1.2.1 集合之间的关系1
高职高考数学集合之间的关系
)
A.{1}
B.{-1}
C.{0,1}
D.{-1,0,1}
【答案】D
二、填空题
11.选择适当的符号(∈,∉,⊆,⊇,⊈,⫋,=)填空.
(1)0 ∈ {0};
(2)∅ ⫋ {0};
(3)∅ ⫋ {0,1,5};
(4){a,b} ⊆ {d,a,b};
(5)0 ∉ {x|x2-1=0,x∈R};
系是“从属关系”:“属于”或“不属于”,集合与集合的关
系是“包含关系”:“包含”或“不包含”;正确区分子集与
真子集.
【例2】 (1)集合A={-2,2},B={-2,0,2},则 (
A.A⊈B
B.A⫋B
C.A=B
)
D.A∈B
【点评】 由真子集、集合相等的概念,集合与集合的关系
很快排除A、C、D.
(2)已知集合M={x|x2=4}与集合N={-2,2},则下列关系正确的是
)
D.没有关系
4.下列关系表达正确的是 (
)
A.2⫋{x|x<4}
B.{x|x>4且x<0}=∅
C.{(1,2)}∈{(x,y)|x+y=3,x∈N+,y∈N+}
D.(1,2)∉{(x,y)|x+y=3,x∈N+,y∈N+}
【答案】B
5.下列关系正确的是 (
A.0⊆{0}
C.(1,2)⊆{(1,2)}
【答案】B
)
B.(1,2)∈{(1,2)}
D.1∈{(1,2)}
6.集合A={0,1,2}非空真子集的个数是
A.8 B.7 C.6 D.5
【答案】C
(
)
高中数学第一章集合1.2集合之间的关系与运算1.2.2.1交集与并集bb高一数学
.
解析:由题意得A={x|x>a},B={x|x>2},
因为A∪B=B,所以A⊆B.
在数轴上分别表示出集合A,B,如图所示,
则实数a必须在2的右边或与2重合,所以a≥2.
答案:a≥2
12/13/2021
5.已知集合A={1,2,3},B={2,m,4},A∩B={2,3},则m=
解析:由于A∩B={2,3},则3∈B,又B={2,m,4},则m=3.
事实上有:A∩(B∪C)=(A∩B)∪(A∩C);
A∪(B∩C)=(A∪B)∩(A∪C).
12/13/2021
一
二
三
3.填写下表:
交集的运算性质
A∩B=B∩A
A∩A=A
A∩⌀=⌀∩A=⌀
如果 A⊆B,则 A∩B=A
并集的运算性质
A∪B=B∪A
A∪A=A
A∪⌀=⌀∪A=A
如果 A⊆B,则 A∪B=B
3.做一做:已知集合M={x|-2≤x<2},N={0,1,2},则M∩N等于(
A.{0}
B.{1}
C.{0,1,2}
D.{0,1}
解析:按照交集的定义求解即可.
M∩N={x|-2≤x<2}∩{0,1,2}={0,1}.
故选D.
答案:D
12/13/2021
)
一
二
三
二、并集
【问题思考】
1.集合A∪B中的元素个数如何确定?
提示:(1)当两个集合无公共元素时,A∪B的元素个数为这两个集
合元素个数之和;
(2)当两个集合有公共元素时,根据集合元素的互异性,同时属于A
和B的公共元素,在并集中只列举一次,所以A∪B的元素个数为两个
1.2.1集合之间的关系[1]
记作:A B A B, B A A B A B, A B A B
四.集合的维恩( venn)图表示法:
A B
A B /
B
A
A
B
1.集合 { 1 } 则A的子集有多少个? A 21
22 2.集合A { 1,2 } 则A的子集有多少个?
3.集合A { 1,2,3 }则A的子集有多少个? 23
(6) x x2 2x 1 0
x x
2
4
练习
1 1.下列命题:空集没有子集;2任何集合至少有两个子 集; 3空集是任何集合的真子集;4若 A,则 A
1 其中正确的有______个
2, ______ 2.下列各式中,正确的是________3
E {x ( x 1)( x 2) 0}, F {x | 3 x 0, x Z }
三 .集 合 相 等 如 果 集 合 的 每 一 个 元 素都 是 集 合的 元 素 , 反 过 来 A B 集 合B的 元 素 也 都 是集 合 的 元 素 , 就 说 集 合 等 于 集 A A 合B .
(2). 特殊性 : 规定) A (
(3) 传递性: B, B C则A C A
引例:观察下列几个集 合,找出它们每组之 间的关系 1.A {1,3}, {1,3,5,6} B 2.C {x x是长方形},D {x x是平行四边形} 3.S {x x 3},Q {x 3x 6 0} 4.M {x x是沈阳人},N {x x是中国人} 5.E {x(x 1)(x 2) 0},F {x| 3 x 0,x Z}
反之,如果p(x) q(x), 则A一定是B的子集, B 即A
1.2(1)集合之间的关系
作 A B
B
A
子集的性质
(1)规定:空集是任意集合的子集;
(2)任意集合是其身的子集;
(3) 若A B, B C, 则A C
例题讲解 例1 写出{0,1,2}的所有子集,并 指出其中哪些是它的真子集.
例题讲解
例2.确定整数x, y, 使2 x, x y 7,4
课堂小结
1.子集,真子集的概念与性质;
ห้องสมุดไป่ตู้
2. 集合的相等;
记作
B(或B A) 也说集合A是集合B的子集.
A
定 义(相等)
一般地,对于两个集合A与B, 如果集合A中的任何一个元素都是 集合B的元素,同时集合B中的任何 一个元素都是集合A的元素,则称集 合A等于集合B,记作
A=B 若A B且 B A, 则A=B;
定 义(真子集)
对于两个集合A与B,如果A B, 并且B中至少有一个元素不属于A, 则称集合A是集合B的真子集.记
例3. 设A={x,x2,xy}, B={1,x,y}, 且 A=B,求实数x,y的值.
例题讲解
例4.已知A x | x x 6 0 B x | ax 1 0
2
且B A, 求实数a的值.
规定:空集是任意集合的子集; 空集是任意非空集合的真子集;
例题讲解
例5.已知A x | 3 x 4 B x | 2m 1 x m 1 且B A, 求实数m的取值范围 .
说明: 本系列课件,经多次使用,修改,其中有部分 来自网络,它山之石可以攻玉,希望谅解。 为了一个课件,我们仔细研磨; 为了一个习题,我们精挑细选; 为了一点进步,我们竭尽全力; 没有更好,只有更好! 制作水平有限,错误难免,请多指教: 28275061@
【人教B版】2013-2014学年高中数学必修一:1.2.1 集合之间的关系 教案
A.3个B. 4个C. 5个D. 8个
2.已知集合M满足 写出集合M.
题型三有关两个集合相等的问题
例3设A={x, x , xy},B={1,x, y},且A=B,求实数x, y的值。
题型四集合关系的判定
例4判定下列集合A 与B的关系
3)集合的表示方法___本并填空
1)、对于两个集合A 和B,如果集合A中__ ____一个元素都是集合 的元素,那么集合 叫作集合 的________,记作_____或______(读作: 包含于 或 包含 )
注(1) 有两种可能:
① 中所有元素是 中的一部分元素② 与 中的所有元素都相同;
注:(1)如果两个集合所含的元素完全相同,那么这两个集合相等;
(2) 且
6)、集合关系的传递性: , ;
7)、集合的维恩图表示法
我们常用平面内一条封闭曲线的内部表示一个集合,这种图形通常叫做_________.
图(3)
如果集合A是集合B的真子集,那么就把表示A的区域画在表示B的区域的内部(如图(3))
★2.设集合A= ,B= ,若 .求实数 的取值范围
课堂小测
1.已知集合A= , B= ,且A=B,则实数x=________ y= ____
2.已知M= , N= ,则集合M和N的关系为__
3.已知a , x , A= , B= ,
求:(1)使A= 的x的值;(2)使2 ,B A的a, x的值;
★4.已知非空集合 ,
(1)若 .求实数 的取值范围(2)若A=B,求 的值。
5.设集合 , ,且 ,求实数a的取值范围。
变式训练:在以下六个选择中(1).Φ {0} (2). . (3).
1.2.1集合之间的关系教案学生版
§1.2集合之间的关系与运算1.2.1 集合之间的关系【学习要求】1.理解子集、真子集、两个集合相等的概念.2.掌握有关子集、真子集的符号及表示方法,能利用Venn图表达集合间的关系.3.会求已知集合的子集、真子集.4.能判断两集合间的包含、相等关系,并会用符号准确地表示出来.【学法指导】通过使用基本的集合语言表示有关的数学对象,感受集合语言在描述客观现实和数学问题中的意义;培养用集合的观点分析问题、解决问题的能力;学习用数学的思维方式解决问题、认识世界.填一填:知识要点、记下疑难点1.子集:一般地,如果集合A中的任意一个元素都是集合B的元素,那么集合A叫做集合B的子集,记作A⊆B或B⊇A,读作“A包含于B”,或“B包含A”.2.子集的性质:①A⊆A(任意一个集合A都是它本身的子集);②∅⊆A(空集是任意一个集合的子集).3.真子集:如果集合A是集合B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集,记作或,读作“ A真包含于B ”,或“ B真包含A ”.4.维恩图:我们常用平面内一条封闭曲线的内部表示一个集合,这种图形通常叫做维恩(Venn)图 .5.集合相等:一般地,如果集合A的每一个元素都是集合B的元素,反过来,集合B的每一个元素也都是集合A的元素,我们就说集合A等于集合B ,记作A=B .用数学语言表示为:如果 A⊆B ,且 B⊆A ,那么A=B .6.一般地,设A={x|p(x)},B={x|q(x)},如果A⊆B,则x∈A⇒x∈B,即 p(x)⇒q(x) .反之,如果p(x)⇒q(x),则 A⊆B研一研:问题探究、课堂更高效[问题情境] 已知任意两个实数a,b,则它们的大小关系可能是a<b或a=b或a>b,那么对任意的两个集合A,B,它们之间有什么关系?今天我们就来研究这个问题.探究点一子集与真子集的概念导引前面我们学习了集合、集合元素的概念以及集合的表示方法.下面我们来看这样三组集合:(1)A={1,3},B={1,3,5,6};(2)C={x|x是长方形},D={x|x是平行四边形};(3)P={x|x是菱形},Q={x|x是正方形}.问题1 哪些集合表示方法是列举法?哪些集合表示方法是描述法?问题2 这三组集合每组彼此之间有何关系?问题3 类比表示两集合间子集关系的符号与表示两个实数大小关系的等号之间有什么类似之处?问题4 在导引中集合P与集合Q之间的关系如何表示?问题5 空集与任意一个集合A有什么关系,集合A与它本身有什么关系?问题6 对于集合A,B,C,如果A⊆B,B⊆C,那么集合A与C有什么关系?问题7 “导引”中集合A中的元素都是集合B的元素,集合B中的元素不都是集合A的元素,我们说集合A是集合B的真子集,那么如何定义集合A是集合B的真子集?问题8 集合A,B的关系能不能用图直观形象的表示出来?问题9 如何用维恩(Venn)图表示集合A是集合B的真子集?例1 写出集合A={1,2,3}的所有子集和真子集.跟踪训练1 写出满足⊆{0,1,2,3,4}的所有集合P.探究点二集合的相等问题1 观察下面几个例子,你能发现两个集合间有什么关系吗?(1)集合C={x|x是两条边相等的三角形},D={x|x是等腰三角形};(2)集合C={2,4,6},D={6,4,2}; (3)集合A={x|(x+1)(x+2)=0},B={-1,-2}.问题2 与实数中的结论“若a≥b,且b≥a,则a=b”相类比,在集合中,你能得出什么结论?例2 说出下列每对集合之间的关系:(1)A={1,2,3,4,5},B={1,3,5};(2)P={x|x2=1},Q={x||x|=1}; (3)C={x|x是奇数},D={x|x是整数}.跟踪训练2 用适当的符号(∈,∉,=,,)填空:(1)0______{0};0______∅;∅______{0};(2)∅______{x|x2+1=0,x∈R}; {0}______{x|x2+1=0,x∈R};(3)设A={x|x=2n-1,n∈Z},B={x|x=2m+1,m∈Z},C={x|x=4k±1,k∈Z},则A______B______C.探究点三集合关系与其特征性质之间的关系问题1 已知集合A的特征性质为p(x),集合B的特征性质为q(x).“如果p(x),那么q(x)”是正确命题,试问集合A和B的关系如何?并举例说明.问题2 如果命题“p(x)⇒q(x)”和命题“q(x)⇒p(x)”都是正确的命题,那么怎样表示p(x),q(x)的关系?例3 判定下列集合A与集合B的关系:(1)A={x|x是12的约数},B={x|x是36的约数}; (2)A={x|x>3},B={x|x>5};(3)A={x|x是矩形},B={x|x是有一个角为直角的平行四边形}.跟踪训练3 确定下列每组两个集合的包含关系或相等关系:(1)A={n|n=2k+1,k∈Z}和B={m|m=2l-1,l∈Z}; (2)C={n|n=2k+1,k∈N*}和D={m|m=2l-1,l∈N*}.练一练:当堂检测、目标达成落实处1.下列命题:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若∅,则A≠∅. 其中正确的个数是 ( )A.0 B.1 C.2 D.32.满足条件⊆{1,2,3,4,5}的集合M的个数是 ( )A.3 B.6C.7 D.83.若集合{2x,x+y}={7,4},则整数x,y分别等于__________.4.观察下面几组集合,集合A与集合B具有什么关系?(1)A={1,2,3},B={1,2,3,4,5}. (2)A={x|x>3},B={x|3x-6>0}.(3)A={正方形},B={四边形}. (4)A={育才中学高一(11)班的女生},B={育才中学高一(11)班的学生}.课堂小结:1.能判断存在子集关系的两个集合,谁是谁的子集,进一步确定其是否为真子集;注意:子集并不是由原来集合中的部分元素组成的集合.2.空集是任何集合的子集,是任何非空集合的真子集.3.注意区别“包含于”,“包含”,“真包含”.4.注意区分“∈”与“⊆”的不同涵义.。
高一数学人教B版必修1:1.2.1 集合之间的关系 学案
§1.2集合之间的关系与运算1.2.1集合之间的关系自主学习学习目标了解子集、真子集、空集的概念,掌握用V enn图表示集合的方法,通过子集理解两集合相等的意义.自学导引1.一般地,对于两个集合A、B,如果集合A中________________元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集,记作________(或________),读作“____________”(或“____________”).2.如果集合A是集合B的子集(A⊆B),且________________________,此时,集合A 与集合B中的元素是一样的,因此集合A与集合B相等,记作________.3.如果集合A⊆B,但存在元素x∈B,且x∉A,我们称集合A是集合B的__________,记作________(或________).4.________是任何集合的子集,________是任何非空集合的真子集.对点讲练知识点一写出给定集合的子集例1 (1)写出集合{0,1,2}的所有子集,并指出其中哪些是它的真子集;(2)填写下表,并回答问题.原集合子集子集的个数∅{a}{a,b}{a,b,c}由此猜想:含n个元素的集合{a1,a2,…,a n}的所有子集的个数是多少?真子集的个数及非空真子集的个数呢?规律方法(1)分类讨论是写出所有子集的有效方法,一般按集合中元素个数的多少来划分,遵循由少到多的原则,做到不重不漏.(2)集合A中有n个元素,则集合A有2n个子集,有(2n-1)个真子集,(2n-1)个非空子集,(2n-2)个非空真子集.变式迁移1 已知集合M满足{1,2}⊆M⊆{1,2,3,4,5},写出集合M.知识点二 集合基本关系的应用例2 (1)已知集合A ={x |-3≤x ≤4},B ={x |2m -1<x <m +1},且B ⊆A .求实数m 的取值范围;(2)本题(1)中,若将“B ⊆A ”改为“A ⊆B ”,其他条件不变,求实数m 的取值范围.规律方法 (1)分析集合关系时,首先要分析、简化每个集合.(2)此类问题通常借助数轴,利用数轴分析法,将各个集合在数轴上表示出来,以形定数,还要注意验证端点值,做到准确无误,一般含“=”用实心点表示,不含“=”用空心点表示.(3)此类问题还应注意“空集”这一“陷阱”,尤其是集合中含有字母参数时,初学者会想当然认为非空集合而丢解,因此分类讨论思想是必须的.变式迁移2 已知A ={x |x 2-5x +6=0},B ={x |mx =1},若B A ,求实数m 所构成的集合M .知识点三 集合相等关系的应用例3 已知集合A ={2,x ,y },B ={2x,2,y 2}且A =B ,求x ,y 的值.规律方法 集合相等则元素相同,但要注意集合中元素的互异性,防止错解.变式迁移3 含有三个实数的集合可表示为⎩⎨⎧⎭⎬⎫a ,b a,1,也可表示为{a 2,a +b,0},求a ,b .1.元素、集合间的关系用符号“∈”或“∉”表示,集合、集合间的关系用“⊆”、“=”或“”等表示.2.在特定的情况下集合也可以作为元素,如集合B ={∅,{0},{1},{0,1}},则此时{1}∈B ,而不能是{1}B .3.解集合关系的问题时还需注意以下几个方面:(1)当A ⊆B 时,A =B 或A B .(2)判断两个集合间的关系:①先用列举法表示两个集合再判断;②分类讨论.(3)解数集问题学会运用数轴表示集合.(4)集合与集合间的关系可用V enn 图直观表示.课时作业一、选择题1.下列命题①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若∅A 时,则A ≠∅,其中正确的个数是( )A .0B .1C .2D .32.已知集合A ={x |a -1≤x ≤a +2},B ={x |3<x <5},则能使A ⊇B 成立的实数a 的取值范围是( )A .{a |3<a ≤4}B .{a |3≤a ≤4}C .{a |3<a <4}D .∅3.设B ={1,2},A ={x |x ⊆B },则A 与B 的关系是( )A .A ⊆B B .B ⊆AC .A ∈BD .B ∈A4.若集合A ={x |x =n ,n ∈N },集合B =⎩⎨⎧⎭⎬⎫x |x =n 2,n ∈Z ,则A 与B 的关系是( ) A .A B B .A B C .A =B D .A ∈B5.在以下六个写法中:①{0}∈{0,1};②∅{0};③{0,-1,1}⊆{-1,0,1};④0∈∅;⑤Z ={正整数};⑥{(0,0)}={0},其中错误写法的个数是( )A .3B .4C .5D .6二、填空题6.满足{0,1,2}A ⊆{0,1,2,3,4,5}的集合A 的个数是________.7.设M ={x |x 2-1=0},N ={x |ax -1=0},若N ⊆M ,则a 的取值集合为________.8.若{x |2x -a =0,a ∈N }⊆{x |-1<x <3},则a 的所有取值组成的集合为________________.三、解答题9.设集合A ={1,a ,b },B ={a ,a 2,ab },且A =B ,求实数a 、b 的值.10.已知集合A ={x |-2k +3<x <k -2},B ={x |-k <x <k },若A B ,求实数k 的取值范围.【探究驿站】11.已知集合M={x|x=m+16,m∈Z},N={x|x=n2-13,n∈Z},P={x|x=p2+16,p∈Z},请探求集合M、N、P之间的关系.§1.2集合之间的关系与运算1.2.1集合之间的关系答案自学导引1.任意一个A⊆B B⊇A A包含于BB包含A2.集合B是集合A的子集(B⊆A)A=B3.真子集A B B A4.空集空集对点讲练例1 解(1)不含任何元素的集合:∅;含有一个元素的集合:{0},{1},{2};含有两个元素的集合:{0,1},{0,2},{1,2};含有三个元素的集合:{0,1,2}.故集合{0,1,2}的所有子集为∅,{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2}.其中除去集合{0,1,2},剩下的都是{0,1,2}的真子集.(2)原集合子集子集的个数∅∅ 1{a}∅,{a} 2{a,b}∅,{a},{b},{a,b} 4{a,b,c}∅,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}8这样,含n个元素的集合{a1,a2,…,a n}的所有子集的个数是2n,真子集的个数是2n -1,非空真子集的个数是2n-2.变式迁移1解由已知条件知所求M为:{1,2},{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5}.例2 解(1)∵B⊆A,①当B=∅时,m+1≤2m-1,解得m≥2.②当B ≠∅时,有⎩⎪⎨⎪⎧ -3≤2m -1m +1≤42m -1<m +1,解得-1≤m <2,综上得m ≥-1.(2)显然A ≠∅,又A ⊆B ,∴B ≠∅,如图所示,∴⎩⎪⎨⎪⎧ 2m -1<m +12m -1<-3m +1>4,解得m ∈∅.变式迁移2 解 由x 2-5x +6=0得x =2或x =3.∴A ={2,3}由B A 知B =∅或B ={2}或B ={3}若B =∅,则m =0;若B ={2},则m =12;若B ={3},则m =13. ∴M =⎩⎨⎧⎭⎬⎫0,12,13. 例3 解 方法一 ∵A =B∴集合A 与集合B 中的元素相同∴⎩⎪⎨⎪⎧ x =2x y =y 2或⎩⎪⎨⎪⎧x =y 2y =2x , 解得x ,y 的值为⎩⎪⎨⎪⎧ x =0y =0或⎩⎪⎨⎪⎧ x =0y =1或⎩⎨⎧ x =14y =12验证得,当x =0,y =0时,A ={2,0,0}这与集合元素的互异性相矛盾,舍去.∴x ,y 的取值为⎩⎪⎨⎪⎧ x =0,y =1,或⎩⎨⎧x =14,y =12. 方法二 ∵A =B ,∴A 、B 中元素分别对应相同.∴⎩⎪⎨⎪⎧ x +y =2x +y 2,x ·y =2x ·y 2,即⎩⎪⎨⎪⎧x +y (y -1)=0, ①xy (2y -1)=0. ② ∵集合中元素互异,∴x 、y 不能同时为0.∴y ≠0.由②得x =0或y =12. 当x =0时,由①知y =1或y =0(舍去);当y =12时,由①得x =14. ∴⎩⎪⎨⎪⎧ x =0,y =1,或⎩⎨⎧ x =14,y =12.变式迁移3 解 由集合相等得:0∈⎩⎨⎧⎭⎬⎫a ,b a,1,易知a ≠0, ∴b a=0,即b =0,∴a 2=1且a 2≠a ,∴a =-1. 综上所述:a =-1,b =0.课时作业1.B [仅④是正确的.]2.B [∵A ⊇B ,∴⎩⎪⎨⎪⎧a -1≤3a +2≥5∴3≤a ≤4.]3.D [∵B 的子集为{1},{2},{1,2},∅,∴A ={x |x ⊆B }={{1},{2},{1,2},∅},∴B ∈A .]4.A 5.B6.7解析 本题即求集合{3,4,5}的非空子集个数,共23-1=7个.7.{-1,1,0}8.{0,1,2,3,4,5}9.解 ∵A =B 且1∈A ,∴1∈B .若a =1,则a 2=1,这与元素互异性矛盾,∴a ≠1.若a 2=1,则a =-1或a =1(舍).∴A ={1,-1,b },∴b =ab =-b ,即b =0.若ab =1,则a 2=b ,得a 3=1,即a =1(舍去). 故a =-1,b =0即为所求.10.解 ∵A B ,①若A =∅,且B ≠∅,则k >0,且-2k +3≥k -2⇒0<k ≤53; ②若A ≠∅,且B ≠∅,则⎩⎪⎨⎪⎧ k >0-2k +3<k -2-k ≤-2k +3k ≥k -2且-k =-2k +3与k =k -2不同时成立,解得53<k ≤3. 由①②可得实数k 的取值范围为{k |0<k ≤3}.11.解 M ={x |x =m +16,m ∈Z }={x |x =6m +16,m ∈Z }. N ={x |x =n 2-13,n ∈Z }={x |x =3n -26,n ∈Z }. P ={x |x =p 2+16,p ∈Z }={x |x =3p +16,p ∈Z }. ∵3n -2=3(n -1)+1,n ∈Z ,∴3n -2,3p +1都是3的整数倍加1,从而N =P .而6m +1=3×2m +1是3的偶数倍加1,∴M N =P .。
高中数学 第一章 集合 1.2.1 集合之间的关系课件 新人
1.2.1 集合之间的关系
课程目标
1.理解集合之间包含与 相等的含义,能写出一 些给定集合的子集. 2.能使用维恩(Venn)图 表达集合之间的关系, 尤其要注意空集这一特 殊集合的意义. 3.理解集合关系与其特 征性质之间的关系,并 能写出有限集的子集、 真子集与非空真子集.
3.子集、真子集的性质 (1)规定:空集是任意一个集合的子集.也就是说,对任意集合 A,都有 ⌀⊆A. (2)任何一个集合 A 都是它本身的子集,即 A⊆A. (3)对于集合 A,B,C,如果 A⊆B,B⊆C,则 A⊆C. (4)对于集合 A,B,C,如果 A⫋B,B⫋C,则 A⫋C.
思考 2⌀与{⌀}的关系如何?
A.1
B.2
C.3
D.4
探究一
探究二
探究三
探究四
探究五
解析:(1)由于四边形包括正方形、菱形、平行四边形,故集合 M,N,Q 均 为 P 的子集,再结合正方形、菱形、平行四边形的概念易知 Q⊆M⊆N⊆P.
(2)①中根据元素与集合的关系可知 0∈{0}正确; ②中由空集是任意非空集合的真子集可知⌀⫋{0}正确; ③中集合{0,1}的元素是数,而集合{(0,1)}的元素是点,因此没有包含关 系,故③错误; ④中集合中的元素是点,而点的坐标有顺序性,因此{(a,b)}≠{(b,a)},故 ④错误.综上,应选 B. 答案:(1)B (2)B
提示:⌀⫋{⌀}与⌀∈{⌀}的写法都是正确的,前者是从两个集合间的关系 来考虑的,后者则把⌀看成集合{⌀}中的元素来考虑.
4.集合关系与其特征性质之间的关系 设 A={x|p(x)},B={x|q(x)},则有
集合间的关系 特征性质间的关系
A⊆B
高中数学 第一章 集合 1.2.1 集合之间的关系课后作业 新人教B版必修1-新人教B版高一必修1数
1.2 集合之间的关系与运算1.2.1 集合之间的关系1.集合{x∈N|x=5-2n,n∈N}的子集的个数是( )A.9B.8C.7D.6解析:∵x∈N,n∈N,∴集合{x∈N|x=5-2n,n∈N}={1,3,5}.∴其子集的个数是23=8.答案:B2.已知P={0,1},M={x|x⊆P},则P与M的关系为( )A.P⫋MB.P∉MC.M⫋PD.P∈M解析:M={x|x⊆P}={⌀,{0},{1},{0,1}},故P∈M.答案:D3.设集合A={x∈Z|x<-1},则( )A.⌀=AB.∈AC.0∈AD.{-2}⫋A解析:A中⌀与集合A的关系应为⌀⊆A或⌀⫋A,B中∉A,C中0∉A,D正确.答案:D4.已知集合A=,集合B={m2,m+n,0},若A=B,则( )A.m=1,n=0B.m=-1,n=1C.m=-1,n=0D.m=1,n=-1解析:由A=B,得m2=1,且=0,且m=m+n,解得m=±1,n=0.又m≠1,∴m=-1,n=0.答案:C5.设集合M=,集合N=,则(A.M=NB.M⫋NC.N⫋MD.M不是N的子集,N也不是M的子集解析:集合M中的元素x=(k∈Z),集合N中的元素x=(k∈Z),当k∈Z时,2k+1代表奇数,k+2代表所有整数,故有M⫋N.答案:B6.若非空数集A={x|2a+1≤x≤3a-5},B={x|3≤x≤22},则能使A⊆B成立的所有a的集合是( )A.{a|1≤a≤9}B.{a|6≤a≤9}C.{a|a≤9}D.⌀解析:∵A为非空数集,∴2a+1≤3a-5,即a≥6.又∵A⊆B,∴∴1≤a≤9.综上可知,6≤a≤9答案:B7.已知A={y|y=x2-2x-6,x∈R},B={x|4x-7>5},那么集合A与B的关系为.解析:对于二次函数y=x2-2x-6,x∈R,y最小==-7,所以A={y|y≥-7}.又B={x|x>3},由图知B⫋A.答案:B⫋A9.已知集合A={x|x=1+a2,a∈R},B={y|y=a2-4a+5,a∈R},试判断这两个集合之间的关系.解:因为x=1+a2,a∈R,所以x≥1.因为y=a2-4a+5=(a-2)2+1,a∈R,所以y≥1,故A={x|x≥1},B={y|y≥1},所以A=B.10.已知集合A={x||x-a|=4},集合B={1,2,b}.(1)是否存在实数a,使得对于任意实数b都有A⊆B?若存在,求出相应的a值;若不存在,试说明理由;(2)若A⊆B成立,求出相应的实数对(a,b).解:(1)不存在.理由如下:若对任意的实数b都有A⊆B,则当且仅当1和2也是A中的元素时才有可能.因为A={a-4,a+4},所以这都不可能,所以这样的实数a不存在.(2)由(1)易知,当且仅当时A⊆B.解得所以所求的实数对为(5,9),(6,10),(-3,-7),(-2,-6).。
高一数学-【数学】1.2.1《子集》(人教大纲版第一册)
教材: 子集目的: 让学生初步了解子集的概念及其表示法,同时了解等集与真子集的有关概念.过程:一提出问题:现在开始研究集合与集合之间的关系.存在着两种关系:“包含”与“相等”两种关系.二“包含”关系—子集1. 实例: A={1,2,3} B={1,2,3,4,5} 引导观察.结论: 对于两个集合A和B,如果集合A的任何一个元素都是集合B的元素,则说:集合A包含于集合B,或集合B包含集合A,记作A⊆B (或B⊇A)也说: 集合A是集合B的子集.2. 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊄B (或B⊄A)注意: ⊆也可写成⊂;⊇也可写成⊃;⊆也可写成⊂;⊇也可写成⊃。
3. 规定: 空集是任何集合的子集 . φ⊆A三“相等”关系1.实例:设 A={x|x2-1=0} B={-1,1} “元素相同”结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即: A=B2.①任何一个集合是它本身的子集。
A⊆A⊂≠②真子集:如果A⊆B ,且A≠ B那就说集合A是集合B的真子集,记作A B③空集是任何非空集合的真子集。
④如果 A⊆B, B⊆C ,那么 A⊆C证明:设x是A的任一元素,则 x∈AA⊆B,∴x∈B 又 B⊆C ∴x∈C 从而 A⊆C同样;如果 A⊆B, B⊆C ,那么 A⊆C⑤如果A⊆B 同时 B⊆A 那么A=B四例题: P8 例一,例二(略)练习 P9 补充例题《课课练》课时2 P3五小结:子集、真子集的概念,等集的概念及其符号几个性质: A⊆AA⊆B, B⊆C ⇒A⊆CA⊆B B⊆A⇒ A=B作业:P10 习题1.2 1,2,3 《课课练》课时中选择。
高中数学必修2 1.2.1集合之间的关系
1.2.1集合之间的关系学习目标:1.了解集合之间包含与相等的含义,能识别给定集合的子集;2.理解子集、真子集、相等的概念;3.体会图示(韦恩图)对理解概念的作用;4.理解集合关系与其特征性质之间的关系.学法指导:自学课本P10-P13,弄清楚以下问题:(时间10分钟)⒈子集:如果集合A 中的__________________集合B 的元素,那么集合A 叫做集合B 的子集,记作_________或__________,读作______________或________________.⒉任意一个集合A (是、不是)_________它自身的子集,即________________. ⒊规定:空集是_______________的子集,即_____________.⒋真子集:如果集合A 是集合B 的子集,并且B 中__________________________________,那么集合A 叫做集合B 的真子集,记作__________或__________,读作_________或__________.⒌Venn 图:我们常用_________________________表示一个集合,这个区域通常叫做维恩图. ⒍一般地,如果集合A 的_________________集合B 的元素,反过来,集合B 的________________也都是集合A 的元素,那么我们就说____________________,记作___________.即,如果____________,又___________,则A=B ;反之,A =B ,则_________________________.7.如果集合A 有n 个元素,则它一共有________个子集,有_______个真子集,有_______个非空子集.8.集合关系与特征性质之间的关系设集合A={x|p(x)},B={x|q(x)},则:(1)p(x)⇒q(x)⇔ .(2)q(x)⇒p(x)⇔ .(3) p(x)⇒q(x) 且q(x) ⇒p(x)⇔ .自学检测:(10分钟)1.已知集合M={x|3<x<4},a=π,则正确的是 ( )(A )a ⊆M (B )a ∉M (C ){a}∈M (D ){a}⊂≠M2.下列命题正确的是( )A .若A ={d c b a ,,,},B ={c a ,},则B ∈AB .一个集合的子集就是由这个集合中的部分元素组成的集合C .若集合M ={1,2},N ={(1,2)},则M =ND .∅⊂≠{0},0∈{0}均正确. 3.已知集合A ={0,2,3},B ={A b a ab x x ∈=,,|},写出B 的所有子集4. 填空:a {a};φ {0};{x|x ≥1} {2,3};{2,3} {{2},{3},{2,3}};{x|x=2k-1,k Z ∈} {x|x=2k+1,k Z ∈};N Z Q R5. {a,b,c,d}的所有子集有 个,非空子集有 个,真子集有 个,含元素a 的子集有 个.请猜想集合{a 1,a 2,…,a n }的所有子集个数为 .6.设集合A ={xy x x ,,2},B ={y x ,,1},且A =B ,则实数y x ,的值__________________. 讲解提高:能力提升:(5分钟)1.设}1|),{(},|),{(,,====∈xy y x B x y y x A R y x 则集合A 、B 的关系为( ) A .A ⊂≠B B .B ⊂≠A C .A =B D .A ⊆B2.已知A={x|x 2-2x-3=0},B={x|ax-1=0},B ⊆A ,求实数a 的值.当堂检测:1.如果集合A ={21|x >x },那么⑴0⊆A ;⑵∅⊆A ;⑶{0}⊂≠A ;⑷N⊆A ; ⑸}31{⊂≠A ,以上各式中正确的个数是( )A .1B .2C .3D .42.给出下列各式:φ={0};∈φ{0};{1,2}⊆{1,3,5};{x|x 2-1=0}⊆{1,-1}; {(-1,1)}={-1,1},其中错误的个数为( )(A )2 (B )3 (C )4 (D )53.已知集合{x|ax+2=0}⊆φ,则a 的值为( )(A )1 (B )2 (C )-2 (D )04. 已知集合A={0,1},B={x|x ⊆A},则用列举法表示集合B=5. 已知{2,a,b}={2a,2,b 2},求a,b 的值.思考与研究:1.设集合A={x|1≤x ≤3},B={x|x-a ≥0},若A 是B 的真子集,实数a 的取值范围 .2.已知集合A={x|x 2+2x-1=0},集合B={x|x 2+2x+m=0},B ⊆A ,求m 的取值范围.。
1.2.1集合之间的关系
1.1.2 集合之间的基本关系1. 了解集合之间包含与相等的含义,能识别给定集合的子集;2. 理解子集、真子集的概念;3. 能利用V enn 图表达集合间的关系,体会直观图示对理解抽象概念的作用;67复习1:集合的表示方法有 、 、。
复习2:用适当的符号填空:(1) 0 N ; -1.5 R 。
(2)设集合2{|(1)(3)0}A x x x =--=,{}B b =,则1 A ;b B ;{1,3} A .思考:类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?二、新课导学※ 学习探究探究:比较下面几个例子,试发现两个集合之间的关系:{3,6,9}A =与*{|3,4}B x x k k N k ==∈≤且;{}C =东升高中学生与{}D =东升高中高一学生;{|(1)(2)0}E x x x x =--=与{0,1,2}F =.在上题中,假设x B ∈,你能确定x A ∈吗?如果请你用图形表示集合A 、B 之间的关系,你会怎样表示?请图示出来;你这样图示的理由是什么?新知:① 如果集合A 的任意一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的________,记作:___A B (或______),读作:__________________。
当集合A 不包含于集合B 时,记作____A B② 在数学中,我们经常用平面上封闭曲线的内部代表集合,这种图称为Venn 图,用Venn 图表示两个集合间的“包含”关系为:()A B B A ⊆⊇或③ 集合相等:若A B B A ⊆⊆且,则A B 和中的元素是一样的,因此____A B 。
④ 真子集:若集合A B ⊆,存在元素x B x A ∈∉且,则称集合A 是集合B 的___________,记作:A _____ B (或B _____ A ),读作:A 真包含于B (或B 真包含A ).⑤ 空集:不含有任何元素的集合称为________,记作:_______ 并规定:空集是任何集合的__________,是任何非空集合的_________。
1.2.1集合之间的关系[1]
k 4
1 , k Z } ,则( ) 2
A. M N
B. M N
C. M N
D. 无关
4、设集合 A 1,2, a 2 1 , B 1, a 2 3a,0 ,若 A B ,求 a 的值;
5、 .已知集合 A x x 5x 6 0 , B x mx 1 ,若 B A ,求实数 m 的取值所构成的集合
反思提升:如果一个集合中有 n 个元素,则它有
个子集;有
个真子集。
(2)了解集合之间包含与相等的含义,能识别给定集合的子集; (3)能利用 Venn 图表达集合间的关系,体会直观图示对理解抽象概念的作用。 2、重点难点: 子集、真子集的概念;集合之间包含与相等的含义。 3、教学方法: 自主探究,小组合作2 Nhomakorabea
M ,并写出 M 的所有子集;
人缺少的不是成功的能力而是勤奋的意志【导学案】
规律总结
【温馨提示】
变
式
训
练
:
设
集
合
A x x 2 4x 0, x R
,
B x x 2 2(a 1) x a 2 1 0, x R,若 B A ,求实数 a 的取值;
二、自学检测
: (分钟)
1、试试:用适当的符号填空. (1) {a, b} {a, b, c} , a (2) (3)N
的取值范围;
2、设 A x x 1 , B x x a ,且 A B ,则实数 a 的取值范围为( A. a 1 C. a 1 B. a 1 D. a 1
人民教育出版社B版高中数学目录(全)
人民教育出版社B版高中数学目录(全)高中数学(B版)必修一第一章集合1.1集合与集合的表示方法1.1.1集合的概念1.1.2集合的表示方法1.2集合之间的关系与运算1.2.1集合之间的关系1.2.2集合的运算整合提升第二章函数2.1 函数2.1.1函数2.1.2函数的表示方法2.1.3函数的单调性2.1.4函数的奇偶性2.2一次函数和二次函数2.2.1一次函数的性质与图象2.2.2二次函数的性质与图象2.2.3待定系数法2.3函数的应用(I)2.4函数与方程2.4.1函数的零点2.4.2求函数零点近似解的一种计算方法——二分法整合提升第三章基本初等函数(I)3.1指数与指数函数3.1.1实数指数幂及其运算3.1.2指数函数3.2对数与对数函数3.2.1对数及其运算3.2.2对数函数-3.2.3指数函数与对数函数的关系3.3幂函数3.4函数的应用(Ⅱ)整合提升高中数学(B版)必修二第1章立体几何初步1.1空间几何体1.1.1构成空间几何体的基本元素1.1.2棱柱、棱锥和棱台的结构特征1.1.3圆柱、圆锥、圆台和球1.1.4投影与直观图1.1.5三视图1.1.6棱柱、棱锥、棱台和球的表面积1.1.7柱、锥、台和球的体积1.2点、线、面之间的位置关系1.2.1平面的基本性质与推论1.2.2空间中的平行关系(第1课时)空间中的平行关系(第2课时)1.2.3空间中的垂直关系(第1课时)空间中的垂直关系(第2课时)综合测试阶段性综合评估检测(一)第2章平面解析几何初步2.1平面直角坐标系中的基本公式2.2直线的方程2.2.1直线方程的概念与直线的斜率2.2.2直线方程的几种形式2.2.3两条直线的位置关系2.2.4点到直线的距离2.3 圆的方程2.3.1圆的标准方程2.3.2圆的一般方程2.3.3直线与圆的位置关系2.3.4圆与圆的位置关系2.4空间直角坐标系综合测试高中数学(B版)必修三一章算法初步1.1 算法与程序框图1.1.1 算法的概念1.1.2 程序框图1.1.3 算法的三种基本逻辑结构和框图表示1.2 基本算法语句1.2.1 赋值、输入和输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法案例单元回眸第二章统计2.1 随机抽样2.1.1 简单随机抽样2.1.2 系统抽样显示全部信息第一章算法初步1.1 算法与程序框图1.1.1 算法的概念1.1.2 程序框图1.1.3 算法的三种基本逻辑结构和框图表示1.2 基本算法语句1.2.1 赋值、输入和输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法案例单元回眸第二章统计2.1 随机抽样2.1.1 简单随机抽样2.1.2 系统抽样2.1.3 分层抽样2.1.4 数据的收集2.2 用样本估计总体2.2.1 用样本的频率分布估计总体的分布2.2.2 用样本的数字特征估计总体的数字特征2.3 变量的相关性2.3.1 变量间的相关关系2.3.2 两个变量的线性相关单元回眸第三章概率3.1 事件与概率3.1.1 随机现象3.1.2 事件与基本事件空间3.1.3 频率与概率3.1.4 概率的加法公式3.2 古典概型3.2.1 古典概型3.3 随机数的含义与应用3.3.1 几何概型3.3.2 随机数的含义与应用3.4 概率的应用单元回眸高中数学(B版)必修四第一章基本初等函数(2)1.1 任意角的概念与弧度制1.1.1 角的概念的推广1.1.2 弧度制和弧度制与角度制的换算1.2 任意角的三角函数1.2.1 三角函数的定义1.2.2 单位圆与三角函数线1.2.3 同角三角函数的基本关系式1.2.4 诱导公式1.3 三角函数的图象与性质1.3.1 正弦函数的图象与性质1.3.2 余弦函数、正切函数的图象与性质1.3.3 已知三角函数值求角单元回眸第二章平面向量2.1 向量的线性运算2.1.1 向量的概念2.1.2 向量的加法2.1.3 向量的减法2.1.4数乘向量2.1.5 向量共线的条件与轴上向量坐标运算2.2 向量的分解与向量的坐标运算2.2.1 平面向量基本定理2.2.2 向量的正交分解与向量的直角坐标运算2.2.3 用平面向量坐标表示向量共线条件2.3 平面向量的数量积2.3.1 向量数量积的物理背景与定义2.3.2 向量数量积的运算律2.3.3 向量数量积的坐标运算与度量公式2.4 向量的应用2.4.1 向量在几何中的应用2.4.2 向量在物理中的应用单元回眸第三章三角恒等变换3.1 和角公式3.1.1 两角和与差的余弦3.1.2 两角和与差的正弦3.1.3 两角和与差的正切3.2 倍角公式和半角公式3.2.1 倍角公式3.2.2 半角的正弦、余弦和正切3.3 三角函数的积化和差与和差化积单元回眸高中数学(B版)必修五第一章解三角形1.1 正弦定理和余弦定理1.1.1 正弦定理1.1.2 余弦定理1.2 应用举例复习与小结第一章综合测试第二章数列2.1 数列2.1.1 数列2.1.2 数列的递推公式(选学)2.2 等差数列2.2.1 等差数列2.2.2 等差数列的前n项和2.3 等比数列2.3.1 等比数列2.3.2 等比数列的前n项和复习与小结第二章综合测试第三章不等式. 3.1 不等关系与不等式3.1.1 不等关系3.1.2 不等式的性质3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单的线性规划问题3.5.1 二元一次不等式(组)与简单的线性规划问题3.5.2 简单的线性规划复习与小结第三章综合测试高中数学(B版)选修1-1第1章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3充分条件、必要条件与命题的四种形式1.3.1推出与充分条件、必要条件1.3.2命题的四种形式第1章综合测试题第2章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性2.2 椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3 双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4 抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质2.5直线与圆锥曲线第2章综合测试题阶段性综合评估检测(一)第3章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离高中数学(B版)选修1-2目录:第一章统计案例1.1独立性检验1.2回归分析单元回眸第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明单元回眸第三章数系的扩充与复数的引入3.1数系的扩充与复数的引入3.2复数的运算单元回眸第四章框图4.1流程图4.2结构图单元回眸高中数学(人教B)选修2-1第1章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3充分条件、必要条件与命题的四种形式1.3.1推出与充分条件、必要条件1.3.2命题的四种形式第1章综合测试题第2章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性2.2 椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3 双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4 抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质.2.5直线与圆锥曲线第2章综合测试题阶段性综合评估检测(一)第3章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离第3章综合测试题阶段性综合评估检测(二)高中数学人教B选修2-2第一章导数及其应用1.1 导数1.1.1 函数的平均变化率1.1.2 瞬时速度与导数1.1.3 导数的几何意义1.2 导数的运算1.2.1 常数函数与幂函数的导数1.2.2 导数公式表及数学软件的应用1.2.3 导数的四则运算法则1.3 导数的应用1.3.1 利用导数判断函数的单调性1.3.2 利用导数研究函数的极值1.3.3 导数的实际应用1.4 定积分与微积分基本定理1.4.1 曲边梯形面积与定积分1.4.2 微积分基本定理本章整合提升第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法2.3 数学归纳法本章整合提升第三章数系的扩充与复数3.1 数系的扩充与复数的概念3.1.1 实数系3.1.2 复数的概念3.1.3 复数的几何意义3.2 复数的运算3.2.1 复数的加法与减法3.2.2 复数的乘法3.2.3 复数的除法本章整合提升高中数学人教B选修2-3第一章计数原理1.1基本计数原理1.2排列与组合1.2.1排列1.2.2组合1.3二项式定理1.3.1二项式定理1.3.2杨辉三角单元回眸第二章概率2.1离散型随机变量及其分布列2.1.1离散型随机变量2.1.2离散型随机变量的分布列2.1.3超几何分布2.2条件概率与事件的独立性2.2.1条件概率2.2.2事件的独立性2.2.3独立重复试验与二项分布2.3随机变量的数字特征2.3.1离散型随机变量的数学期望2.3.2离散型随机变量的方差2.4正态分布单元回眸第三章统计案例3.1独立性检验3.2回归分析单元回眸高中数学(B版)选修4-1第一章相似三角形定理与圆幂定理1.1相似三角形1.1.1相似三角形判定定理1.1.2相似三角形的性质1.1.3平行截割定理1.1.4锐角三角函数与射影定理1.2圆周角与弦切角1.2.1圆的切线1.2.2圆周角定理1.2.3弦切角定理1.3圆幂定理与圆内接四边形1.3.1圆幂定理1.3.2圆内接四边形的性质与判定本章小结阅读与欣赏欧几里得附录不可公度线段的发现与逼近法第二章圆柱、圆锥与圆锥曲线2.1平行投影与圆柱面的平面截线2.1.1平行投影的性质2.1.2圆柱面的平面截线2.2用内切球探索圆锥曲线的性质2.2.1球的切线与切平面2.2.2圆柱面的内切球与圆柱面的平面截线2.2.3圆锥面及其内切球2.2.4圆锥曲线的统一定义本章小结阅读与欣赏吉米拉•丹迪林附录部分中英文词汇对照表后记高中数学(B版)选修4-4第一章坐标系1.1直角坐标系,平面上的伸缩变换1.2极坐标系本章小结第二章参数方程2.1曲线的参数方程2.2直线和圆的参数方程2.3圆锥曲线的参数方程2.4一些常见曲线的参数方程本章小结附录部分中英文词汇对照表后记高中数学(B版)选修4-5第一章不等式的基本性质和证明的基本方法1.1不等式的基本性质和一元二次不等式的解法1.2基本不等式1.3绝对值不等式的解法1.4绝对值的三角不等式1.5不等式证明的基本方法本章小结第二章柯西不等式与排序不等式及其应用2.1柯西不等式2.2排序不等式2.3平均值不等式(选学)2.4最大值与最小值问题,优化的数学模型本章小结阅读与欣赏著名数学家柯西第三章数学归纳法与贝努利不等式3.1数学归纳法原理3.2用数学归纳法证明不等式、贝努利不等式本章小结阅读与欣赏完全归纳法和不完全归纳法数学归纳法数学归纳法简史附录部分中英文词汇对照表。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2.1 集合之间的关系教材知识检索考点知识清单1.子集(1)定义:如果 ;那么集合A 叫做集合B 集合的子集。
(2)符号: ,读作: 。
2.真子集(1)定义:如.果集合A 是集合B 的子集,并且 那么集合A 叫做集合B 的真子集. (2>符号: ,读作: . 3. 集合的相等(1)集合相等的定义:一般地,如果集合A 的 都是集合B 的元素,反过来,集合B 的 也都是集合强的元素,那么就说集合A 等于集合B ,记作____.(2)推论:如果 ,又 ,则A=B 反之.如果A=B ,则____且____. 4.韦恩图韦恩(Venn)图:通常用 表示一个集合,这个图形通常叫做韦恩图. 5.两个重要规定(1)空集是 的子集.(2)空集是 的真子集. 6.传递性根据子集、真子集的定义可以推知:(1)对于集合4、B 、C ,如果A ⊆ B ,B ⊆C ,则____.(2)对于集合A 、B 、C ,如果A ≠⊂B ,B ≠⊂C ,则 .要点核心解读1.准确理解子集、真子集的概念(1)空集是任何非空集合的真子集,即∅≠⊂A (A 是非空集合); (2)任何集合都是它本身的 子集,即;A A ⊆(3)子集、真子集都有传递性,即若,,C B B A ⊆⊆则;C A ⊆⋅若A B B,≠⊂A ≠⊂则.C A ≠⊂2.集合相等的概念课本中是用B A ⊆“且A B ⊆则B A =”来定义集合相等的.其实,A 与B 非空且元素完全相同或∅==B A 时,B A =都成立.课本中的定义实际上给出了一种证明两个集合相等的方法,即欲证,B A =只需证B A ⊆与A B ⊆都成立. 3.符号,,“⊆∈ ≠⊂” 的区分要注意区分,与“⊆∈⊆与≠⊂”“∈”表示元素与集合之间的从属关系,而“⊆”表示集合之间的包含关系,“⊆”与≠⊂均表示集合间的包含关系,但后者是前者“≠”情形时的包含关系。
4.“元素个数”与“子集个数”之间的关系 (1)列下表.①若},{a A =则其子集可以是},{,a ∅子集个数为2;②若},,{b a A =则其子集可以是},,{},{},{,b a b a ∅子集个数为4;③若},,,{c b a A =则其子集可以是},{},{},{,c b a ∅},,{},,{c a b a },,,{},,{c b a c b 子集个数为8;④若},,,,{d c b a A =则其子集可以是},{},{},{,c b a ∅},,{},{b a d },,{},,{da c a },,{},,{dbc b },,,{},,{c b ad c },,,{d b a },,,{},,,{d c b d c a },,,,{d c b a 子集个数为16.所以表格中依次填2、4、8、16. 综上所述,,集合中的元素个数每增加1个,其子集的个数变为原来的2倍, 其对应关系为: 元素个数 子集的数目1 221=2 21222=⨯3 32222=⨯4 43222=⨯(2)由(1)可以猜想:若集合中有n 个元素,其子集的个数应为n2个,其真子集的个数应为)12(-n 个.典例分类剖析考点1 求集合的子集或真子集[例1]已知集合M 满足},5,4,3,2,1{}3,2{⊆⊆M 求集合M . [解析],(1)当M 中舍有两个元素时,M 为};3,2{(2) 当M 中含有三个元紊时,M 为};5,3,2{},4,3,2{},1,3,2{(3)当M 中合有四个元素时 M 为},5,1,3,2{},4,1,3,2{};5,4,3,2{ (4)当M 中含有五个元素时:M 为}.5,4,1,3,2{所以满足条M 件集合M 为},1,3,2{},3,2{},4,3,2{},5,3,2{},4,1,3,2{},5,4,3,2{},5,1,3,2{},5,4,1,3,2{ 集合M 的个数为8.[点拨】 对于求集合的子集问题,一定要注意有两个集合比较特殊,即∅和集合本身.因此解决这类问题时.(1)要注意对符号h ⊆≠⊂的辨析.(2)合理使用分类讨论的思想,按集合元素的个数多少分类写出母题迁移 1.满足条件-⊆⊆=+22|{}01|{x x M x x }01=的M 为考点2 集合关系的判定[例2] 已知集合},,1|{2N a a x x M ∈+==集合==y y P |{},,222N b b b ∈++试问M 与P 相等吗?[解析] 设,P y ∈则1)12222++=++=b b b y (,,1,N a N b N b ∈∈+∴∈ 又 .,M p M y ⊆∈∴故 .1,1,0M x a ∈∴==时当而,,1)1(2222N b b b b y ∈++=++=,0≥∴b 即.2≥y,1P ∉∴故M 不是P 的子集.综上所述,.P M =/[点拨] 解答本题时,首先观察两个集合中函数式的结构特点.关键是要“变”(或“凑”)形式,即由”“222++b b 向+2a ”1的形式变化,再由Nb N a ∈∈,进行判断.母题迁移2.(2010年武汉调考题)已知集合{},)12(91A Z k k x x ∈+==},,9194|{z k k x xB ∈±==则集合A 、B 之间的关系为( ).A A .B ≠⊂ B B .A ≠⊂ B AC =. B AD =/. 考点3 集合相等问题[例3] 设集合,},,,{},,,1{2B A ab a a B b a A ===则a= =b , [解析] 由集合的相等关系,且均有元素a ,故有⎩⎨⎧==ab b a ,12或⎩⎨⎧==,,12a b ab 且.1,1=/=/b a .0,1=-=∴b a[答案]-10[点拨] (l )两个集合的元素相 同.(2)注意集合内元素的互异性,为避免出错,常代回检验.母题迁移 3.已知三元素集合=-=B y x xy x A },,,{},|,|,0{y x 且,B A =求x 与y 的值,考点4 利用集合关系,求字母参数或取值范围[例4] 设},01|{},0158|{2=-==+-=ax x B x x x A 若,A B ⊆求实数a 组成的集合. [解析] ,A B ⊆即B 是A 的子集,只需求出A ,即可分类讨论解决. 由于,},5,3{A B A ⊆=(1)若;0,=∅=a B 则 (2)若,∅=/B 则,0=/a 这时有31,5131===a a a 即或或⋅=51a综上所述,由实数a 组成的集合为⋅}31,51,0{[点拨] 要解决本题,首先要搞清楚集合A 的元素是什么,然后根据,A B ⊆求a 的值.特别要注意讨论B 为⋅∅的情况,在A B ⊆中,含有∅=B 这种情况,解题时需注意,防止遗漏.在集会这一单元中含有丰富的分类讨论的内容,要增强分类讨论的意识,掌握分类的方法.母题迁移 4.(1)若集合 ==-+=B x x x A },06|{2},01|{=+mx x 且,A B ≠⊂求m 的值. (2)设集合+++==+=x a x x B x x x A )1(2|{},04|{22}.,012R a a ∈=-若,A B ⊆求实数a 的值.自主评价反馈考点知识清单1.(1)集合A 中任何一个元素都是集合B 的元素B A ⊆)2( A 包含于B2.(l)存在元素B x ∈且A x ∉B A ≠⊂)2(A 真包含于B3.(1)任何一个元素任何一个元素B A =B A ⊆)2( A B ⊆ B A ⊂ A B ⊂4.封闭图形5.(1)任何集合 (2)任何非空集合C A ⊂)1.(6 C A ≠⊂)2(母题迁移}1{}1,1{}1{.1或或或--∅2.C.0,,0.3A B A B ∈∴=∈∴ 集合A 为三元素集,,xy x =/∴.0=/∴x 又,0,,0=/∴∈∈y B y B 从而⋅==-y x y x ,0 这时,},|,|,0{},0,,{2x x B x x A ⋅==|,|2x x =∴则0=x (舍去)或1=x (舍去)或.1-=x经验证:1,1-=-=y x 是本题的解.4.(1)},2,3{}06|{2-==-+=x x x A自主评价反馈,A B ≠⊂当∅=B 时,0=m 适合题意;当∅=/B 时,方程01=+mx 的解为,1mx -= 则31-=-m 或,21=-m 31=∴m 或⋅-=21m综上可知,所求m 的值为⋅-2131,0R A B ⊆)2(可分为A B A B B =≠⊂∅=,,三种情况,而=A }.4,0{-当B A =时,},4,0{-=B 即 40-==x x 与是方程01)1(222=-+++a x a x 的两根,求得.1=a 当∅=B 时,方程01)1(222=-+++ a x a x 无解,由判别式.10)1(4)1(422-<⇒<--+=∆a a a当,A B ≠⊂且∅=/B 时.}0{=B 或},4{-=B 即方程01)1(222=-+++a x a x 有两个相等的实数根. 此时.10)1(4)1(422-=⇒=--+=∆a a a}0{=∴B 满足条件.综上所述,所求实数a 的取值为.11=-≤Ra a优化分层测试学业水平测试1. 在下列所给的五个关系式:①};0{≠⊂∅,1,2{}2,1,2{=-②}2-};2,1{}1{;∈③};3{)}3,3{(=④}{∅⑤{}012=++=x x x 中正确的有( ).A .0个B .1个C .2个 D.3个2.若集合},1,{},,3,1{2x B x A ==且,A B ⊆则满足条件的实数x 的个数为( ).A .1B .2C .3D .43.若集合},21|{<<=x x A 集合},0|{2>=x x B 则A B .4.若集合},0|{},2,1{2=++==b ax x x B A 若,B A =则=a =b .5.判定下列集合之间的关系,用适当的符号表示它们的关系. (1){}{x x b z n n x z x =∈=∈=,,2A 是偶数}; (x x A |{)2=是平行四边形},x x B |{=是正方形}; (3){}{};,,,22R x x y R y B R y x y R x A ∈=∈=∈-=∈(4){x x A =是奇数},}.,14|{z n n x R x B ∈±=∈=6. 设集合{x x A =是三角形},{x x B =是锐角三角形},{x x c =是正三角形},指出A 、B 、C 三者之间的关系,并用韦恩图表示.高考能力测试(测试时间:45分钟测试满分:100分) 一、选择题(5分×8 =40分)1.下列各式中,正确的个数是( ).};0{=∅① };0{⊆∅② };0{∈∅③ };0{0=④ };0{0∈⑤ };3,2,1{}1{∈⋅⑥ };3,2,1{}2,1{⊆⑦ }.,{},{b a b a ⊆⑧1.A2.B3.C4.D2.设集合,)12(|{},,)12(1{ππ-==∈+==k x x N z k k x x M },z k ∈则M 、N 之间的关系为( ).N M A ≠⊂. N M B ⊇. N M C ⊆. N M D =.3.已知集合},2,1{=P 那么满足P Q ⊆的集合Q 的个数是( ).4.A 3.B 2.C 1.D4.(2010年江西南昌调研测试题)集合A S },5,4,3,2,1,0{=是S 的一个子集,当A x ∈时,若A x ∉-1 且,1A x ∉+则称X 为A 的一个“孤立元素”,那么 S 中无“孤立元素”的含有4个元素的子集个数是( ).A .4个B .5个C .6个D .7个 5.(2007年全国高考题)设,,R b a ∈集合=+},,1{a b a },,,0{b ab则=-a b ( ). 1.A 1.-B 2.C 2.-D6.(2010年天津高考题)设=∈<-=B R x a x x A },,1|||{},,2|||{R x b x x ∈>-若,B A ⊆则实数a,b必满足( ).3||.≤+b a A 3||.≥+b a B 3||.≤-b a C 3||.≥-b a D7.已知a 为不等于零的实数,那么集合=M },01)1(2|{2R x x a x x ∈=++-的子集的个数为( ).A .1B .2C .4D .1或2或 48.(2008年四川高考题)集合A A },1,0,1{-=的子集中含有元素O 的子集共有( ). A .2个 B.4个 C.6个 D.8个 二、填空题(5分x4=20分)9.设},123|),{(},23|),{(,=--=-=-=∈x y y x B x y y x A R y x 、则A 、B 的关系是 10.已知集合=∈+==⊂C z k k x x B B A },,214|{,},,418|{z k k x x ∈+=那么集合A 与C 的关系为11.设},0|{},21|{<-=<<=a x x B x x A 若B A ≠⊂则a 的取值范围是 12.已知集合},12,3,1{--=m A 集合},,3{2m B =若,A B ⊆则实数m= 三、解答题(10分×4 =40分)13.设数集},,1{},,2,1{2a a B a A -==若,B A ⊇求实数a 的值.14.已知集合},112|{.},43.|{4+≤≤-=≤≤-=m x m x B x x 且,A B ⊂求实数m 的取值范围.15.已知集合++-==+-=x m x x B x x x A )1(|{},023|{22}.0=m (1)若,A B ≠⊂求m 的值组成的集合P ; (2)若,A B ⊂求m 的值组成的集合Q .16.已知集合|{},03|{2R x Q b x x R x P ∈==+-∈=}.0)43()1(22=-++x x x (1)若,∅=P 是否存在集合M ,使得?Q M P ⊆≠⊂求出这样的集合M;(2)P 是否能成为Q 的一个子集?若能,求出b 的取值或取值范围;若不能,说明理由.。