七年级数学下学期月考试卷
陕西省西安翱翔中学(原西工大附中)2023-2024学年七年级下学期第一次月考数学试题(原卷版)
七年级数学练习(一)一、选择题(每题3分,共10小题,计30分,每小题只有一个选项是符合题意的)1. 如果一个角是30°,那么这个角的余角是( )A. 150°B. 40°C. 50°D. 60°2. 下列计算正确是( )A. B. C. D. 3. 如图,一条公路两次转弯后又回到与原来相同方向,如果,那么的度数是( )A B. C. D. 4. 下列各式中,不能用平方差公式计算的是( )A. B. C. D. 5. 如图,直线,∠2+∠3=210°,则∠1=( )A. 30° B. 35° C. 40° D. 45°6. 游学期间,两名老师带领名学生到展览馆参观,已知教师参观门票每张元,学生参观门票每张元.设参观门票的总费用为元,则与的函数关系为( )A. B. C. D. 7. 一个等腰三角形的两边长分别是3和7,则它的周长为( )A. 17B. 15C. 13D. 13或178. 如图,下列不能判定的条件是( )的的.22(2)4a a -=-()322a b a b ab ÷=()527b b =2510m m m ⋅=130A ∠=︒B ∠160︒150︒140︒130︒()()x y x y ---()()x y x y -+--()()x y x y +-+()()x y x y --+12l l //x 4020y y x 2080y x =+80y x =4020y x =+4040y x =+AB CD ∥A. B. C. D. 9. 如图,正方形卡片A 类,B 类和长方形卡片C 类若干张,如果要拼一个长为(a +2b ),宽为(2a +b )的大长方形,则需要C 类卡片张数为( )A. 2B. 3C. 4D. 510. 甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y (米)与甲出发的时间t (分)之间的关系如图所示,下列说法正确的是( )A. 乙用16分钟追上甲B. 乙追上甲后,再走1500米才到达终点C. 甲乙两人之间的最远距离是300米D. 甲到终点时,乙已经在终点处休息了6分钟二、填空题(每小题3分,共6小题,计18分)11. 若,则__________.12. 如图,,若,则的度数为__________13. 数据0.000326用科学记数法表示为__________.14. 如图,在中,O 是三条角平分线的交点,过O 作交于点D ,交于点E ,若,则的周长为__________.180B BCD ∠+∠=︒12∠=∠34∠∠=5B ∠=∠2,6m n a a ==m n a +=AB CD AD AC ⊥155∠=︒2∠ABC DE BC ∥AB AC 96AB AC ==,ADE V15. 一个完全平方式,则_______.16. 如图,在中,是边上一动点,将沿折叠,点B 落在处,交于D ,则的最大值为__________.三、解答题:(本大题共7小题,共52分,解答应写出过程)17. 计算:(1)(2)18. 如图,在中,点E 是边上一点,请在边上找一点F ,连接,使得.(要求:尺规作图,不写作法,保留作图痕迹)19. 先化简,再求值:,其中,20. 推理:已知,如图,B 、C 、E 共线,A 、F 、E 共线,,,.是29x kx -+若k =Rt ABC △9012135C BC AB AC P ∠=︒===,,,,AB PBC PC B 'B C 'AB B D '1020211(2021)(1)2π-⎛⎫+--- ⎪⎝⎭()()3233332ab a b ab c -÷⨯-ABC BC AC EF EF AB ∥()()()22122252x y x y x y y x ⎛⎫⎡⎤---+-÷- ⎪⎣⎦⎝⎭112x y ==-,AB CD 12∠=∠34∠∠=求证:.证明:∵(已知)∴( )∵(已知)∴__________( )∵(已知)∴( )即∴__________( )∴( )21. 如图,是一个“因变量随着自变量变化而变化”的示意图,下面表格中是通过运算得到的几组x 与y 的对应值.根据图表信息回答下列问题:输入x…02…输出y…2m 18…(1)直接写出:______,______,______.AD BE AB CD 4BAF ∠=∠34∠∠=3∠=∠12∠=∠12CAF CAF ∠+∠=∠+∠BAF DAC∠=∠3∠=∠AD BE 2-k =b =m =(2)当输出y 的值为12时,求输入x 的值.22. (1)图中的①是一个长为、宽为的长方形,沿图中虚线用剪刀均分成四块小长方形,然后拼成一个如图中的②所示的正方形.请用两种不同的方法求图中②的阴影部分的面积.方法1:__________.方法2:__________(2)利用等量关系解决下面的问题:①,求和值;②已知,求的值.23. 发现问题:(1)如图,小明在一张纸上画了一条线段,他把绕点顺时针方向旋转得到线段,连接,通过查资料学习知道了为等边三角形,然后他找到上一点,把沿折叠,发现两侧能完全重合,由此得到以下关系式:__________; __________.(填,,);探究问题:(2)如图,在四边形中,连接为上一点,与互相平分,且交于点,已知的面积为,,求的最小值;解决问题:(3)如图,某市文旅部门拟在黄河沿岸围建一个正方形的湿地公园,,点为上一个休息驿站,为上任意一点,根据实际情况,计划设计一个等边的停车区域,为入口,让车辆沿驶入到停车区,为出口,若修建一定宽度的公路每公里万元,请问修建路段的费用有无最小值?若有请求出;若没有请说明理由.的2m 2n 56a b ab -==-,2()a b +22a b +13x x -=221x x+①PO PO O 60︒OQ PQ OPQ △OP H OPQ △QH PH OH PQ QH =><②ABCD AC E ,AD AC BE F ACD 8010AD =BE ③ABCD 13km AB =E AB 3km,BE F =BC EFG A AG F 10AG。
2024—2025学年最新人教版七年级下学期数学第一次月考考试试卷(含数学答题卡)
最新人教版七年级下学期数学第一次月考考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、下列实数是无理数的是()A.2.1B.0C.D.﹣32、如图所示的车标,可以看作由“基本图案”经过平移得到的是()A.B.C.D.3、已知点P在第四象限,且到x轴的距离为2,到y轴距离是4,则点P的坐标为()A.(4,﹣2)B.(﹣4,2)C.(﹣2,4)D.(2,﹣4)4、下列命题中是假命题的是()A.实数与数轴上的点一一对应B.同位角相等C.无理数是无限不循环小数D.81的算术平方根是95、如图,能判定AD∥BC的是()A.∠1=∠2B.∠1=∠3C.∠3=∠4D.∠B+∠BCD=180°6、估计+1的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间7、已知:≈0.71,≈2.24,≈7.1,≈22.4,请根据以上规律得到的结果()A.0.071B.0.224C.0.025D.0.02248、如图:一块直角三角板的60°角的顶点A与直角顶点C分别在两平行线FD、GH上,斜边AB平分∠CAD,交直线GH于点E,则∠ECB的大小为()A.60°B.45°C.30°D.25°9、如图,在△ABC中,∠ABC=90°,AB=5cm,AC=4cm,BC=3cm,则点C到AB的距离为()A.4cm B.3cm C.2.4cm D.2.5cm10、将一副三角板按如图放置,其中∠B =∠C =45°,∠E =60°,∠D =30°,则下列结论正确的有( )①∠BAE +∠CAD =180°;②如果∠2与∠E 互余,则BC ∥DA ;③如果BC ∥AD ,则有∠2=45°;④如果∠CAD =150°,必有∠4=∠C .A .①③④B .①②④C .②③④D .①②③④二、填空题(每小题3分,满分18分)11、比较大小: 3.(填“>”、“=”或“<”) 12、6的平方根是 .13、1﹣的绝对值是 .14、如图,将周长为18的△ABC 沿BC 方向平移3个单位长度得到△DEF ,则四边形ABFD 的周长为 .15、如图,如果AB ∥CD ,则角α=140°,γ=20°,则β= .16、如图,圆的直径为1个单位长度,该圆上的点A 与数轴上表示1的点重合,将该圆沿数轴向左滚动1圈,点A 到达A '的位置,则点A '表示的数是 .第8题图 第16题图第9题图第10题图 第14题图 第15题图最新人教版七年级下学期数学第一次月考考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:.18、求下列各式中实数x的值(1)(x﹣1)3=8;(2)25(x+1)2﹣36=0.19、如果一个正数m的两个平方根分别是2a﹣3和a﹣9,n是﹣1的立方根.(1)求m和n的值.(2)求m﹣11n的算术平方根.20、如图,三角形ABC在平面直角坐标系中.(1)请写出三角形ABC各顶点的坐标;(2)求出三角形ABC的面积.21、如图,已知数轴上的点A,B,C分别表示实数a,b,c.(1)化简:(2)若,b=﹣z2,c=﹣4mn,且满足x与y互为相反数,z是绝对值最小的负整数,m,n互为倒数,试求98a+99b+100c的值.22、如图,已知∠1=∠2,∠C=∠D.(1)求证:BD∥CE;(2)如果∠DEC=115°,求∠C的度数.23、已知点P(2a﹣2,a+5),解答下列各题:(1)若点P在x轴上.求出点P的坐标;(2)若点Q的坐标为(4,5),直线PQ∥x轴,求出点P的坐标;(3)若点P到x轴、y轴的距离相等,求出点P的坐标,并说出P点所在的象限.24、如图,PQ∥MN,A、B分别为直线MN、PQ上两点,且∠BAN=45°,若射线AM绕点A顺时针旋转至AN后立即回转,射线BQ绕点B逆时针旋转至BP后立即回转,两射线分别绕点A、点B不停地旋转,若射线AM转动的速度是a°/秒,射线BQ转动的速度是b°/秒,且a、b满足|a﹣5|+(b﹣1)2=0.(友情提醒:钟表指针走动的方向为顺时针方向)(1)a=,b=;(2)若射线AM、射线BQ同时旋转,问至少旋转多少秒时,射线AM、射线BQ互相垂直.(3)若射线AM绕点A顺时针先转动18秒,射线BQ才开始绕点B逆时针旋转,在射线BQ到达BA之前,问射线AM再转动多少秒时,射线AM、射线BQ互相平行?25、已知AB∥CD,直线MN交AB、CD于点M、N.(1)如图1所示,点E在线段MN上,设∠MBE=x°,∠MND=y°,且满足+(y﹣60)2=0,求∠MEB的度数;(2)如图2所示,点E在线段MN上,∠MBE=∠MEB,DF平分∠EDC,交BE的延长线于点F,试找出∠DEF、∠END、∠EDN之间的数量关系,并证明;(3)如图3所示,点P在射线NT上运动时,∠PCD与∠TMB的角平分线交于点Q,求的值.。
山东省滨州市某校2023-2024学年七年级下学期第二次月考数学试题
山东省滨州市某校2023-2024学年七年级下学期第二次月考数学试题一、单选题1.若m n >,则下列不等式一定成立的是( ) A .2121m n -+>-+ B .1144m n ++> C .m a n b +>+D .am an -<-2.为了解我校八年级2100名学生对“创建全国文明校园”知识的了解情况,学校组织了相关知识测试,并从中随机抽取了100名学生的成绩进行统计分析( ) A .2100名学生是总体B .我校八年级每名学生的测试成绩是个体C .样本容量是2100D .被抽取的100名学生是样本3.将一副三角板按下图所示摆放在一组平行线内,125∠=︒,230∠=︒,则3∠的度数为( )A .55︒B .65︒C .70︒D .75︒4.已知点(26,4)P x x +-在第四象限,则实数x 的取值范围在数轴上表示正确的为( ) A . B . C .D .5.下列命题中,是真命题的是( )A 0.1414B .过一点有且只有一条直线与已知直线垂直C .点P 在第四象限,且点P 到x 轴的距离为2,点P 到y 轴的距离为3,则点P 的坐标为(3,-2)D .立方根等于它本身的数为1±6.如图,利用两块相同的长方体木块(阴影部分)测量一件长方体物品的高度,首先按左图方式放置,再按右图方式放置,测量的数据如图,则长方体物品的高度是( )A .73cmB .74cmC .75cmD .76cm7.如果关于y 的方程()123a y y --=-有非负整数解,且关于x 的不等式组()22432x ax x -⎧≥⎪⎨⎪-≤-⎩的解集为1x ≥,则所有符合条件的整数a 的和为( ) A .5-B .8-C .9-D .12-8.在平面直角坐标系中,对于点(),P x y ,把点11,1P y x ⎛⎫ ⎪-⎝⎭叫做点P 的友好点.已知点1A 的友好点为点2A ,点2A 的友好点为点3A ⋅⋅⋅这样依次得到点1A ,2A ,3A ,4A ⋅⋅⋅x A ,若点1A 的坐标为1,22⎛⎫⎪⎝⎭,则根据友好点的定义,点2024A 的坐标为( )A .1,22⎛⎫ ⎪⎝⎭B .()2,2C .()1,1--D .11,2⎛⎫- ⎪⎝⎭二、填空题9.在π21.010010001-⋅⋅⋅,2276个实数中,无理数有个.10.为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干只.在准备配发的过程中发现:公羊刚好每户1只;若每户发放母羊5只,则多出17只母羊,若每户发放母羊7只,则有一户可分得母羊但不足3只.这批种羊共只11.把2个面积为3的正方形纸片沿着对角线剪开,拼成如图所示的一个大正方形纸片,那么大正方形纸片的边长在 和 两个整数之间.12.如图是一款长臂折叠LED 护眼灯示意图,EF 与桌面MN 垂直,当发光的灯管AB 恰好与桌面MN 平行时,120DEF ∠=︒,110BCD ∠=︒,则CDE ∠的度数为︒.13.如图,线段AB 两端点的坐标分别为A (﹣1,0),B (1,1),把线段AB 平移到CD 位置,若线段CD 两端点的坐标分别为C (1,a ),D (b ,4),则a +b 的值为14.若不等式组11322x xx m+⎧-⎪⎨⎪⎩<<无解,则m 的取值范围为.15.已知方程组222x y kx y +=⎧⎨+=⎩的解满足2x y +=,则k 的算术平方根为.16.若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是3x my m =⎧⎨=+⎩(m 为常数),方程组111222(2)2(2)2(2)2(2)2a x y b x y c a x y b x y c +++=⎧⎨+++=⎩的解x 、y 满足3x y +>,则m 的取值范围为.三、解答题17()202231-18.解方程组或解不等式组: (1)43143222x y x y +=⎧⎨+=⎩(2)()1322111x y x y +⎧=⎪⎨⎪+-=⎩(3)()()3286121123x x x x ⎧-≤-+⎪⎨+-<+⎪⎩,并把解集在数轴上表示出来.19.完成下面证明过程如图,点P 在CD 上,已知180BAP APD ∠+∠=︒,12∠=∠.求证:E F ∠=∠.证明:180BAP APD ∠+∠=︒Q (已知), ∴ ∥ ,( ),BAP ∴∠= ,( ).又12∠=∠Q (已知),BAP ∴∠- = 2-∠,即34(∠=∠ ), (AE PF ∴∥ ),(E F ∴∠=∠ ).20.促进青少年健康成长是实施“健康中国”战略的重要内容.为了引导学生积极参与体育运动,某校举办了一分钟跳绳比赛,随机抽取了40名学生一分钟跳绳的次数进行调查统计,并根据调查统计结果绘制了如表格和统计图:请结合上述信息完成下列问题: (1)a = ,b = ; (2)请补全频数分布直方图;(3)在扇形统计图中,“良好”等级对应的圆心角的度数是 ;(4)若该校有2000名学生,根据抽样调查结果,请估计该校学生一分钟跳绳次数达到合格及以上的人数.21.已知关于x 、y 的方程组24233x y m x y m +=-⎧⎨-=+⎩的解满足0x <,0y ≤.(1)求m 的取值范围;(2)是否存在整数m ,使不等式326mt m t -<-的解集为2t >.若不存在,请说明理由;若存在,请求出整数m 的值. 22.阅读材料,回答以下问题:我们知道,二元一次方程有无数个解,在平面直角坐标系中,我们标出以这个方程的解为坐标的点,就会发现这些点在同一条直线上.例如13x y =⎧⎨=⎩是方程2x y -=-的一个解,对应点(1,3)P ,如图所示,我们在平面直角坐标系中将其标出,另外方程的解还有对应点(2,4),(3,5),(4,6),⋯,将这些点连起来正是一条直线,反过来,在这条直线上任取一点,这个点的坐标也是方程2x y -=-的解.所以,我们就把这条直线就叫做方程2x y -=-的图象.一般的,以任意二元一次方程解为坐标的对应点连成的直线就叫这个方程的图象.请问:(1)已知(1,1)A -、(2,1)B -、(2,1)C --,则点 (填“A 或B 或C ”)在方程23x y +=-的图象上.(2)求方程231x y +=和方程328x y -=图象的交点坐标.(3)已知以关于x 、y 的方程组459x y k x y k +=⎧⎨-=-⎩的解为坐标的点M 在方程23x y +=的图象上,求k 的值.23.我县在创建全国文明城市过程中,决定购买A ,B 两种树苗对某路段道路进行绿化改造,已知购买A 种树苗8棵,B 种树苗3棵,要950元;若购买A 种树苗5棵,B 种树苗6棵,则需要800元.(1)求购买A ,B 两种树苗每棵各需多少元?(2)考虑到绿化效果和资金周转,购进A 种树苗要多于B 种树苗,且用于购买这两种树苗的资金不能超过7650元,若购进这两种树苗共100棵,则有哪几种购买方案? (3)在(2)的条件下,哪种方案最省钱?最少费用是多少?24.如图,在平面直角坐标系中,点A ,B 的坐标分别为()3,5,()3,0.将线段AB 向下平移2个单位长度再向左平移4个单位长度,得到线段CD ,连接AC ,BD .(1)直接写出坐标:点C (______),点D (______);(2)M ,N 分别是线段AB ,CD 上的动点,点M 从点A 出发向点B 运动,速度为每秒1个单位长度,点N 从点D 出发向点C 运动,速度为每秒0.5个单位长度,点N 的运动时间为t 秒.①若两点同时出发,当t 取何值时,MN x ∥轴?②连接NO NB ,,当t 取何值时,三角形NOB 的面积为32?(3)点P 是直线BD 上一个动点,连接PC PA 、,当点P 在直线BD 上运动时,请直接写出CPA ∠与PCD ∠,∠PAB 的数量关系.。
江苏省南京市鼓楼区鼓楼实验中学2023-2024学年七年级下学期3月月考数学试题
江苏省南京市鼓楼区鼓楼实验中学2023-2024学年七年级下学期3月月考数学试题一、单选题1.2000多年前,有一位著名的数学家对前人在数学上的成果进行了系统整理,把人们公认的一些真命题作为公理,并以此为出发点,用推理的方法证实了一系列命题,编纂成了人类文明史上具有里程碑意义的数学巨著——《原本》.这位数学家是( )A .阿基米德B .泰勒斯C .欧几里得D .苏格拉底 2.如图,下列条件中,能判定AB CD P 的是( )A .24∠∠=B .13∠=∠C .5ADC ∠∠=D .180ADC BCD ∠+∠=︒ 3.下列运算结果正确的是( )A .2510a a a ⋅=B .()22222ab a b =C .()330a a a -=≠D .()()3224a b ab a b -÷=- 4.在下面的正方形分割方案中,可以验证()()224a b a b ab +=-+的图形是( )A .B .C .D .5.下列选项中,可以用来说明命题“若24x >,则2x >”是假命题的反例是( ) A .3x = B .=1x - C .2x = D .3x =-6.若264A x y =++,226B y x =-+-,则A ,B 的大小关系为( )A .AB ≥ B .A B <C .A B >D .A B =二、填空题7.经测算,一个水分子的直径约为0.0000000004m ,数据0.0000000004用科学记数法表示为 .8.命题“对顶角相等”的逆命题是.9.已知x 与y 互为相反数,并且26x y -=,则y x 的值为.10.若82733x x ÷=,则x 的值是 .11.若一个长方体的长、宽、高分别是34x -,2x +和2x ,则它的体积是 .12.已知21x y =⎧⎨=-⎩是关于x ,y 的二元一次方程27kx y +=的解,则k 的值是 . 13.如图,将ABC V 沿BC 方向平移8cm 得到DEF V ,若7BF CE =,则BC 的长为 cm .14.若220240a a +-=,代数式()()220241a a -+的值是 .15.如图,AB CD ∥,点,E F 为AB 与CD 之间两点,AE EF ⊥,若28A ∠=︒,88F ∠=︒,则D ∠=°.16.在数学实验课上,刚开始,张老师将一副三角板中的两个直角顶点C 叠放在一起,CD 与CB 在同一直线上,CA 与CE 在同一直线上,其中=60B ∠︒,45E ∠=︒.如图,若三角板ABC 不动,将三角板CDE 绕直角顶点C 顺时针转动一周,转过的角度为α.当α=时,DE AB ∥.三、解答题17.计算:(1)()()2020*******π-⎛⎫-++- ⎪⎝⎭;(2)423822(2)a a a a a ⋅+-+÷18.计算:(1)()()()2239423a a a ++-;(2)()()3232a b a b +--+.19.用两种不同方法计算()3m n a a ⋅.20.解方程组:(1)23325x y x y +=⎧⎨-=⎩;(2)4155x y y x +=⎧⎨=+⎩.21.大课间结束后,“功不唐捐”学习小组的几个同学立即开始讨论数学问题:小明说:在同一平面内,平行于同一直线的两条直线也平行.小丽说:在同一平面内,垂直于同一直线的两条直线也垂直.小军说:你们两人说的命题都是真命题吗?小红说:我感觉他们两人说的命题好像不都是真命题…数学老师早就注意到他们的讨论,走过来说:这两个命题中,如果是真命题,请画图,写出已知、求证,并证明(注明理由);如果是假命题,请举反例画图说明.下面请你一起完成数学老师所说的任务.22.上周末,小金研究的一道几何题如下:如图,点G 在CD 上,已知180BAG AGD ∠+∠=︒,EA 平分BAG ∠,FG 平分AGC ∠,请说明AE GF ∥的理由.(1)小金的思路是:先根据“同角的补角相等”得到BAG AGC ∠=∠,再根据“角平分线的定义”,得到3=4∠∠,然后根据“内错角相等,两直线平行”,得到AE GF ∥.你认为小金的思路是的(“正确”或“错误”).(2)请你用整合教材学到的“框图”方式分析本题(不写说明过程).23.请用直尺、三角板、圆规等数学工具画图(保留痕迹,不写画法,有些画图步骤可写适当的文字说明).已知:如图,直线l 与直线l 外一点P .求作:直线m ,使得直线m 过点P ,且与直线l 平行.24.我们在解题时,经常会遇到“数的平方”,那么你有简便方法吗?这里,我们以“两位数的平方”为例,请你细心观察下列各式,探究其中的规律,回答问题:2213(133)103169=+⨯+=,2225(255)205625=+⨯+=,2234(344)3041156=+⨯+=,2262(622)6023844=+⨯+=,…(1)请根据上述规律填空:241==;(2)我们知道,任何一个两位数都可以表示为10a b +(个位数字为小于10的自然数b ,十位数字为小于10的正整数a ),根据上述规律写出:2(10)a b +=,并说明你写的规律是正确的.25.已知关于x ,y 的二元一次方程3ax y b +=(a ,b 均为常数,且0a ≠).(1)当2,1a b =-=时,用x 的代数式表示y ;(2)若223x a b y b b=-⎧⎨=+⎩是该二元一次方程的一个解, ①探索a 与b 的数量关系,并说明理由;②无论a 、b 取何值,该方程有一个固定的解,则这个解是 .26.【阅读材料】周末,小红自学苏科版初中数学七年级下册的课本第9章内容,然后独立做完了第73页上一道例题:例2计算:(3)(2)m n m n +-.小红忽然看到弟弟在用竖式乘法计算:3425⨯,过程如图1;小红想:是否可以用这个方法计算(3)(2)m n m n +-?她尝试写了解题过程如图2,结果正确.小红还联想到多项式除以多项式是否也可以运用竖式除法的方法进行,于是她先做了一道多位数除以多位数的除法计算题如图3,接着她尝试做了一道多项式除以多项式的习题如图4,爸爸亲自检验结果正确,并表扬了她善于思考、勇于探索的学习精神.【问题解决】下面请你从用中所学到的方法解决以下问题:(1)小红把多位数竖式乘法运算方法运用在多项式乘法运算上,这里运用的数学思想是.A.数形结合B.方程C.类比D.分类讨论(2)请你尝试用小红的竖式乘法运算方法计算:22+-+;x y x xy y()()(3)请计算32()()3452++-÷+的商式与余式.x x x x(4)若2320x x+-=,那么43++-的值是.x x x22356。
2023-2024学年江苏省苏州市张家港梁丰中学雏鹰班七年级(下)3月月考数学试卷+答案解析
2023-2024学年江苏省苏州市张家港梁丰中学雏鹰班七年级(下)3月月考数学试卷一、选择题:本题共15小题,每小题3分,共45分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列各式计算正确的是()A. B.C. D.2.中国大陆芯片领域的龙头企业“中芯国际”目前已经实现工艺芯片的量产,使中国集成电路制造技术与世界最先进工艺拉近了距离.数据用科学记数法表示为()A. B. C. D.3.若,则下列不等式一定成立的是()A. B. C. D.4.下列式子从左到右的变形是因式分解的是()A. B.C. D.5.如图,有A、B、C三种类型的卡片若干张,如果要拼成一个长为,宽为的大长方形,则需要A类、B类、C类卡片的张数分别为()A.5,3,6B.6,7,2C.6,2,7D.5,2,66.下列各对数值中,哪一组是方程的解()A. B. C. D.7.被历代数学家尊为“算经之首”的《九章算术》是中国古代算法的扛鼎之作.《九章算术》中记载:“今有五雀、六燕,集称之衡,雀俱重,燕俱轻.一雀一燕交而处,衡适平.并燕、雀重一斤.问燕、雀一枚各重几何?”译文:“今有5只雀、6只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻.将一只雀、一只燕交换位置而放,重量相等.5只雀、6只燕重量为1斤.问雀、燕每只各重多少斤?”设每只雀重x 斤,每只燕重y 斤,可列方程组为()A. B.C.D.8.有4张长为a 、宽为的长方形纸片,按如图的方式拼成一个边长为的正方形,图中阴影部分的面积为,空白部分的面积为若,则a 、b 满足()A.B. C. D.9.若不等式组有解,则m 的取值范围是()A.B.C.D.10.若关于x 的不等式的解集是,则关于x 的不等式的解集是()A.B.C. D.11.用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的深入,铁钉所受的阻力也越来越大.当未进入木块的钉子长度足够时,每次钉入木块的钉子长度是前一次的已知这个铁钉被敲击3次后全部进入木块木块足够厚,且第一次敲击后铁钉进入木块的长度是2cm ,若铁钉总长度为acm ,则a 满足()A.B.C.D.12.已知非负数x ,y ,z 满足,设,则W 的最大值与最小值的和为()A. B.C.D.13.对x,y定义一种新的运算G,规定,若关于正数x的不等式组恰好有4个整数解,则m的取值范围是()A. B. C. D.14.叶子是植物进行光合作用的重要部分,研究植物的生长情况会关注叶面的面积.在研究水稻等农作物的生长时,经常用一个简洁的经验公式来估算叶面的面积,其中a,b分别是稻叶的长和宽如图,k是常数,试验小组采集了某个品种的稻叶的一些样本,发现绝大部分稻叶的形状比较狭长如图,大致都在稻叶的处“收尖”.根据图2进行估算,对于此品种的稻叶,经验公式中k的值约为()A. B.C. D.15.试确定关于x,y的方程的整数解的个数为()A.0B.1C.2D.3二、填空题:本题共15小题,每小题3分,共45分。
江苏省苏州市西安交通大学苏州附属中学2023-2024学年七年级下学期5月月考数学试题
江苏省苏州市西安交通大学苏州附属中学2023-2024学年七年级下学期5月月考数学试题一、单选题1.下列计算正确的是( )A .33634a a a +=B .23a a a ⋅=C .623a a a ÷=D .()235a a = 2.一个不等式组的解在数轴上表示如图,则这个不等式组的解是( )A .13x -<<B .13x -≤<C .13x -<≤D .13x -≤≤ 3.如图,下列条件中,可以判定DE AB ∥的是( )A .E DCA ∠=∠B .DCE E ∠=∠C .180E BCD ∠+∠=︒ D .180ACE E ∠+∠=︒4.若m n >,则下列不等式中不成立...的是( ) A .22m n +>+ B .22m n ->- C .2>2m n -- D .22m n > 5.如图,已知ABC DEF ≌△△,且7040A B ∠=︒∠=︒,,则F ∠的度数是( )A .40°B .50°C .60°D .70° 6.若多项式2429a ka -+可以写成一个整式的平方,则常数k 的值为( ) A .12 B .12± C .6 D .6±7.从A 地到B 地需要经过一段上坡路和一段平路,小明上坡速度为4km /h ,平路速度为5km /h ,下坡速度为6km /h .已知他从A 地到B 地需用35min ,从B 地返回A 地需用24min .问从A 地到B 地全程是多少千米?我们可将这个实际问题转化为二元一次方程组问题,如果设未知数x 、y ,且列出一个方程为354560x y +=,则另一个方程是( ) A .244560x y += B .244660x y += C .245660x y += D .246560x y += 8.如图,ABC V 中,3∠=∠ABC C ,E 分别在边BC ,AC 上,24EDC ︒∠=,3ADE AED ∠=∠,ABC ∠的平分线与ADE ∠的平分线交于点F ,则F ∠的度数是( )A .54°B .60°C .66°D .72°二、填空题9.“沉睡数千年,一醒惊天下”,三星堆遗址在5号坑提取的牙雕制品,最细微处仅为0.00005米,该数据用科学记数法表示为.10.若52m n a a ==,,则m n a -的值为 .11.命题“如果a b =,那么a b =”,则它的逆命题是命题(填“真”或“假”). 12.一个三角形的两边长为5和7,则第三边a 的取值范围是.13.若()()232x a x x x b +-=+-,则a b -=.14.若关于x ,y 的方程组3632x y k x y +=-⎧⎨+=⎩的解满足1x y +=,则k 的值为. 15.若不等式组2111x x m -<⎧⎨+>⎩恰有四个整数解,则m 的取值范围是. 16.将一副三角板按如图放置,则下列结论:①如果∠2=30°.则AC ∥DE ;②∠2+∠CAD =180°;③如果BC ∥AD ,则有∠2=60°;④如果∠CAD =150°,必有∠4=∠C ;其中正确的结论有.17.如图,C 是AB 上一点,分别以AC 、BC 为边画正方形ACDE 与正方形BCFG ,连接CG 、DG .已知 92AB =,CDG V 的面积为74,则正方形ACDE 与正方形BCFG 的面积的和为.18.如图,将ABC V 纸片先沿DE 折叠,再沿FG 折叠,若12228∠+∠=︒,则34∠+∠=.三、解答题19.解方程组2128x y x y +=⎧⎨-=⎩20.因式分解:(1)39-t t ;(2)()()41y y y +--.21.求不等式组273102113x x x +≤+⎧⎪⎨-<-⎪⎩①②的整数解. 22.如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.仅用无刻度的直尺完成下列作图.(1)画出ABC V 向右平移4个单位后的图形111A B C △;(2)画出ABC V 的中线CD ;(3)在图中存在满足QBC △与ABC V 面积相等的格点Q (与点A 不重合)共有个. 23.如图,点A 、C 、D 在同一条直线上,BC AD ⊥,垂足为C ,BC CD =,点E 在BC 上,AC EC =,连接AB ,DE .(1)求证ABC EDC △≌△;(2)写出AB 与DE 的位置关系,并说明理由.24.某景区对基础设施提档升级,计划购置一批A 型和B 型器材.购买1套A 型器材比购买1套B 型器材多50元;购买2套A 型器材和3套B 型器材共需1350元.(1)购买1套A 型器材和1套B 型器材各需多少元?(2)根据景区的实际情况,需购买A 、B 型器材的总数为50套,购买A 、B 型器材的总费用不超过14500元.①请问A 型器材最多购买多少套?②从游客的实际需要出发,其中A 型器材购买的数量不少于B 型器材数量的3倍,该景区共有几种购买方案?试写出所有的购买方案.25.已知关于x 、y 的方程组325233x y a x y a -=-⎧⎨+=+⎩. (1)求方程组的解(用含a 的代数式表示);(2)若方程组的解满足条件0231x y ≤-≤,求a 的取值范围;(3)若x 、y 是等腰三角形的两条边,且等腰三角形的周长为9,求a 的值;(4)若无论a 取何值,等式222x by a b +=+-总成立,求b 的值.26.如图,直线PQ MN ∥,一副三角板(90ABC CDE ∠=∠=︒,30ACB ∠=︒,60BAC ∠=︒,45DCE DEC ∠=∠=︒)按如图①放置,其中点E 在直线PQ 上,点B ,C 均在直线MN 上,且CE 平分ACN ∠.(1)求DEQ ∠的度数;(2)如图②,若将ABC V 绕B 点以每秒5︒的速度按逆时针方向旋转(A ,C 的对应点分别为F ,G ).设旋转时间为t 秒()036t ≤≤;①在旋转过程中,若边BG CD ∥,求t 的值;②若在ABC V 绕B 点旋转的同时,CDE V 绕E 点以每秒4°的速度按顺时针方向旋转.请直接写出旋转过程中CDE V有一边与BG 平行时t 的值.。
七年级下学期第一次月考数学试卷(含参考答案)
七年级下学期第一次月考数学试卷(含参考答案)(满分150分;时间:120分钟)学校:___________班级:___________姓名:___________考号:___________一.选择题(共10小题,每题4分)1.计算:(12)﹣1=()A.2B.-2C.12D.﹣122.地球是人与自然共同生存的家园,在这个家园中,还住着许多常常被人们忽略的微小生命,在冰岛海岸的黄铁矿粘液池中的古菌身上,科学家发现了基因片段,并提取出了最小的生命体,它的直径仅为0.00 000 002米,将数字0.00 000 002用科学记数法表示为()A.2x10﹣7B.2x10﹣8C.2x10﹣9D.20x10﹣83.下面四个图形中,∠1与∠2是对顶角的图形是()A. B. C. D.4.下列计算正确的是( )A.a6+a2=a8B.a6÷a2=a3C.a6·a2=a12D.(a6)2=a125.下列乘法中,不能运用平方差公式进行运算的是( )A.(x+a)(x-a)B.(a+b)(-a-b)C.(-x-b)(x-b)D.(b+m)(m-b )6.如果"□×2ab=4a2b”,那么"口"内应填的代数式是()A.2bB.2abC.aD.2a7.如图,某污水处理厂要从A处把处理过的水引入排水渠PQ,为了节约用料,铺设垂直于排水渠的管道AB.这种铺设方法蕴含的数学原理是()A.两点确定一条直线B.两点之间,线段最短C.过一点可以作无数条直线D.垂线段最短(第7题图) (第10题图)8.如果a=(﹣2024)0,b=(﹣2022)﹣1,c=(-2)2024.则a ,b ,c 三数的大小关系是( ) A.c>a>b B.a>b>c C.a>c>b D.c>b>a9.若(3x+2)(3x+a )的化简结果中不含x 的一次项,则常数a 的值为( ) A.-2 B.-1 C.0 D.210.如图有两张正方形纸片A 和B ,图1将B 放置在A 内部,测得阴影部分面积为2,图2将正方形AB 开列放置后构造新正方形,测得阴影部分面积为20,若将3个正方形A 和2个正方形B 并列放置后构造新正方形如图3,(图2,图3中正方形AB 纸片均无重叠部分)则图3阴影部分面积( )A.22B.24C.42D.44 二.填空题(共6小题,每题4分) 11.计算:a(a+3)= .12.如图,用直尺和三角尺作出直线AB 、CD ,得到AB ∥CD 的理由是 .(第12题图) (第15题图)13.若x 2-kx+4一个完全平方式,则k 的值是 . 14.42020×(﹣0.25)2021= .15.一副三角板按如图方式摆放,且∠1比∠2大50°,则∠1= . 16.观察下列运算并填空: 1×2×3×4+1=25=52; 2×3×4×5+1=121=112; 3×4×5×6+1=361=192;根据以上结果,猜想并研究:(n+1)(n+2)(n+3)(n+4)+1= . 三.解答题(共16小题) 17.(12分)计算:(1)(﹣1)4+(3.14-π)0+(﹣13)﹣1 (2)(-1)3+(3+π)0-|﹣2|+(13)-2(3)(-1)2023-(3.14-π)0-(12)﹣2+|﹣3| (4)﹣12023×|﹣34|+(3.14-π)0-2﹣118.(12分)(1)(a+2b)(3a -b) (2)(12m ³-6m 2+2m)÷2m(3)x 2·x 6-(2x 2)4+x 9÷x (4)m 2·m 4+(m 3)2-m 8÷m 219.(12分)用乘法公式进行简便运算:(1)102x98 (2)10032(3)20242-20232 (4)20232-2023×2048+2024220.(6分)先化简,再求值:(2x+y)(2x -y)-(2x -y )2,其中x=﹣2,y=﹣1221.(4分)如图,已知∠2=∠3,求证:AB∥CD.证明:∵∠2=∠3(已知)又∠1=∠3()∴= ()∴AB∥CD()22.(6分)如图,CE平分∠ACD,若∠1=30°,∠2=60°,求证:AB∥CD.23.(10分)观察以下等式:(x+1)(x2-x+1)=x3+1(x+3)(x2-3x+9)=x3+27(x+6)(x2-6x+36)=x3+216...(1)按以上等式的规律,填空:(a+b)(a2-ab+b2)= ;(2)利用多项式的乘法法则,说明(1)中的等式成立.(3)利用(1)中的公式化简:(x+y)(x2-xy+y2)-(x+2y)(x2-2xy+4y2)24.(12分)实践与探究,如图1,边长为a的大正方形有一个边长为b的小证方形,把图1中的阴影部分折成一个长方形(如图2所示)。
山东省青岛市胶州市瑞华实验初级中学2023-2024学年七年级下学期5月月考数学试题
山东省青岛市胶州市瑞华实验初级中学2023-2024学年七年级下学期5月月考数学试题一、单选题1.正方形的对称轴条数是( ) A .2B .4C .6D .82.下列条件中,能判定两个直角三角形全等的是( ) A .一锐角对应相等 B .两锐角对应相等 C .一条边对应相等D .两条直角边对应相等3.下列用七巧板拼成的图形(不考虑内部线条)中,为轴对称图形的是( )A .B .C .D .4.下列条件不可推得ABC ∆和111A B C ∆全等 的条件是( ) A .11AB A B =,1A A ∠=∠,1C C ∠=∠ B .11AB A B =,11AC AC =,11BC B C = C .11AB A B =,11AC AC =,1B B ∠=∠D .11AB A B =,1A A ∠=∠,1B B ∠=∠5.如图是雨伞在开合过程中某时刻的截面图,伞骨AB AC =,点D ,E 分别是AB ,AC 的中点,DM ,EM 是连接弹簧和伞骨的支架,且=DM EM ,已知弹簧M 在向上滑动的过程中,总有ADM AEM △△≌,其判定依据是( )A .ASAB .AASC .SSSD .SAS6.小芳的爷爷每天坚持体育锻炼,某天他慢步行走到离家较远的公园,打了一会儿太极拳,然后沿原路跑步到家里,下面能够反映当天小芳爷爷离家的距离y (米)与时间x (分钟)之间的关系的大致图象是( )A .B .C .D .7.如图,AB=DE,AC=DF,BC=EF,则∠D 等于( )A .30°B .50°C .60°D .100°8.地表以下岩层的温度()y ℃随着所处深度(km)x 的变化而变化,在某个地点y 与x 的部分对应数据如下表,则该地y 与x 的关系可以近似的表示为( )A .3520y x =+B .3520y x =+C .45y x =D .35y x =9.如图①所示(图中各角均为直角),动点P 从点A 出发,沿A B C D E →→→→路线匀速运动,AFP V 的面积y (2cm )随点P 运动的时间x (s )之间的函数关系图象如图②所示,已知6cm AF =,下列说法错误的是( )A .动点P 速度为1cm/sB .a 的值为30C .EF 的长度为10cmD .当15y =时,x 的值为810.如图,长方形ABCD 中,点E 为AD 上一点,连接CE ,将长方形ABCD 沿着直线CE 折叠,点D 恰好落在AB 的中点F 上,点G 为CF 的中点,点P 为线段CE 上的动点,连接PF 、PG ,若,,AE a ED b AF c ===,则PF PG +的最小值是( )A .a c b +-B .2b c +C .2a b c ++D .a b +二、填空题11.CD 是ABC V 的中线,它把ABC V 分成的两个三角形的周长差是5cm ,8cm BC =,则边AC 长.12.气温与海拔高度有关,一般情况下,每升高1km ,气温下降6C ︒.某山地面温度为28C ︒,请写出气温()C t ︒与高度()km h 之间的关系式:.13.如图,已知方格纸中是 4 个相同的正方形,则∠1 与∠2 的度数和为.14.如图,点E ,F 在BC 上,BE CF =,AFB DEC ∠=∠,请你添加一个条件(不添加字母和辅助线),使得ABF V ≌DCE V ,你添加的条件是.15.如图,在ABC V 中,A ∠、B ∠的平分线相交于点I ,若140AIB ∠=︒,则C ∠=度.16.尺规作图作∠AOB 的平分线方法如下:以O 为圆心,任意长为半径画弧交OA ,OB 于C ,D ,再分别以点C ,D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP .由作法得△OCP ≌△ODP 的根据是.17.如图,D 、E 分别是ABC V 边AB BC ,上的点,2AD BD =,BE CE =,设ADF △的面积为1S ,FCE △的面积为2S ,若36ABC S =△,则12S S -的值为.18.如图,AB CD ∥,90G FEH ∠=∠=︒,45GEF ∠=︒,60H ∠=︒,若28AEG ∠=︒,则DFH ∠=.三、解答题19.作图题:如图,已知,αβ∠∠,线段a ,求作ABC ∆,使,,A B AB a αβ∠=∠∠=∠=. (尺规作图,不写作法,保留作图痕迹).20.(1)()()2223a a a ⋅-÷;(2)20042005514145⎛⎫⎛⎫⋅ ⎪⎪⎝⎭⎝⎭.(3)先化简,再求值:22(2)()(3)52x y x y x y y x ⎡⎤+-+--÷⎣⎦,其中2x =,12y =. 21.已知:点B 、E 、C 、F 在一条直线上,AB DE AC DF BE CF =,,∥∥.求证:ABC DEF ≌△△.22.如图,已知点E 、F 在直线AB 上,点G 在线段CD 上,ED 与FG 交于点H ,C EFG ∠=∠,CED GHD ∠=∠.(1)试判断AED ∠与D ∠之间的数量关系,并说明理由; (2)若85EHF ∠=︒,25D ∠=︒,求AEM ∠的度数.23.如图,点E ,F 在CD 上,AD CB P ,DE CF =,A B ∠=∠,试判断AF 与BE 有怎样的数量和位置关系,并说明理由.24.已知:如图①,AB BD ⊥,DE BD ⊥,点C 是BD 上一点,且BC DE =,CD AB =.(1)试判断AC 与CE 的位置关系,并说明理由;(2)如图②,若把CDE V 沿直线BD 向左移动,使CDE V 的顶点C 与B 重合,AC 与BE 交于点F ,此时AC 与BE 的位置关系怎样?请说明理由;(3)图②中,若12ABC S =△,:3:1AF CF =,求四边形CDEF 的面积.。
江苏省无锡市天一实验学校2023-2024学年七年级下学期数学5月月考试题
江苏省无锡市天一实验学校2023-2024学年七年级下学期数学5月月考试题一、单选题1.如图,由图形a 通过平移可以得到的图形是( )A .B .C .D .2.下列各式中计算正确的是( )A .(﹣2x 2)3=﹣6x 6B .x 3﹣x 2=xC .x 4÷x 2=x 2D .x 3⋅x 3=x 9 3.下列各式中,能用平方差公式进行计算的是( )A .()()22a b b a -+-B .()()a b b a ---C .()()22b a a b +-D .()()a b b a --+4.如图所示,在ABC V 中,90ACB ∠>︒,AD BD BE AE CF AB ⊥⊥⊥,,,垂足分别是D ,E ,F ,则下列说法错误的是( )A .AD 是ABD △的高B .CF 是ABC V 的高 C .BE 是ABC V 的高D .BC 是BCF △的高5.20232024122⎛⎫-⨯ ⎪⎝⎭的值为( )A .2-B .12-C .2D .126.《九章算术》中有这样的问题:只闻隔壁人分银,不知多少银和人;每人6两少6两,每人半斤多半斤;试问各位善算者,多少人分多少银(注:这里的斤是指市斤,1市斤10=两)设共有x 人,y 两银子,下列方程组中正确的是( )A .6x 6y 5x 5y +=⎧⎨-=⎩B .6x 6y 5x 5y +=⎧⎨+=⎩C .6x 6y 5x 5y -=⎧⎨-=⎩D .6x 6y 5x 5y -=⎧⎨+=⎩7.以下四个说法:①两条直线被第三条直线所截,内错角相等;②方程37x y +=有无数个整数解;③ABC V 在平移过程中,对应线段一定平行;④当x 为任意有理数时,2610x x -+的值一定大于1;其中错误的个数为( )A .1B .2C .3D .48.对有序数对(),m n 定义“f 运算”:()(),,f m n am bn am bn =+-,其中a ,b 为常数,f 运算的结果是一个有序数对.如:当1a =,1b =时,()()2,31,5f -=-,若()()3,28,4f -=,则2ab 的值是( )A .2B .1-C .4D .3-9.如图,点A 是直线l 外一点,点B 、C 是直线l 上的两动点,且4BC =,连接AB 、AC ,点D 、E 分别为AC 、BC 的中点,AF 为ABD △的中线,连接EF ,若四边形AFEC 的面积为10,则AB 的最小值为( )A .6B .7C .8D .910.如图所示,两个正方形的边长分别为a 和b ,如果12a b +=,28ab =,那么阴影部分的面积是( )A .40B .44C .32D .50二、填空题11.福岛第一核电站核废水即便被海水稀释后放射量仍达到0.000000109贝克勒尔,数据0.000000109用科学记数法表示为.12.若关于x 、y 的方程355n m n x y -++=是二元一次方程,则mn 的值是.13.已知()()242x ax x b +-+的展开式中不含2x 项,常数项是8-,则b a -=.14.如果不等边三角形的三边长分别是2、7、1x -,那么整数x 的取值是.15.关于x 、y 的方程组363524x y bx ay -=⎧⎨+=-⎩与218x y ax by +=-⎧⎨-=⎩有相同的解,则a b -的值是. 16.在ABC V 中,AD 是BC 边上的高,BE 是ABC ∠的角平分线,直线BE 与高AD 交于点F ,若52ABC ∠=︒,28CAD ∠=︒,则FEC ∠的度数为度.17.在一个三角形中,如果一个角是另一个角的3倍,这样的三角形我们称之为“灵动三角形”.例如,三个内角分别为120︒,40︒,20︒的三角形是“灵动三角形”.如图36MON ∠=︒,在射线OM 上找一点A ,过点A 作AB OM ⊥交ON 于点B ,以A 为端点作射线AD ,交线段OB 于点C (规定060OAC ︒<∠<︒).当ABC V 为“灵动三角形”时,OAC ∠的度数为度.18.如图,ABC V 沿EF 折叠使点A 落在点A '处,、BP CP 分别是ABD ACD ∠∠、平分线,若3016P A EB '∠=︒∠=︒,,则A FC '∠=︒.三、解答题19.计算: (1)011(2024)22-+-+. (2)()()2a b a b -+.20.(1)因式分解:228y -,(2)解方程组:33814x y x y =+⎧⎨-=⎩. 21.如图,已知线段AB ,CD 相交于点O ,OE 平分AOC ∠,交AC 于点E ,180BOE D ∠+∠=︒.(1)求证:OE AD ∥;(2)若80AEO ∠=︒,55B D ∠=∠=︒,ACD ∠的度数.22.画图并填空:如图,在方格纸内将ABC V 经过平移后得到A B C '''V ,图中标出了点B 的对应点B ',解答下列问题。
山西省吕梁市临县2023-2024学年七年级下学期第一次月考数学试题
山西省吕梁市临县2023-2024学年七年级下学期第一次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列方程是一元一次方程的是( )A .10y y -=B .20m +=C .5x y -=D .²2x x = 2.方程526x x -=的解是( )A .2x =B .23x =C .53x =D .1x = 3.若31x +与23x -互为相反数,则x 的值为( )A .4-B .4C .25D .25- 4.二元一次方程3210x y +=的解的情况是( )A .无解B .有且只有一组解C .有两组解D .有无数组解 5.方程5y -7=2y -中被阴影盖住的是一个常数,此方程的解是y =-1.这个常数应是( )A .10B .4C .-4D .-10 6.下列等式变形正确的是( )A .若 12,2x -=-则4x =- B .若 121,23x x x -+-=+则()()631221x x x --=++ C .若513x x +=-,则 531x x -=--D .若 0,5x =则5x = 7.已知 32x k y k =⎧⎨=-⎩是二元一次方程224x y -=的一组解,则k 的值是( ) A .3 B .3- C .2 D .2- 8.下列哪组x ,y 的值不是方程26x y -=的解( )A .45x y =-⎧⎨=-⎩B .80x y =⎧⎨=⎩C .22x y =⎧⎨=-⎩D .41x y =⎧⎨=-⎩9.某班在校园安全教育主题班会上举行安全知识抢答赛,每组一共30个抢答题规则:每道题答对得5分,答错或不答扣2分,晓红最后得分80分,则晓红答对题目的道数是( )A .18B .19C .20D .2210.一个自行车队进行训练,训练时所有队员都以40km /h 的速度前进,突然,6号队员以50km /h 的速度独自行进,行进20km 后掉转车头,仍以50km /h 的速度往回骑,直到与其他队员会合,设6号队员从离队开始到与队员重新会合经过了xh ,则x 的值是( )A .32B .12 C .13 D .49二、填空题11.由a b =,得a b c c=,那么c 应该满足的条件是. 12.如果41x -的值的一半比32x -的值大1,那么x 的值是.13.若x m y n =⎧⎨=⎩是方程35x y -=-的一组解,则262024m n -+=. 14.太原某家具加工厂有15名木工加工桌子和椅子,一张桌子配4把椅子,已知每名木工一天能加工3张桌子或者6把椅子,若安排x 名木工加工桌子,其余木工加工椅子,恰好一天加工的桌子能与椅子配套,则可列方程.15.已知关于x 的一元一次方程 1520249024x x m -=+的解为6x =-,则关于y 的一元一次方程2223152024221243y y m -⎛⎫+=-+ ⎪⎝⎭的解为.三、解答题16.解方程:(1)5(51)13(3)x x +=--.(2)12225x x -+=-. 17.若方程()6137x x +=-的解与关于x 的方程 ()223m x x m -=+的解互为倒数,求m 的值. 18.若关于x ,y 的方程组31334x y k x y +=-⎧⎨+=⎩的一个解为2x =-,求k 的值. 19.小红解方程 21132x x a -+=-时,在去分母的过程中,右边的1-漏乘公分母6,因而求得方程的解为2x =.(1)求a 的值;(2)求出方程的正确解;(3)根据你的学习经验,给同学们提一条关于解一元一次方程的注意事项.20.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意:有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,这样一共走了六天才到达目的地,请问此人第三天走了多少里?21.阅读与思考阅读下列材料,完成后面的任务:我们规定:若关于x 的一元一次方程ax b =的解为x b a =+,则称该方程为“和解方程”,例如:方程24x =-的解为2x =-,而242-=-+,则方程24x =-为“和解方程”. 任务:(1)下列关于x 的一元一次方程是“和解方程”的有______.(填序号)①25x =-;②52x =-;③932x =-. (2)若关于x 的一元一次方程369x a =-是“和解方程”,求a 的值.22.综合与实践为提倡节约用水,某地实施价格调控.该地自来水公司的收费价格如下表:(水费按月结算,3m 表示立方米)根据表中的内容,解答下列问题:(1)小张家四月份的用水量为33.5m,应缴水费________元.(2)若小张家某月的用水量为3a,试用含a的式子表示应缴水费.m(3)已知小张家八月份缴纳水费30元,求小张家八月份的用水量.23.综合与探究如图,在数轴上点A表示数a,点B表示数b,点C表示数c,且a,c满足()2++-=,2a c4120b=.(1)a=_______.(2)若将数轴折叠,使得点A与点C重合,则点B与数_______表示的点重合.(3)点P从点A处以1个单位长度/秒的速度向左运动,同时点Q从点C处以2个单位长度/秒的速度先向左运动,在点Q到达点B后,再以原来的速度向右运动,设运动的时间为t(秒),当t为何值时,点P,Q之间的距离是点C,Q之间的距离的2倍?。
安徽省2023年七年级下学期第一次月考数学试卷1
安徽省 七年级下学期第一次月考数学试卷温馨提示:亲爱的同学,如果把这份试卷比作一片蔚蓝的海,那么,现在我们启航,展开你智慧和自信的双翼,乘风破浪,你定能收获无限…… 一、选择题(每小题3分共30分) 1.下列计算正确的是 ( ) A .3x -2x =1 B .3x+2x=5x 2C .3x ·2x=6xD .3x -2x=x 2.如图,阴影部分的面积是( ) A .xy 27B .xy 29C .xy 4D .xy 23.下列计算中正确的是( )A .2x+3y=5xyB .x ·x 4=x 4C .x 8÷x 2=x 4D .(x 2y )3=x 6y 34.在下列计算中正确的是( ) A .2x +3y =5xy ;B .(a +2)(a -2)=a 2+4; C .a 2•ab =a 3b ;D .(x -3)2=x 2+6x +95.下列运算中结果正确的是( )A .633·x x x =;B .422523x x x =+;C .532)(x x =; D .222()x y x y +=+. 6.下列说法中正确的是( ). A .2t 不是整式; B . y x 33-的次数是4; C .ab 4与xy 4是同类项; D .y1是单项式 7.ab 减去22b ab a +-等于 ( ).A .222b ab a++; B .222b ab a +--;C .222b ab a -+-;D .222b ab a ++-8.下列各式中与a-b-c 的值不相等的是( ) A .a-(b+c ) B .a-(b-c )第2题图aa bb图1 图2(第10题图)C .(a-b )+(-c )D .(-c )-(b-a )9.已知x 2+kxy+64y 2是一个完全平方式,则k 的值是( ) A .8 B .±8 C .16 D .±1610.如下图(1),边长为a 的大正方形中剪去一个边长为b 的小正方形,小明将图(1)的阴影部分拼成了一个长方形,如图(2).这一过程可以验证( ) A .a 2+b 2-2ab=(a-b)2; B .a 2+b 2+2ab=(a+b)2; C .2a 2-3ab+b 2=(2a-b)(a-b) ; D .a 2-b 2=(a+b) (a-b)二、填空题(每小题4分共32分) 11.计算:32()x x -=· . 12.单项式z yx n 123-是关于x 、y 、z 的五次单项式,则n = ;13.若243(3)()x x x x n ++=++,则_______n = 14.若a 2+b 2=5,ab =2,则(a +b )2.15.若4x 2+kx +25=(2x -5)2,那么k 的值是 . 16.计算:1232-124×122=______ ___.17.将多项式42+x 加上一个整式,使它成为完全平方式,试写出满足上述条件的两个整式: , .18.将4个数排成2行、2列,两边各加一条竖直线记成 ,定义 =,若=6,则__________.三、解答题(19题10分,20题12分,21题10分,22题6分,23题8分,24题12分)19.(1)计算:22()()a b a ab b +-+; (2)()()x y x y -+-2(x-y )-20.(1)先化简,再求值:(a –b)2+b(a –b),其中a=2,b=–1/2(2)先化简,再求值:2(32)(32)5(1)(21)x x x x x +-----,其中13x =-21.按下列程序计算,把答案写在表格内:(1)填写表格:输入n 3 21—2 —3 …输出答案11… (2)请将题中计算程序用代数式表达出来,并给予化简.22.如图为杨辉三角表,它可以帮助我们按规律写出(a+b )n(其中n 为正整数)•展开式的系数,请仔细观察表中规律,填出(a+b )4的展开式中所缺的系数. (a+b )1=a+b ;(a+b )2=a 2+2ab+b 2;(a+b )3=a 3+3a 2b+3ab 2+b 3; (a+b )4=a 4+_____a 3b+_____a 2b 2+______ab 3+b 423.阅读下列题目的解题过程:已知a 、b 、c 为ABC △的三边,且满足222244a cbc a b -=-,试判断ABC △的形状.n平方+n÷n -n 答案解:222244(A)a c b c a b -=-2222222222()()()(B)(C)ABC c a b a b a b c a b ∴-=+-∴=+∴是直角三角形△问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号: ;(2)错误的原因为: ; (3)本题正确的结论为:24.(10分)若x+y=3,且(x+2)(y+2)=12. (1)求xy 的值;(2)求x 2+3xy+y 2的值.参考答案教师的职务是‘千教万教,教人求真’;学生的职务是‘千学万学,学做真人’。
2024年江苏南京七年级数学下学期第一次月考模拟练习试卷
2024年江苏省南京市七年级数学下学期第一次月考模拟练习试卷
(测试内容:第7-8章满分:100分)
学校:___________姓名:___________班级:___________考号:___________
.如图所示的图案分别是四种汽车的车标,其中可以看作是由基本图案”经过平移得到的是(....
2.如图,∠1和∠2是同位角的图形有( )
A.1个B.2个C.3个D.4个
A.CF B.BE C.AD
第3题第6题
.下列运算中,正确的是()
∠的度数为.
则DAE
第12题第13题第14题
13.如图,将一副三角尺按如图所示的方式摆放,则∠AED的大小为
∠的度数为
52
∠=°.已知AM与CB平行,则MAC
BAC
图1 图2
条件的t的值为.
三、解答题(本大题10个小题,共68分.)
17.计算:
′′的面积为______.
AA B B
∴∥.(________________________
AD BC
20.如图,已知∥
DE AC,CD
(1)求证:CD EF
∥.
α
DC边上,且∠1=∠2.
(3)在(2)的条件下,若FH⊥BC,∠C=30°,求∠F的度数.为。
辽宁省大连市第九中学2023-2024学年七年级下学期期末模拟(月考)数学试题
辽宁省大连市第九中学2023-2024学年七年级下学期期末模拟(月考)数学试题一、单选题1.下列四个实数中,最大的数是( ) AB .2C .0D .3-2.下列调查方式适合用普查的是( ) A .检测一批LED 灯的使用寿命 B .检测一批家用汽车的抗撞击能力C .测试2024神舟十八号载人飞船的零部件质量情况D .中央电视台《2024年第九季诗词大会》的收视率3.若一个三角形的三边长分别为2、6、a ,则a 的值可以是( ) A .3B .4C .7D .84.如图所示,下列条件中能判定AB CD P 是( )A .12∠=∠B .ADC B ∠=∠ C .180D BCD ∠+∠=︒D .3=4∠∠5.如图,若直线AB 与CD 相交于点O ,OD 平分BOF ∠,OE OF ⊥且29BOD ∠=︒,则C O E ∠的度数为( )A .116︒B .118︒C .119︒D .120︒6.为了解九年级学生的体能情况,随机抽查了30名学生,测试1分钟仰卧起坐的次数,并绘制成如图所示的频数分布直方图.那么仰卧起坐的次数在2530~次的人数占抽查总人数的百分比是( )A .40%B .30%C .20%D .10%7.若32x y =⎧⎨=-⎩是关于x 、y 的方程13x my -=的一个解,则m 的值是( )A .5B .5-C .8D .8-8.不等式12x x ->的解集在数轴上表示正确的是( ) A .B .C .D .9.若m n >,则下列不等式中正确的是( ) A .22m n -<-B .5353m n -<-C .1144m n ->-D .0n m ->10.阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”大意是:“一群乌鸦在树上栖息,若每棵树上有3只,则5只没地方去,若每棵树上有5只,则多了一棵树.”设乌鸦x 只.树y 棵,依题意可列方程组:( )A .355(1)y x y x +=⎧⎨-=⎩B .355(1)x yx y+=⎧⎨-=⎩C .3555y xy x +=⎧⎨=-⎩D .3555y x y x =+⎧⎨=-⎩二、填空题1112.命题“对顶角相等”的逆命题是命题(填“真”或“假”). 13.正六边形的内角和为度.14.如图,将一副三角板如图叠放,A C EDF E ∠=︒∠=∠=︒∠=︒459060,,,三点C 、B 、D 在同一直线上,若EF BC ∥,则BFD ∠=°.15.如图,ABC V 的边长4cm,6cm,3cm AB BC AC ===,将ABC V 沿BC 方向平移()cm 6cm a a <,得到DEF V ,连接AD ,则阴影部分的周长为 cm .三、解答题 16.计算:(1)解方程组:2530x y x y -=⎧⎨+=⎩.(2)解不等式组:2362523x x x x +≤+⎧⎪+⎨<+⎪⎩17.如图,ABC V 中,E 是AB 上一点,过D 作DE BC ∥交AB 于E 点,F 是BC 上一点,连接DF .若1AED ∠=∠.(1)求证:AB DF ∥.(2)若152∠=︒,DF 平分CDE ∠,求C ∠的度数. 18.根据下表回答问题:(1)272.25的平方根是______;4251.528的立方根是______. ______=____________. (3)a ,求4a -的立方根.19.学校社团是指在学校内,由具有相同兴趣、爱好、追求或特征的学生自发组建的群众性组织,学生社团已渐渐成为校园文化生活中重要的组成部分.社团丰富了学生的课余生活,为学生提供了一个展示自我、交流思想、切磋技艺、互相启迪的平台,以增进友谊,培养学生的综合素质.某校科普探究社团对某试验田的某水稻品种稻穗谷粒数目进行调查,从试验田中随机抽取了30株,得到的数据如下(单位:颗): 【收集数据】【整理数据】【分析数据】(1)表格中=a _________,b =_________; (2)此调查中的样本容量为_________; (3)补充完整频数分布直方图;(4)若稻穗谷粒数目在195及以上的为长势良好,该试验田预计种植了该水稻品种有30000株,则有多少株水稻长势良好?20.对于两个关于x 的不等式,若有且仅有一个整数使得这两个不等式同时成立,则称这两个不等式是“互联”不等式,例如不等式1x >和不等式3x <是“互联”不等式. (1)请判断不等式91x -<和27x -≥是否是“互联“不等式,并说明理由; (2)若20x a -<和42x ->是“互联”不等式,求a 的取值范围.21.我校为实现垃圾分类投放,准备在校园内摆放大、小两种垃圾桶.购买2个大垃圾桶和4个小垃圾桶共需560元;购买6个大垃圾桶和8个小垃圾桶共需1360元. (1)求大、小两种垃圾桶的单价;(2)我校准备购进两种型号的垃圾桶若干个,且总费用不超过2880元;①原计划购进垃圾桶30个,最多购买大垃圾桶多少个?②由于政府补贴,所有垃圾桶的价格打8折.按照教育局规定,小垃圾桶的数量不超过大垃圾桶数量的2倍,且所有资金都恰好用完,则最多可以购进小垃圾桶______个.22.(1)如图1,在ABC V 中,点M 在CB 延长线上,点N 在线段AC 上,连接MN 交AB 于点D ,BAN ∠和CMN ∠的平分线交于点P .①若60C ∠=︒,140BDN ∠=︒,请你测量P ∠的度数为______;猜想出C ∠、BDN ∠和P ∠之间的数量关系为______; ②请写出求P ∠度数的过程.(2)如图2,在ABC V 中,点M 在线段CB 上,点N 在CA 延长线上,连接MN 交AB 于点D ,BAN ∠和BMN ∠的平分线交于点P ,求C ∠、BDN ∠和P ∠之间的数量关系.23.如图,在平面直角坐标系中,已知8AOB S =△,OA OB =,7BC =,点P 的坐标是(),6a .(1)求ABC V 三个顶点的坐标; (2)当点P 在CA 的延长线上时,求APAC的值; (3)点P 在第一象限,连接BP 交AC 于点Q ,若PAQ △的面积等于QBC △的面积,求出点P 的坐标.。
福建省莆田砺志学校2023-2024学年七年级下学期第一次月考数学试卷(含详解)
福建省莆田砺志学校2023-2024学年七年级(下)第一次月考数学试卷一、单项选择题:本题共10小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)图中的∠1、∠2可以是对顶角的是( )A.B.C.D.2.(5分)一个正数的平方根是2x+3和x﹣3,则这个数是( )A.0B.9C.81D.9或813.(5分)如图,已知直线a∥b,∠1=100°,则∠2等于( )A.60°B.70°C.80°D.100°4.(5分)下列各式,正确的是( )A.B.C.D.5.(5分)如图,△ABC沿射线BC方向平移到△DEF(点E在线段BC上),如果BC=8cm,EC=5cm,那么平移距离为( )A.3cm B.5cm C.8cm D.13cm6.(5分)点P(m+3,m+1)在直角坐标系的x轴上,则点P坐标为( )A.(0,﹣2)B.(2,0)C.(4,0)D.(0,﹣4)7.(5分)如果点P(a,b)在第三象限,那么点Q(﹣a,b﹣1)所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限8.(5分)在平面直角坐标系中,有一点A(n﹣1,m+3)在第一象限,且点A到x轴的距离为2,到y轴的距离为4,则n、m的值分别为( )A.5,﹣1B.3,1C.2,4D.4,29.(5分)已知,,则( )A.14.35B.143.5C.45.39D.453.910.(5分)如图,已知长方形纸片ABCD,点E和点F分别在边AD和BC上,且∠EFC=37°,点H和点G分别是边AD和BC上的动点,现将点A,B,C,D分别沿EF,GH折叠至点N,M,P,K,若MN ∥PK,则∠KHD的度数为( )A.37°或143°B.74°或96°C.37°或105°D.74°或106°二、填空题:本题共6小题,每小题4分,共24分。
北京师范大学附属实验中学2023-2024学年七年级下学期月考数学试题(含答案)
北师大实验中学2023—2024学年度第二学期初一数学阶段练习试卷说明:1.本试卷考试时间为90分钟,总分数为110分.2.本试卷共7页,四道大题,26道小题.3.请将答案都写在答题纸上.4.一律不得使用涂改液及涂改带,本试卷主观试题铅笔答题无效.5.注意保持卷面整洁,书写工整.A 卷一、选择题(每小题3分,共24分,在每小题给出的四个选项中,只有一个选项符合题意)1.的立方根是()A .2 B . C .4 D .2.通过平移图中的吉祥物“海宝”得到的图形是()A . B . C . D .3中,无理数是( )ABC .3.1415D .4.如图,点E ,B ,C ,D 在同一条直线上,,则的度数是( )A .B .C .D .5.下列说法正确的是()A .经过一点有且只有一条直线与已知直线平行;8-2-4-237237,50A ACF DCF ∠=∠∠=︒ABE ∠50︒130︒135︒150︒B .直线外一点到这条直线的垂线段,叫做点到直线的距离;C .“相等的角是对顶角”是真命题;D .同一平面内,不相交的两条直线是平行线.6.下列式子正确的是()ABC .D .7.如图,两直线平行,则().A . B . C .D .8.如图,如果将图中任意一条线段沿方格线的水平或竖直方向平移1格称为“1步”,那么通过平移要使图中的3条线段首尾相接组成一个三角形,最少需要()A .4步 B .5步 C .6步 D .7步二、填空题:(每小题2分,共16分)9.已知是方程的解,则k 的值是__________.10.如图,直线交于点平分,则__________°.11.对于命题“若,则”,举出能说明这个命题是假命题的一组a ,b 的值,则__________,__________.12.如图,直径为1个单位长度的圆从点A 沿数轴向右滚动(无滑动)一周到达点B ,则的长度为3=±2=-2=4=AB CD 、123456∠+∠+∠+∠+∠+∠=630︒720︒800︒900︒42x y =⎧⎨=-⎩4y kx =+,AB CD ,O OE ,123BOC ∠∠=︒AOD ∠=a b >22a b >a =b =AB__________;若点A 对应的数是,则点B 对应的数是__________.13.已知,则的值是__________.14.如图,在长为50米,宽为30米的长方形地块上,有纵横交错的几条小路,宽均为1米,其它部分均种植花草,则种植花草的面积为__________平方米.15.如果与的两边分别垂直,比的2倍少,则的度数是__________.16.如图,直线,直线l 与直线相交于点E ,F ,点P 是射线上的一个动点(不包括端点E ),将沿折叠,使顶点E 落在点Q 处.若,点Q 恰好落在其中一条平行线上,则的度数为__________.备用图三、解答题(共60分)17.(本题8分)计算:(1(218.(本题10分)(1) (2)19.(本题6分)如图,过三角形的顶点B 画直线,过点C 画的垂线段.1-2|2|(25)0x y x y -++-=x y -α∠β∠α∠β∠42︒α∠AB CD ∥,AB CD EA EPF △PF 52PEF ∠=︒EFP ∠-26x y x y =⎧⎨-=⎩2207441x y x y ++=⎧⎨-=-⎩ABC BE AC ∥AB CF20.(本题8分).如图,的平分线交于点F ,交的延长线于点.求证:.请将下面的证明过程补充完整:证明:,∴__________.(理由:__________)平分,∴__________=__________..,.∴____________________.(理由:__________).(理由:__________)21.(本题8分)已知:如图,四边形中,为对角线,点E 在边上,点F 在边上,且.(1)求证:;(2)若平分,,求的度数.22.(本题7分)列方程组解应用题学校计划在某商店购买秋季运动会的奖品,若买5个篮球和10个足球需花费1150元,若买9个篮球和6个足球需花费1170元.(1)篮球和足球的单价各是多少元?,AD BC BAD ∠∥CD BC ,E CFE E ∠=∠180B BCD ∠+∠=︒AD BC ∥E =∠AE BAD ∠BAE E ∴∠=∠CFE E ∠=∠ CFE BAE ∴∠=∠∥180B BCD ∴∠+∠=︒ABCD ,AD BC AC ∥BC AB 12∠=∠EF AC ∥CA ,50BCD B ∠∠=︒120D ∠=︒BFE ∠(2)实际购买时,正逢该商店进行促销,所有体育用品都按原价的八折优惠出售,学校购买了若干个篮球和足球,恰好花费1760元,请直接写出学校购买篮球和足球的个数各是多少.23.(本题6分)已知有序数对及常数k ,我们称有序数对为有序数对的“k 阶结伴数对”.如的“1阶结伴数对”为,即.(1)有序数对的“3阶结伴数对”为__________;(2)若有序数对的“2阶结伴数对”为,求a ,b 的值;(3)若有序数对的“k 阶结伴数对”是它本身,则a ,b 满足的等量关系是__________,此时k 的值是__________.24.(本题7分)如图,已知线段,点C 是线段外一点,连接,.将线段沿平移得到线段.点P 是线段上一动点,连接.图1 图2 备用图(1)依题意在图1中补全图形,并证明:;(2)过点C 作直线,在直线l 上取点M ,使.①当时,在图2中画出图形,并直接用等式表示与之间的数量关系;②在点P 运动的过程中,当点P 到直线l 的距离最大时,的度数是__________(用含的式子表示)B 卷四、探究题(本题共10分)25.一副三角板按如图所示叠放在一起,若固定,将绕着公共顶点A ,按顺时针方向旋转度,当的一边与的某一边平行时,相应的旋转角的值是____________________.26.已知,直线,点E 为直线上一定点,射线交于点平分(),a b (),ka b a b +-(),a b ()3,2()132,32⨯+-()5,1()2,1-(),a b ()1,5()(),0a b b ≠AB AB AC ()90180CAB αα∠=︒<<︒AC AB BD AB ,PC PD CPD PCA PDB ∠=∠+∠l PD ∥12MDC CDP ∠=∠120α=︒BDM ∠BDP ∠BDP ∠αAOB △ACD △α()0180α︒<<︒ACD △AOB △αAB CD ∥CD EK AB ,F FG.图1 图2 备用图(1)如图1,当时,__________°;(2)点P 为线段上一定点,点M 为直线上的一动点,连接,过点P 作交直线于点N .①如图2,当点M 在点F 右侧时,求与的数量关系;②当点M 在直线上运动时,的一边恰好与射线平行,直接写出此时的度数(用含α的式子表示).,AFK FED α∠∠=60α=︒GFK ∠=EF AB PM PN PM ⊥CD BMP ∠PNE ∠AB MPN ∠FG PNE ∠北师大实验中学2023—2024学年度第二学期初一数学阶段练习参考答案一.选择题1.B 2.D 3.A 4.B 5.D 6.C 7.D 8.B二.填空题9.;10.46;11.答案不唯一,如:;12.;13.;14.1421;15.或;16.或三.解答题17.(1)原式 4分 (2)原式4分18.(1) 5分 (2)5分19.平行线2分,垂线段4分20.每空1分,.(理由:两直线平行,内错角相等)平分,..,..(理由:同位角相等,两直线平行).(理由:两直线平行,同旁内角互补)21.(1)证:又 3分(2)解:,,平分1.5-1,2a b ==-,1ππ-1-42︒106︒38︒64︒16313=⨯-=-4120.9554=-+=-126x y =⎧⎨=⎩532x y =-⎧⎪⎨=⎪⎩AD BC ∥DAE E ∴∠=∠AE BAD ∠DAE BAE ∴∠=∠BAE E ∴∠=∠CFE E ∠=∠ CFE BAE ∴∠=∠AB CD ∴∥180B BCD ∴∠+∠=︒AD BC∥2ACB∴∠=∠12∠=∠ 1ACB∴∠=∠EF AC ∴∥,50AD BC B ∠=︒ ∥120D ∠=︒180130BAD B ∴∠=︒-∠=︒18060BCD D ∠=︒-∠=︒CA BCD ∠1302ACB BCD ∴∠=∠=︒230∴∠=︒又. 5分22.(1)解:设篮球x 元/个,足球y 元/个,根据题意,得,解得答:蓝球80元/个,足球75元/个 5分(2)篮球5个,足球24个或篮球20个,足球8个. 2分23.(1); 1分(2)根据题意,得,解得 3分(3). 2分24.(1)证明:补全图形如图所示,作, 1分∵将线段沿平移得到线段,,,,,即3分(2)解:①点M 在直线的上方时,如图所示:; 1分点M 在直线的下方时,如图所示:; 1分2100BAC BAD ∴∠=∠-∠=︒EF AC∥100BFE BAC ∴∠=∠=︒5101150961170x y x y +=⎧⎨+=⎩8075x y =⎧⎨=⎩(5,3)--215a b a b +=⎧⎨-=⎩23ab =⎧⎨=-⎩12,2a b k ==PQ AC ∥AC AB BD ,BD AC BD AC ∴=∥PQ BD ∴∥,PCA CPQ PDB DPQ ∴∠=∠∠=∠CPD CPQ DPQ PCA PDB ∴∠=∠+∠=∠+∠CPD PCA PDB∠=∠+∠CD 2360BDM BDP ∠+∠=︒CD 2120BDM BDP ∠-∠=︒②. 1分B 卷:25.,,,,5分26.(1)60; 1分(2)①过点P 作,则,如图,,,,即,,,,,2分②如图,当时,延长交于点H ,,当时,如图所示,过点P 作,则,,故的度数为或. 2分90α-︒30︒45︒75︒135︒165︒PQ AB ∥PQ AB CD ∥∥180BMP MPQ ∴∠+∠=︒QPN PNE ∠=∠PN PM ⊥90MPN ∴∠=︒90MPQ QPN ∠+∠=︒9090MPQ QPN PNE ∴∠=-∠=︒-∠180BMP MPQ ∠+∠=︒ 901)80(BMP PNE ∴∠+︒-∠=︒90BMP PNE ∴∠-∠=︒PN FG ∥GF CD 902PNC GHC α∴∠=∠=︒-PM FG ∥PQ AB ∥PQ AB CD ∥∥2PNE α∠=PNE ∠902α︒-2α。
河南省郑州市经济技术开发区第二中学2023-2024学年七年级下学期第一次月考数学试题(无答案)
2023—2024学年下学期第一次学情调研七年级数学试卷(考试时间:100分钟;满分:120分)一.选择题(每小题3分,共30分)1.下列计算,正确的是( )A .B .C .D .2.2024年4月,洛阳牡丹花会将盛大开启.唐代刘禹锡有诗曰:“庭前芍药妖无格,池上芙蓉净少情.唯有牡丹真国色,花开时节动京城.”某品种的牡丹花粉直径约为0.000354米,则数据0.000354用科学记数法表示为( )A .B .C .D .3.下列整式乘法能用平方差公式计算的是()A .B .C .D .4.如图,直线AB ,CD 相交于点O ,于点O ,若,则的度数为( )A .155°B .125°C .115°D .65°5.如果二次三项式是完全平方式,则常数k 的值为( )A. B . C . D .6.如图,将三个相同的三角板不重叠不留空隙地拼在一起,观察图形,在线段BA ,AC ,CE ,EA ,ED ,DB 中,相互平行的线段有( )组.A .4B .3C .2D .17.下列说法正确的是()A .平面内,过一点有且只有一条直线与已知直线垂直;B .有公共顶点且相等的角是对顶角;2222a a a ⋅=236()a a -=-222363a a a -=22(2)4a a -=-43.5410-⨯53.5410-⨯63.5410-⨯435.410-⨯(2)(2)a b a b ---(2)(2)a b a b +-(2)(2)a b a b +-(2)(2)a b b a ----EO AB ⊥35EOC ∠=︒BOD ∠2149x kx -+433443±34±C .直线外一点到已知直线的垂线段,叫做这点到直线的距离;D .过一点有且只有一条直线与已知直线平行.8.如图,水面AB 与水杯下沿CD 平行,光线EF 从水中射向空气时发生折射,光线变成FH ,点G 在射线EF 上,已知,,则的度数是( )A .25°B .35°C .45°D .20°9.将一副直角三角板按下图所示各位置摆放,其中与不相等的是()A . B . C . D .10.如图,,E 为AB 上一点,且垂足为F ,,CE 平分,且,则下列结论:①;②DE 平分;③;④;其中正确的有( )A .①②B .②③④C .①②③④D .①③④二.填空题(每题3分,共15分)11.若代数式有意义,则实数x 的取值范围是________.12.如图,这是小明同学在体育课上跳远测量的方法,其中蕴含的数学道理是________.13.已知,,求的值为________.20HFB ∠=︒45FED ∠=︒GFH ∠α∠β∠AB CD EF CD ⊥90CED ∠=︒AEG ∠CGE α∠=1902AEC α∠=︒-GEB ∠CEF GED ∠=∠180FED BEC ∠+∠=︒0(4)x -912n =36m =23m n -14.如图,一航班沿北偏东60°方向从A 地飞往C 地,到达C 地上空时,由于天气情况不适合着陆,准备备降B 地,已知C 地在B 地的北偏西45°方向,则其改变航向时的度数为________.15.如图1是长方形纸带,,将纸带沿EF 折叠成图2,再沿BF 折叠成图3,则图3中的_______度.三.解答题(共8大题,共75分)16.(10分)计算:(1) (2)(运用整式乘法公式计算)17.(9分)先化简,再求值:,其中,.18.(7分)如图,已知,直线AF 分别与直线BD 、CE 相交于点G ,H ,.求证:.解:∵(已知)( )∴________(等量代换)∴________________(同位角相等,两直线平行)∴________(两直线平行,同位角相等)又∵(已知)∴()∴()α∠27DEF ∠=︒CFE ∠=0231(3.14π)((2)3--+-+-2123124122-⨯22[(2)(2)(2)4](2)a b a b a b b b ---++÷-1a =2b =-AC DF 12∠=∠C D ∠=∠12∠=∠1DGH ∠=∠2∠= C ∠=AC DF D ABG ∠=∠C D ∠=∠19.(8分)已知关于x 的代数式的中不含项与x 项.(1)求m ,n 值;(2)求代数式的值.20.(10分)用尺规完成下列作图:(不写作法,保留作图痕迹)(1)如图,以点B 为顶点,射线BA 为一边,在外作一个角,使它等于;(2)已知,,求作一个角,使它等于与的和.21.(10分)如图,,,点F 在DE 的延长线上,点C 在AB 的延长线上,且EA 平分.(1)求证:;(2)若,求.22.(9分)如图,将边长为的正方形剪出两个边长分别为a ,b 的正方形(阴影部分).观察图形,解答下列问题:(1)用两种不同的方法表示阴影部分的面积.方法1:________,方法2:________;(2)请你直接写出三个代数式:,,ab 之间的等量关系________.21(2)()2x m x x n +-+2x 20232024m n ABC ∠ABC ∠α∠β∠α∠β∠12∠=∠BAE BDE ∠=∠BEF ∠AB DE 40BAE ∠=︒EBD ∠()a b +2()a b +22a b +(3)运用你发现的结论,解决下列问题:已知,,求的值;23.(12分)如图,已知,点E ,F 分别为AB ,CD 之间的点.(1)如图1,若,求的度数;(2)若,.①如图2,请探索的度数是否为定值,请说明理由;②如图3,已知EP 平分,FG 平分,反向延长FG 交EP 于点P ,直接写出∠P 的度数.6x y +=122xy =22x y +AB CD 100E ∠=︒B D ∠+∠30B ∠=︒110D ∠=︒F E ∠-∠BEF ∠EFD ∠。
江苏省苏州市昆山市秀峰中学2023-2024学年七年级下学期第一次月考数学试题
江苏省苏州市昆山市秀峰中学2023-2024学年七年级下学期第一次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列运算不正确的是( )A .()2326ab a b =B .45a a a ⋅=C .244=a a a +D .3412()a a = 2.如图,已知12∠=∠,BAD BCD ∠=∠,下列结论:(1)AB CD P ;(2)AD BC ∥;(3)1D ∠=∠;(4)180D BCD ∠+∠=︒.其中正确的结论共有( )A .1个B .2个C .3个D .4个 3.已知2326212,, a b c ===,则a ,b ,c 的关系为①1b a =+,②2c a =+,③2a c b +=,④23b c a +=+,其中正确的个数有( )A .1个B .2个C .3个D .4个 4.已知直线m n ∥,将一块含30°角的直角三角板ABC 按如图方式放置(∠ABC =30°),其中A ,B 两点分别落在直线m ,n 上,若∠1=20°,则∠2的度数为( )A .20°B .30°C .45°D .50° 5.如图,在ABC V 中,90BAC ∠=︒,AD 是高,BE 是中线,CF 是角平分线,CF 交AD 于点G ,交BE 于点H ,下面说法正确的是( )①ABE V 的面积BCE =△的面积;②=AFG AGF ∠∠;③2FAG ACF ∠=∠;④AF FB =.A .①③④B .①②④C .①②③D .③④ 6.如图①,一张四边形纸片ABCD ,A 50∠=︒,C 150∠=︒,若将其按照图②所示方式折叠后,恰好'MD //AB ,'ND //BC ,则D ∠的度数为( )A .75︒B .70︒C .85︒D .80︒7.如果等式2(23)1x x +-=,则等式成立的x 的值的个数为( )A .1个B .2个C .3个D .4个8.下列说法:①平分三角形内角的射线是三角形的角平分线;②直角三角形只有一条高;③一个多边形的边数每增加一条,这个多边形的外角和就增加180︒;④在ABC V 中,若1123A B C ∠=∠=∠,则ABC V 为直角三角形,其中正确的个数有( ) A .1个 B .2个 C .3个 D .4个二、填空题9.一个氢原子的直径约为0.00000000012m,将0.00000000012这个数用科学记数法表示为10.如图梯形ABCD 中,AD BC ∥,6cm AD =,10cm BC =,高为7cm ,若将梯形ABCD 向右平移4cm 得到梯形A B C D '''',则平移前后两梯形重叠部分的面积为2cm .11.计算:(﹣8)2014×0.1252013=.12.一个等腰三角形的两边长分别为4和8,则这个等腰三角形的周长是. 13.已知一个多边形的内角和与外角和之比为9:2,则它是边形.14.如图是我们常用的折叠式小刀,刀柄外形是一个矩形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成∠1与∠2.若∠1=68°,则∠2=°.15.有一个棱长10cm 的正方体,在某种物质的作用下,棱长以每秒扩大为原来的210倍的速度膨胀,则3秒后该正方体的体积是立方厘米.16.如图,射线,BD AE 分别是ABC V 的外角,ABF CAG ∠∠的角平分线,射线BD 与直线AC 交于点D ,射线AE 与直线BC 交于点E ,若102,27BAC ABC D E ∠=∠+︒∠=∠+︒,则ACB ∠的度数为.17.如图,在ABC V 中,2BF FD =,EF FC =,若BEF △的面积为4,则四边形AEFD 的面积为.18.如图,在同一平面内,线段AM ⊥射线MN ,垂足为M ,线段BC ⊥射线MN ,垂足为C .若点P 是射线MN 上一点,连结PA 、PB ,记PBC α∠=,PAM β∠=,且0180APB ︒∠︒<<,则APB ∠=(用含α、β的代数式表示APB ∠).三、解答题19.计算 (1)2301()20.125201512--⨯++- (2)342442()?·()(2)a a a a a -++-.20.在幂的运算中规定:若x y a a =(0a >且1a ≠,x 、y 是正整数),则x y =.利用上面结论解答下列问题:(1)若693x =,求x 的值;(2)若213318x x ++-=,求x 的值.21.如图,已知ABC V 的面积为16,8BC =.现将ABC V 沿直线BC 向右平移a 个单位到DEF V 的位置.(1)当ABC V 所扫过的面积为32时,求a 的值;(2)连接AE AD ,,当5AB =,5a =时,试判断ADE V 的形状,并说明理由. 22.画图并填空:如图,每个小正方形的边长为1个单位,每个小正方形的顶点叫格点.(1)将ABC V 向左平移8格,再向下平移1格.请在图中画出平移后的A B C '''V ;(2)利用网格在图中画出ABC V 的中线CD ,高线AE ;(3)在图中能使ABC PBC S S =V V 的格点P 的个数有________个(点P 异于A ). 23.王丽在学习中遇到这样一个问题:如图1,在ABC V 中,C B ∠>∠,AE 平分BAC ∠,AD BC ⊥于D .猜想B ∠、C ∠、EAD ∠的数量关系,说明理由.(1)王丽阅读题目后,没有发现数量关系与解题思路.于是尝试代入B ∠、C ∠的值求EAD ∠值,得到下面几组对应值:上表中α=.(2)猜想B ∠、C ∠、EAD ∠的数量关系,说明理由.(3)王丽突发奇想,交换B 、C 两个字母位置,如图2,过EA 的延长线是一点F 作FD BC ⊥交CB 的延长线于D ,当78ABC ∠=︒、22C ∠=︒时,求F ∠度数.24.阅读探究题:【阅读材料】比较两个底数大于1的正数幂的大小,可以在底数(或指数)相同的情况下,比较指数(或底数)的大小,如:5322>,5554>.在底数(或指数)不相同的情况下,可以化相同,进行比较,如:1027与253, 解:103103027(3)3==,3025>Q ,302533∴>.1025273∴>.(1)上述求解过程中,运用了哪一条幂的运算性质(______ )A .同底数幂的乘法B .同底数幂的除法C .幂的乘方D .积的乘方(2)类比解答:比较425,3125的大小.(3)拓展提高:比较5553,4444,3335的大小.25.【发现问题】如图①,小明同学在做光的折射实验时发现:平行于主光轴MN 的光线AB 和CD 经过凹透镜的折射后,折射光线BE DF ,的反向延长线交于主光轴MN 上一点P .【提出问题】小明提出:BPD ABP ∠∠,和CDP ∠三个角之间存在着怎样的数量关系?【分析问题】已知平行,可以利用平行线的性质,把BPD ∠分成两部分进行研究.【解决问题】探究一:请你帮小明解决这个问题,并说明理由.探究二:如图②,P AMP CNP ∠∠∠,,的数量关系为______;如图③,已知,2560ABC C AE CD ︒︒∠=∠=P ,,,则BAE ∠=______°.(不需要写解答过程)【拓广提升】利用探究一得到的结论解决下列问题:如图④,射线ME NF ,分别平分BMP ∠和CNP ME ∠,交直线CD 于点E NF ,与AMP ∠内部的一条射线MF 交字点F ,若2P F ∠=∠,求FME ∠的度数.26.【问题情境】苏科版数学课本七年级下册上有这样一道题:如图1,AD 是ABC V 的中线,ABC V 与ABD △的面积有怎样的数量关系?小旭同学在图1中作BC 边上的高AE ,根据中线的定义可知BD CD =.又因为高AE 相同,所以ABD ACD S S =V V ,于是2ABC ABD S S =△△.据此可得结论:三角形的一条中线平分该三角形的面积.【深入探究】(1)如图2,点D 在ABC V 的边BC 上,点P 在AD 上.①若AD 是ABC V 的中线,求证:APB APC S S =△△;②若3BD DC =,则:APB APC S S =△△______.【拓展延伸】(2)如图3,分别延长四边形ABCD 的各边,使得点A 、B 、C 、D 分别为DH 、AE 、BF 、CG 的中点,依次连结E 、F 、G 、H 得四边形EFGH .①求证:2HDG FBE ABCD S S S +=△△四边形;②若3ABCD S =四边形,则EFGH S =四边形______.27.定义:有一组对角互补的四边形叫做对补四边形.(1)已知四边形ABCD 是对补四边形.①若65A ∠=︒,则C ∠=______°.②如图①,BAD ∠、BCD ∠的平分线分别与BC AD ,相交于点E F ,,且90D ??.求证:AE CF P ;(2)如图②,在四边形ABCD 中,对角线AC BD ,交于点E ,且AC 平分BAD ∠,ABC BEC ∠=∠,CF 平分BCD ∠,与AD 交于点F ,且CF BD ⊥于点G ,则四边形ABCD 是对补四边形吗?请说明理由;(3)已知四边形ABCD 是对补四边形,其三个顶点A B D ,,如图③所示,连接AB AD ,.若AE 平分BAD ∠,CF 平分BCD ∠,且直线AE ,CF 交于点O (与点C 不重合),请直接写出AOC ∠与D ∠之间的数量关系.。
七年级下册数学月考试卷人教版
七年级下册数学月考试卷人教版一、选择题(每小题3分,共30分)下列计算正确的是()A. x+x=x2)=6xC. (-2a-3)(2a-3)=9-4a2=4a2(解析:根据整式的运算法则,选项C正确。
)下列图形中,可以由其中一个图形通过平移得到的是()A. [图形选项A]B. [图形选项B]C. [图形选项C]D. [图形选项D](解析:根据平移的定义和性质,选择符合平移条件的图形。
)从直线EF外一点P向EF引四条线段PA, PB, PC, PD,其中最短的一条是()A. PAB. PBC. PCD. PD(解析:根据垂线段最短的性质,选择从点P到直线EF的垂线段。
)下列各式中,正确的是()A. √25=±5B. √(-6)7=-3 D. -√9=3(解析:根据平方根和立方根的定义,选择正确的等式。
)已知直线AB, CD相交于点O,OE⊥AB于点O,∠BOD=35°,则∠COE 的度数为()A. 35°B. 55°C. 65°D. 70°(解析:根据垂直定义、对顶角相等和角的和差计算,得出∠COE的度数。
)(注:后续选择题继续按照类似的格式进行,包括题目描述、选项和解析,但具体内容会有所不同。
)二、填空题(每小题3分,共15分)若a=3,b=2,则a-b=______。
(解析:直接进行减法运算,得出结果。
)华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米。
数据0.000000007用科学记数法表示为______。
(解析:将小数转换为科学记数法,得出结果。
)三角形两边长分别是2,4,第三边长为偶数,第三边长为______。
(解析:根据三角形的三边关系,确定第三边长的范围,并选择符合条件的偶数。
)m∥n,直角三角板ABC的直角顶点C在两直线之间,两直角边与两直线相交所形成的锐角分别为α、β,则α+β=______。
吉林省长春市长春汽车经济技术开发区第十中学2023-2024学年七年级下学期5月月考数学试题
吉林省长春市长春汽车经济技术开发区第十中学2023-2024学年七年级下学期5月月考数学试题一、单选题1.围棋起源于中国,古代称之为“弈”,至今已有四千多年的历史.下列由黑、白棋子摆成的图案中,是中心对称图形的是( )A .B .C .D . 2.下列方程中,以2x =-为解的方程是( )A .3121x x +=-B .322x x -=C .5362x x -=-D .412x x -=3.不等式213x +>的解集在数轴上表示正确的是( )A .B .C .D . 4.下列长度的三条线段(单位:cm ),能组成三角形的是( )A .1,2,4B .2,4,6C .2,6,7D .5,7,13 5.如图,CE 是ABC V 的外角ACD ∠的平分线,若30B ∠=︒,60ACE ∠=︒,则A ∠=()A .40︒B .100︒C .90︒D .80︒6.下列正多边形的组合中,能够铺满地面不留缝隙的是( ).A .正六边形和正五边形B .正八边形和正三角形C .正五边形和正八边形D .正六边形和正三角形7.如图,△DEF 经过怎样的平移得到△ABC ( )A .把△DEF 向左平移4个单位,再向下平移2个单位B .把△DEF 向右平移4个单位,再向下平移2个单位C .把△DEF 向右平移4个单位,再向上平移2个单位D .把△DEF 向左平移4个单位,再向上平移2个单位8.妈妈带着小明观看了亚运会游泳比赛共消费了410元,表中记录了他们一天所有的消费项目以及部分支出,如果每包饼干13元,每瓶矿泉水2元,那么他们买了包饼干、瓶矿泉水.( )A .1,2B .2,2C .2,3D .3,3 二、填空题 9.根据“x 与5的和比x 的4倍少2”列出的方程是.10.九边形的内角和是.11.如图,在ABC ∆中,AB AC =,4BC =,将ABC ∆沿BC 方向平移得到DEF ∆,若6DE =,1EC =,则四边形ABFD 的周长为.12.如图,已知AD 是ABC V 的中线,CE 是ADC △的中线,ABC V 的面积为8,则CD E V的面积为.13.如图,在ABC V 中,40C ∠=o ,将ABC V 沿着直线l 折叠,点C 在落点D 的位置,则12∠-∠的大小是度.14.若不等式组1240x a x +>⎧⎨-≤⎩有解,则a 的取值范围是.三、解答题15.解方程.(1)856y y -=; (2)12324x x +-=+. 16.解方程组.(1)1234x y x y =+⎧⎨-=⎩; (2)2113423x y x y -=⎧⎨+=⎩. 17.(1)解不等式12x x +>. (2)求不等式412x -≥-的正整数解.18.如图,1∠,2∠,3∠,4∠是五边形ABCDE 的外角,且1375︒∠=∠=,2465︒∠=∠=,求∠AED .19.解不等式组()311263x x x x ⎧-≤-⎨+>⎩①②,请按下列步骤完成解答. (1)解不等式①,得;(2)解不等式②,得;(3)把不等式①和②的解集在数轴上表示出来;(4)所以,原不等式组的解集是.20.填空:已知:如图,AC 、BD 相交于点O .求证:A B C D ∠+∠=∠+∠证明:∵1180A B ∠+∠+∠=︒,(______)∴180A B ∠+∠=︒-∠______.(等式性质)同理可得:180C D ∠+∠=︒-∠______又∵12∠=∠,(______)∴A B C D ∠+∠=∠+∠,(等量代换)21.下图均为55⨯的正方形网格,每个小正方形的顶点称为格点,ABC V 的顶点和点D 均在格点上,只用无刻度的直尺,在给定的网格中,按下列要求作图、并保留作图痕迹.(1)在图1中,将ABC V 向上平移,使点B 与点D 重合,画出11A DC △;(2)在图2中,画出222A B C △,使222A B C △与ABC V 关于点D 成中心对称;(3)在图3中,画出将ABC V 绕点D 顺时针旋转90︒得到的333A B C △.22.随着“低碳生活,绿色出行”理念的普及,新能源汽车成为大部分人首选的交通工具.灯塔市公交公司购买一批A ,B 两种型号的新能源汽车,已知购买3辆A 型汽车和1辆B 型汽车共需要55万元,购买2辆A 型汽车和4辆B 型汽车共需要120万元.(1)求购买每辆A 型和B 型汽车各需要多少万元?(2)若该公司计划购买A 型汽车和B 型汽车共15辆,且总费用不超过220万元,则最少能购买A 型汽车多少辆?23.在ABC V 中,90ACB ∠=︒,50A ∠=︒,点D 是AB 边上一点,将ACD V 沿CD 翻折后得到ECD V .(1)如图1,当点E 落在BC 上时,求BDE ∠的度数;(2)当点E 落在BC 下方时,设DE 与BC 相交于点F .①如图2,若DE BC ⊥,试说明:CE AB ∥;②如图3,连接BE EG ,平分BED ∠交CD 的延长线于点G ,交BC 于点H .若BE CG ∥,试判断CFE ∠与G ∠之间的数量关系,并说明理由.。
山东省济南市历城区济南外国语学校2023-2024学年七年级下学期3月月考数学试题
山东省 济南市 历城区济南外国语学校2023-2024学年七年级下学期3月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.计算:2332⨯为( )A .32B .72C .84D .108 2.利用细菌做生物杀虫剂,可以减轻对环境的污染,苏云金杆菌就是其中一种,其长度大约为0.0000046m ,将0.0000046用科学记数法表示应为( )A .74610-⨯B .74.610-⨯C .60.4610-⨯D .64.610-⨯ 3.下列运算正确的是( )A .3362x x x +=B .()264x x =C .246x x x ⋅=D .()3326x x -=- 4.小明去帮妈妈买菜,从家中出发走20分钟到一个离家900米的菜市场,买菜花了10分钟,之后用15分钟返回家里,下面图形表示小明离家距离y (米)与外出时间x (分钟)之间关系图象的是( )A .B .C .D . 5.下列各式中能用平方差公式计算的是( )A .()()22x y x y -+-B .()()1551m m --C .()()3535x y x y -+D .()()a b a b +-- 6.若()02x +无意义,则3x 是( )A .2-B .8-C .2D .8 7.如图①,在边长为a 的正方形中剪去一个边长为b 的小正方形,然后把剩下部分沿图中实线剪开后排成如图②所示的长方形,通过计算图①、图②中阴影部分的面积,可以得到的代数恒等式为( )A .()()22a b a b a b -=+-B .()2a a b a ab -=-C .()2222a b a ab b -=-+D .()2222a b a ab b +=++ 8.如果14,2m n n x x +==,那么2m x 的值是( ) A .4 B .8 C .64 D .169.若关于x 的二次三项式24(1)1x m x +-+是一个完全平方式,则m 的值为( ). A .5m =- B .3m =- C .5m =或3m =- D .5m =-或3m = 10.地铁给人们带来了快捷、便利的生活,同时也是疏导交通、解决拥堵的最佳方式. 现有甲、乙两个工程队分别同时开挖两条600米长的隧道,所挖隧道长度y (米)与挖掘时间x (天)之间的函数关系如图所示,现有下列说法:①甲队每天挖100米;②乙队开挖2天后,每天挖50米;③甲队比乙队提前2天完成任务;④当2x =或6时,甲、乙两队所挖隧道长度都相差100米.其中正确的有 ( )A .1个B .2个C .3个D .4个二、填空题11.在球的表面积公式24S r π=中,常量是.12.根据图中的程序计算y 的值,若输入的x 值为3,则输出的y 值为.13.计算:()202320240.254-⨯=.14.某次物理兴趣课上,物理老师介绍了世界上有两种表示温度的单位,分别是摄氏温度(℃)和华氏温度(°F ),两种计量之间有如下的对应表:当摄氏温度为80(℃)时,则此时对应的华氏温度为(°F ). 15.要使()32412x x ax x -+++中不含有x 的四次项,则=a .16.如图,有两个正方形A ,B ,现将B 放在A 的内部如图甲,将A ,B 并排放置后构造新的正方形如图乙.若图甲和图乙中阴影部分的面积分别为310和215,则正方形A 与B 的面积之和为.三、解答题17.计算:(1)()233223?-? (2)()()120240112024π2-骣琪---+琪桫18.计算:(1)()322412627a a a a a -÷+⨯ (2)()()()()222x y x y x y x y +--+-19.先化简后求值:[(a -2b )2-(a +3b )(a -2b )]÷(-5b ),其中|a +2|+(b -1)2=0.20.某校门口道路中间的隔离护栏平面示意图如图所示,假如每根立柱宽为0.2米,立柱间距为3米.(1)根据如图所示,写出表格中的=a ;(2)设有x 根立柱,护栏总长度为y 米,求y 与x 之间的关系式;(3)求护栏总长度为93米时立柱的根数?21.某社区为了提升居民的幸福指数,现规划将一块长()91a -米、宽()35b -米的长方形场地(如图)打造成居民健身场所,具体规划为:在这块场地中分割出一块长()31a +米、宽b 米的长方形场地建篮球场,其余的地方安装各种健身器材.(1)求安装健身器材的区域面积;(2)当10a =,15b =时,每平方米的健身器材地面铺设需100元,求安装健身器材的区域地面铺设的费用共多少钱?22.某城市为了加强公民的节气和用气意识,按以下规定收取每月煤气费:所用煤气如果不超过50立方米,按每立方米0.8元收费;如果超过50立方米,超过部分按每立方米1.2元收费.设小丽家每月用气量为x 立方米,应交煤气费为y 元.(1)分别写出煤气不超过50立方米和超过50立方米时,y 与x 之间的关系式;(2)若小丽家4月份的煤气费为88元,那么她家4月份所用煤气为多少立方米?(3)已知小丽家6月份的煤气费平均每立方米0.95元,那么6月份小丽家用了多少立方米的煤气?23.阅读下列材料:已知实数m ,n 满足2222(21)(21)80m n m n +++-=,试求222m n +的值.解:设222m n t +=,则原方程变为(1)(1)80t t +-=,整理得2180t -=,即281t =,9t ∴=±.2220m n +≥Q ,2229m n ∴+=.上面这种方法称为“换元法”,换元法是数学学习中最常用的一种思想方法,在结构较复杂的数和式的运算中,若把其中某些部分看成一个整体,并用新字母代替(即换元),则能使复杂的问题简单化.根据以上阅读材料内容,解决下列问题,并写出解答过程.(1)已知实数x ,y 满足2222(223)(223)27x y x y +++-=,求22x y +的值.(2)在(1)的条件下,若1xy =,求()2x y +和x y -的值.24.已知动点Q 从点F 出发沿图1的边框按F E D C B A →→→→→的路径运动(边框拐角处都互相垂直),相应的QAF △的面积()2cm y 与Q 点移动路程()cm x 的关系图象如图2,根据图象信息回答下列问题:(1)DE =,AB =;当12x =时,点Q 应运动到图1的顶点处;(2)根据以上信息,求m 的值;(3)当24y =时,求x 的值.25.学习整式乘法时,老师拿出三种型号卡片,如图1.(1)选取1张A 型卡片,2张C 型卡片,则应取张B 型卡片才能用它们拼成一个新的正方形,此新的正方形的边长是(用含a ,b 的代数式表示);(2)选取4张C 型卡片在纸上按图2的方式拼图,并得到中间正方形作为第四种D 型卡片,由此可写出的等量关系为;(3)选取1张D 型卡片,3张C 型卡片按图3的方式不重复的叠放长方形MNPQ 框架内,已知NP 的长度固定不变,MN 的长度可以变化,且0MN ≠.图中两阴影部分(长方形)的面积分别表示为1S ,2S ,若2123S S b -=,则a 与b 有什么关系?请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C
D A 21
D C
B
A 七年级数学下学期月考试卷
一、选择题(每小题3分,共30分)
1.已知点M(3a-9,1-a)在第三象限,且它的坐标都是整数,则a=( ) (A)1 (B)2 (C)3 (D)O 2.在实数227
,3.1415,π
,4.15中,无理数的个数有( )
(A )1个 (B )2个 (C )3个 (D )4个
3.设“●,■,▲”分别表示三种不同的物体,如图所示,前两架天平保持平衡,如果要 使第三架天平也平衡,那么“?”处应放“■”的个数为( )
(A)5 (B)4 (C)3 (D)2 4.一个实数的平方根是5a+3和2a-3,则这个实数是( ) (A )4 (B )9 (C )25 (D )49
5.已知关于x 的不等式组,221
x a b x a b -≥⎧⎨-<+⎩的解集为3≤x<5,则b
a 的值是( )
(A )-2 (B )-
12 (C )-4 (D )-14
6.下面图案中,可由一个基本图案平移而成的是( )
7.一袋牛奶的包装盒上标重(200±2)g ,则这袋牛奶的实际重量x
(A)x =200g (B)x =202g (C)x =202g 或198g (D)198g ≤x 8.如图,∠1+∠2+∠3+∠4的度数是( )
(A )600° (B )540° (C )480° (D )360°
9.如图,用黑白两种颜色的正六边形地面砖按如下所示的规律,拼成若干个图案:(1)第4个图 案中有白色的地面砖______块;(2)第n 个图案中有白色地面砖______块( )
(A )16,4n (B) 17,4n+1 (C) 18,4n+2 (D) 18,4n
10.下列能够铺满地面的正多边形组合是( )
(A )正八边形和正方形; (B )正五边形和正十二边形; (C )正六边形和正方形; (D )正七边形和正方形
二.填空题(每小题3分,共24分) 11. 计算-(-3)2+
()2
2--
23--38-= .
12. 已知点A(x ,4-y),点B (1-y ,2x )关于y 轴对称,则y x
的值是________ .
13. 如图1所示,如果∠C=70°,∠A=30°,∠D=110°,那么∠B=____•度,∠1+∠2-∠A=_____度,∠1+∠2+∠B=_____度.
图 1 图 2 图 3
图4
14.某商品的进价是1000元,售价为1500元,由于销售情况不好,商店决定降价出售,但又要保证利润率不低于5%,那么,此商品最低可以打_______折出售.
15. 如图2,一张三角形纸片ABC,∠A=55º,∠B=65º,现将纸片的一角折叠,使点C 落在ΔABC 中,若∠1=20º,则∠2= .
16.,请你写出含有n (n>2
的自然数)的等式表示上述各式规律的一般化公式: .
17.将两块直角三角尺的直角顶点重合为如图3的位置,若∠AOD=0
100,则∠BOC= . 18.如图4,把直角梯形ABCD 沿AD 方向平移到梯形EFGH ,HG=24m,MG=8m,MC=6m,则阴影部分的面积是 .
三、画图题(本题6分)
19.某节目摄制组拍摄节目时,摄影机只能在轨道0A 上移动,演员在0B 方向上的某处P 表演.当摄影机到达点C 处时,离演员最近,拍摄效果最
好.请在图中确定这时演员的位置P .(保留画图痕迹,不写画法) 四、解答题(20、21题各5分,其余各6分,共40分)
20.已知关于x 、y 的方程组21
2x y a x y a +=+⎧⎨-=⎩
的解都是正数,求a 的取值范围.
21.如图,已知∠1 =∠2,∠B =∠C ,可推得AB ∥CD 。
理由如下: ∵∠1 =∠2(已知),且∠1 =∠4( )
∴∠2 =∠4(等量代换)
∴CE ∥BF ( ) ∴∠ =∠3( ) 又∵∠B =∠C (已知) ∴∠3 =∠B (等量代换)
∴AB ∥CD ( )
22.如图:AC 与BD 交于P 点,PA=PB=PC=PD.已知△PAB 的三点坐标为A (2,2),B (6,2), P (4,5)。
(1)求出C ,D 的坐标。
(2)将△PAB 沿AC 方向平移,使P 与C 重合,则平移后的A,B 点
的坐标。
23.如图,ΔABC 中,∠A=40º,∠ABC=110º,CE 平分∠ACB ,CD ⊥AB 于D ,DF ⊥CE 。
求∠CDF 的度数?
24.国际象棋、中国象棋和围棋号称为世界三大棋种.国际象棋中的“皇后”的威力可比中国象棋中的“车”大得多:“皇后”不仅能控制她所在的行与列中的每一个小方格,而且还能控制“斜”方向的两条直线上的每一个小方格.如图甲是一个4×4的小方格棋盘,图中的“皇后Q ”能控制图中虚线所经过的每一个小方格.
① 在如图乙的小方格棋盘中有一“皇后Q ”,她所在的位置可用“(2,3)”来表示,请说明
“皇后Q ”所在的位置“(2,3)”的意义,并用这种表示法分别写出棋盘中不能被该“皇后Q ”所控制的四个位置.
②如图丙也是一个4×4的小方格棋盘,请在这个棋盘中放入四个“皇后Q ”,使这四个“皇后Q ”之间互不受对方控制(在图丙中的某四个小方格中标出字母Q 即可).
26.南方A 市欲将一批容易变质的水果运往B 市销售,共有飞机、火车两种运输方式,现只可选择其中的一种,这两种运输方式的主要参考数据如下表所示:
千米. (1)用含x 的代数式表示使用飞机运输时的总支出费用(包括损耗)W 1.
(2)用含x 的代数式表示使用火车运输时的总支出费用(包括损耗)W 2.
(3)在什么情况下使用飞机运输更合算?
D
F E
C B
A
甲
3 行
乙 丙。