Matlab在数学建模中的简单应用

合集下载

数学建模常用方法MATLAB求解

数学建模常用方法MATLAB求解

数学建模常用方法MATLAB求解数学建模是通过数学方法对实际问题进行数学描述、分析和求解的过程。

MATLAB是一款功能强大的数学软件,广泛用于数学建模中的问题求解。

在数学建模中,常用的方法有数值求解、优化求解和符号计算。

下面将介绍MATLAB在数学建模中常用的方法和求解示例。

1.数值求解方法:数值求解是利用数值计算方法来近似求解实际问题的数学模型。

MATLAB提供了许多数值求解函数,如方程求根、解线性方程组、曲线拟合、积分和微分等。

以方程求根为例,可以使用fsolve函数来求解非线性方程。

示例:求解非线性方程sin(x)=0.5```matlabx0=0;%初始点x = fsolve(fun,x0);```2.优化求解方法:优化求解是在给定约束条件下,寻找使目标函数取得最优值的变量值。

MATLAB提供了许多优化求解函数,如线性规划、二次规划、非线性规划、整数规划等。

以线性规划为例,可以使用linprog函数来求解线性规划问题。

示例:求解线性规划问题,目标函数为max(3*x1+4*x2),约束条件为x1>=0、x2>=0和2*x1+3*x2<=6```matlabf=[-3,-4];%目标函数系数A=[2,3];%不等式约束的系数矩阵b=6;%不等式约束的右端向量lb = zeros(2,1); % 变量下界ub = []; % 变量上界x = linprog(f,A,b,[],[],lb,ub);```3.符号计算方法:符号计算是研究数学符号的计算方法,以推导或计算数学表达式为主要任务。

MATLAB提供了符号计算工具箱,可以进行符号计算、微积分、代数运算、求解方程等。

以符号计算为例,可以使用syms函数来定义符号变量,并使用solve函数求解方程。

示例:求解二次方程ax^2+bx+c=0的根。

```matlabsyms x a b c;eqn = a*x^2 + b*x + c == 0;sol = solve(eqn, x);```以上是MATLAB在数学建模中常用的方法和求解示例,通过数值求解、优化求解和符号计算等方法,MATLAB可以高效地解决各种数学建模问题。

Matlab中的数学建模方法

Matlab中的数学建模方法

Matlab中的数学建模方法引言在科学研究和工程领域,数学建模是一种重要的方法,它可以通过数学模型来描述和解释真实世界中的现象和问题。

Matlab是一款强大的数值计算和数据可视化工具,因其灵活性和易用性而成为数学建模的首选工具之一。

本文将介绍一些在Matlab中常用的数学建模方法,并以实例来展示其应用。

一、线性回归模型线性回归是最常见的数学建模方法之一,用于解决变量之间呈现线性关系的问题。

在Matlab中,可以使用regress函数来拟合线性回归模型。

例如,假设我们想要分析学生的身高和体重之间的关系,并建立一个线性回归模型来预测学生的体重。

首先,我们需要收集一组已知的身高和体重数据作为训练集。

然后,可以使用regress函数来计算回归模型的参数,并进行预测。

最后,通过绘制散点图和回归直线,可以直观地观察到身高和体重之间的线性关系。

二、非线性回归模型除了线性回归外,有时数据之间的关系可能是非线性的。

在这种情况下,可以使用非线性回归模型来建立更准确的数学模型。

在Matlab中,可以使用curvefit工具箱来拟合非线性回归模型。

例如,假设我们想要分析一组实验数据,并建立一个非线性模型来描述数据之间的关系。

首先,可以使用curvefit工具箱中的工具来选择最适合数据的非线性模型类型。

然后,通过调整模型的参数,可以用最小二乘法来优化模型的拟合效果。

最后,可以使用拟合后的模型来进行预测和分析。

三、最优化问题最优化是数学建模的关键技术之一,用于在给定的限制条件下找到使目标函数取得最大或最小值的变量取值。

在Matlab中,可以使用fmincon函数来求解最优化问题。

例如,假设我们要最小化一个复杂的目标函数,并且有一些约束条件需要满足。

可以使用fmincon函数来设定目标函数和约束条件,并找到最优解。

通过调整目标函数和约束条件,以及设置合适的初始解,可以得到问题的最优解。

四、概率统计模型概率统计模型用于解决随机性和不确定性问题,在许多领域都得到广泛应用。

MATLAB在数学建模中的应用

MATLAB在数学建模中的应用

>> a=[1 -1 4 -2;1 -1 -1 2;3 1 7 -2;1 -3 -12 6];
>> rref(a) 将矩阵A化为最简阶梯形
1 0 0 0 RREF Reduced row
ans = 0 1 0 0 0010
echelon form R(A)=4=n;
0 0 0 1 所以方程组只有零解。
X = 0.0010 -1.5708 0.0008 FVAL =-2.5000
MATLAB在《微积分》中的应用 5、求积分
例9 求不定积分 cos2xcos3xdx
>> int(cos(2*x)*cos(3*x))
Integrate:积分
ans =1/2*sin(x)+1/10*sin(5*x)
MATLAB的功能
➢ MATLAB产品组是从支持概念设计、算法开发、建模仿真,
到实时实现的集成环境,可用来进行:
➢ 数据分析 ➢ 数值与符号计算 ➢ 工程与科学绘图 ➢ 控制系统设计 ➢ 数字图像信号处理 ➢ 建模、仿真、原型开发 ➢ 财务工程、应用开发、图形用户界面设计
MATLAB语言特点
➢ 编程效率高,允许用数学的语言来编写程序 ➢ 用户使用方便,把程序的编辑、编译、连接和执行融为一体 ➢ 高效方便的矩阵和数组运算 ➢ 语句简单,内涵丰富 ➢ 扩充能力强,交互性,开放性 ➢ 方便的绘图功能 ➢ 该软件由c语言编写,移植性好
0
>> int(exp(-x^2/2),0,1)
erf (x) 2 xet2dt
0
ans =
1/2*erf(1/2*2^(1/2))*2^(1/2)*pi^(1/2)
ans 2 2 2et2dt

MatLab图形功能及其在数学建模中的应用

MatLab图形功能及其在数学建模中的应用
2 2
x2 + y2
王远干主讲
2 三维图形
用以下程序实现: x=-7.5:0.5:7.5;y=x; [X,Y]=meshgrid(x,y); R=sqrt(X.^2+Y.^2)+eps; Z=sin(R)./R; mesh(X,Y,Z)
王远干主讲
2 三维图形
王远干主讲
2 三维图形
将mesh改为surf
时刻 (h) 水位 (cm) 时刻 (h) 水位 (cm) 时刻 (h) 水位 (cm) 0 968 9.98 // 0.92 948 1.84 931 2.95 913 3.87 898 4.98 881 5.90 869 7.01 852 7.93 839 8.97 822
10.92 10.95 12.03 12.95 13.88 14.98 15.90 16.83 17.93 // 1082 1050 1021 994 965 941 918 892
王远干主讲
1. 二维图形
1.5其它 还有一些画2维图形的命令,如 fplot(‘fun’,[xmin xmax ymin ymax]) 在[xmin xmax]内画出以字符串fun表示 的函数图形,[ymin ymax]给出了y的限 制 fplot('sin(x)./x',[-20 20 -0.4 1.2]),gtext('sinx/x')
王远干主讲
3. 建模中的应用示例
例:船在该海域会搁浅吗? 在某海域测得一些点(x, y)处的水深z(单 位:英尺)由下表给出,水深数据是在 低潮时测得的。船的吃水深度为5 英尺, 问在矩形(75,200)×(−50,150)里的哪些 地方船要避免进入。
王远干主讲

matlab数学建模100例

matlab数学建模100例

matlab数学建模100例Matlab是一种强大的数学建模工具,广泛应用于科学研究、工程设计和数据分析等领域。

在这篇文章中,我们将介绍100个使用Matlab进行数学建模的例子,帮助读者更好地理解和应用这个工具。

1. 线性回归模型:使用Matlab拟合一组数据点,得到最佳拟合直线。

2. 多项式拟合:使用Matlab拟合一组数据点,得到最佳拟合多项式。

3. 非线性回归模型:使用Matlab拟合一组数据点,得到最佳拟合曲线。

4. 插值模型:使用Matlab根据已知数据点,估计未知数据点的值。

5. 数值积分:使用Matlab计算函数的定积分。

6. 微分方程求解:使用Matlab求解常微分方程。

7. 矩阵运算:使用Matlab进行矩阵的加减乘除运算。

8. 线性规划:使用Matlab求解线性规划问题。

9. 非线性规划:使用Matlab求解非线性规划问题。

10. 整数规划:使用Matlab求解整数规划问题。

11. 图论问题:使用Matlab解决图论问题,如最短路径、最小生成树等。

12. 网络流问题:使用Matlab解决网络流问题,如最大流、最小费用流等。

13. 动态规划:使用Matlab解决动态规划问题。

14. 遗传算法:使用Matlab实现遗传算法,求解优化问题。

15. 神经网络:使用Matlab实现神经网络,进行模式识别和预测等任务。

16. 支持向量机:使用Matlab实现支持向量机,进行分类和回归等任务。

17. 聚类分析:使用Matlab进行聚类分析,将数据点分成不同的类别。

18. 主成分分析:使用Matlab进行主成分分析,降低数据的维度。

19. 时间序列分析:使用Matlab进行时间序列分析,预测未来的趋势。

20. 图像处理:使用Matlab对图像进行处理,如滤波、边缘检测等。

21. 信号处理:使用Matlab对信号进行处理,如滤波、频谱分析等。

22. 控制系统设计:使用Matlab设计控制系统,如PID控制器等。

MATLAB在数学建模中的应用

MATLAB在数学建模中的应用

MATLAB在数学建模中的应用随着科学技术的不断进步,数学建模在许多领域得到了广泛的应用。

其中,MATLAB作为一种功能强大的计算软件,具有很多优势,使其成为数学建模中的重要工具之一。

本文将介绍MATLAB在数学建模中的应用。

一、MATLAB的基本特点MATLAB是一种用于数学计算、数据分析、可视化和编程的高级技术计算软件。

它提供了许多方便且易于使用的功能,包括数值分析、矩阵计算、信号处理、图像处理、统计分析和数据可视化等等。

MATLAB的高度集成性、易于编程、优雅的编程语言和强大的可视化功能,使其广泛应用于工程领域、科学研究、数学建模等领域。

二、MATLAB在数学建模中的应用1.求解数学模型MATLAB提供了一组广泛的数学函数和工具箱,用于求解各种数学模型。

例如微分方程、线性代数、函数逼近和数值积分等等。

通过这些工具箱可方便地进行数学建模,完成各种数学问题的求解。

同时,MATLAB的计算速度非常快,可以大大缩短计算时间,提高求解精度。

2.绘制图像MATLAB可以生成各种类型的图形和图表,从二维和三维函数图到统计图和数据可视化。

因为MATLAB支持向量和矩阵计算,因此绘制图像非常方便,可以准确地显示数学模型的参数变化。

这对于数学建模的理解和分析,以及对结果的解释和演示非常有帮助。

3.设计算法MATLAB是一种基于高级编程语言的环境。

因此,它为数学建模者提供了编写自己的算法的机会。

MATLAB不仅提供了许多内置的算法,而且还可以自定义算法,以满足特定的需求。

这给数学建模者带来了更多的灵活性和自主性。

4.交互式研究MATLAB提供了交互式控制台,将数值计算和可视化相结合。

数学建模者可以通过这个控制台和模型进行交互式研究,并在过程中进行参数设置和模型调整。

这种交互方式可以及时观察模型的性能和结果,以便及时调整模型参数。

同时它也可以帮助数学建模者更加深入地理解模型本身。

三、MATLAB在数学建模中的优势MATLAB具有许多出色的特点,使得它成为数学建模中的首选工具。

Matlab在数学建模中的应用3页word

Matlab在数学建模中的应用3页word

Matlab在数学建模中的应用一、前言由实验数据建立数学模型,我们通常采用回归分析,在热油管道运行优化软件的开发中,需要根据不同油品的粘温数据,回归出粘温关系数学模型,以计算出不同温度下的油品粘度。

二、热油管道运行优化软件简介1. 功能需求本软件的功能为已知输油管道系统的运行参数,寻求在特定输油任务的前提下,输油费用最小值时的工况组态,并可选择输出各工况组态的运行参数和相应费用。

2. 编程语言及开发环境本软件的功能侧重于数值计算,在寻优过程中需要进行大量的数据处理,为了能够快速得到寻优结果,需要软件具有较高的执行效率,因此本软件编程语言选择C++语言。

C++语言程序生成代码质量高,一般只比汇编程序生成的目标代码效率低10~20%,且具有指针操作功能,能够象汇编语言一样对位、字节和地址进行操作,使程序的算法更加灵活。

本软件采用Visual C++ 6.0作为软件开发环境,这是一种可视化编程工具,界面友好,逻辑清晰,调试方便,界面编制能力很强,开发的软件可以在Windows系列操作系统上良好运行。

3、软件界面本软件运行后,主界面如下图所示三、在VC++中通过调用Matlab实现回归分析1. 在VC++中调用Matlab方法简介Matlab是一种功能非常强大的数学分析软件,它广泛应用于线性代数、自动控制理论、数理统计、动态系统仿真等领域,具有扩展性好、易学易用、方便快捷等优点,但Matlab语言是一种解释性语言,它实时效率差、不可以脱离其环境独立运行,而在VC++中调用Matlab,既能保留Matlab的优良算法,又能保持VC++的高效率性, 能大大缩短本功能模块的开发周期,在VC++中调用Matlab 主要有以下两种方法:(1) 利用Matlab引擎 Matlab引擎采用客户机和服务器的计算方式,在运行中,VC++开发的程序为前端客户机,它向Matlab引擎传递命令和数据信息,并从Matlab引擎中接收数据信息,这种方法调用Matlab 采用较少的代码即可实现,但不能脱离Matlab 运行环境,且运行速度缓慢。

MATLAB在数学建模方面的应用

MATLAB在数学建模方面的应用

MATLAB在数学建模方面的应用计算机仿真技术与CAD——基于MATLAB的控制系统(第二版)课程结业论文课题:matlab在数学建模方面的应用专业班级: 08自动化学生:学号:设计时间: 2010/12/20论文目录一、MATLAB简介二、Matlab在现在科技及生产上的应用三、利用matlab实现数学建模的一般步骤四、Matlab在数学建模方面的应用示例五、论文结束语一、 MATLAB的简介:MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。

它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。

MATLAB和Mathematica、Maple并称为三大数学软件。

它在数学类科技应用软件中在数值计算方面首屈一指。

MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连matlab开发工作界面接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。

二、软件应用Matlab以其丰富的数据类型和结构、友善的面向对象、快速的图形可视、广博的应用开发工具在控制界得到了广泛地应用,目前已成为控制系统计算机辅助设计领域中最流行和最受欢迎的软件环境。

但是,用Matlab进行控制系统分析,需要学会Matlab的M编程语言和熟悉它的子程序。

因此,如何利用Matlab强大的图形对象属性设置技术及图形用户界面制作技术为自动控制教学服务成为主要课题。

为此,设计了具有良好的人机交互界面并能完成线性控制系统的计算机辅助分析的教学软件。

数学模型是控制系统分析研究的基础,也是综合设计系统的依据。

Matlab在数学建模中的应用

Matlab在数学建模中的应用
• 同样,可以以Y轴为对数重新绘制上述曲线,程序为:
x=[0:0.01:2*pi] y=abs(1000*sin(4*x))+1 semilogy(x,y); 单对数Y轴绘图命令
1.2特殊坐标图形
• 二、 极坐标图
函数polar(theta,rho)用来绘制极坐标图,theta为 极坐标角度,rho为极坐标半径
4.4 三维图形
• 三、surf函数
• surf用于绘制三维曲面图,各线条之间的补面用颜色 填充。surf函数和mesh函数的调用格式一致。
• 函数格式: surf (x,y,z)
• 其中x,y控制X和Y轴坐标,矩阵z是由x,y求得的曲 面上Z轴坐标。
•【例11】 下列程序绘制三维曲面图形 •x=[0:0.15:2*pi];
• y=sin(x);
• z=cos(x); • plot(x,y,'b');
• hold on;
• plot(x,z,'g'); 弦曲线
%绘制正弦曲线 %设置图形保持状态 %保持正弦曲线同时绘制余
• axis ([0 2*pi -1 1]);
• legend('cos','sin');
• hold off
• 【例5】 为正弦、余弦曲线增加图例
1.1 二维图形
二、 subplot函数 • (一)subplot(m,n,p) • 该命令将当前图形窗口分成m×n个绘图
区,即每行n个,共m行,区号按行优先 编号,且选定第p个区为当前活动区。
【例6】 在一个图形窗口中同时绘制正弦、 余弦、正切、余切曲线
1.1 二维图形
• 一、阶梯图形
• 函数stairs(x,y)可以绘制阶梯图形,如下列程序段:

MATLAB在简单数学建模中的应用

MATLAB在简单数学建模中的应用

《MATLAB语言》课程论文MATLAB在简单数学建模中的应用姓名:马辉学号:12010245354专业:通信工程班级:1班指导老师:汤全武学院:物理电气信息学院MATLAB在简单数学建模中的应用(马辉 12010245354 2010级1班)[摘要]通过对实际问题的抽象和简化,引入一些数学符号、变量和参数,运用某些规律,用数学语言和数学方法建立变量、参数间的内在联系,得出一个数学结构,该数学结构是实现的一个近似刻画,称之为数学模型。

建立和求解数学模型的全过程就是数学建模,它包括模型的建立、求解、分析、检验循环往返的全过程, MATLAB语言正是处理此类问题的很好工具,既能进行数值求解,又能绘制有关曲线,非常方便实用。

[关键词] MATLAB语言数学建模数学模型一、问题的提出应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。

建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。

要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题。

这就需要深厚扎实的数学基础,敏锐的洞察力和想象力,对实际问题的浓厚兴趣和广博的知识面。

数学建模是联系数学与实际问题的桥梁,是数学在各个领域广泛应用的媒介,是数学科学技术转化的主要途径,数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之一。

Matlab软件能将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。

matlab在数学建模中的运用

matlab在数学建模中的运用

matlab在数学建模中的运用
Matlab广泛应用于数学建模中,因为它具有处理数学问题的强大功能和丰富的工具集。

以下是Matlab在数学建模中的一些常见应用:
1.解微分方程:Matlab提供了各种数值求解器和工具,可以解决各种常微分方程和偏微分方程,这对于动力学系统、控制系统和其他物理现象的建模与仿真非常有用。

2.优化问题:Matlab包括了丰富的优化工具箱,可用于解决各种优化问题,例如线性规划、非线性规划、整数规划等。

3.统计分析:Matlab提供了丰富的统计工具箱,可用于数据分析、拟合曲线、确定概率分布、执行假设检验等。

4.数值模拟:Matlab具有强大的数值计算能力,可用于模拟各种数学模型,例如物理系统、金融模型、生态系统等。

5.图形可视化:Matlab提供了丰富的绘图功能,可用于可视化数学模型的结果和解决方案,以及制作各种类型的图表和图形。

MATLAB在数学建模中的应用

MATLAB在数学建模中的应用
MATL AB还可以与仿真软件、控制系统等其他工程软件集成,提高工程应用的效率和精度。
M AT L A B 在 教 育 和 研 究 领 域 的 应 用 前 景
促进数学建模教 育:MATL AB提 供了丰富的工具 和资源,帮助学 生和教师更容易 地学习和教授数 学建模。
支持科研工作: 科学家和研究人 员使用MATL AB 进行数据分析和 可视化,算法开 发,以及模拟和 建模。
案例:使用MATL AB求解非线性最小二乘问题,通过迭代算法找到最优解。
优势:MATL AB提供了高效的优化工具箱,可以进行大规模的优化计算。
应用领域:非线性优化问题在许多领域都有应用,如机器学习、图像处理、控制系统 等。
微分方程的求解
描述了使用MATL AB求解微分方程的基本步骤 提供了使用MATL AB求解微分方程的示例代码 介绍了使用MATL AB求解微分方程的优势和局限性 总结了MATL AB在数学建模中求解微分方程的应用场景和效果
如何使用MATLAB 进行数学建模
M AT L A B 的 基 本 语 法 和 操 作
变量定义:使用变量名和赋值符号(=)定义变量 矩阵运算:使用方括号[]进行矩阵的创建和运算 函数定义:使用function关键字定义函数,输入输出参数用逗号分隔 控制流语句:使用if、else、for、while等控制流语句进行程序流程控制
M AT L A B 的 起 源 : 由 C l e v e M o l e r 于1980年代初开发,旨在为线性 代数课程提供一种更有效的方法。
M AT L A B 的 发 展 : 经 过 多 年 的 不 断 发 展 和 完 善 , M AT L A B 已 经 成 为 一 个功能强大的数学计算软件,广泛 应用于科学、工程和数学领域。

MATLAB及在数学建模中的应用

MATLAB及在数学建模中的应用

1讲MATLAB及在数学建模中的应用•MatLab简介及基本运算•常用计算方法•应用实例MatLab简介及基本运算1.1 MatLab简介1.2 MatLab界面1.3 MatLab基本数学运算1.4 MatLab绘图简介•MATLAB名字由MATrix和LABoratory 两词组成。

20世纪七十年代后期, 美国新墨西哥大学计算机科学系主任Cleve Moler教授为减轻学生编程负担,为学生设计了一组调用LINPACK和EISPACK库程序的“通俗易用”的接口,此即用FORTRAN编写的萌芽状态的MATLAB。

经几年的校际流传,在Little的推动下,由Little、Moler、Steve Bangert合作,于1984年成立了MathWorks公司,并把MATLAB正式推向市场。

从这时起,MATLAB的内核采用C语言编写,而且除原有的数值计算能力外,还新增了数据图视功能。

1997年春,MATLAB5.0版问世,紧接着是5.1、5.2、5.3、6.0、6.1、6.5、7.0版。

现今的MATLAB拥有更丰富的数据类型和结构、更友善的面向对象、更加快速精良的图形可视、更广博的数学和数据分析资源、更多的应用开发工具。

•20世纪九十年代的时候,MATLAB已经成为国际控制界公认的标准计算软件。

MATLAB具有用法简易、可灵活运用、程式结构强又兼具延展性。

以下为其几个特色:①可靠的数值运算和符号计算。

在MATLAB环境中,有超过500种数学、统计、科学及工程方面的函数可使用。

②强大的绘图功能。

MATLAB可以绘制各种图形,包括二维和三维图形。

③简单易学的语言体系。

④为数众多的应用工具箱。

MatLab界面基本数学运算•MATLAB的基本算术运算有:+(加)、-(减)、*(乘)、/(右除)、\(左除)、^(乘方)还有一种特殊的运算,点运算:.*、./、.\和.^。

•输入方式:在MATLAB命令窗中输入>> (12+2*(7-4))/3^2>> z=2*exp(2)+sin(pi/6)>> B=[1+5i,2+6i;3+8*i,4+9*i]在M文件中输入例1.1 求方程3x4+7x3+9x2-23=0的全部根p=[3,7,9,0,-23]; %建立多项式系数向量x=roots(p) %求根1.2 求一元二次方程ax2+bx+c=0的根。

matlab在数学建模中的应用

matlab在数学建模中的应用

Matlab在数学建模中的应用数学建模是通过对实际问题的抽象和简化,引入一些数学符号、变量和参数,用数学语言和方法建立变量参数间的内在关系,得出一个可以近似刻画实际问题的数学模型,进而对其进行求解、模拟、分析检验的过程。

它大致分为模型准备、模型假设、模型构成、模型求解、模型分析、模型检验及应用等步骤。

这一过程往往需要对大量的数据进行分析、处理、加工,建立和求解复杂的数学模型,这些都是手工计算难以完成的,往往在计算机上实现。

在目前用于数学建模的软件中,matlab 强大的数值计算、绘图以及多样化的工具箱功能,能够快捷、高效地解决数学建模所涉及的众多领域的问题,倍受数学建模者的青睐。

1 Matlab在数学建模中的应用下面将联系数学建模的几个环节,结合部分实例,介绍matlab 在数学建模中的应用。

1.1 模型准备阶段模型准备阶段往往需要对问题中的给出的大量数据或图表等进行分析,此时matlab的数据处理功能以及绘图功能都能得到很好的应用。

1.1.1 确定变量间关系例1 已知某地连续20年的实际投资额、国民生产总值、物价指数的统计数据(见表),由这些数据建立一个投资额模型,根据对未来国民生产总值及物价指数的估计,预测未来的投资额。

表1 实际投资额、国民生产总值、物价指数的统计表记该地区第t年的投资为z(t),国民生产总值为x(t),物价指数为y(t)。

赋值:z=[90.9 97.4 113.5 125.7 122.8 133.3 149.3 144.2 166.4 195 229.8 228.7 206.1 257.9 324.1 386.6 423 401.9 474.9 424.5]' x=[596.7 637.7 691.1 756 799 873.4 944 992.7 1077.6 1185.9 1326.4 1434.2 1549.2 1718 1918.3 2163.9 2417.8 2631.6 2954.7 3073]'y=[0.7167 0.7277 0.7436 0.7676 0.7906 0.8254 0.8679 0.91450.9601 1 1.0575 1.1508 1.2579 1.3234 1.4005 1.5042 1.63421.7842 1.95142.0688]'先观察x与z之间,y与z之间的散点图plot(x,z,'*')plot(y,z,'*')由散点图可以看出,投资额和国民生产总值与物价指数都近似呈线性关系,因此可以建立多元线性回归模型012z x y βββε=+++直接利用统计工具箱直接计算[b,bint,r,rint,stats]=regress(z,X,alpha)输入z :n 维数据向量X:[ones(20,1) x y],这里的1是个向量,元素全为常数1,即为ones(n,1)Alpha:置信水平,一般为0.05输出b :β的估计值bint:b 的置信区间r :残差向量z-Xbrint: r 的置信区间Stats:检验统计量2R ,F , p代入上述公式[b,bint,r,rint,stats]=regress(z,X,0.05)有b =322.80.4168-859.2322.75630.61850.859.479=+-z x y由stats =0.2672 920.7 0知z的99.085%可由模型确定,F远超过F检验的临界值,p远小于α=0.05 .bint =224. 421.70.0184 0.8151-1121. -597.5b的置信区间不包含零点,x,y对z影响都是显著的。

matlab数学建模pdf

matlab数学建模pdf

matlab数学建模pdfMATLAB是一种高级编程语言和交互式环境,主要用于数值计算、数据分析和可视化。

它在数学建模方面具有广泛的应用,因为它提供了一个方便的编程环境,支持矩阵和数组操作、函数和方程求解、数据分析和可视化等功能。

以下是一些使用MATLAB进行数学建模的示例:1.线性回归模型:MATLAB提供了一个名为`fitlm`的函数,用于拟合线性回归模型。

以下是一个简单的示例:```matlab%创建自变量和因变量数据x=[1,2,3,4,5];y=[2.2,2.8,3.6,4.5,5.1];%拟合线性回归模型lm=fitlm(x,y);%显示模型摘要summary(lm)```2.非线性最小二乘法拟合:MATLAB提供了一个名为`fitnlm`的函数,用于拟合非线性最小二乘法模型。

以下是一个简单的示例:```matlab%创建自变量和因变量数据x=[1,2,3,4,5];y=[1.2,2.5,3.7,4.6,5.3];%定义非线性模型函数modelfun=@(params,xdata) params(1)*exp(-params(2)*xdata)+params(3); %拟合非线性最小二乘法模型startPoint=[1,1,1];%初始参数值options=optimset('Display','off');%不显示优化过程信息lm=fitnlm(x,y,modelfun,startPoint,options); %显示模型摘要summary(lm)```3.微分方程求解:MATLAB提供了一个名为`ode45`的函数,用于求解常微分方程。

以下是一个简单的示例:```matlab%定义微分方程dy/dx=f(x,y)f=@(x,y)-0.5*y;%初始条件和时间跨度y0=1;tspan=[0,10];%使用ode45进行求解[t,y]=ode45(f,tspan,y0);%可视化结果plot(t,y(:,1))%y是解的矩阵,(:,1)表示取第一列数据作为纵坐标进行绘图xlabel('Time(s)')ylabel('Solution')```。

Matlab在数学建模中的应用(模型求解)

Matlab在数学建模中的应用(模型求解)

qk,t与 Q(k,t)间的绝对误差
e Qt qt
e=Q-q(1:length(Q));
相对误差
E
e
Qt
E=e./Q;
整理一下
停车场问题 (MCM 87B题)
在新英格兰 地区一个镇上,位 于街角处的一个 停车场的场主要 设计停车场的安 排,即设计”在地 上的线应怎样划 法”。这个停车场 是长方形的,长 200英尺,宽100 英尺。
怎样用matlab求解这个模型呢??
分析:对如上面的线形规划问题,可用linprog()函数求解。
模型
Max S 5x 6y s.t. 2x 3y 1400
x 6y 2400 4x 2y 2000 x 0, y 0, x, y z
对应matlab语句
f=[-5,-6]; A=[2 3 b=[1400
n
for d=2:length(Q);
Q1n Qi
Q1=cumQs(udm)=(QQ)(d-1)+Q(d);
i 1
得到
end
1 2
Q12
Q11 ,1
1 2
Q13
Q12 ,1
B ...............................
...............................
甲、乙产品各多少件),使获得利润最大,并求出最大利
润。
品 原材料 能源消耗 劳动力 利润
种 (千克) (百元) (人) (千元)
甲2
1
4
5
乙3
6
2
6
解:设安排生产甲产品x 件,乙产品y 件,相应的利 润为S。则此问题的数学模型为:
Max S 5x 6 y s.t. 2x 3y 1400

Matlab在数学建模中的简单应用(2011)

Matlab在数学建模中的简单应用(2011)

三角函数 反三角函数
指数函数 对数函数 开平方、绝对值 符号函数 求和 、排序 求极限、求积分 方程求根
5.固定变量
z 固定变量 ¾ p
虚数单位
¾ inf 无穷大
¾ –inf 负无穷大
¾ NaN not a number
¾ ans answer
6.自定义函数
z M文件文件名一律以字母打头 z 函数名不能与系统函数重名 function [output 1, …] =
10.作图函数
z stem >> x=0:0.1:2*pi; >> y=sin(x); >> stem(x,y) >> stem(x,y,’r)
10.作图函数
z bar >> p=[21 15 41 10 8 8 3 6
2 30]; >> t=0:9; >> bar(t,p)
10.作图函数
z pie >> x=[59 15 15 10 8 8 8]; >> pie(x);
z fplot z polar z stem z bar z pie
10.作图函数
10.作图函数
z fplot >> fplot(’cos(x)’,[ -pi,pi])
10.作图函数
z polar >> t=0:0.01:4*pi; >>
s=abs(sin(2*t).*cos(2*t)); >> polar(t,s,’-r+’);
11.举例应用
z 插值问题
z 计算学分积点
11.举例应用
z 插值问题 已知某产品从1900年到2010年每隔10年的产

Matlab在数学建模中的应用举例(作图)

Matlab在数学建模中的应用举例(作图)

极坐标
polar
>> t=0:0.01:4*pi;
>> s=abs(sin(2*t).*cos(2*t));
>> polar(t,s,'-r+');
杆图(火柴杆图) stem
>> x=0:0.1:2*pi; >> y=sin(x); >> stem(x,y) >> stem(x,y,'r^')
直方图
errorbar
面域图 area(x,y)
>> x=1:7; >> y=[59 15 15 10 8 8 8 ];
>>area(x,y)
>> area(x,y,'facecolor',... [0.9 0.8 0.7])
多子图
subplot(M,N,x)
>>subplot(2,2,1) >>fplot('sin(x)',[-pi,pi]) >>subplot(2,2,2) >>fplot('cos(x)',[-pi,pi]) >>subplot(2,2,3) >>fplot('tan(x)',[-pi,pi]) >>subplot(2,2,4) >>fplot('cot(x)',[-pi,pi])
网格控制
grid on/off grid minor
>>grid on >>grid minor >>grid off
接下来我们介绍一些常用作图函数 fplot('cos(x)',[ -pi,pi])

matlab在数学建模中的应用

matlab在数学建模中的应用

matlab在数学建模中的应用1 引言Matlab是一种思考数学建模的功能强大的工具,其高级语言和可视化功能,使其成为解决机器学习,数值优化和科学计算问题的理想工具。

Matlab所提供的友好用户界面,可以帮助使用者更好地理解和处理数学模型,并得出正确的结论。

2 模型建立Matlab最重要的用途之一是建立数学模型。

使用Matlab可以简单快速地构建算法,它可以帮助使用者快速分析模型的潜在结果,因此可以更快地确定有效的解决方案。

Matlab提供了许多工具,其中包括可以帮助使用者构建不同类型的模型,并实时展示结果。

3 模型仿真Matlab也可以用于模拟物理系统,运动学和动力学系统,以及工程设计模型。

Matlab使用者可以根据实际应用场景,建立模型,从而研究影响结果的参数变化和探究其他未知因素对结果的影响。

Matlab 可以帮助使用者进行大量仿真,以找出最优的解决方案。

4 数据分析Matlab也可以用于数据分析,使用Matlab可以快速检测数据的结构和特征,并快速处理数据。

它可以用于可视化数据以帮助使用者更好地探究重要信息,Matlab也可以帮助使用者执行机器学习任务,让使用者从大量数据中发现潜在模式。

5 优化Matlab也可以用于优化,可以根据用户定义的目标函数,搜索解空间以找出最优解。

Matlab提供了一些内置优化工具,使用者可以快速找到优化解,提高系统性能。

6 结论从以上可以看出,Matlab在数学建模中有着重要的意义,无论是在建模,模拟,数据分析还是优化方面,Matlab都可以提供全面的支持。

Matlab现在已经成为研究数学建模的首选平台。

MATLAB中的数学建模方法及应用

MATLAB中的数学建模方法及应用

MATLAB中的数学建模方法及应用引言数学建模作为一门重要的学科,已经成为了现代科学研究和工程实践中不可或缺的一部分。

而在数学建模过程中,数值计算和数据分析是关键步骤之一。

MATLAB作为一种强大的数学计算软件,在数学建模领域得到了广泛应用。

本文将介绍MATLAB中常用的数学建模方法,并探讨一些实际应用案例。

一、线性模型线性模型是数学建模中最基础的一种模型,它假设系统的响应是线性的。

在MATLAB中,我们可以通过矩阵运算和线性代数的知识来构建和求解线性模型。

例如,我们可以使用MATLAB中的线性回归函数来拟合一条直线到一组数据点上,从而得到一个线性模型。

二、非线性模型与线性模型相对应的是非线性模型。

非线性模型具有更强的表达能力,可以描述更为复杂的系统。

在MATLAB中,我们可以利用优化工具箱来拟合非线性模型。

例如,我们可以使用MATLAB中的非线性最小二乘函数来优化模型参数,使得模型与实际数据拟合程度最好。

三、微分方程模型微分方程模型在科学研究和工程实践中广泛应用。

在MATLAB中,我们可以使用ODE工具箱来求解常微分方程(ODE)。

通过定义初始条件和微分方程的表达式,MATLAB可以使用多种数值方法来求解微分方程模型。

例如,我们可以利用MATLAB中的欧拉法或者龙格-库塔法来求解微分方程。

四、偏微分方程模型偏微分方程(PDE)模型是描述空间上的变化的数学模型。

在MATLAB中,我们可以使用PDE工具箱来求解常见的偏微分方程模型。

通过定义边界条件和初始条件,MATLAB可以通过有限差分或有限元等方法来求解偏微分方程模型。

例如,我们可以利用MATLAB中的热传导方程求解器来模拟物体的温度分布。

五、曲线拟合与数据插值曲线拟合和数据插值是数学建模过程中常见的任务。

在MATLAB中,我们可以使用拟合和插值工具箱来实现这些任务。

通过输入一系列数据点,MATLAB可以通过多项式拟合或者样条插值等方法来生成一个模型函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档