sin sin sin sin A B A A A B A-=+=+sin A t =12y t t =+t ⎫∈⎪⎪⎭y ⎫∈⎪⎪⎭112sin tan tan A B A -+⎫⎪⎪⎭。

高一数学下期中考试知识点

高一数学下期中考试知识点

高一数学下期中考试知识点随着新高一学期的到来,各位同学们即将面临下期中考试。

数学作为一门基础学科,对于我们的学习和发展起着举足轻重的作用。

在这篇文章中,我将为大家总结一下高一数学下期中考试的重点知识点,希望对大家的备考有所帮助。

一、函数与方程在下一阶段的数学学习中,我们将深入学习函数与方程。

具体来说,我们需要熟悉以下几个方面的内容:1. 函数的概念和性质:了解函数的定义,掌握一阶导数和二阶导数的概念,掌握函数的奇偶性和单调性等。

2. 求解一元一次方程和一元二次方程:掌握解一元一次方程和一元二次方程的方法和步骤,能够运用这些方法解决实际问题。

3. 函数的运算和复合函数:熟悉函数的加法、乘法和复合运算的概念和性质,能够灵活运用这些性质解决题目。

二、平面向量平面向量是高中数学中的一个重要内容,也是高考数学中的必考点。

因此,在下一阶段的学习中我们需要掌握以下几个方面的内容:1. 平面向量的基本概念:了解向量的定义,掌握向量的加法和数乘运算的规律,能够计算向量的模长、共线、垂直等性质。

2. 两个向量的夹角与正交条件:掌握余弦定理和正交条件的概念和计算方法,能够判断两个向量之间的夹角以及是否正交。

3. 平面向量的数量积和向量积:了解数量积和向量积的定义和计算方法,能够应用数量积和向量积解决几何问题。

三、数列与函数的应用数列与函数的应用是数学中非常重要的一个部分,也是解决实际问题的有效工具。

在下一阶段的学习中,我们需要掌握以下几个方面的内容:1. 等差数列和等比数列的性质:了解等差数列和等比数列的概念和通项公式,能够推导和应用这些公式解决问题。

2. 函数的图像和性质:熟悉函数的图像和变化规律,掌握函数的单调性、奇偶性等性质,能够通过函数图像解决实际问题。

3. 数列和函数的综合运用:能够在实际问题中运用数列和函数的概念解决复杂的数学问题。

四、解几何解几何是高一数学中的一大重点,也是考试中经常考察的内容。

在下一阶段的学习中,我们需要重点掌握以下几个方面的内容:1. 平面几何的基本性质:了解平面几何中的三角形、四边形和多边形的基本性质,掌握各类图形的内角和外角和等于多少等。

高一数学期中考试知识点

高一数学期中考试知识点

高一数学期中考试知识点高一数学期中考试的知识点主要包括数与式、方程与不等式、函数与图像、三角函数、解析几何和概率统计等内容。

下面将对每个知识点进行详细介绍。

1. 数与式数与式是数学算的基础,也是解决实际问题的基本方法。

数包括自然数、整数、有理数和无理数等;式则由运算符号和运算数组成。

在这一章节中,学生需要掌握数的分类和性质,以及常见的数与数之间的运算法则,如四则运算、乘方和开方等。

2. 方程与不等式方程和不等式是数学中常见的表示关系的形式。

方程是指含有未知数的相等关系,而不等式则描述了不等的关系。

学生需要熟悉线性方程和一元二次方程的解法,以及二次不等式的解集求解方法。

3. 函数与图像函数是一种特殊的关系,它将一个集合中的每个元素映射到另一个集合中的元素。

学生需要了解函数的定义、性质和分类,包括一次函数、二次函数、指数函数和对数函数等。

此外,学生还需要学会绘制函数的图像,并能根据图像解决实际问题。

4. 三角函数三角函数是数学中重要的函数之一,它描述了角度与边长之间的关系。

学生需要掌握正弦、余弦、正切等常见三角函数的定义与性质,能够计算三角函数的值,并运用三角函数解决实际问题。

5. 解析几何解析几何是研究几何图形的位置关系和变化规律的数学分支。

学生需要熟悉平面直角坐标系和向量的表示方法,能够利用解析几何的方法解决直线、圆和曲线的性质和运动问题。

6. 概率统计概率统计是概率论和数理统计的基础,用于描述随机事件的发生概率和数据的收集与分析。

学生需要了解概率的概念和计算方法,能够计算事件的概率和对应的期望值。

同时,他们还需要学会统计数据,并能够根据统计结果进行推断和预测。

7. 数列数列是数学中一种重要的数学结构,它是由无穷多个数按照一定的顺序排列而成的。

学生需要掌握数列的通项公式,了解数列的分类,如等差数列、等比数列等,并掌握数列的求和公式。

8. 空间几何空间几何是研究三维空间中几何图形的位置关系和变化规律的数学分支。

高一数学期中考知识点归纳

高一数学期中考知识点归纳

高一数学期中考知识点归纳在高一数学学习的过程中,有许多重要的知识点需要我们掌握和理解。

本文将对这些重要的知识点进行归纳,以便更好地复习和备考。

1.函数与方程在函数与方程的学习中,我们需要掌握以下知识点:(1)函数的基本概念及表示方法:自变量、因变量、函数值、函数图像等。

(2)一次函数和二次函数的性质:斜率、截距、顶点、轴对称等。

(3)函数的运算:加减乘除、复合函数等。

(4)方程的解法:一次方程、二次方程及应用、不等式等。

2.数列与数表在数列与数表的学习中,我们需要掌握以下知识点:(1)数列的概念和表示方法:通项公式、递推公式、前n项和等。

(2)等差数列和等比数列的性质:公差、首项、末项、求和等。

(3)数表的使用和分析:二维数表的读取、查找规律等。

3.平面几何在平面几何的学习中,我们需要掌握以下知识点:(1)平面图形的性质与判定:三角形、四边形、圆等的性质和判定条件。

(2)平面几何的证明:利用几何性质进行证明。

(3)平面图形的计算:周长、面积、体积等的计算方法。

4.立体几何在立体几何的学习中,我们需要掌握以下知识点:(1)长方体、正方体、圆柱体、圆锥体、球体等的性质和计算方法。

(2)平面与空间的位置关系:平行、垂直、相交等的判定条件。

(3)立体几何的应用:解决实际问题、计算物体的体积等。

5.概率与统计在概率与统计的学习中,我们需要掌握以下知识点:(1)概率的基本概念与计算:事件、样本空间、概率等的计算方法。

(2)统计的基本概念与应用:平均数、中位数、众数等的计算方法和数据分析。

总结:在高一数学学习中,掌握上述知识点是非常重要的。

希望同学们能够通过不断地复习和练习,加深对这些知识点的理解和应用能力。

祝愿大家取得优异的成绩!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学期中考试考点详解
集合一章木有什么难题。

本章主要讲了集合的性质,集合的关系和集合的运算。

集合性质当中互异性是考试的重点。

当解题过程中,出现多解的情况,我们一定要注意根据集合的互异性来进行取舍。

而集合的关系和集合的运算往往综合来考查。

题目经常会这样来出:若A∩B=A,则可以推出A是B的子集,此时千万不要忽略了集合A还有可能是空集的情况。

函数一章则是重头戏。

虽然初中我们就接触过,但是现在学习的则更为深入。

首先我们学习了函数的三要素:定义域,值域和解析式。

其中在求定义域题型当中,关于复合函数的定义域求法是一个难点。

比如:已知f(x+2)的定义域是(-2,2),那么f(x-2)的定义域是多少?对于值域的求法,主要涉及的是二次函数的值域求法,这里要注意的是对称轴是否在定义域范围之内。

如果在,要取顶点值,如果不在,则取端点值。

然后我们学习了函数的单调性和奇偶性。

这是考试的重点。

从用定义法判断函数的单调性和奇偶性,到利用函数的单调性和奇偶性来求函数的其他问题。

小题中,主要是判断某些简单的复合函数的单调性和奇偶性。

比如考查对勾函数
f(x)=x+1/x的奇偶性和单调性。

这里的一个技巧就是只要记住该函数的图象即可。

大题中,主要以二次函数,抽象函数
和复合函数为背景综合考查函数的性质。

对于抽象函数问题,我们现阶段的解题思路是赋值,可以令x=0,1,-1或者令x=y,x=-y。

这样我们就把抽象的问题具体化和形象化了。

对于复合函数的问题,我们的解题思路可以换元。

但换元的时候一定要注意我们新引入变量的范围。

对于我们接下来学习的指对幂函数,我们要知道各自的运算律。

其中指数函数和对数函数的性质是重点。

那我们怎么学习呢?我们学习任何一种函数,无论是现在的指对幂函数还是后面要学习的三角函数,我们都可以记住一条主线。

就是先学习函数的形式,然后画出函数的图象,根据图象推导出函数的性质。

指对函数也是如此。

考试中经常会考查根据函数的单调性来比较数值大小的题目,一般不难。

函数和集合这两章是学校里学的正史,有些学校平时又穿插了一些“稗官野史”。

比如因式分解,韦达定理,不等式的解法还有简易逻辑关系等等。

而这些知识点都不难,主要是为理解主体知识服务的。

对于这些知识点,我们只要理解掌握老师讲过的知识和习题就好。

最后,预祝童鞋们备齐十八般武器,见招拆招,在期中考试中取得好成绩!
实习编辑:张强。

相关文档
最新文档