2016中考数学八大题型集训:专题复习(七) 几何图形综合题 题型1 与三角形、四边形有关的几何综合题(优选.)
2016全国各地中考数学分类汇编--三角形
2016年全国各地中考数学试题分类解析汇编(第一辑)第11章三角形一.选择题(共19小题)1.(2015•长沙)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A. B. C. D.2.(2016•凉山州)一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7 B.7或8 C.8或9 D.7或8或93.(2016•温州)六边形的内角和是()A.540° B.720° C.900° D.1080°4.(2016•宜昌)设四边形的内角和等于a,五边形的外角和等于b,则a与b 的关系是()A.a>b B.a=b C.a<b D.b=a+180°5.(2016•长沙)六边形的内角和是()A.540° B.720° C.900° D.360°6.(2016•益阳)将一矩形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是()A.360° B.540° C.720° D.900°7.(2016•舟山)已知一个正多边形的内角是140°,则这个正多边形的边数是()A.6 B.7 C.8 D.98.(2016•衡阳)正多边形的一个内角是150°,则这个正多边形的边数为()A.10 B.11 C.12 D.139.(2016•北京)内角和为540°的多边形是()A. B. C. D.10.(2016•十堰)如图所示,小华从A点出发,沿直线前进10米后左转24,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米 B.150米 C.160米 D.240米11.(2016•临沂)一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108° B.90° C.72° D.60°12.(2016•广安)若一个正n边形的每个内角为144°,则这个正n边形的所有对角线的条数是()A.7 B.10 C.35 D.7013.(2016•台湾)如图的七边形ABCDEFG中,AB、DE的延长线相交于O点.若图中∠1、∠2、∠3、∠4的外角的角度和为220°,则∠BOD的度数为何?()A.40 B.45 C.50 D.6014.(2016•乐山)如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35° B.95° C.85° D.75°15.(2016•贵港)在△ABC中,若∠A=95°,∠B=40°,则∠C的度数为()A.35° B.40° C.45° D.50°16.(2016•盐城)若a、b、c为△ABC的三边长,且满足|a﹣4|+ =0,则c的值可以为()A.5 B.6 C.7 D.817.(2016•长沙)若一个三角形的两边长分别为3和7,则第三边长可能是()A.6 B.3 C.2 D.1118.(2016•岳阳)下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm 19.(2016•西宁)下列每组数分别是三根木棒的长度,能用它们摆成三角形的是()A.3cm,4cm,8cm B.8cm,7cm,15cmC.5cm,5cm,11cm D.13cm,12cm,20cm参考答案与试题解析一.选择题(共19小题)1.(2015•长沙)【分析】根据三角形高线的定义:过三角形的顶点向对边引垂线,顶点和垂足之间的线段叫做三角形的高线解答.【解答】解:为△ABC中BC边上的高的是A选项.故选A.【点评】本题考查了三角形的角平分线、中线、高线,熟记高线的定义是解题的关键.2.(2016•凉山州)A.7 B.7或8 C.8或9 D.7或8或9【分析】首先求得内角和为1080°的多边形的边数,即可确定原多边形的边数.【解答】解:设内角和为1080°的多边形的边数是n,则(n﹣2)•180°=1080°,解得:n=8.则原多边形的边数为7或8或9.故选:D.【点评】本题考查了多边形的内角和定理,一个多边形截去一个角后它的边数可能增加1,可能减少1,或不变.3.(2016•温州)【分析】多边形内角和定理:n变形的内角和等于(n﹣2)×180°(n≥3,且n为整数),据此计算可得.【解答】解:由内角和公式可得:(6﹣2)×180°=720°,故选:B.【点评】此题主要考查了多边形内角和公式,关键是熟练掌握计算公式:(n﹣2)•180°(n≥3,且n为整数).4.(2016•宜昌)【分析】根据多边形的内角和定理与多边形外角的关系即可得出结论.【解答】解:∵四边形的内角和等于a,∴a=(4﹣2)•180°=360°.∵五边形的外角和等于b,∴b=360°,∴a=b.故选B.【点评】本题考查的是多边形的内角与外角,熟知多边形的内角和定理是解答此题的关键.5.(2016•长沙)【分析】利用多边形的内角和定理计算即可得到结果.【解答】解:根据题意得:(6﹣2)×180°=720°,故选B.【点评】此题考查了多边形内角与外角,熟练掌握多边形内角和定理是解本题的关键.6.(2016•益阳)【分析】根据题意列出可能情况,再分别根据多边形的内角和定理进行解答即可.【解答】解:①将矩形沿对角线剪开,得到两个三角形,两个多边形的内角和为:180°+180°=360°;②将矩形从一顶点剪向对边,得到一个三角形和一个四边形,两个多边形的内角和为:180°+360°=540°;③将矩形沿一组对边剪开,得到两个四边形,两个多边形的内角和为:360°+360°=720°;故选:D.【点评】本题考查了多边形的内角与外角,能够得出一个矩形截一刀后得到的图形有三种情形,是解决本题的关键.7.(2016•舟山)【分析】首先根据一个正多边形的内角是140°,求出每个外角的度数是多少;然后根据外角和定理,求出这个正多边形的边数是多少即可.【解答】解:360°÷(180°﹣140°)=360°÷40°=9.答:这个正多边形的边数是9.故选:D.【点评】此题主要考查了多边形的内角与外角,要熟练掌握,解答此题的关键是要明确多边形的外角和定理.8.(2016•衡阳)【分析】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:外角是:180°﹣150°=30°,360°÷30°=12.则这个正多边形是正十二边形.故选:C.【点评】考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数是解题关键.9.(2016•北京)【分析】根据多边形的内角和公式(n﹣2)•180°列式进行计算即可求解.【解答】解:设多边形的边数是n,则(n﹣2)•180°=540°,解得n=5.故选:C.【点评】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.10.(2016•十堰)【分析】多边形的外角和为360°每一个外角都为24°,依此可求边数,再求多边形的周长.【解答】解:∵多边形的外角和为360°,而每一个外角为24°,∴多边形的边数为360°÷24°=15,∴小明一共走了:15×10=150米.故选B.【点评】本题考查多边形的内角和计算公式,多边形的外角和.关键是根据多边形的外角和及每一个外角都为24°求边数.11.(2016•临沂)【分析】首先设此多边形为n边形,根据题意得:180(n﹣2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【解答】解:设此多边形为n边形,根据题意得:180(n﹣2)=540,解得:n=5,故这个正多边形的每一个外角等于:=72°.故选C.【点评】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n﹣2)•180°,外角和等于360°.12.(2016•广安)【分析】由正n边形的每个内角为144°结合多边形内角和公式,即可得出关于n的一元一次方程,解方程即可求出n的值,将其代入中即可得出结论.【解答】解:∵一个正n边形的每个内角为144°,∴144n=180×(n﹣2),解得:n=10.这个正n边形的所有对角线的条数是:= =35.故选C.【点评】本题考查了多边形的内角以及多边形的对角线,解题的关键是求出正n边形的边数.本题属于基础题,难度不大,解决该题型题目时,根据多边形的内角和公式求出多边形边的条数是关键.13.(2016•台湾)【分析】延长BC交OD与点M,根据多边形的外角和为360°可得出∠OBC+∠MCD+∠CDM=140°,再根据四边形的内角和为360°即可得出结论.【解答】解:延长BC交OD与点M,如图所示.∵多边形的外角和为360°,∴∠OBC+∠MCD+∠CDM=360°﹣220°=140°.∵四边形的内角和为360°,∴∠BOD+∠OBC+180°+∠MCD+∠CDM=360°,∴∠BOD=40°.故选A.【点评】本题考查了多边形的内角与外角以及角的计算,解题的关键是能够熟练的运用多边形的外角和为360°来解决问题.本题属于基础题,难度不大,解决该题型题目时,利用多边形的外角和与内角和定理,通过角的计算求出角的角度即可.14.(2016•乐山)【分析】根据三角形角平分线的性质求出∠ACD,根据三角形外角性质求出∠A即可.【解答】解:∵CE是△ABC的外角∠ACD的平分线,∠ACE=60°,∴∠ACD=2∠ACE=120°,∵∠ACD=∠B+∠A,∴∠A=∠ACD﹣∠B=120°﹣35°=85°,故选:C.【点评】本题考查了三角形外角性质,角平分线定义的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.15.(2016•贵港)【分析】在△ABC中,根据三角形内角和是180度来求∠C的度数.【解答】解:∵三角形的内角和是180°,又∠A=95°,∠B=40°∴∠C=180°﹣∠A﹣∠B=180°﹣95°﹣40°=45°,故选C.【点评】本题考查了三角形内角和定理,利用三角形内角和定理:三角形内角和是180°是解答此题的关键.16.(2016•盐城)【分析】先根据非负数的性质,求出a、b的值,进一步根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,从而确定c的可能值;【解答】解:∵|a﹣4|+ =0,∴a﹣4=0,a=4;b﹣2=0,b=2;则4﹣2<c<4+2,2<c<6,5符合条件;故选A.【点评】本题考查了等腰三角形的性质、三角形三边关系及非负数的性质:有限个非负数的和为零,那么每一个加数也必为零;注意初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).17.(2016•长沙)【分析】根据三角形三边关系,两边之和第三边,两边之差小于第三边即可判断.【解答】解:设第三边为x,则4<x<10,所以符合条件的整数为6,故选A.【点评】本题考查三角形三边关系定理,记住两边之和第三边,两边之差小于第三边,属于基础题,中考常考题型.18.(2016•岳阳)【分析】依据三角形任意两边之和大于第三边求解即可.【解答】解:A、因为2+3=5,所以不能构成三角形,故A错误;B、因为2+4<6,所以不能构成三角形,故B错误;C、因为3+4<8,所以不能构成三角形,故C错误;D、因为3+3>4,所以能构成三角形,故D正确.故选:D.【点评】本题主要考查的是三角形的三边关系,掌握三角形的三边关系是解题的关键.19.(2016•西宁)【分析】根据三角形的三边关系,两边之和大于第三边,即两短边的和大于最长的边,即可作出判断.【解答】解:A、3+4<8,故以这三根木棒不可以构成三角形,不符合题意;B、8+7=15,故以这三根木棒不能构成三角形,不符合题意;C、5+5<11,故以这三根木棒不能构成三角形,不符合题意;D、12+13>20,故以这三根木棒能构成三角形,符合题意.故选D.【点评】本题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边.。
中考数学总复习《三角形的综合题》练习题及答案
中考数学总复习《三角形的综合题》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.如图,在平面直角坐标系中直线y=−x与双曲线y=kx交于A、B两点,P是以点C(2,2)为圆心,半径长1的圆上一动点,连结AP,Q为AP的中点.若线段OQ长度的最大值为2,则k的值为()A.−12B.−32C.−2D.−142.如图,已知AB∥CD,点E在线段AD上(不与点A,点D重合),连接CE.若∠C=20°,∠AEC=50°,则∠A=()A.10°B.20°C.30°D.40°3.如图,在Rt△ABC中AD是∠BAC的平分线,DE⊥AB垂足为E.若BC=8cm,BD=5cm则DE的长为()A.2√3cm B.3cm C.4cm D.5cm4.如图,矩形纸片ABCD中AD=8cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若AO=10cm,则AB的长为()A.12cm B.14cm C.16cm D.18cm5.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=25°,则∠2的度数为()A.20°B.25°C.30°D.15°6.如图,锐角∠ABC的两条高BD,CE相交于点O,且CE=BD,若∠CBD=20°,则∠A的度数为()A.20°B.40°C.60°D.70°7.下列长度的三条线段与长度为5的线段能组成四边形的是()A.1,1,1B.1,1,8C.1,2,2D.2,2,28.如图,在∠ABC中AB=AC,BE=CD,BD=CF,若∠A=40°,则∠EDF等于()A.40°B.50°C.60°D.70°9.若点O是等腰∠ABC的外心,且∠BOC=60°,底边BC=2,则∠ABC的面积为() A.2+√3B.2√3C.2+√3或2-√3D.4+2√3或2-√3310.如图,等边ΔABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为()A.15°B.22.5°C.30°D.45°11.如图,在△ABC中∠A=30°,∠ABC=100°,观察尺规作图的痕迹,则∠BFC的度数为()A.130°B.120°C.110°D.100°12.在测量一个小口圆形容器的壁厚时,小明用“X型转动钳”按如图方法进行测量,其中OA=OD,OB=OC,测得AB=5厘米,EF=6厘米,圆形容器的壁厚是()A.5厘米B.6厘米C.2厘米D.12厘米二、填空题13.如图,要测量河两岸相对的两点A、B的距离,在AB的垂线段BF上取两点C、D,使BC=CD,过D作BF的垂线DE,与AC的延长线交于点E,若测得DE的长为20米,则河宽AB长为米.14.如图1,点P从△ABC的项点A出发,以每秒2个单位长度的速度沿A→B→C→A的方向匀速运动到点A.图2是点P运动时线段AP的长度y随时间t(s)变化的关系图象,其中点M为曲线部分的最低点,则△ABC的面积是.15.如图,在正方形ABCD中AC为对角线,E为AC上一点,连接EB,ED,BE的延长线交AD于点F,∠BED=120∘,则∠EFD的度数为.16.如图,△ABC中∠A=40°,D、E是AC边上的点,把△ABD沿BD对折得到△A′BD,再把△BCE沿BE对折得到△BC′E,若C′恰好落在BD上,且此时∠C′EB=80°,则∠ABC=.17.如图,测量三角形中线段AB的长度为cm.判断大小关系:AB+AC BC(填“ >”,“ =”或“ <”).18.如图,已知AB是∠O的弦,AB=8,C是∠O上的一个动点,且∠ACB=45°.若M,N分别是AB,BC的中点,则线段MN长度的最大值是三、综合题19.已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a,b,c分别为∠ABC三边的长.(1)如果x=﹣1是方程的根,试判断∠ABC的形状,并说明理由;(2)如果∠ABC是等边三角形,试求这个一元二次方程的根.20.如图,在Rt∠OAB中∠OAB=90°,OA=AB=6,将∠OAB绕点O沿逆时针方向旋转90°得到∠OA1B1.(1)线段OA1的长是,∠AOB1的度数是;(2)连接AA1,求证:四边形OAA1B1是平行四边形.21.已知一次函数y=2x−2的图像为l1,函数y=12x−1的图像为l2.按要求完成下列问题:(1)求直线l1与y轴交点A的坐标;求直线l2与y轴的交点B的坐标;(2)求一次函数y=2x−2的图象l1与y=12x−1的图象l2的交点P的坐标;(3)求由三点P、A、B围成的三角形的面积.22.在图中利用网格点和三角板画图或计算:(1)在给定方格纸中画出平移后的△A′B′C′;(2)图中AC与A′C′的关系怎样?(3)记网格的边长为1,则△A′B′C′的面积为多少?23.如图,在∠ABC中点D在AB上,且CD=CB,E为BD的中点,F为AC的中点,连接EF交CD 于点M,连接AM.(1)求证:EF= 12AC;(2)若EF∠AC,求证:AM+DM=CB.24.如图①,Rt△ABC中∠C=90°,AC=6cm.动点P以acm/s的速度由B出发沿线段BA 向A运动,动点Q以1cm/s的速度由A出发沿射线AC运动.当点Q运动2s时,点P开始运动;P点到达终点时,P、Q一起停止.设点P运动的时间为ts,△APQ的面积为ycm2,y与t的函数关系图像如图②所示.(1)点P运动的速度a=cm/s,AB=cm;(2)当t为何值时,△APQ的面积为12cm2;(3)是否存在t,使得直线PQ将Rt△ABC的周长与面积同时平分?若存在,求出t的值;若不存在,请说明理由.参考答案1.【答案】A2.【答案】C3.【答案】B4.【答案】C5.【答案】A6.【答案】B7.【答案】D8.【答案】D9.【答案】C10.【答案】C11.【答案】C12.【答案】D13.【答案】2014.【答案】1215.【答案】105º16.【答案】60°17.【答案】2.0;>18.【答案】4√219.【答案】(1)解:ΔABC是等腰三角形;理由:把x=−1代入方程得a+c−2b+a−c=0,则a=b,所以ΔABC为等腰三角形(2)解:∵ΔABC为等边三角形∴a=b=c∴方程化为x2+x=0解得x1=0,x2=−1.20.【答案】(1)6;135°(2)证明:∵∠OAB绕点O沿逆时针方向旋转90°得到∠OA1B1∴∠AOA1=90°,∠OA1B1=90°,OA1=A1 B1=OA=6∴∠AO A1=∠O A1B1∴OA∠A1B1∵A1B1=OA∴四边形OAA1B1是平行四边形.21.【答案】(1)解:当x =0时,y= -2,即直线l 1与y 轴交点A 的坐标为(0,−2)当x =0时,y= -1,即直线l 2与y 轴交点B 的坐标为(0,−1);(2)解:∵一次函数y =2x −2的图象l 1与y =12x −1的图象l 2相交∴2x −2=12x −1∴x =23∴y =2×23−2=−23∴交点P 的坐标为(23,−23);(3)解:三点P 、A 、B 围成的三角形,如下图,作PD ⊥AB 交y 轴于点DAB =|−1−(−2)|=1△ABP 的高DP 为:23∴S △ABP =12AB ×DP =12×1×23=13即由三点P 、A 、B 围成的三角形的面积:13.22.【答案】(1)解:如图,∠A′B′C′为所作;(2)解:线段AC 与A′C′的位置关系是平行,数量关系是相等 (3)解:∠A′B′C′的面积=12×4×4=8.23.【答案】(1)证明:连接CE∵CD=CB,点E为BD的中点∴CE⊥BD∵点F为AC的中点∴EF=12AC;(2)解:∵点F是AC中点∴AF=FC,又EF⊥AC∴∠AFM=∠CFM,且AF=FC∴ΔAFM≅ΔCFM(SAS)∴AM=CM∵BC=CD=DM+CM=DM+AM.24.【答案】(1)1;10(2)解:当运动时间为t时,AQ=t+2,BP=t,AP=10−t 如图,作PH⊥AC,则△APH∽△ABC∴PH=APAB·BC=4(10−t)5∴S△APQ=12AQ·PH=12(t+2)4(10−t)5=2(t+2)(10−t)5∴△APQ的面积为12cm2时,解方程12=2(t+2)(10−t)5,得t1=4+√6∴当t=4+√6或4−√6时,△APQ的面积为12cm2;(3)解:∵S△ABC=24cm2,C△ABC=6+8+10=24cm∴12S△ABC=12cm2①当0<t≤4时由(2)可知,当t=4−√6时,△APQ的面积为12cm2此时,AQ=4−√6+2=6−√6∴AP+AQ=6+√6+6−√6=12,即AP+AQ=12C△ABC∴t=4−√6时,直线PQ将Rt△ABC的周长与面积同时平分;②当4<t≤10时设PQ与BC交于点N,作PM⊥BC则有:△PBM∽△ABC∴PM AC=BPBA=BMBC,∴PM=3t5,BM=4t5,MC=8−4t5∵PM QC=MNCN,∴MN=3t2−30t25−10t当BN+BP=12时,解方程4t5+3t2−30t25−10t+t=12,得t=5或t=4(舍去)此时,PM=3,BM=4,BP=5∴BN=4+3=7∴当4<t≤10时,不存在t使得直线PQ将Rt△ABC的周长与面积同时平分;∴综上,当t=4−√6时,直线PQ将Rt△ABC的周长与面积同时平分;当4<t≤10时,不存在t使得直线PQ将Rt△ABC的周长与面积同时平分.第11页共11页。
中考数学专题复习三角形问题(8字型)
中考数学专题复习三角形问题(8字型)学校:___________姓名:___________班级:___________考号:___________ 评卷人 得分一、单选题1.如图,AB 和CD 相交于点O ,∠A =∠C ,则下列结论中不能完全确定正确的是( )A .∠B =∠D B .∠1=∠A +∠DC .∠2>∠D D .∠C =∠D2.如图,将矩形纸片ABCD 沿EF 折叠,点C 落在边AB 上的点H 处,点D 落在点G 处,若111GEF ∠=︒,则AHG ∠的度数为( ).A .42°B .69°C .44°D .32°3.如图,∠1=60°,则∠A+∠B+∠C+∠D+∠E+∠F=( )A .240°B .280°C .360°D .540°4.如图是由线段AB ,CD ,DF ,BF ,CA 组成的平面图形,D 28∠=,则A B C F ∠∠∠∠+++的度数为( )评卷人得分二、填空题 5.下图是可调躺椅示意图(数据如图),AE 与BD 的交点为C ,且A ∠,B ,E ∠保持不变.为了舒适,需调整D ∠的大小,使110EFD ∠=︒,则图中D ∠应___________(填“增加”或“减少”)___________度.6.如图,求∠A +∠B +∠C +∠D +∠E +∠F +∠G +∠H +∠I =__.7.如图,∠A +∠B +∠C +∠D +∠E +∠F +∠G +∠H +∠I +∠K 的度数为__.评卷人 得分三、解答题 8.如图,OAB 和OCD 中,OA =OB ,OC =OD ,∠AOB =∠COD =α,AC 、BD 交于M(1)如图1,当α=90°时,∠AMD 的度数为 °; (2)如图2,当α=60°时,求∠AMD 的度数;(3)如图3,当OCD 绕O 点任意旋转时,∠AMD 与α是否存在着确定的数量关系?如果存在,请你用α表示∠AMD ,并用图3进行证明;若不确定,说明理由.9.(1)已知:如图∠的图形我们把它称为“8字形”,试说明:A B C D ∠+∠=∠+∠.(2)如图∠,AP ,CP 分别平分BAD ∠,BCD ∠,若36ABC ∠=︒,16ADC ∠=︒,求P ∠的度数.(3)如图(3),直线AP 平分BAD ∠,CP 平分BCD ∠的外角BCE ∠,猜想P ∠与B 、D ∠的数量关系是________;(4)如图(4),直线AP 平分BAD ∠的外角FAD ∠,CP 平分BCD ∠的外角BCE ∠,猜想P ∠与B 、D ∠的数量关系是________.10.在ABC 中,A ABC CB =∠∠,点D 在直线BC 上(不与,B C 重合),点E 在直线AC 上(不与,A C 重合),且ADE AED ∠=∠.(1)如图∠,若40,75ABC AED ∠=︒∠=︒,则CDE ∠=_____,此时,BADCDE∠=∠_____;(2)若点D 在BC 边上(点,B C 除外)运动(图∠),试探究BAD ∠与CDE ∠数量关系并说明理由:(3)若点D 在线段BC 的延长线上,点E 在线段AC 的延长线上(如图∠),其余条件不变,请直接写出BAD ∠与CDE ∠的数量关系:___;(4)若点D 在线段CB 的延长线上(如图∠),点E 在直线AC 上,22BAD ∠=︒,其余条件不变,则CDE ∠=_____.(友情提醒:可利用图∠画图分析)11.如图,BP 平分ABC ∠,交CD 于点F ,DP 平分ADC ∠交AB 于点E ,AB 与CD 相交于点G ,42A ∠=︒.(1)若60ADC∠=︒,求AEP∠的度数;(2)若38C∠=︒,求P∠的度数.12.阅读材料:如图1,AB、CD交于点O,我们把∠AOD和∠BOC叫做对顶三角形.结论:若∠AOD和∠BOC是对顶三角形,则∠A+∠D=∠B+∠C.结论应用举例:如图2:求五角星的五个内角之和,即∠A+∠B+∠ACE+∠ADB+∠E的度数.解:连接CD,由对顶三角形的性质得:∠B+∠E=∠1+∠2,在∠ACD中,∠∠A+∠ACD+∠ADC=180°,即∠A+∠3+∠1+∠2+∠4=180°,∠∠A+∠ACE+∠B+∠E+ADB=180°即五角星的五个内角之和为180°.解决问题:(1)如图∠,∠A+∠B+∠C+∠D+∠E+∠F=;(2)如图∠,∠A+∠B+∠C+∠D+∠E+∠F+∠G=;(3)如图∠,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=;(4)如图∠,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N=;请你从图∠或图∠中任选一个,写出你的计算过程.13.如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠K的度数.14.如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H六个角的和.15.(1)如图∠,求∠A+∠B+∠C+∠D+∠E+∠F的度数;(2)如图∠,求∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H的度数;(3)如图∠,求∠A+∠B+∠C+∠D+∠E+∠F+∠G的度数.16.如图,求A B C D E∠+∠+∠+∠+∠的度数.17.如图,30F∠=︒,求A B C D E∠+∠+∠+∠+∠的度数. 18.如图所示,求A B C D E F∠+∠+∠+∠+∠+∠的度数.19.如图,在直角ABC∆中,BD是ABC∠的平分线,3BAO OAD∠=∠,AO的延长线与BDC∠的平分线交于点F,求F∠的度数.20.如图,求A B C D E F∠+∠+∠+∠+∠+∠的度数.21.如图,∠ABC∠∠ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.参考答案:1.D 【解析】 【分析】利用三角形的外角性质,对顶角相等逐一判断即可. 【详解】∠∠A +∠AOD +∠D =180°,∠C +∠COB +∠B =180°,∠A =∠C ,∠AOD =∠BOC , ∠∠B =∠D ,∠∠1=∠2=∠A +∠D , ∠∠2>∠D ,故选项A ,B ,C 正确, 故选D . 【点睛】本题考查了对顶角的性质,三角形外角的性质,熟练掌握并运用两条性质是解题的关键. 2.A 【解析】 【分析】根据翻折的性质,及矩形的性质,求出AEG ∠,再利用“8”字模型求解即可. 【详解】由图形翻折的性质可知,111GEF DEF ∠=∠=︒,180111AEF ∴∠=︒-︒=69︒,1116942AEG GEF AEF ∠=∠-∠=︒-︒=︒, 90A G ∠=∠=︒,利用“8”字模型, 42AHG AEG ∴∠=∠=︒,故选:A . 【点睛】本题考查了矩形翻折问题,能够根据图形翻折的性质推理出AEG ∠是解决问题的关键,熟练运用“8”字模型是求最终结果的关键. 3.A 【解析】 【分析】根据三角形内角和定理得到∠B 与∠C 的和,然后在五星中求得∠1与另外四个角的和,加在一起即可. 【详解】解:由三角形外角的性质得:∠3=∠A+∠E ,∠2=∠F+∠D , ∠∠1+∠2+∠3=180°,∠1=60°, ∠∠2+∠3=120°,即:∠A+∠E+∠F+∠D=120°, ∠∠B+∠C=120°,∠∠A+∠B+∠C+∠D+∠E+∠F=240°. 故选A .【点睛】本题考查了三角形的外角和三角形的内角和的相关知识,解决本题的关键是将题目中的六个角分成两部分来分别求出来,然后再加在一起. 4.C 【解析】 【详解】∠如图可知BED F B ∠=∠+∠,CGE C A ∠=∠+∠, 又∠BED D EGD ∠=∠+∠, ∠F B D EGD ∠+∠=∠+∠, 又∠180CGE EGD ∠+∠=︒, ∠180C A F B D ∠+∠+∠+∠-∠=︒, 又∠28D ∠=︒,∠18028208A B C F ∠+∠+∠+∠=︒+︒=︒, 故选C .点睛:本题主要考查了三角形内角和定理即三角形外角与内角的关系,解答本题的关键是求出∠C +∠A +∠F +∠B ﹣∠D =180°,此题难度不大.5.减少10【解析】【分析】先通过作辅助线利用三角形外角的性质得到∠EDF与∠D、∠E、∠DCE之间的关系,进行计算即可判断.【详解】解:∠∠A+∠B=50°+60°=110°,∠∠ACB=180°-110°=70°,∠∠DCE=70°,如图,连接CF并延长,∠∠DFM=∠D+∠DCF=20°+∠DCF,∠EFM=∠E+∠ECF=30°+∠ECF,∠∠EFD=∠DFM+∠EFM=20°+∠DCF+30°+∠ECF=50°+∠DCE=50°+70°=120°,要使∠EFD=110°,则∠EFD减少了10°,若只调整∠D的大小,由∠EFD=∠DFM+∠EFM=∠D+∠DCF+∠E+∠ECF=∠D+∠E+∠ECD=∠D+30°+70°=∠D+100°,因此应将∠D减少10度;.故答案为:∠减少;∠10【点睛】本题考查了三角形外角的性质,同时涉及到了三角形的内角和与对顶角相等的知识;解决本题的关键是理解题意,读懂图形,找出图形中各角之间的关系以及牢记公式建立等式求出所需的角,本题蕴含了数形结合的思想方法.6.900°【解析】【分析】根据多边形的内角和,可得答案.【详解】解:连EF,GI,如图,∠6边形ABCDEFK的内角和=(6-2)×180°=720°,∠∠A+∠B+∠C+∠D+∠E+∠F=720°-(∠1+∠2),即∠A+∠B+∠C+∠D+∠E+∠F+(∠1+∠2)=720°,∠∠1+∠2=∠3+∠4,∠5+∠6+∠H=180°,∠∠A+∠B+∠C+∠D+∠E+∠F∠H+(∠3+∠4)=900°,∠∠A+∠B+∠C+∠D+∠E+∠F(∠3+∠4)+∠5+∠6+∠H=720°+180°,∠∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I=900°,故答案为:900°.【点睛】本题考查了n边形的内角和定理:n边形的内角和为(n-2)×180°(n≥3的整数).7.1080°【解析】【分析】连KF,GI,根据n边形的内角和定理得到7边形ABCDEFK的内角和=(7-2)×180°=900°,则∠A+∠B+∠C+∠D+∠E+∠F+∠K+(∠1+∠2)=900°,由三角形内角和定理可得到∠1+∠2=∠3+∠4,∠5+∠6+∠H=180°,则∠A+∠B+∠C+∠D+∠E+∠F+∠K +(∠3+∠4)+∠5+∠6+∠H=900°+180°,即可得到∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I+∠K的度数.【详解】解:连KF,GI,如图,∠7边形ABCDEFK 的内角和=(7-2)×180°=900°,∠∠A +∠B +∠C +∠D +∠E +∠F +∠K =900°-(∠1+∠2),即∠A +∠B +∠C +∠D +∠E +∠F +∠K +(∠1+∠2)=900°,∠∠1+∠2=∠3+∠4,∠5+∠6+∠H =180°,∠∠A +∠B +∠C +∠D +∠E +∠F +∠K +(∠3+∠4)=900°,∠∠A +∠B +∠C +∠D +∠E +∠F +∠K +(∠3+∠4)+∠5+∠6+∠H =900°+180°, ∠∠A +∠B +∠C +∠D +∠E +∠F +∠G +∠H +∠I +∠K =1080°.故∠A +∠B +∠C +∠D +∠E +∠F +∠G +∠H +∠I +∠K 的度数为1080°.故答案为:1080°.【点睛】本题考查了n 边形的内角和定理:n 边形的内角和为(n -2)×180°(n ≥3的整数). 8.(1)90;(2)120︒;(3)180α︒-【解析】【分析】(1)如图1,设OA 交BD 于K ,只要证明△≌△BOD AOC ,推出OBD OAC ∠=∠,由BKO AKM ∠=∠,可得90AMK BOK ∠=∠=︒;(2)如图2,设OA 交BD 于K ,只要证明△≌△BOD AOC ,推出OBD OAC ∠=∠,由BKO AKM ∠=∠,可得60AMK BOK ∠=∠=︒;(3)如图3,设OA 交BD 于K ,只要证明△≌△BOD AOC ,推出OBD OAC ∠=∠,由BKM AKO ∠=∠,可得BMK AOK α∠=∠=,可得180AMD α∠=︒-;【详解】解:(1)如图1中,设OA 交BD 于K∠OA OB OC OD==,,90AOB COD∠=∠=︒∠BOD AOC∠=∠∠△≌△()BOD AOC SAS∠OBD OAC∠=∠∠BKO AKM∠=∠∠90AMK BOK∠=∠=︒∠90AMD∠=︒故答案为90︒(2)如图2,设OA交BD于K,∠OA OB OC OD==,,60AOB COD∠=∠=︒∠BOD AOC∠=∠∠△≌△()BOD AOC SAS∠OBD OAC∠=∠∠BKO AKM∠=∠∠60AMK BOK∠=∠=︒∠180120AMD AMK∠=︒-∠=︒故答案为120︒(3)如图3,设OA交BD于K,∠OA OB OC OD ==,,AOB COD α∠=∠=∠BOD AOC ∠=∠∠△≌△()BOD AOC SAS∠OBD OAC ∠=∠∠AKO BKM ∠=∠∠BMK AOK α∠=∠=∠180180AMD BMK α∠=︒-∠=︒-故答案为180α︒-【点睛】本题考查了几何变换综合题,全等三角形的判定,三角形内角和性质,解题的关键是灵活运用所学知识解决问题,学会利用“8字型”证明角相等.9.(1)见解析;(2)26°;(3)()1902P B D ∠=︒+∠+∠;(4)()11802P B D ∠=︒-∠+∠ 【解析】【分析】(1)根据三角形的内角和等于180°和对顶角的性质即可得证; (2)设BAP PAD x ∠=∠=,BCP PCD y ∠=∠=,x ABC y P x P y ADC +∠=+∠⎧⎨+∠=+∠⎩解方程即可得到答案; (3)根据直线AP 平分BAD ∠,CP 平分BCD ∠的外角BCE ∠,得到1=2PAB PAD BAD ∠=∠∠,1=2PCB PCE PCD ∠=∠∠从而可以得到180°()2PAB PCB D B -∠+∠+∠=∠,再根据∠P +∠P AD =∠PCD +∠D ,∠BAD +∠B =∠BCD +∠D 得到=P B PAD PCB PAB PCB ∠-+=∠+∠∠∠∠即可求解;(4)连接PB ,PD 根据APB PBA PAB +∠+∠=∠180°,PCB PBC BPC +∠+∠=∠180°得到APC ABC PCB PAB ∠+∠+∠+=∠360°,同理得到:APC ADC PCD PAD ∠+∠+∠+=∠360°,再根据=PCE PCD ∠+∠180°,=PAB PAF +∠∠180°,FAP PAO ∠=∠,PCE PCB ∠=∠,即可求解.【详解】解:(1)A B AOB ∠+∠+∠=180°,C D COD ∠+∠+∠=180°,A B AOB C D COD ∴∠+∠+∠=∠+∠+∠.AOB COD ∠=∠,A B C D ∴∠+∠=∠+∠;(2)AP ,CP 分别平分BAD ∠,BCD ∠,设BAP PAD x ∠=∠=,BCP PCD y ∠=∠=,则有x ABC y P x P y ADC +∠=+∠⎧⎨+∠=+∠⎩, ABC P P ADC ∴∠-∠=∠-∠,()1122P ABC ADC ∴∠=∠+∠=(36°+16°)=26°(3)直线AP 平分BAD ∠,CP 平分BCD ∠的外角BCE ∠,1=2PAB PAD BAD ∴∠=∠∠,1=2PCB PCE BCE ∠=∠∠, ∠2PAB B ∠+∠=180°-2PCB D ∠+∠,∠180°()2PAB PCB D B -∠+∠+∠=∠∠∠P +∠P AD =∠PCD +∠D ,∠BAD +∠B =∠BCD +∠D∠=P PAD BAD B PCD BCD ∠+---∠∠∠∠∠,P PAB B PCB ∴∠-∠-∠=∠∠P B PAB PCB ∠-=∠+∠∠∠180°()2P B D B -∠-∠+∠=∠,即P ∠=90°()12BD +∠+∠.(4)连接PB ,PD直线AP 平分BAD ∠的外角FAD ∠,CP 平分BCD ∠的外角BCE ∠,FAP PAO ∴∠=∠,PCE PCB ∠=∠,∠APB PBA PAB +∠+∠=∠180°,PCB PBC BPC +∠+∠=∠180°∠APC ABC PCB PAB ∠+∠+∠+=∠360°同理得到:APC ADC PCD PAD ∠+∠+∠+=∠360°∠2APC ABC ADC PCB PAB PCD PAD ∠+∠+∠+∠++∠+=∠∠720°∠2APC ABC ADC PCE PAB PCD PAF ∠+∠+∠+∠++∠+=∠∠720°∠=PCE PCD ∠+∠180°,=PAB PAF +∠∠180°∠2APC ABC ADC ∠+∠+∠=360°,APC ∴∠=180°-()12ABC ADC ∠+∠【点睛】本题主要考查了角平分线的定义,三角形内角和定理,解题的关键在于能够熟练掌握相关知识进行求解.10.(1)35°,2;(2)∠BAD =2∠CDE ,理由见解析;(3)∠BAD =2∠CDE ;(4)79°或11°【解析】【分析】(1)利用三角形内角和定理以及三角形的外角的性质解决问题即可.(2)结论:∠BAD=2∠CDE.设∠B=∠C=x,∠AED=∠ADE=y,则∠BAC=180°-2x,∠CDE=y-x,∠DAE=180°-2y,推出∠BAD=∠BAC-∠DAE=2y-2x=2(y-x),由此可得结论.(3)如图∠中,结论:∠BAD=2∠CDE.解决方法类似(2).(4)分两种情形:∠当点E在CA的延长线上,设∠ABC=∠C=x,∠AED=∠ADE=y,则∠BAC=180°-2x,∠CDE=180°-(y+x),∠DAE=180°-2y,由题意,∠BAD=180°-∠BAC-∠DAE=2x+2y-180°=22°,推出x+y=101°,可得结论.∠如图∠中,当点E在AC的延长线上时,同法可求.【详解】解:(1)如图∠中,∠∠ABC=∠ACB=40°,∠∠BAC=180°-40°-40°=100°,∠∠AED=∠CDE+∠C,∠∠CDE=75°-40°=35°,∠∠ADE=∠AED=75°,∠∠DAE=180°-75°-75°=30°,∠∠BAD=∠BAC-∠DAE=100°-30°=70°,∠BADCDE∠∠==2.故答案为35°,2.(2)结论:∠BAD=2∠CDE.理由:设∠B=∠C=x,∠AED=∠ADE=y,则∠BAC=180°-2x,∠CDE=y-x,∠DAE=180°-2y,∠∠BAD=∠BAC-∠DAE=2y-2x=2(y-x),∠∠BAD=2∠CDE.(3)如图∠中,结论:∠BAD=2∠CDE.理由:设∠B=∠ACB=x,∠AED=∠ADE=y,则∠BAC=180°-2x,∠CDE=180°-(y+x),∠DAE=180°-2y,∠∠BAD=∠BAC+∠DAE=360°-2(x+y),∠∠BAD=2∠CDE.故答案为∠BAD=2∠CDE.(4)如图∠中,设∠ABC=∠C=x,∠AED=∠ADE=y,则∠BAC=180°-2x,∠CDE=180°-(y+x),∠DAE=180°-2y,∠∠BAD=180°-∠BAC-∠DAE=2x+2y-180°=22°,∠x+y=101°∠∠CDE=180°-101°=79°.如图∠中,当点E在AC的延长线上时,设∠ABC=∠ACB=x,∠AED=∠ADE=y,则∠ADB =x -22°,∠CDE =y -(x -22°),∠∠ACB =∠CDE +∠AED ,∠x =y +y -(x -22°),∠x -y =11°,∠∠CDE =()2211x y ︒--=︒故答案为79°或11°.【点睛】本题属于几何变换综合题,考查了三角形内角和定理,三角形的外角的性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.11.(1)72︒;(2)40︒.【解析】【分析】(1)根据角平分线的定义可得∠ADP=12ADC ∠ ,然后利用三角形外角的性质即可得解; (2)根据角平分线的定义可得∠ADP=∠PDF ,∠CBP=∠PBA ,再根据三角形的内角和定理可得∠A+∠ADP=∠P+∠ABP ,∠C+∠CBP=∠P+∠PDF ,所以∠A+∠C=2∠P ,即可得解.【详解】解:(1)∠DP 平分∠ADC ,∠∠ADP=∠PDF=12ADC ∠,∠60ADC ∠=︒,∠30ADP ∠=︒,∠304272AEP ADP A ∠=∠+∠=︒+︒=︒;(2)∠BP 平分∠ABC ,DP 平分∠ADC ,∠∠ADP=∠PDF ,∠CBP=∠PBA ,∠∠A+∠ADP=∠P+∠ABP,∠C+∠CBP=∠P+∠PDF,∠∠A+∠C=2∠P,∠∠A=42°,∠C=38°,∠∠P=1(38°+42°)=40°.2【点睛】本题考查了三角形的内角和定理及三角形外角的性质,角平分线的定义,熟记定理并理解“8字形”的等式是解题的关键.12.(1)360°;(2)540°;(3)720°;(4)1080°;过程见解析【解析】【分析】(1)连接CD,由对顶角三角形可得∠A+∠B=∠BDC+∠ACD,再由四边形的内角和定理得出结论;(2)连接ED,由对顶角三角形可得∠A+∠B=∠BED+∠ADE,再由五边形的内角和定理得出结论;(3)连接BH、DE,由对顶角三角形可知∠EBH+∠BHD=∠HDE+∠BED,再根据五边形的内角和定理得出结论;(4)连接ND、NE,由对顶角三角形可知∠1+∠2=∠NGH+∠EHG,再由六边形的内角和定理得出结论.【详解】解:(1)连接CD,由对顶角三角形可得∠A+∠B=∠BDC+∠ACD,则∠A+∠B+∠C+∠D+∠E+∠F=360°;(2)连接ED,由对顶角三角形可得∠A+∠B=∠BED+∠ADE,则∠A+∠B+∠C+∠D+∠E+∠F+∠G=540°;(3)连接BH、DE,∠由对顶角三角形可知∠EBH+∠BHD=∠HDE+∠BED,∠∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=五边形CDEFG的内角和+∠ABH的内角和=540°+180°=720°;(4)连接ND、NE,∠由对顶角三角形可知∠1+∠2=∠NGH+∠EHG,∠∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N=六边形BCFGHM的内角和+∠AND的内角和+∠NDE的内角和=(6-2)×180°+360°=1080°.故答案为:360°;540°;720°;1080°.【点睛】本题考查的是三角形内角和定理,根据题意作出辅助线,利用∠AOD和∠BOC叫做对顶三角形的性质及多边形的内角和定理解答是解答此题的关键.13.540°【解析】【分析】如图所示,由三角形外角的性质可知:∠A+∠B=∠IJL,∠C+∠D=∠MLJ,∠H+∠K=∠GIJ,∠E+∠F=∠GML,然后由多边形的内角和公式可求得答案.【详解】解:如图所示:由三角形的外角的性质可知:∠A+∠B=∠IJL,∠C+∠D=∠MLJ,∠H+∠K=∠GIJ,∠E +∠F=∠GML,∠∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠K=∠IJL+∠MLJ+∠GML+∠G+∠GIJ=(5-2)×180°=3×180°=540°.【点睛】本题主要考查的是三角形外角的性质和多边形的内角和公式的应用,利用三角形外角和的性质将所求各角的和转化为五边形的内角和是解题的关键14.360°【解析】【分析】根据三角形内角和外角的性质可得:∠G+∠D=∠3,∠F+∠C=∠4,∠E+∠H=∠2,再根据三角形内角和定理可得答案.【详解】解:∠∠G+∠D=∠3,∠F+∠C=∠4,∠E+∠H=∠2,∠∠G+∠D+∠F+∠C+∠E+∠H=∠3+∠4+∠2,∠∠B+∠2+∠1=180°,∠3+∠5+∠A=180°,∠∠A+∠B+∠2+∠4+∠3=360°,∠∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=360°.【点睛】此题主要考查了三角形内角与外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.15.(1)360°;(2)720°;(3)540°【解析】【分析】(1)连接AD,根据三角形的内角和定理得∠B+∠C=∠BAD+∠CDA,进而将问题转化为求四边形ADEF的内角和,(2)与(1)方法相同转化为求六边形ABCDEF的内角和,(3)使用上述方法,转化为求五边形ABCDE的内角和.【详解】解:(1)如图∠,连接AD,由三角形的内角和定理得,∠B+∠C=∠BAD+∠CDA,∠∠BAF+∠B+∠C+∠CDE+∠E+∠F=∠BAF+∠BAD+∠CDA+∠D+∠E+∠F即四边形ADEF的内角和,四边形的内角和为360°,∠∠BAF+∠B+∠C+∠CDE+∠E+∠F=360°,(2)如图∠,由(1)方法可得:∠BAH+∠B+∠C+∠D+∠E+∠EFG+∠G+∠H的度数等于六边形ABCDEF的内角和,∠∠BAH+∠B+∠C+∠D+∠E+∠EFG+∠G+∠H=(6-2)×180°=720°,(3)如图∠,根据(1)的方法得,∠F+∠G=∠GAE+∠FEA,∠BAG+∠B+∠C+∠D+∠DEF+∠F+∠G的度数等于五边形ABCDE的内角和,∠∠BAG+∠B+∠C+∠D+∠DEF+∠F+∠G=(5-2)×180°=540°,【点睛】本题考查三角形的内角和、多边形的内角和的计算方法,适当的转化是解决问题的关键.16.180︒.【解析】【分析】根据三角形的内角和定理即可求解【详解】解:连结BE,BC与DE相交成对顶三角形,∴∠+∠=∠+∠,C D CBE DEB∴∠+∠+∠+∠+∠=∠+∠+∠+∠+∠A ABC C D AED A ABC CBE DEB AED=∠+∠+∠=︒180A ABE AEB【点睛】本题主要考查三角形内角和定理,熟练掌握相关的性质是解题的关键17.330︒.【解析】【分析】根据三角形的内角和定理即可求解【详解】解: 在ABM ∆中,31?80A B ∠+∠+∠=︒ 在CDP ∆中,11?80C D ∠+∠+∠=︒ 在EFN ∆中,21?80E F ∠+∠+∠=︒ 在PNM ∆中,1231?80∠+∠+∠=︒ ∠312?540A B C D E F ∠+∠+∠+∠+∠+∠+∠+∠+∠=︒∠30F ∠=︒∠ 330A B C D E ∠+∠+∠+∠+∠=︒【点睛】本题主要考查三角形内角和定理,熟练掌握相关的性质是解题的关键18.360︒.【解析】【分析】首先利用三角新的外角的性质,然后根据多边形的外角和定理即可求解.【详解】解:∠∠1=∠A+∠B ,∠2=∠C+∠D ,∠3=∠E+∠F ,又∠∠1+∠2+∠3=360°,∠∠A+∠B+∠C+∠D+∠E+∠F=360°.【点睛】本题考查了三角形的外角的性质以及多边形的外角和是360°,理解定理是关键. 19.22.5F ∠=︒【解析】【分析】设OAD x ∠=︒,则3BAO x ∠=︒,452ABO x ∠=︒-︒,22.5ODF x ∠=︒+︒,根据三角形ABO 与三角形DFO 的内角和相等即可建立方程,整理方程即可得出答案.【详解】解:设OAD x ∠=︒,则3BAO x ∠=︒,在直角ABC ∆中,904ABC x ∠=︒-︒,∠BD 是ABC ∠的平分线,∠452ABO x ∠=︒-︒,在直角DBC ∆中,22.5ODF x ∠=︒+︒.∠180OAB OBA AOB ODF F FOD ∠+∠+∠=∠+∠+∠=︒,又∠AOB FOD ∠=∠,∠OAB OBA ODF F ∠+∠=∠+∠,即345222.5x x x F ︒+︒-︒=︒+︒+∠,∠22.5F ∠=︒.【点睛】本题考查了对顶角相等、三角形内角和定理及其推论等知识.根据对顶三角形构建方程是解题的关键.20.360A B C D E F ∠+∠+∠+∠+∠+∠=︒.【解析】【分析】连接CD ,将A B C D E F ∠+∠+∠+∠+∠+∠转化为四边形CDEF 的内角和即可求出答案.【详解】解:如图所示,连接CD .由对顶三角形得,A B ACD BDC ∠+∠=∠+∠,∠A B C D E F ∠+∠+∠+∠+∠+∠360CDE DCF E F =∠+∠+∠+∠=︒.【点睛】本题考查了三角形、四边形的内角和定理、对顶角的性质等知识.将所求角的度数和转化为四边形内角和是解题的关键.21.90°;65°【解析】【详解】试题分析:由∠ABC∠∠ADE ,可得∠DAE=∠BAC=12(∠EAB-∠CAD ),根据三角形外角性质可得∠DFB=∠FAB+∠B ,因为∠FAB=∠FAC+∠CAB ,即可求得∠DFB 的度数;根据三角形内角和定理可得∠DGB=∠DFB-∠D ,即可得∠DGB 的度数.试题解析:∠∠ABC∠∠ADE ,∠∠DAE=∠BAC=12(∠EAB-∠CAD )=12(120°-10°)=55°. ∠∠DFB=∠FAB+∠B=∠FAC+∠CAB+∠B=10°+55°+25°=90°∠DGB=∠DFB-∠D=90°-25°=65°.考点:1.三角形外角性质,2.三角形内角和定理。
(word完整版)初中三角形总复习+中考几何题证明思路总结,推荐文档
初中三角形总复习【知识精读】1. 三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2. 三角形中的几条重要线段:(1)三角形的角平分线(三条角平分线的交点叫做内心) (2)三角形的中线(三条中线的交点叫重心) (3)三角形的高(三条高线的交点叫垂心) 3. 三角形的主要性质(1)三角形的任何两边之和大于第三边,任何两边之差小于第三边; (2)三角形的内角之和等于180°(3)三角形的外角大于任何一个和它不相邻的内角,等于和它不相邻的两个内角的和; (4)三角形中,等角对等边,等边对等角,大角对大边,大边对大角; (5)三角形具有稳定性。
4.S S ABE ∆⋅ 基础。
5. 三角形边角关系、性质的应用 【分类解析】例1. 锐角三角形ABC 中,∠C =2∠B ,则∠B 的范围是( ) A. 1020︒<<︒∠B B. 2030︒<<︒∠B C. 3045︒<<︒∠B D. 4560︒<<︒∠B分析:因为∆ABC 为锐角三角形,所以090︒<<︒∠B 又∠C =2∠B ,∴︒<<︒0290∠B ∴︒<<︒045∠B又∵∠A 为锐角,()∴=︒-+∠∠∠A B C 180为锐角 ∴+>︒∠∠B C 90∴>︒390∠B ,即∠B >︒30 ∴︒<<︒3045∠B ,故选择C 。
例2. 选择题:已知三角形的一个外角等于160°,另两个外角的比为2:3,则这个三角形的形状是( ) A. 锐角三角形B. 直角三角形C. 钝角三角形D. 无法确定分析:由于三角形的外角和等于360°,其中一个角已知,另两个角的比也知道,因此三个外角的度数就可以求出,进而可求出三个内角的度数,从而可判断三角形的形状。
解:∵三角形的一个外角等于160° ∴另两个外角的和等于200° 设这两个外角的度数为2x ,3x ∴+=23200x x 解得:x =40 2803120x x ==, 与80°相邻的内角为100° ∴这个三角形为钝角三角形 应选C例3. 如图,已知:在∆ABC 中,AB AC ≤12,求证:∠∠C B <12。
中考数学综合专题训练【几何综合题】(几何)精品解析
中考数学综合专题训练【几何综合题】(几何)精品解析在中考中,几何综合题主要考察了利用图形变换(平移、旋转、轴对称)证明线段、角的数量关系及动态几何问题。
学生通常需要在熟悉基本几何图形及其辅助线添加的基础上,将几何综合题目分解为基本问题,转化为基本图形或者可与基本图形、方法类比,从而使问题得到解决。
在解决几何综合题时,重点在思路,在老师讲解及学生解题时,对于较复杂的图形,根据题目叙述重复绘图过程可以帮助学生分解出基本条件和图形,将新题目与已有经验建立联系从而找到思路,之后绘制思路流程图往往能够帮助学生把握题目的脉络;在做完题之后,注重解题反思,总结题目中的基本图形及辅助线添加方法,将题目归类整理;对于典型的题目,可以解析题目条件,通过拓展题目条件或改变条件,给出题目的变式,从而对于题目及相应方法有更深入的理解。
同时,在授课过程中,将同一类型的几何综合题成组出现,分析讲解,对学生积累对图形的“感觉”有一定帮助。
一.考试说明要求图形与证明中要求:会用归纳和类比进行简单的推理。
图形的认识中要求:会运用几何图形的相关知识和方法(两点之间的距离,等腰三角形、等边三角形、直角三角形的知识,全等三角形的知识和方法,平行四边形的知识,矩形、菱形和正方形的知识,直角三角形的性质,圆的性质)解决有关问题;能运用三角函数解决与直角三角形相关的简单实际问题;能综合运用几何知识解决与圆周角有关的问题;能解决与切线有关的问题。
图形与变换中要求:能运用轴对称、平移、旋转的知识解决简单问题。
二.基本图形及辅助线解决几何综合题,是需要厚积而薄发,所谓的“几何感觉”,是建立在足够的知识积累的基础上的,熟悉基本图形及常用的辅助线,在遇到特定条件时能够及时联想到对应的模型,找到“新”问题与“旧”模型间的关联,明确努力方向,才能进一步综合应用数学知识来解决问题。
在中档几何题目教学中注重对基本图形及辅助线的积累是非常必要的。
举例:1、与相似及圆有关的基本图形2、正方形中的基本图形3、基本辅助线(1)角平分线——过角平分线上的点向角的两边作垂线(角平分线的性质)、翻折;(2)与中点相关——倍长中线(八字全等),中位线,直角三角形斜边中线;(3)共端点的等线段——旋转基本图形(60°,90°),构造圆;垂直平分线,角平分线——翻折;转移线段——平移基本图形(线段)线段间有特殊关系时,翻折;(4)特殊图形的辅助线及其迁移....——梯形的辅助线(什么时候需要这样添加?)等作双高——上底、下底、高、腰(等腰梯形)三推一;面积;锐角三角函数平移腰——上下底之差;两底角有特殊关系(延长两腰);梯形——三角形平移对角线——上下底之和;对角线有特殊位置、数量关系。
2016年中考数学压轴题及解析分类汇编
中考数学压轴题及解析分类汇编问题中考数学压轴:等腰三角形问题中考数学压轴:直角三角形问题问题中考数学压轴:梯形问题中考数学压轴:面积问题2016中考数学压轴题:函数相似三角形问题(一)例1、直线113y x=-+分别交x轴、y轴于A、B两点,△AOB绕点O按逆时针方向旋转90°后得到△COD,抛物线y=ax2+bx+c经过A、C、D三点.(1) 写出点A、B、C、D的坐标;(2) 求经过A、C、D三点的抛物线表达式,并求抛物线顶点G的坐标;(3) 在直线BG上是否存在点Q,使得以点A、B、Q为顶点的三角形与△COD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.图1思路点拨1.图形在旋转过程中,对应线段相等,对应角相等,对应线段的夹角等于旋转角.2.用待定系数法求抛物线的解析式,用配方法求顶点坐标.3.第(3)题判断∠ABQ =90°是解题的前提.4.△ABQ 与△COD 相似,按照直角边的比分两种情况,每种情况又按照点Q 与点B 的位置关系分上下两种情形,点Q 共有4个.满分解答(1)A (3,0),B (0,1),C (0,3),D (-1,0).(2)因为抛物线y =ax 2+bx +c 经过A (3,0)、C (0,3)、D (-1,0) 三点,所以930,3,0.a b c c a b c ++=⎧⎪=⎨⎪-+=⎩ 解得1,2,3.a b c =-⎧⎪=⎨⎪=⎩所以抛物线的解析式为y =-x 2+2x +3=-(x -1)2+4,顶点G 的坐标为(1,4).(3)如图2,直线BG 的解析式为y =3x +1,直线CD 的解析式为y =3x +3,因此CD //BG . 因为图形在旋转过程中,对应线段的夹角等于旋转角,所以AB ⊥CD .因此AB ⊥BG ,即∠ABQ =90°.因为点Q 在直线BG 上,设点Q 的坐标为(x ,3x +1),那么BQ ==. Rt △COD 的两条直角边的比为1∶3,如果Rt △ABQ 与Rt △COD 相似,存在两种情况: ①当3BQ BA =3=.解得3x =±.所以1(3,10)Q ,2(3,8)Q --.②当13BQ BA =13=.解得13x =±.所以31(,2)3Q ,41(,0)3Q -.图2 图3考点伸展第(3)题在解答过程中运用了两个高难度动作:一是用旋转的性质说明AB ⊥BG ;二是BQ =.我们换个思路解答第(3)题:如图3,作GH ⊥y 轴,QN ⊥y 轴,垂足分别为H 、N .通过证明△AOB ≌△BHG ,根据全等三角形的对应角相等,可以证明∠ABG =90°. 在Rt △BGH 中,sin 1∠=,cos 1∠=①当3BQ BA=时,BQ = 在Rt △BQN 中,sin 13QN BQ =⋅∠=,cos 19BN BQ =⋅∠=.当Q 在B 上方时,1(3,10)Q ;当Q 在B 下方时,2(3,8)Q --.②当13BQ BA =时,BQ =31(,2)3Q ,41(,0)3Q -. 例2、 Rt △ABC 在直角坐标系内的位置如图1所示,反比例函数(0)k y k x=≠在第一象限内的图像与BC 边交于点D (4,m ),与AB 边交于点E (2,n ),△BDE 的面积为2.(1)求m与n的数量关系;(2)当tan∠A=12时,求反比例函数的解析式和直线AB的表达式;(3)设直线AB与y轴交于点F,点P在射线FD上,在(2)的条件下,如果△AEO 与△EFP相似,求点P的坐标.图1思路点拨1.探求m与n的数量关系,用m表示点B、D、E的坐标,是解题的突破口.2.第(2)题留给第(3)题的隐含条件是FD//x轴.3.如果△AEO与△EFP相似,因为夹角相等,根据对应边成比例,分两种情况.满分解答(1)如图1,因为点D(4,m)、E(2,n)在反比例函数kyx=的图像上,所以4,2.m kn k=⎧⎨=⎩整理,得n=2m.(2)如图2,过点E作EH⊥BC,垂足为H.在Rt△BEH中,tan∠BEH=tan∠A=12,EH=2,所以BH=1.因此D(4,m),E(2,2m),B(4,2m+1).已知△BDE的面积为2,所以11(1)2222BD EH m⋅=+⨯=.解得m=1.因此D(4,1),E(2,2),B(4,3).因为点D(4,1)在反比例函数kyx=的图像上,所以k=4.因此反比例函数的解析式为4yx =.设直线AB 的解析式为y =kx +b ,代入B (4,3)、E (2,2),得34,22.k b k b =+⎧⎨=+⎩ 解得12k =,1b =.因此直线AB 的函数解析式为112y x =+.图2 图3 图4(3)如图3,因为直线112y x =+与y 轴交于点F (0,1),点D 的坐标为(4,1),所以FD // x 轴,∠EFP =∠EAO .因此△AEO 与△EFP 相似存在两种情况:①如图3,当EA EF AO FP ==.解得FP =1.此时点P 的坐标为(1,1).②如图4,当EA FPAO EF ==.解得FP =5.此时点P 的坐标为(5,1).考点伸展本题的题设部分有条件“Rt △ABC 在直角坐标系内的位置如图1所示”,如果没有这个条件限制,保持其他条件不变,那么还有如图5的情况:第(1)题的结论m 与n 的数量关系不变.第(2)题反比例函数的解析式为12y x =-,直线AB 为172y x =-.第(3)题FD 不再与x 轴平行,△AEO 与△EFP 也不可能相似.图52016中考数学压轴题函数相似三角形问题(二)例3、如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3).(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、B1的坐标分别为(x1,y1)、(x2,y2).用含S的代数式表示x2-x1,并求出当S=36时点A1的坐标;(3)在图1中,设点D的坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由.图1 图2思路点拨1.第(2)题用含S 的代数式表示x 2-x 1,我们反其道而行之,用x 1,x 2表示S .再注意平移过程中梯形的高保持不变,即y 2-y 1=3.通过代数变形就可以了.2.第(3)题最大的障碍在于画示意图,在没有计算结果的情况下,无法画出准确的位置关系,因此本题的策略是先假设,再说理计算,后验证.3.第(3)题的示意图,不变的关系是:直线AB 与x 轴的夹角不变,直线AB 与抛物线的对称轴的夹角不变.变化的直线PQ 的斜率,因此假设直线PQ 与AB 的交点G 在x 轴的下方,或者假设交点G 在x 轴的上方.满分解答(1)抛物线的对称轴为直线1x =,解析式为21184y x x =-,顶点为M (1,18-). (2) 梯形O 1A 1B 1C 1的面积12122(11)3()62x x S x x -+-⨯3==+-,由此得到1223s x x +=+.由于213y y -=,所以22212211111138484y y x x x x -=--+=.整理,得212111()()384x x x x ⎡⎤-+-=⎢⎥⎣⎦.因此得到2172x x S -=. 当S =36时,212114,2.x x x x +=⎧⎨-=⎩ 解得126,8.x x =⎧⎨=⎩ 此时点A 1的坐标为(6,3). (3)设直线AB 与PQ 交于点G ,直线AB 与抛物线的对称轴交于点E ,直线PQ 与x 轴交于点F ,那么要探求相似的△GAF 与△GQE ,有一个公共角∠G .在△GEQ 中,∠GEQ 是直线AB 与抛物线对称轴的夹角,为定值.在△GAF 中,∠GAF 是直线AB 与x 轴的夹角,也为定值,而且∠GEQ ≠∠GAF .因此只存在∠GQE =∠GAF 的可能,△GQE ∽△GAF .这时∠GAF =∠GQE =∠PQD . 由于3tan 4GAF ∠=,tan 5DQ t PQD QP t∠==-,所以345t t =-.解得207t =.图3 图4例4、 如图1,已知点A (-2,4) 和点B (1,0)都在抛物线22y mx mx n =++上.(1)求m 、n ;(2)向右平移上述抛物线,记平移后点A 的对应点为A ′,点B 的对应点为B ′,若四边形A A ′B ′B 为菱形,求平移后抛物线的表达式;(3)记平移后抛物线的对称轴与直线AB ′ 的交点为C ,试在x 轴上找一个点D ,使得以点B ′、C 、D 为顶点的三角形与△ABC 相似.图1思路点拨1.点A 与点B 的坐标在3个题目中处处用到,各具特色.第(1)题用在待定系数法中;第(2)题用来计算平移的距离;第(3)题用来求点B ′ 的坐标、AC 和B ′C 的长.2.抛物线左右平移,变化的是对称轴,开口和形状都不变.3.探求△ABC 与△B ′CD 相似,根据菱形的性质,∠BAC =∠CB ′D ,因此按照夹角的两边对应成比例,分两种情况讨论.满分解答(1) 因为点A (-2,4) 和点B (1,0)都在抛物线22y mx mx n =++上,所以444,20.m m n m m n -+=⎧⎨++=⎩ 解得43m =-,4n =. (2)如图2,由点A (-2,4) 和点B (1,0),可得AB =5.因为四边形A A ′B ′B 为菱形,所以A A ′=B ′B = AB =5.因为438342+--=x x y ()2416133x =-++,所以原抛物线的对称轴x =-1向右平移5个单位后,对应的直线为x =4. 因此平移后的抛物线的解析式为()3164342,+--=x y .图2(3) 由点A (-2,4) 和点B ′ (6,0),可得A B ′=如图2,由AM //CN ,可得''''B N B C B M B A =,即28=.解得'B C =AC =ABC 与△B ′CD 中,∠BAC =∠CB ′D .①如图3,当''AB B C AC B D ==,解得'3B D =.此时OD =3,点D 的坐标为(3,0).②如图4,当''AB B D AC B C ==,解得5'3B D =.此时OD =133,点D 的坐标为(133,0).图3 图4考点伸展在本题情境下,我们还可以探求△B ′CD 与△AB B ′相似,其实这是有公共底角的两个等腰三角形,容易想象,存在两种情况.我们也可以讨论△B ′CD 与△C B B ′相似,这两个三角形有一组公共角∠B ,根据对应边成比例,分两种情况计算.2016中考数学压轴题函数相似三角形问题(三)例5 、 如图1,抛物线经过点A (4,0)、B (1,0)、C (0,-2)三点. (1)求此抛物线的解析式;(2)P 是抛物线上的一个动点,过P 作PM ⊥x 轴,垂足为M ,是否存在点P ,使得以A 、P 、M 为顶点的三角形与△OAC 相似?若存在,请求出符合条件的 点P 的坐标;若不存在,请说明理由;(3)在直线AC 上方的抛物线是有一点D ,使得△DCA 的面积最大,求出点D 的坐标.,图1思路点拨1.已知抛物线与x 轴的两个交点,用待定系数法求解析式时,设交点式比较简便. 2.数形结合,用解析式表示图象上点的坐标,用点的坐标表示线段的长. 3.按照两条直角边对应成比例,分两种情况列方程. 4.把△DCA 可以分割为共底的两个三角形,高的和等于OA . 满分解答(1)因为抛物线与x 轴交于A (4,0)、B (1,0)两点,设抛物线的解析式为)4)(1(--=x x a y ,代入点C 的 坐标(0,-2),解得21-=a .所以抛物线的解析式为22521)4)(1(212-+-=---=x x x x y .(2)设点P 的坐标为))4)(1(21,(---x x x . ①如图2,当点P 在x 轴上方时,1<x <4,)4)(1(21---=x x PM ,x AM -=4. 如果2==CO AOPM AM ,那么24)4)(1(21=----x x x .解得5=x 不合题意. 如果21==CO AO PM AM ,那么214)4)(1(21=----x x x .解得2=x . 此时点P 的坐标为(2,1).②如图3,当点P 在点A 的右侧时,x >4,)4)(1(21--=x x PM ,4-=x AM .解方程24)4)(1(21=---x x x ,得5=x .此时点P 的坐标为)2,5(-.解方程214)4)(1(21=---x x x ,得2=x 不合题意.③如图4,当点P 在点B 的左侧时,x <1,)4)(1(21--=x x PM ,x AM -=4. 解方程24)4)(1(21=---x x x ,得3-=x .此时点P 的坐标为)14,3(--.解方程214)4)(1(21=---x x x ,得0=x .此时点P 与点O 重合,不合题意.综上所述,符合条件的 点P 的坐标为(2,1)或)14,3(--或)2,5(-.图2 图3 图4 (3)如图5,过点D 作x 轴的垂线交AC 于E .直线AC 的解析式为221-=x y . 设点D 的横坐标为m )41(<<m ,那么点D 的坐标为)22521,(2-+-m m m ,点E 的坐标为)221,(-m m .所以)221()22521(2---+-=m m m DE m m 2212+-=.因此4)221(212⨯+-=∆m m S DAC m m 42+-=4)2(2+--=m .当2=m 时,△DCA 的面积最大,此时点D 的坐标为(2,1).图5 图6考点伸展第(3)题也可以这样解:如图6,过D 点构造矩形OAMN ,那么△DCA 的面积等于直角梯形CAMN 的面积减去△CDN 和△ADM 的面积.设点D 的横坐标为(m ,n ))41(<<m ,那么42)4(21)2(214)22(21++-=--+-⨯+=n m m n n m n S . 由于225212-+-=m m n ,所以m m S 42+-=. 例6 、 如图1,△ABC 中,AB =5,AC =3,cos A =310.D 为射线BA 上的点(点D 不与点B 重合),作DE //BC 交射线CA 于点E ..(1) 若CE =x ,BD =y ,求y 与x 的函数关系式,并写出函数的定义域; (2) 当分别以线段BD ,CE 为直径的两圆相切时,求DE 的长度;(3) 当点D 在AB 边上时,BC 边上是否存在点F ,使△ABC 与△DEF 相似?若存在,请求出线段BF 的长;若不存在,请说明理由.图1 备用图 备用图思路点拨1.先解读背景图,△ABC 是等腰三角形,那么第(3)题中符合条件的△DEF 也是等腰三角形.2.用含有x 的式子表示BD 、DE 、MN 是解答第(2)题的先决条件,注意点E 的位置不同,DE 、MN 表示的形式分两种情况.3.求两圆相切的问题时,先罗列三要素,再列方程,最后检验方程的解的位置是否符合题意.4.第(3)题按照DE 为腰和底边两种情况分类讨论,运用典型题目的结论可以帮助我们轻松解题. 满分解答(1)如图2,作BH ⊥AC ,垂足为点H .在Rt △ABH 中,AB =5,cosA =310AH AB =,所以AH =32=12AC .所以BH 垂直平分AC ,△ABC 为等腰三角形,AB =CB =5. 因为DE //BC ,所以AB AC DB EC =,即53y x=.于是得到53y x =,(0x >). (2)如图3,图4,因为DE //BC ,所以DE AE BC AC =,MN AN BC AC =,即|3|53DE x -=,1|3|253x MN -=.因此5|3|3x DE -=,圆心距5|6|6x MN -=.图2 图3 图4在⊙M 中,115226M r BD y x ===,在⊙N 中,1122N r CE x ==. ①当两圆外切时,5162x x +5|6|6x -=.解得3013x =或者10x =-. 如图5,符合题意的解为3013x =,此时5(3)15313x DE -==. ②当两圆内切时,5162x x -5|6|6x -=. 当x <6时,解得307x =,如图6,此时E 在CA 的延长线上,5(3)1537x DE -==; 当x >6时,解得10x =,如图7,此时E 在CA 的延长线上,5(3)3533x DE -==.图5 图6 图7(3)因为△ABC 是等腰三角形,因此当△ABC 与△DEF 相似时,△DEF 也是等腰三角形.如图8,当D 、E 、F 为△ABC 的三边的中点时,DE 为等腰三角形DEF 的腰,符合题意,此时BF =2.5.根据对称性,当F 在BC 边上的高的垂足时,也符合题意,此时BF =4.1.如图9,当DE 为等腰三角形DEF 的底边时,四边形DECF 是平行四边形,此时12534BF =.图8 图9 图10 图11考点伸展:第(3)题的情景是一道典型题,如图10,如图11,AH 是△ABC 的高,D 、E 、F 为△ABC 的三边的中点,那么四边形DEHF 是等腰梯形.例 7 如图1,在直角坐标系xOy 中,设点A (0,t ),点Q (t ,b ).平移二次函数2tx y -=的图象,得到的抛物线F 满足两个条件:①顶点为Q ;②与x 轴相交于B 、C 两点(∣OB ∣<∣OC ∣),连结A ,B .(1)是否存在这样的抛物线F ,使得OC OB OA⋅=2?请你作出判断,并说明理由;(2)如果AQ ∥BC ,且tan ∠ABO =23,求抛物线F 对应的二次函数的解析式.思路点拨1.数形结合思想,把OC OB OA⋅=2转化为212t x x =⋅.2.如果AQ ∥BC ,那么以OA 、AQ 为邻边的矩形是正方形,数形结合得到t =b . 3.分类讨论tan ∠ABO =23,按照A 、B 、C 的位置关系分为四种情况.A 在y 轴正半轴时,分为B 、C 在y 轴同侧和两侧两种情况;A 在y 轴负半轴时,分为B 、C 在y 轴同侧和两侧两种情况. 满分解答(1)因为平移2tx y -=的图象得到的抛物线F 的顶点为Q (t ,b ),所以抛物线F 对应的解析式为b t x t y +--=2)(.因为抛物线与x 轴有两个交点,因此0>b t .令0=y ,得-=t OB t b,+=t OC tb . 所以-=⋅t OC OB (|||||tb)( +t t b )|-=2|t 22|OA t tb ==.即22b t t t -=±.所以当32t b =时,存在抛物线F 使得||||||2OC OB OA ⋅=.(2)因为AQ //BC ,所以t =b ,于是抛物线F 为t t x t y +--=2)(.解得1,121+=-=t x t x .①当0>t 时,由||||OC OB <,得)0,1(-t B .如图2,当01>-t 时,由=∠ABO tan 23=||||OB OA =1-t t ,解得3=t .此时二次函数的解析式为241832-+-=x x y .如图3,当01<-t 时,由=∠ABO tan 23=||||OB OA =1+-t t ,解得=t 53.此时二次函数的解析式为-=y 532x +2518x +12548.图2 图3②如图4,如图5,当0<t 时,由||||OC OB <,将t -代t ,可得=t 53-,3-=t .此时二次函数的解析式为=y 532x +2518x -12548或241832++=x x y .图4 图5考点伸展第(2)题还可以这样分类讨论:因为AQ //BC ,所以t =b ,于是抛物线F 为2()y t x t t =--+.由3tan 2OA ABO OB ∠==,得23OB OA =. ①把2(,0)3B t 代入2()y t x t t =--+,得3t =±(如图2,图5).②把2(,0)3B t -代入2()y t x t t =--+,得35t =±(如图3,图4).2016中考数学压轴题函数等腰三角形问题(一)例1、如图1,已知正方形OABC 的边长为2,顶点A 、C 分别在x 、y 轴的正半轴上,M 是BC 的中点.P (0,m )是线段OC 上一动点(C 点除外),直线PM 交AB 的延长线于点D .(1)求点D 的坐标(用含m 的代数式表示); (2)当△APD 是等腰三角形时,求m 的值;(3)设过P 、M 、B 三点的抛物线与x 轴正半轴交于点E ,过点O 作直线ME 的垂线,垂足为H (如图2).当点P 从O 向C 运动时,点H 也随之运动.请直接写出点H 所经过的路长(不必写解答过程).图1 图2思路点拨1.用含m 的代数式表示表示△APD 的三边长,为解等腰三角形做好准备. 2.探求△APD 是等腰三角形,分三种情况列方程求解.3.猜想点H 的运动轨迹是一个难题.不变的是直角,会不会找到不变的线段长呢?Rt △OHM 的斜边长OM 是定值,以OM 为直径的圆过点H 、C . 满分解答(1)因为PC //DB ,所以1CP PM MCBD DM MB===.因此PM =DM ,CP =BD =2-m .所以AD =4-m .于是得到点D 的坐标为(2,4-m ).(2)在△APD 中,22(4)AD m =-,224AP m =+,222(2)44(2)PD PM m ==+-. ①当AP =AD 时,2(4)m -24m =+.解得32m =(如图3). ②当PA =PD 时,24m +244(2)m =+-.解得43m =(如图4)或4m =(不合题意,舍去).③当DA =DP 时,2(4)m -244(2)m =+-.解得23m =(如图5)或2m =(不合题意,舍去).综上所述,当△APD 为等腰三角形时,m 的值为32,43或23.图3 图4 图5(3)点H.考点伸展第(2)题解等腰三角形的问题,其中①、②用几何说理的方法,计算更简单:①如图3,当AP=AD时,AM垂直平分PD,那么△PCM∽△MBA.所以12 PC MBCM BA==.因此12PC=,32m=.②如图4,当PA=PD时,P在AD的垂直平分线上.所以DA=2PO.因此42m m-=.解得43m=.第(2)题的思路是这样的:如图6,在Rt△OHM中,斜边OM为定值,因此以OM为直径的⊙G经过点H,也就是说点H在圆弧上运动.运动过的圆心角怎么确定呢?如图7,P与O重合时,是点H运动的起点,∠COH=45°,∠CGH=90°.图6 图7例2 如图1,已知一次函数y =-x +7与正比例函数43y x = 的图象交于点A ,且与x 轴交于点B .(1)求点A 和点B 的坐标;(2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l //y 轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O —C —A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P 和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒. ①当t 为何值时,以A 、P 、R 为顶点的三角形的面积为8?②是否存在以A 、P 、Q 为顶点的三角形是等腰三角形?若存在,求t 的值;若不存在,请说明理由.图1思路点拨1.把图1复制若干个,在每一个图形中解决一个问题.2.求△APR 的面积等于8,按照点P 的位置分两种情况讨论.事实上,P 在CA 上运动时,高是定值4,最大面积为6,因此不存在面积为8的可能.3.讨论等腰三角形APQ ,按照点P 的位置分两种情况讨论,点P 的每一种位置又要讨论三种情况.满分解答(1)解方程组7,4,3y x y x =-+⎧⎪⎨=⎪⎩得3,4.x y =⎧⎨=⎩ 所以点A 的坐标是(3,4).令70y x =-+=,得7x =.所以点B 的坐标是(7,0).(2)①如图2,当P 在OC 上运动时,0≤t <4.由8A P R A C P P O RC O R A S S S S =--=△△△梯形,得1113+7)44(4)(7)8222t t t t -⨯-⨯⨯--⨯-=(.整理,得28120t t -+=.解得t =2或t =6(舍去).如图3,当P 在CA 上运动时,△APR 的最大面积为6.因此,当t =2时,以A 、P 、R 为顶点的三角形的面积为8.图2 图3 图4②我们先讨论P 在OC 上运动时的情形,0≤t <4.如图1,在△AOB 中,∠B =45°,∠AOB >45°,OB =7,AB =OB >AB .因此∠OAB >∠AOB >∠B .如图4,点P 由O 向C 运动的过程中,OP =BR =RQ ,所以PQ //x 轴.因此∠AQP =45°保持不变,∠PAQ 越来越大,所以只存在∠APQ =∠AQP 的情况. 此时点A 在PQ 的垂直平分线上,OR =2CA =6.所以BR =1,t =1. 我们再来讨论P 在CA 上运动时的情形,4≤t <7. 在△APQ 中, 3cos 5A ∠=为定值,7AP t =-,5520333AQ OA OQ OA OR t =-=-=-. 如图5,当AP =AQ 时,解方程520733t t -=-,得418t =.如图6,当QP =QA 时,点Q 在PA 的垂直平分线上,AP =2(OR -OP ).解方程72[(7)(4)]t t t -=---,得5t =.如7,当PA =PQ 时,那么12cos AQ A AP∠=.因此2cos AQ AP A =⋅∠.解方程52032(7)335t t -=-⨯,得22643t =. 综上所述,t =1或418或5或22643时,△APQ 是等腰三角形.图5 图6 图7考点伸展当P在CA上,QP=QA时,也可以用2cos=⋅∠来求解.AP AQ A2016中考数学压轴题函数等腰三角形问题(二)例3 如图1,在直角坐标平面内有点A(6, 0),B(0, 8),C(-4, 0),点M、N分别为线段AC和射线AB上的动点,点M以2个单位长度/秒的速度自C向A方向作匀速运动,点N以5个单位长度/秒的速度自A向B方向作匀速运动,MN交OB于点P.(1)求证:MN∶NP为定值;(2)若△BNP与△MNA相似,求CM的长;(3)若△BNP是等腰三角形,求CM的长.图1思路点拨1.第(1)题求证MN∶NP的值要根据点N的位置分两种情况.这个结论为后面的计算提供了方便.2.第(2)题探求相似的两个三角形有一组邻补角,通过说理知道这两个三角形是直角三角形时才可能相似.3.第(3)题探求等腰三角形,要两级(两层)分类,先按照点N 的位置分类,再按照顶角的顶点分类.注意当N 在AB 的延长线上时,钝角等腰三角形只有一种情况.4.探求等腰三角形BNP ,N 在AB 上时,∠B 是确定的,把夹∠B 的两边的长先表示出来,再分类计算.满分解答(1)如图2,图3,作NQ ⊥x 轴,垂足为Q .设点M 、N 的运动时间为t 秒. 在Rt △ANQ 中,AN =5t ,NQ =4t ,AQ =3t .在图2中,QO =6-3t ,MQ =10-5t ,所以MN ∶NP =MQ ∶QO =5∶3. 在图3中,QO =3t -6,MQ =5t -10,所以MN ∶NP =MQ ∶QO =5∶3.(2)因为△BNP 与△MNA 有一组邻补角,因此这两个三角形要么是一个锐角三角形和一个钝角三角形,要么是两个直角三角形.只有当这两个三角形都是直角三角形时才可能相似.如图4,△BNP ∽△MNA ,在Rt △AMN 中,35AN AM =,所以531025t t =-.解得3031t =.此时CM 6031=.图2 图3 图4(3)如图5,图6,图7中,OP MPQN MN=,即245OP t =.所以85OP t =. ①当N 在AB 上时,在△BNP 中,∠B 是确定的,885BP t =-,105BN t =-.(Ⅰ)如图5,当BP =BN 时,解方程881055t t -=-,得1017t =.此时CM 2017=.(Ⅱ)如图6,当NB =NP 时,45BE BN =.解方程()1848105255t t ⎛⎫-=- ⎪⎝⎭,得54t =.此时CM 52=. (Ⅲ)当PB =PN 时,1425BN BP =.解方程()1481058255t t ⎛⎫-=- ⎪⎝⎭,得t 的值为负数,因此不存在PB =PN 的情况.②如图7,当点N 在线段AB 的延长线上时,∠B 是钝角,只存在BP =BN 的可能,此时510BN t =-.解方程885105t t -=-,得3011t =.此时CM 6011=.图5 图6 图7考点伸展如图6,当NB =NP 时,△NMA 是等腰三角形,1425BN BP =,这样计算简便一些.例4、如图1,在矩形ABCD 中,AB =m (m 是大于0的常数),BC =8,E 为线段BC 上的动点(不与B 、C 重合).连结DE ,作EF ⊥DE ,EF 与射线BA 交于点F ,设CE =x ,BF =y .(1)求y 关于x 的函数关系式;(2)若m =8,求x 为何值时,y 的值最大,最大值是多少? (3)若12y m=,要使△DEF 为等腰三角形,m 的值应为多少?图1思路点拨1.证明△DCE ∽△EBF ,根据相似三角形的对应边成比例可以得到y 关于x 的函数关系式.2.第(2)题的本质是先代入,再配方求二次函数的最值.3.第(3)题头绪复杂,计算简单,分三段表达.一段是说理,如果△DEF 为等腰三角形,那么得到x =y ;一段是计算,化简消去m ,得到关于x 的一元二次方程,解出x 的值;第三段是把前两段结合,代入求出对应的m 的值.满分解答(1)因为∠EDC 与∠FEB 都是∠DEC 的余角,所以∠EDC =∠FEB .又因为∠C =∠B =90°,所以△DCE ∽△EBF .因此DC EB CE BF =,即8m xx y-=.整理,得y 关于x 的函数关系为218y x x m m=-+. (2)如图2,当m =8时,2211(4)288y x x x =-+=--+.因此当x =4时,y 取得最大值为2.(3) 若12y m =,那么21218x x m m m=-+.整理,得28120x x -+=.解得x =2或x =6.要使△DEF 为等腰三角形,只存在ED =EF 的情况.因为△DCE ∽△EBF ,所以CE =BF ,即x =y .将x =y =2代入12y m =,得m =6(如图3);将x =y =6代入12y m=,得m =2(如图4).图2 图3 图4考点伸展本题中蕴涵着一般性与特殊性的辩证关系,例如: 由第(1)题得到218y x x m m =-+221116(8)(4)x x x m m m=--=--+, 那么不论m 为何值,当x =4时,y 都取得最大值.对应的几何意义是,不论AB 边为多长,当E 是BC 的中点时,BF 都取得最大值.第(2)题m =8是第(1)题一般性结论的一个特殊性.再如,不论m 为小于8的任何值,△DEF 都可以成为等腰三角形,这是因为方程218x x x m m=-+总有一个根8x m =-的.第(3)题是这个一般性结论的一个特殊性.2016中考数学压轴题函数相似三角形问题(三)例5 已知:如图1,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3,过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交OA 于点E .(1)求过点E 、D 、C 的抛物线的解析式;(2)将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC 交于点G .如果DF 与(1)中的抛物线交于另一点M ,点M 的横坐标为56,那么EF =2GO 是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交点P 与点C 、G 构成的△PCG 是等腰三角形?若存在,请求出点Q 的坐标;若不存在成立,请说明理由.图1思路点拨1.用待定系数法求抛物线的解析式,这个解析式在第(2)、(3)题的计算中要用到. 2.过点M 作MN ⊥AB ,根据对应线段成比例可以求FA 的长. 3.将∠EDC 绕点D 旋转的过程中,△DCG 与△DEF 保持全等.4.第(3)题反客为主,分三种情况讨论△PCG 为等腰三角形,根据点P 的位置确定点Q 的位置,再计算点Q 的坐标.满分解答(1)由于OD 平分∠AOC ,所以点D 的坐标为(2,2),因此BC =AD =1. 由于△BCD ≌△ADE ,所以BD =AE =1,因此点E 的坐标为(0,1).设过E 、D 、C 三点的抛物线的解析式为c bx ax y ++=2,那么⎪⎩⎪⎨⎧=++=++=.039,224,1c b a c b a c 解得65-=a ,613=b 1=c .因此过E 、D 、C 三点的抛物线的解析式为1613652++-=x x y .(2)把56=x 代入1613652++-=x x y ,求得512=y .所以点M 的坐标为⎪⎭⎫⎝⎛512,56.如图2,过点M 作MN ⊥AB ,垂足为N ,那么DADNFA MN =,即25622512-=-FA .解得1=FA . 因为∠EDC 绕点D 旋转的过程中,△DCG ≌△DEF ,所以CG =EF =2.因此GO =1,EF=2GO .(3)在第(2)中,GC =2.设点Q 的坐标为⎪⎭⎫ ⎝⎛++-161365,2x x x . ①如图3,当CP =CG =2时,点P 与点B (3,2)重合,△PCG 是等腰直角三角形.此时G Q Q x x y -=,因此11613652-=++-x x x 。
中考数学几何压轴题(有关三角形、四边形)的综合专题(含答案解析)
中考数学几何压轴题(有关三角形、四边形)的综合专题1、如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的一点,F为AB边上一点,连接CF,交BE于点D且∠ACF=∠CBE,CG平分∠ACB交BD于点G,(1)求证:CF=BG;(2)延长CG交AB于H,连接AG,过点C作CP∥AG交BE的延长线于点P,求证:PB=CP+CF;(3)在(2)问的条件下,当∠GAC=2∠FCH时,若S△AEG=3,BG=6,求AC的长.2、[问题背景]如图1所示,在△ABC中,AB=BC,∠ABC=90°,点D为直线BC上的一个动点(不与B、C重合),连结AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连结EC.[问题初探]如果点D在线段BC上运动,通过观察、交流,小明形成了以下的解题思路:过点E作EF⊥BC 交直线BC于F,如图2所示,通过证明△DEF≌△,可推证△CEF是三角形,从而求得∠DCE=.[继续探究]如果点D在线段CB的延长线上运动,如图3所示,求出∠DCE的度数.[拓展延伸]连接BE,当点D在直线BC上运动时,若AB=,请直接写出BE的最小值.3、(2019秋•锦江区校级期末)在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线.(1)如图1,求证:AD=2DC.(2)如图2,作∠CBD的角平分线交线段CD于点M,若CM=1,求△DBM的面积;(3)如图3,过点D作DE⊥AB于点E,点N是线段AC上一点(不与C、D重合),以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G,试探究线段ND,DG与AD之间的数量关系,并说明理由.4、(2019•镇平县三模)如图1,已知直角三角形ABC,∠ACB=90°,∠BAC=30°,点D是AC边上一点,过D作DE⊥AB于点E,连接BD,点F是BD中点,连接EF,CF.(1)发现问题:线段EF,CF之间的数量关系为;∠EFC的度数为;(2)拓展与探究:若将△AED绕点A按顺时针方向旋转α角(0°<α<30°),如图2所示,(1)中的结论还成立吗?请说明理由;(3)拓展与运用:如图3所示,若△AED绕点A旋转的过程中,当点D落到AB边上时,AB边上另有一点G,AD=DG=GB,BC=3,连接EG,请直接写出EG的长度.5、(2017春•西城区校级期末)如图1,在等腰△ABC中,AB=AC,∠BAC=a,点P是线段AB的中点,点E是线段CB延长线上一点,且PE=PC,将线段PC绕点P顺时针旋转α得到PD,连接BD.(1)如图2,若α=60°,其他条件不变,先补全图形,然后探究线段BD和BC之间的数量关系,并说明理由.(2)如图3,若α=90°,其他条件不变,探究线段BP、BD和BC之间的等量关系,并说明理由.6、【发现问题】如图1,已知△ABC,以点A为直角顶点、AB为腰向△ABC外作等腰直角△ABE.请你以A为直角顶点、AC为腰,向△ABC外作等腰直角△ACD(不写作法,保留作图痕迹).连接BD、CE.那么BD与CE的数量关系是BD=CE.【拓展探究】如图2,已知△ABC,以AB、AC为边向外作正方形AEFB和正方形ACGD,连接BD、CE,试判断BD与CE之间的数量关系,并说明理由.【解决问题】如图3,有一个四边形场地ABCD,∠ADC=60°,BC=15,AB=8,AD=CD,求BD的最大值.7、(1)如图1,点C为线段AB外一个动点,已知AB=a,AC=b.当点C位于BA的延长线上时,线段BC取得最大值,则最大值为(用含a,b的式子表示);(2)如图2,点C为线段AB外一个动点,若AB=10,AC=3,分别以AC,BC为边,作等边三角形ACD和等边三角形BCE,连接AE,DB.①求证:AE=DB;②请直接写出线段AE的最大值;(3)如图3,AB=6,点M为线段AB外一个动点,且AM=2,MB=MN,∠BMN=90°,请直接写出线段AN的最大值.8、【初步探索】(1)如图1:在四边形ABC中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF =BE+FD,探究图中∠BAE、∠F AD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;【灵活运用】(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;【拓展延伸】(3)如图3,已知在四边形ABCD中,∠ABC+∠ADC=180°AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请写出∠EAF与∠DAB的数量关系,并给出证明过程.9、(2018•大东区一模)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P逆时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系.(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若∠BPO=45°,AC=,请直接写出BQ的长.10、模型发现:同学们知道,三角形的两边之和大于第三边,即如图1,在△ABC中,AB+AC>BC.对于图1,若把点C看作是线段AB外一动点,且AB=c,AC=b,则线段BC的长会因为点C的位置的不同而发生变化.因为AB、AC的长度固定,所以当∠BAC越大时,BC边越长.特别的,当点C位于时,线段BC的长取得最大值,且最大值为(用含b,c的式子表示)(直接填空).模型应用:点C为线段AB外一动点,且AB=3,AC=2,如图2所示,分别以AC,BC为边,作等边三角形ACD 和等边三角形BCE,连接BD,AE.(1)求证:BD=AE.(2)线段AE长的最大值为.模型拓展:如图3,在平面直角坐标系中,点A是y轴正半轴上的一动点,点B是x轴正半轴上的一动点,且AB =8.若AC⊥AB,AC=3,试求OC长的最大值.11、已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC =3MC,请直接写出的值.12、已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求的值.13、已知,△ABC中,AB=AC,∠BAC=90°,E为边AC任意一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,F也为AC上一点,且满足AE=CF,过A作AD⊥BE交BE于点H,交BC于点D,连接DF交BE于点G,连接AG;①若AG平分∠CAD,求证:AH=AC;②如图3,当G落在△ABC外时,若将△EFG沿EF边翻折,点G刚好落在AB边上点P,直接写出AG与EF的数量关系.14、如图所示,Rt△ABC中,∠ACB=90°,E为AC中点,作ED⊥AC交AB于D,连接CD;(1)如图1,求证:AB=2CD;(2)如图2,作CF⊥AB交AB于F,点G为CF上一点,点H为DE延长线上一点,分别连接AH、GH,若∠AHG=2∠B,求证:AH=GH;(3)如图3,在(2)的条件下,连接DG,且有DE=BF,∠EDG=90°,若AC=6,求AH的长度.15、【问题情境】一节数学课后,老师布置了一道课后练习题:如图:已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,点E、F分别在A和BC上,∠1=∠2,FG⊥AB于点G,求证:△CDE≌△EGF.(1)阅读理解,完成解答本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写这道练习题的证明过程;(2)特殊位置,证明结论若CE平分∠ACD,其余条件不变,求证:AE=BF;(3)知识迁移,探究发现如图,已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,若点E是DB的中点,点F在直线CB上且满足EC=EF,请直接写出AE与BF的数量关系.(不必写解答过程)16、在正方形ABCD和等腰直角△BGF中,∠BGF=90°,P是DF的中点,连接PG、PC.(1)如图1,当点G在BC边上时,延长GP交DC于点E.求证:PG=PC;(2)如图2,当点F在AB的延长线上时,(1)中的结论是否成立?请证明你的结论;(3)如图3,若四边形ABCD为菱形,且∠ABC=60°,△BGF为等边三角形,点F在CB的延长线上时,线段PC、PG又有怎样的数量关系,请直接写出你的结论,并画出论证过程中需要添加的辅助线.17、在△ABC中,∠BAC=60°,点D、E分别在边AC、AB上,AD=AE,连接CE、BD相交于点F,且∠BEC=∠ADF,连接AF.(1)如图1,连接ED,求证:∠ABD=∠CED;(2)如图2,求证:EF+FD=AF;(3)如图3,取BC的中点G,连接AG交BD于点H,若∠GAC=3∠ABD,BH=7,求△ABH的面积.18、点D,E分别在△ABC的边AC,BD上,BD,CE交于点F,连接AF,∠F AE=∠F AD,FE=FD.(1)如图1,若∠AEF=∠ADF,求证:AE=AD;(2)如图2,若∠AEF≠∠ADF,FB平分∠ABC,求∠BAC的度数;(3)在(2)的条件下,如图3,点G在BE上,∠CFG=∠AFB若AG=6,△ABC的周长为20,求BC长.中考数学几何压轴题(有关三角形、四边形)的综合专题参考答案1、如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的一点,F为AB边上一点,连接CF,交BE于点D且∠ACF=∠CBE,CG平分∠ACB交BD于点G,(1)求证:CF=BG;(2)延长CG交AB于H,连接AG,过点C作CP∥AG交BE的延长线于点P,求证:PB=CP+CF;(3)在(2)问的条件下,当∠GAC=2∠FCH时,若S△AEG=3,BG=6,求AC的长.证明:(1)如图1,∵∠ACB=90°,AC=BC,∴∠A=45°,∵CG平分∠ACB,∴∠ACG=∠BCG=45°,∴∠A=∠BCG,在△BCG和△CAF中,∵,∴△BCG≌△CAF(ASA),∴CF=BG;(2)如图2,∵PC∥AG,∴∠PCA=∠CAG,∵AC=BC,∠ACG=∠BCG,CG=CG,∴△ACG≌△BCG,∴∠CAG=∠CBE,∵∠PCG=∠PCA+∠ACG=∠CAG+45°=∠CBE+45°,∠PGC=∠GCB+∠CBE=∠CBE+45°,∴∠PCG=∠PGC,∴PC=PG,∵PB=BG+PG,BG=CF,∴PB=CF+CP;(3)解法一:如图3,过E作EM⊥AG,交AG于M,∵S△AEG=AG•EM=3,由(2)得:△ACG≌△BCG,∴BG=AG=6,∴×6×EM=3,EM=,设∠FCH=x°,则∠GAC=2x°,∴∠ACF=∠EBC=∠GAC=2x°,∵∠ACH=45°,∴2x+x=45,x=15,∴∠ACF=∠GAC=30°,在Rt△AEM中,AE=2EM=2,AM==3,∴M是AG的中点,∴AE=EG=2,∴BE=BG+EG=6+2,在Rt△ECB中,∠EBC=30°,∴CE=BE=3+,∴AC=AE+EC=2+3+=3+3.解法二:同理得:∠CAG=30°,AG=BG=6,如图4,过G作GM⊥AC于M,在Rt△AGM中,GM=3,AM===3,∵∠ACG=45°,∠MGC=90°,∴GM=CM=3,∴AC=AM+CM=3+3.2、[问题背景]如图1所示,在△ABC中,AB=BC,∠ABC=90°,点D为直线BC上的一个动点(不与B、C重合),连结AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连结EC.[问题初探]如果点D在线段BC上运动,通过观察、交流,小明形成了以下的解题思路:过点E作EF⊥BC 交直线BC于F,如图2所示,通过证明△DEF≌△ADB,可推证△CEF是等腰直角三角形,从而求得∠DCE=135°.[继续探究]如果点D在线段CB的延长线上运动,如图3所示,求出∠DCE的度数.[拓展延伸]连接BE,当点D在直线BC上运动时,若AB=,请直接写出BE的最小值.解:[问题初探]如图2,过点E作EF⊥BC交直线BC于F,∴∠DFE=90°=∠ABD,∴∠EDF+∠DEF=90°,由旋转知,AD=DE,∠ADE=90°,∴∠ADB+∠EDF=90°,∴∠ADB=∠DEF,∴△ABD≌△DFE(AAS),∴BD=EF,DF=AB,∵AB=BC,∴BC=DF,∴BD=CF,∴EF=CF,∴△CEG是等腰直角三角形,∴∠ECF=45°,∴∠DCE=135°,故答案为:ADB,等腰直角,135;[继续探究]如图3,过点E作EF⊥BC于F,∴∠DFE=90°=∠ABD,∴∠EDF+∠DEF=90°,由旋转知,AD=DE,∠ADE=90°,∴∠ADB+∠EDF=90°,∴∠ADB=∠DEF,∴△ABD≌△DFE(AAS),∴BD=EF,DF=AB,∵AB=BC,∴BC=DF,∴BD=CF,∴EF=CF,∴△CEG是等腰直角三角形,∴∠ECF=45°,∴∠DCE=45°;[拓展延伸]如图4,在△ABC中,∠ABC=90°,AB=BC=,∴∠ACB=45°当点D在射线BC上时,由[问题初探]知,∠BCM=135°,∴∠ACM=∠BCM﹣∠ACB=90°,当点D在线段CB的延长线上时,由[继续探究]知,∠BCE=45°,∴∠ACN=∠ACB+∠BCM=90°,∴点E是过点C垂直于AC的直线上的点,∴当BE⊥MN时,BE最小,∵∠BCE=45°,∴∠CBE=45°=∠BCE,∴BE=CE,∴BE最小=BC=,即:BE的最小值为.3、在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线.(1)如图1,求证:AD=2DC.(2)如图2,作∠CBD的角平分线交线段CD于点M,若CM=1,求△DBM的面积;(3)如图3,过点D作DE⊥AB于点E,点N是线段AC上一点(不与C、D重合),以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G,试探究线段ND,DG与AD之间的数量关系,并说明理由.证明:(1)如图1,过点D作DE⊥AB,∵BD是△ABC的角平分线,DE⊥AB,∠ACB=90°,∴DC=DE,∵∠A=30°,DE⊥AB,∴AD=2DE,∴AD=2DC;(2)如图2,过点M作ME∥BD,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=30°,∵BM平分∠CBD,∴∠CBM=15°=∠DBM,∵ME∥BD,∴∠MEC=∠CBD=30°,∠EMB=∠DBM=∠MBE,∴ME=BE,∵∠MEC=30°,∠C=90°∴CE=MC=,ME=2MC=2=BE,∴BC=+2,∵∠CBD=30°,∠C=90°,∴BC=CD,∴CD=1+,∴DM=,∴△DBM的面积=××(+2)=1+;(3)若点N在CD上时,AD=DG+DN,理由如下:如图3所示:延长ED使得DW=DN,连接NW,∵∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB于点E,∴∠ADE=∠BDE=60°,AD=BD,∵DN=DW,且∠WDN=60°∴△WDN是等边三角形,∴NW=DN,∠W=∠WND=∠BNG=∠BDN=60°,∴∠WNG=∠BND,在△WGN和△DBN中,∴△WGN≌△DBN(SAS),∴BD=WG=DG+DN,∴AD=DG+DN.(3)若点N在AD上时,AD=DG﹣DN,理由如下:如图4,延长BD至H,使得DH=DN,连接HN,由(1)得DA=DB,∠A=30°.∵DE⊥AB于点E.∴∠2=∠3=60°.∴∠4=∠5=60°.∴△NDH是等边三角形.∴NH=ND,∠H=∠6=60°.∴∠H=∠2.∵∠BNG=60°,∴∠BNG+∠7=∠6+∠7.即∠DNG=∠HNB.在△DNG和△HNB中,∴△DNG≌△HNB(ASA).∴DG=HB.∵HB=HD+DB=ND+AD,∴DG=ND+AD.∴AD=DG﹣ND.4、如图1,已知直角三角形ABC,∠ACB=90°,∠BAC=30°,点D是AC边上一点,过D作DE⊥AB于点E,连接BD,点F是BD中点,连接EF,CF.(1)发现问题:线段EF,CF之间的数量关系为EF=CF;∠EFC的度数为120°;(2)拓展与探究:若将△AED绕点A按顺时针方向旋转α角(0°<α<30°),如图2所示,(1)中的结论还成立吗?请说明理由;(3)拓展与运用:如图3所示,若△AED绕点A旋转的过程中,当点D落到AB边上时,AB边上另有一点G,AD=DG=GB,BC=3,连接EG,请直接写出EG的长度.解:(1)如图1中,∵DE⊥AB,∴∠BED=90°,∵∠BCD=90°,BF=DF,∴FE=FB=FD=CF,∴∠FBE=∠FEB,∠FBC=∠FCB,∴∠EFC=∠EFD+∠CFD=∠FBE+∠FEB+∠FBC+∠FCB=2(∠FBE+∠FBC)=2∠ABC=120°,故答案为:EF=CF,120°.(2)结论成立.理由:如图2中,取AB的中点M,AD的中点N,连接MC,MF,ED,EN,FN.∵BM=MA,BF=FD,∴MF∥AD,MF=AD,∵AN=ND,∴MF=AN,MF∥AN,∴四边形MFNA是平行四边形,∴NF=AM,∠FMA=∠ANF,在Rt△ADE中,∵AN=ND,∠AED=90°,∴EN=AD=AN=ND,同理CM=AB=AM=MB,在△AEN和△ACM中,∠AEN=∠EAN,∠MCA=∠MAC,∵∠MAC=∠EAN,∴∠AMC=∠ANE,又∵∠FMA=∠ANF,∴∠ENF=∠FMC,在△MFC和△NEF中,,∴△MFC≌△NEF(SAS),∴FE=FC,∠NFE=∠MCF,∵NF∥AB,∴∠NFD=∠ABD,∵∠ACB=90°,∠BAC=30°,∴∠ABC=60°,△BMC是等边三角形,∠MCB=60°∴∠EFC=∠EFN+∠NFD+∠DFC=∠MCF+∠ABD+∠FBC+∠FCB=∠ABC+∠MCB=60°+60°=120°.(3)如图3中,作EH⊥AB于H.在Rt△ABC中,∵∠BAC=30°,BC=3,∴AB=2BC=6,在Rt△AED中,∠DAE=30°,AD=2,∴DE=AD=1,在Rt△DEH中,∵∠EDH=60°,DE=1,∴EH=ED•sin60°=,DH=ED•cos60°=,在Rt△EHG中,EG==.5、如图1,在等腰△ABC中,AB=AC,∠BAC=a,点P是线段AB的中点,点E是线段CB延长线上一点,且PE=PC,将线段PC绕点P顺时针旋转α得到PD,连接BD.(1)如图2,若α=60°,其他条件不变,先补全图形,然后探究线段BD和BC之间的数量关系,并说明理由.(2)如图3,若α=90°,其他条件不变,探究线段BP、BD和BC之间的等量关系,并说明理由.解:(1)BC=2BD,理由:如图2,连接CD,由旋转可得,CP=DP,∠CPD=60°,∴△CDP是等边三角形,∴∠CDP=60°=∠PCD,又∵P是AB的中点,AB=AC,∠A=60°,∴等边三角形ABC中,∠PCB=30°,CP⊥AB,∴∠BCD=30°,即BC平分∠PCD,∴BC垂直平分PD,∴∠BDC=∠BPC=90°,∴Rt△BCD中,BC=2BD.(2)如图3,取BC中点F,连接PF,∵∠A=90°,AB=AC,∴△ABC是等腰直角三角形,∵P是AB的中点,F是BC的中点,∴PF是△ABC的中位线,∴PF∥AC,∴∠PFB=∠ACB=45°,∠BPF=∠A=90°,∴△BPF是等腰直角三角形,∴BF=BP,BP=PF,∵∠DPC=∠BPF=90°,∴∠BPD=∠FPC,又∵PD=PC,∴△BDP≌△FCP,∴BD=CF,∵BC=BF+FC,∴BC=BD+BP.6、【发现问题】如图1,已知△ABC,以点A为直角顶点、AB为腰向△ABC外作等腰直角△ABE.请你以A为直角顶点、AC为腰,向△ABC外作等腰直角△ACD(不写作法,保留作图痕迹).连接BD、CE.那么BD与CE的数量关系是BD=CE.【拓展探究】如图2,已知△ABC,以AB、AC为边向外作正方形AEFB和正方形ACGD,连接BD、CE,试判断BD与CE之间的数量关系,并说明理由.【解决问题】如图3,有一个四边形场地ABCD,∠ADC=60°,BC=15,AB=8,AD=CD,求BD的最大值.【发现问题】解:延长CA到M,作∠MAC的平分线AN,在AN上截取AD=AC,连接CD,即可得到等腰直角△ACD;连接BD、CE,如图1所示:∵△ABE与△ACD都是等腰直角三角形,∴AB=AE,AD=AC,∠BAE=∠CAD=90°,∴∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE,【拓展探究】解:BD=CE;理由如下:∵四边形AEFB与四边形ACGD都是正方形,∴AB=AE,AD=AC,∠BAE=∠CAD=90°,∴∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE;【解决问题】解:以AB为边向外作等边三角形ABE,连接CE,如图3所示:则∠BAE=60°,BE=AB=AE=8,∵AD=CD,∠ADC=60°,∴△ACD是等边三角形,∴∠CAD=60°,AC=AD,∴∠CAD+∠BAC=∠BAE+∠BAC,即∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE;当C、B、E三点共线时,CE最大=BC+BE=15+8=23,∴BD的最大值为23.7、如图1,点C为线段AB外一个动点,已知AB=a,AC=b.当点C位于BA的延长线上时,线段BC取得最大值,则最大值为a+b(用含a,b的式子表示);(2)如图2,点C为线段AB外一个动点,若AB=10,AC=3,分别以AC,BC为边,作等边三角形ACD和等边三角形BCE,连接AE,DB.①求证:AE=DB;②请直接写出线段AE的最大值;(3)如图3,AB=6,点M为线段AB外一个动点,且AM=2,MB=MN,∠BMN=90°,请直接写出线段AN的最大值.(1)解:∵点C为线段AB外一动点,且AC=b,AB=a,∴当点C位于BA的延长线上时,线段BC的长取得最大值,且最大值为AC+AB=a+b,(2)①证明:如图2中,∵△ACD与△BCE是等边三角形,∴CD=AC,CB=CE,∠ACD=∠BCE=60°,∴∠DCB=∠ACE,在△CAD与△EAB中,,∴△CAD≌△EAB(SAS),∴AE=BD.②∵线段AE长的最大值=线段BD的最大值,由(1)知,当线段BD的长取得最大值时,点D在BA的延长线上,∴最大值为AD+AB=3+10=13;(3)如图3中,连接BN,∵将△AMN绕着点M顺时针旋转90°得到△PBM,连接AP,则△APM是等腰直角三角形,∴MA=MP=2,BP=AN,∴P A=2,∵AB=6,∴线段AN长的最大值=线段BP长的最大值,∴当P在线段BA的延长线时,线段BP取得最大值最大值=AB+AP=6+2.8、【初步探索】(1)如图1:在四边形ABC中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF =BE+FD,探究图中∠BAE、∠F AD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是∠BAE+∠F AD=∠EAF;【灵活运用】(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;【拓展延伸】(3)如图3,已知在四边形ABCD中,∠ABC+∠ADC=180°AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请写出∠EAF与∠DAB的数量关系,并给出证明过程.解:(1)∠BAE+∠F AD=∠EAF.理由:如图1,延长FD到点G,使DG=BE,连接AG,根据SAS可判定△ABE≌△ADG,进而得出∠BAE=∠DAG,AE=AG,再根据SSS可判定△AEF≌△AGF,可得出∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF.故答案为:∠BAE+∠F AD=∠EAF;(2)仍成立,理由:如图2,延长FD到点G,使DG=BE,连接AG,∵∠B+∠ADF=180°,∠ADG+∠ADF=180°,∴∠B=∠ADG,又∵AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF;(3)∠EAF=180°﹣∠DAB.证明:如图3,在DC延长线上取一点G,使得DG=BE,连接AG,∵∠ABC+∠ADC=180°,∠ABC+∠ABE=180°,∴∠ADC=∠ABE,又∵AB=AD,∴△ADG≌△ABE(SAS),∴AG=AE,∠DAG=∠BAE,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠F AE=∠F AG,∵∠F AE+∠F AG+∠GAE=360°,∴2∠F AE+(∠GAB+∠BAE)=360°,∴2∠F AE+(∠GAB+∠DAG)=360°,即2∠F AE+∠DAB=360°,∴∠EAF=180°﹣∠DAB.9、如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P逆时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系.(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若∠BPO=45°,AC=,请直接写出BQ的长.解:(1)CP=BQ,理由:如图1,连接OQ,由旋转知,PQ=OP,∠OPQ=60°⊅∴△POQ是等边三角形,∴OP=OQ,∠POQ=60°,在Rt△ABC中,O是AB中点,∴OC=OA=OB,∴∠BOC=2∠A=60°=∠POQ,∴∠COP=∠BOQ,在△COP和△BOQ中,,∴△COP≌△BOQ(SAS),∴CP=BQ,(2)CP=BQ,理由:如图2,连接OQ,由旋转知,PQ=OP,∠OPQ=60°∴△POQ是等边三角形,∴OP=OQ,∠POQ=60°,在Rt△ABC中,O是AB中点,∴OC=OA=OB,∴∠BOC=2∠A=60°=∠POQ,∴∠COP=∠BOQ,在△COP和△BOQ中,,∴△COP≌△BOQ(SAS),∴CP=BQ,(3)如图3,在Rt△ABC中,∠A=30°,AC=,∴BC=AC•tan∠A=,过点O作OH⊥BC,∴∠OHB=90°=∠BCA,∴OH∥AB,∵O是AB中点,∴CH=BC=,OH=AC=,∵∠BPQ=45°,∠OHP=90°,∴∠BPQ=∠PQH,∴PH=OH=,∴CP=PH﹣CH=﹣=,连接BQ,同(1)的方法得,BQ=CP=.10、模型发现:同学们知道,三角形的两边之和大于第三边,即如图1,在△ABC中,AB+AC>BC.对于图1,若把点C看作是线段AB外一动点,且AB=c,AC=b,则线段BC的长会因为点C的位置的不同而发生变化.因为AB、AC的长度固定,所以当∠BAC越大时,BC边越长.特别的,当点C位于线段BA的延长线上时,线段BC的长取得最大值,且最大值为b+c(用含b,c的式子表示)(直接填空)模型应用:点C为线段AB外一动点,且AB=3,AC=2,如图2所示,分别以AC,BC为边,作等边三角形ACD 和等边三角形BCE,连接BD,AE.(1)求证:BD=AE.(2)线段AE长的最大值为5.模型拓展:如图3,在平面直角坐标系中,点A是y轴正半轴上的一动点,点B是x轴正半轴上的一动点,且AB =8.若AC⊥AB,AC=3,试求OC长的最大值.解:当点C位于线段BA的延长线上时,线段BC的长取得最大值,最大值为b+c,故答案为:线段BA的延长线上;b+c;模型应用:(1)证明:∵△ACD、△BCE都是等边三角形,∴CD=CA=AD,CB=CE,∠ACD=60°,∠BCE=60°,∴∠DCB=∠ACE,在△DCB和△ACE中,,∴△DCB≌△ACE(SAS)∴BD=AE;(2)当点D位于线段BA的延长线上时,线段BD的长取得最大值,最大值为AB+AD=AB+AC=3+2=5,∵AE=BD,∴线段AE长的最大值为5,模型拓展:取AB的中点G,连接OG、CG,在Rt△AOB中,G为AB的中点,∴OG=AB=4,在Rt△CAG中,CG===5,当点O、G、C在同一条直线上时,OC最大,最大值为4+5=9.11、已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC =3MC,请直接写出的值.(1)证明:如图1中,∵BE⊥AD于E,∴∠AEF=∠BCF=90°,∵∠AFE=∠CFB,∴∠DAC=∠CBF,∵BC=CA,∴△BCF≌△ACD,∴BF=AD.(2)结论:BD=2CF.理由:如图2中,作EH⊥AC于H.∵∠AHE=∠ACD=∠DAE=90°,∴∠DAC+∠ADC=90°,∠DAC+∠EAH=90°,∴∠DAC=∠AEH,∵AD=AE,∴△ACD≌△EHA,∴CD=AH,EH=AC=BC,∵CB=CA,∴BD=CH,∵∠EHF=∠BCF=90°,∠EFH=∠BFC,EH=BC,∴△EHF≌△BCF,∴FH=CF,∴BD=CH=2CF.(3)如图3中,同法可证BD=2CM.∵AC=3CM,设CM=a,则AC=CB=3a,BD=2a,∴==.12、已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求的值.(1)①证明:如图1中,∵AB=AC,∠ABC=60°∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②证明:如图2中,在Rt△BFD中,∵∠FBD=30°,∴BF=2DF,∵BF=2AF,∴BF=AD,∵∠BAE=∠FBC,AB=BC,∴△BFC≌△ADB,∴∠BFC=∠ADB=90°,∴BF⊥CF(2)在BF上截取BK=AF,连接AK.∵∠BFE=∠2+∠BAF,∠CFE=∠4+∠1,∴∠CFB=∠2+∠4+∠BAC,∵∠BFE=∠BAC=2∠EFC,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB=AC,∴△ABK≌CAF,∴∠3=∠4,S△ABK=S△AFC,∵∠1+∠3=∠2+∠3=∠CFE=∠AKB,∠BAC=2∠CEF,∴∠KAF=∠1+∠3=∠AKF,∴AF=FK=BK,∴S△ABK=S△AFK,∴=2.13、已知,△ABC中,AB=AC,∠BAC=90°,E为边AC任意一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,F也为AC上一点,且满足AE=CF,过A作AD⊥BE交BE于点H,交BC于点D,连接DF交BE于点G,连接AG;①若AG平分∠CAD,求证:AH=AC;②如图3,当G落在△ABC外时,若将△EFG沿EF边翻折,点G刚好落在AB边上点P,直接写出AG与EF的数量关系.(1)解:如图1中,在AB上取一点M,使得BM=ME,连接ME.在Rt△ABE中,∵OB=OE,∴BE=2OA=2,∵MB=ME,∴∠MBE=∠MEB=15°,∴∠AME=∠MBE+∠MEB=30°,设AE=x,则ME=BM=2x,AM=x,∵AB2+AE2=BE2,∴(2x+x)2+x2=22,∴x=(负根已经舍弃),∴AB=AC=(2+)•,∴BC=AB=+1.方法二:作EH⊥BC于H,求出BH,CH即可解决问题.(2)证明:如图2中,作CP⊥AC,交AD的延长线于P,GM⊥AC于M.∵BE⊥AP,∴∠AHB=90°,∴∠ABH+∠BAH=90°,∵∠BAH+∠P AC=90°,∴∠ABE=∠P AC,在△ABE和△CAP中,,∴△ABE≌△CAP,∴AE=CP=CF,∠AEB=∠P,在△DCF和△DCP中,,∴△DCF≌△DCP,∴∠DFC=∠P,∴∠GFE=∠GEF,∴GE=GF,∵GM⊥EF,∴FM=ME,∵AE=CF,∴AF=CE,∴AM=CM,在△GAH和△GAM中,,∴△AGH≌△AGM,∴AH=AM=CM=AC(3)解:结论:AG=EF.理由:如图3中,作CM⊥AC交AD的延长线于M,连接PG交AC于点O.由(2)可知△ACM≌△BAE,△CDF≌△CDM,∴∠AEB=∠M=∠GEF,∠M=∠CFD=∠GFE,AE=CM=CF,∴∠GEF=∠GFE,∴GE=GF,∵△EFP是由△EFG翻折得到,∴EG=EP=GF=PF,∴四边形EGFP是菱形,∴PG⊥AC,OE=OF,∵AE=CF,∴AO=OC,∵AB∥OP,∴BP=PC,∵PF∥BE,∴EF=CF=AE,∵PB=PC,AO=OC,∴PO=OG=AB,∴AB=PG,AB∥PG,∴四边形ABPG是平行四边形,∴AG∥BC,∴∠GAO=∠ACB=45°,设EO=OF=a,则OA=OG=3a,AG=3a,∴==,∴AG=EF14、如图所示,Rt△ABC中,∠ACB=90°,E为AC中点,作ED⊥AC交AB于D,连接CD;(1)如图1,求证:AB=2CD;(2)如图2,作CF⊥AB交AB于F,点G为CF上一点,点H为DE延长线上一点,分别连接AH、GH,若∠AHG=2∠B,求证:AH=GH;(3)如图3,在(2)的条件下,连接DG,且有DE=BF,∠EDG=90°,若AC=6,求AH的长度.解:(1)∵E为AC中点,作ED⊥AC交AB于D,∴AD=CD,∵∠ACB=90°,∴BC∥DE,∴AD=BD,∴CD=BD,∴AB=2CD;(2)如图2,连接CH,∵点E是AC的中点,∴AE=CE,∵DE⊥AC,∴CH=AH,∴∠ACH=∠CAH,∵∠ACB=90°,∴∠B+∠BAC=90°,∵CF⊥AB,∴∠BAC+∠ACF=90°,∴∠ACF=∠B,∴∠HCG=∠ACH+∠ACF=∠CAH+∠B,∠AHG=2∠B∴在四边形AHGF中,∠AFG+∠FGH+∠AHG+∠F AH=360°,∴∠FGH=360°﹣(∠AFG+∠AHG+∠F AH)=360°﹣(90°+2∠B+∠CAH+∠BAC)=360°﹣(90°+2∠B+∠CAH+90°﹣∠B)=360°﹣(180°+∠B+∠CAH)=180°﹣(∠B+∠CAH),∵∠CGH=180°﹣∠FGH=∠B+∠CAH=∠HCG,∴CH=GH,∵CH=AH,∴AH=GH;(3)如图3,由(1)知,DE∥BC,∴∠B=∠ADE,在△BFC和△DEA中,,∴△BFC≌△DEA,∴BC=AD,∵AD=BD=CD,∴BC=BD=CD,∴△BCD是等边三角形,∴∠B=60°,在Rt△ABC中,AC=6,∴BC=2,AB=4,∵CF⊥BD,∴DF=,CF=3,∵∠BAC=30°,∴∠ADE=60°,∵∠EDG=90°,∠FDG=30°,在Rt△DFG中,DF=,∴FG=1,DG=2,∴CG=CF﹣FG=2过点H作HN⊥CF,由(2)知,CH=GH,∴NG=CG=1,∴FN=NG+FG=2,过点H作HM⊥AB,∴∠FMH=∠NFM=∠HNF=90°,∴四边形NFMH是矩形,∴HM=FN=2,在Rt△DMH中,∠ADE=60°,HM=2,∴DH=,在Rt△HDG中,根据勾股定理得,HG==.15、【问题情境】一节数学课后,老师布置了一道课后练习题:如图:已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,点E、F分别在A和BC上,∠1=∠2,FG⊥AB于点G,求证:△CDE≌△EGF.(1)阅读理解,完成解答本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写这道练习题的证明过程;(2)特殊位置,证明结论若CE平分∠ACD,其余条件不变,求证:AE=BF;(3)知识迁移,探究发现如图,已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,若点E是DB的中点,点F在直线CB上且满足EC=EF,请直接写出AE与BF的数量关系.(不必写解答过程)(1)证明:∵AC=BC,∠ACB=90°,∴∠A=∠B=45°,∵CD⊥AB,∴∠CDB=90°,∴∠DCB=45°,∵∠ECF=∠DCB+∠1=45°+∠1,∠EFC=∠B+∠2=45°+∠2,∠1=∠2,∴∠ECF=∠EFC,∴CE=EF,∵CD⊥AB,FG⊥AB,∴∠CDE=∠EGF=90°,在△CDE和△EGF中,,∴△CDE≌△EGF(AAS);(2)证明:由(1)得:CE=EF,∠A=∠B,∵CE平分∠ACD,∴∠ACE=∠1,∵∠1=∠2,∴∠ACE=∠2,在△ACE和△BEF中,,∴△ACE≌△BEF(AAS),∴AE=BF;(3)AE=BF,作EH⊥BC与H,如图3所示:设DE=x,根据题意得:BE=DE=x,AD=BD=2x,CD=AD=2x,AE=3x,根据勾股定理得:BC=AC=2x,∵∠ABC=45°,EH⊥BC,∴BH=x,∴CH=BC﹣BH=x,∵EC=EF,∴FH=CH=x,∴BF=x﹣x=x,∴=,∴AE=.16、在正方形ABCD和等腰直角△BGF中,∠BGF=90°,P是DF的中点,连接PG、PC.(1)如图1,当点G在BC边上时,延长GP交DC于点E.求证:PG=PC;(2)如图2,当点F在AB的延长线上时,(1)中的结论是否成立?请证明你的结论;(3)如图3,若四边形ABCD为菱形,且∠ABC=60°,△BGF为等边三角形,点F在CB的延长线。
2016年中考数学三角形全等及三角形的性质(含答案).
23.( 2015?通辽)如图,四边形 ABCD 中, E 点在 AD 上,其中 ∠ BAE=∠ BCE=∠ACD=90 °,且 BC=CE,求证: △ABC 与△DEC 全等.
① ∠ABO 的度数是
;
② 当∠ BAD= ∠ ABD 时, x=
;当∠ BAD= ∠BDA 时,
x=
.
( 2)如图 2,若 AB ⊥OM ,则是否存在这样的 x 的值,使得 △ADB 中有两个相
等的角?若存在,求出 x 的值;若不存在,说明理由.
19.( 2014 春 ?雨花区校级期末)如图,已知: AD 是△ABC 的角平分线, CE 是
于结论 ① AC=AF ,② ∠ FAB=∠EAB ,③ EF=BC,④ ∠EAB= ∠ FAC,其中正
30.( 2015?恩施州)如图,四边形 ABCD 、BEFG 均为正方形,连接 AG 、CE. ( 1)求证: AG=CE; ( 2)求证: AG⊥ CE.
第 7 页(共 24 页)
第 8 页(共 24 页)
三角形全等及三角形的性质 参考答案与试题解析
一.选择题(共 15 小题)
1.如图,图中三角形的个数为(
第 6 页(共 24 页)
28.(2015?南充)如图, △ ABC 中,AB=AC ,AD ⊥BC,CE⊥AB ,AE=CE.求 证: ( 1) △AEF≌△ CEB ; ( 2) AF=2CD.
29.( 2016?金华模拟)如图,在 △ABC 中, AB=CB ,∠ ABC=90°,D 为 AB 延 长线上一点,点 E 在 BC 边上,且 BE=BD ,连结 AE、 DE、DC. ① 求证: △ABE ≌△ CBD ; ② 若∠ CAE=30°,求∠ BDC 的度数.
初中数学三角形专题复习以及练习
初中数学三角形专题复习以及练习三角形专题知识点梳理考点一、三角形1、三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2、三角形的分类.⎪⎩⎪⎨⎧钝角三角形直角三角形锐角三角形⎪⎪⎩⎪⎪⎨⎧)(等边三角形等腰三角形不等边三角形3、三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边. 4、三角形的重要线段①三角形的中线:顶点与对边中点的连线,三条中线交点叫重心②三角形的角平分线:内角平分线与对边相交,顶点和交点间的线段,三个角的角平分线的交点叫内心③三角形的高:顶点向对边作垂线,顶点和垂足间的线段.三条高的交点叫垂心(分锐角三角形,钝角三角形和直角三角形的交点的位置不同)5、三角形具有稳定性6、三角形的内角和定理及性质 定理:三角形的内角和等于180°. 推论1:直角三角形的两个锐角互补。
推论2:三角形的一个外角等于不相邻的两个内角的和。
推论3:三角形的一个外角大于与它不相邻的任何一个内角。
7、多边形的外角和恒为360° 8、多边形及多边形的对角线①正多边形:各个角都相等,各条边都相等的多边形叫做正多边形.②凸凹多边形:画出多边形的任何一条边所在的直线,若整个图形都在这条直线的同一侧,这样的多边形称为凸多边形;,若整个多边形不都在这条直线的同一侧,称这样的多边形为凹多边形。
③多边形的对角线的条数:A.从n 边形的一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形。
B.n 边形共有2)3(-n n 条对角线。
9、边形的内角和公式及外角和①多边形的内角和等于(n-2)×180°(n ≥3)。
②多边形的外角和等于360°。
三角三位置关系:可以证明两条直线平行。
数量关系:可以证明线段的倍分关系。
常用结论:任一个三角形都有三条中位线,由此有:结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。
中考数学三角形复习试题以及答案
中考数学三角形复习试题以及答案三角形的概念及其性质1.三角形的概念由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三角形的分类1按边分类:2按角分类:3.三角形的内角和外角1三角形的内角和等于180°.2三角形的任一个外角等于和它不相邻的两个内角之和;三角形的一个外角大于任何一个和它不相邻的内角.4.三角形三边之间的关系三角形任意两边之和大于第三边,任意两边之差小于第三边.5.三角形内角与对边对应关系在同一个三角形内,大边对大角,大角对大边;在同一三角形中,等边对等角,等角对等边.6.三角形具有稳定性.知识点二、三角形的“四心”和中位线三角形中的四条特殊的线段是:高线、角平分线、中线、中位线.1.内心:三角形角平分线的交点,是三角形内切圆的圆心,它到各边的距离相等.2.外心:三角形三边垂直平分线的交点,是三角形外接圆的圆心,它到三个顶点的距离相等.3.重心:三角形三条中线的交点,它到每个顶点的距离等于它到对边中点距离的2倍.4.垂心:三角形三条高线的交点.5.三角形的中位线:连结三角形两边中点的线段是三角形的中位线.中位线定理:三角形的中位线平行于第三边且等于第三边的一半.要点诠释:1三角形的内心、重心都在三角形的内部.2钝角三角形的垂心、外心都在三角形的外部.3直角三角形的垂心为直角顶点,外心为直角三角形斜边的中点.4锐角三角形的垂心、外心都在三角形的内部.知识点三、全等三角形1.定义:能完全重合的两个三角形叫做全等三角形.2.性质:1对应边相等2对应角相等3对应角的平分线、对应边的中线和高相等4周长、面积相等3.判定:1边角边SAS2角边角ASA3角角边AAS4边边边SSS5斜边直角边HL适用于直角三角形要点诠释:判定三角形全等至少必须有一组对应边相等.知识点四、等腰三角形1.定义:有两条边相等的三角形叫做等腰三角形.2.性质:1具有三角形的一切性质.2两底角相等等边对等角3顶角的平分线,底边中线,底边上的高互相重合三线合一4等边三角形的各角都相等,且都等于60°.3.判定:1如果一个三角形有两个角相等,那么这两个角所对的边也相等等角对等边;2三个角都相等的三角形是等边三角形;3有一个角为60°的等腰三角形是等边三角形.要点诠释:1腰、底、顶角、底角是等腰三角形特有的概念;2等边三角形是特殊的等腰三角形.知识点五、直角三角形1.定义:有一个角是直角的三角形叫做直角三角形.2.性质:1直角三角形中两锐角互余;2直角三角形中,30°锐角所对的直角边等于斜边的一半.3在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°.4勾股定理:直角三角形中,两条直角边的平方和等于斜边的平方.5勾股定理逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.6直角三角形中,斜边上的中线等于斜边的一半;7SRt△ABC= ch= ab,其中a、b为两直角边,c为斜边,h为斜边上的高.3.判定:1两内角互余的三角形是直角三角形;2一条边上的中线等于该边的一半,则这条边所对的角是直角,则这个三角形是直角三角形.3如果三角形两边的平方和等于第三边的平方,则这个三角形是直角三角形,第三边为斜边.知识点六、线段垂直平分线和角平分线1.线段垂直平分线:经过线段的中点并且垂直这条线段的直线,叫做这条线段的垂直平分线.线段垂直平分线的定理:1线段垂直平分线上的点与这条线段两个端点的距离相等.2与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.线段垂直平分线可以看作是与线段两个端点距离相等的所有点的集合.2.角平分线的性质:1角的平分线上的点到角的两边的距离相等;2到角的两边的距离相等的点在角的平分线上;3角的平分线可以看做是到角的两边距离相等的所有点的集合.四、规律方法指导1.数形结合思想本单元中所学的三角形性质、角平分线性质、全等三角形的性质、直角三角形中的勾股定理等,都是在结合图形的基础上,求线段或角的度数,证明线段或角相等.在几何学习中,应会利用几何图形解决实际问题.2.分类讨论思想在没给图形的前提下,画三角形或三角形一边上的高、三角形的垂心、外心时要考虑分类:三种情况,锐角三角形、直角三角形、钝角三角形.3. 化归与转化思想在解决利用三角形的基础知识计算、证明问题时,通过做辅助线、利用所学知识进行准确推理等转化手段,归结为另一个相对较容易解决的或者已经有解决模式的问题,已知与未知之间的转化;数与形的转化;一般与特殊的转化.4.注意观察、分析、总结应将三角形的判定及性质作为重点,对于特殊三角形的判定及性质要记住并能灵活运用,注重积累解题思路和运用数学思想和方法解决问题的能力和培养,淡化纯粹的几何证明.学会演绎推理的方法,提高逻辑推理能力和逻辑表达能力,掌握几何证明中的分析,综合,转化等数学思想.经典例题透析考点一、三角形的概念及其性质1.12021山东济宁若一个三角形三个内角度数的比为2︰3︰4,那么这个三角形是A. 直角三角形B. 锐角三角形C. 钝角三角形D. 等边三角形思路点拨:三角形的内角和为180°,三个内角度数的份数和是9,每一份度数是20,则三个内角度数分别为40°、60°、80°,是锐角三角形.答案:B2三角形的三边分别为3,1-2a,8,则a的取值范围是A.-6-2思路点拨:涉及到三角形三边关系时,尽可能简化运算,注意运算的准确性.解析:根据三角形三边关系得:8-3<1-2a<8+3,解得-5举一反三:【变式1】已知a,b,c为△ABC的三条边,化简得_________.思路点拨:本题利用三角形三边关系,使问题代数化,从而化简得出结论.解析:∵a,b,c为△ABC的三条边∴a-b-c<0, b-a-c<0∴ =b+c-a+a+c-b=2c.【变式2】有五根细木棒,长度分别为1cm,3cm,5cm,7cm,9cm,现任取其中的三根木棒,组成一个三角形,问有几种可能A.1种B.2种C.3种D.4种解析:只有3、5、7或3、7、9或5、7、9三种.应选C.【变式3】等腰三角形中两条边长分别为3、4,则三角形的周长是_________.思路点拨:要分类讨论,给出的边长中,可能分别是腰或底.注意满足三角形三边关系.解析:1当腰为3时,周长=3+3+4=10;2当腰为4时,周长=3+4+4=11.所以答案为10或11.2.12021宁波市如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是△ABC、△BCD 的角平分线,则图中的等腰三角形有A.5个B.4个C.3个D.2个考点:等腰三角形答案:A2如图在△ABC中,∠ABC=90°,∠A=50°,BD∥AC,则∠CBD的度数是______.考点:直角三角形两锐角互余.解析:△ABC 中,∠C=∠ABC-∠A =90°-50°=40°又∵BD∥AC,∴∠CBD=∠C=40°.3.已知△ABC的三个内角∠A、∠B、∠C满足关系式∠B+∠C=3∠A,则此三角形中A.一定有一个内角为45°B.一定有一个内角为60°C.一定是直角三角形D.一定是钝角三角形考点:三角形内角和180°.思路点拨:会灵活运和三角形内角和等于180°这一定理,即∠B+∠C=180°-∠A.解析:∵△ABC中,∠A+∠B+∠C=180°,∴∠B+∠C=180°-∠A∵∠B+∠C=3∠A,∴180°-∠A=3∠A,∴ ∠A=45°,∴选A,其它三个答案不能确定.举一反三:【变式1】下图能说明∠1>∠2的是考点:三角形外角性质.思路点拨:本类题目考查学生了解三角形外角大于任何一个不相邻的内角.解析:A中∠1和∠2是对顶角,∠1=∠2;B中∠1和∠2是同位角,若两直线平行则相等,不平行则不一定相等;C中∠1是三角形的一个外角,∠2是和它不相邻的内角,所以∠1>∠2.D中∠1和∠2的大小相等.故选C.总结升华:三角形内角和180°以及边角之间的关系,在习题中往往是一个隐藏的已知条件,在做题时要注意审题,并随时作为检验自己解题是否正确的标准.【变式2】如果三角形的一个内角等于其他两个内角的和,这个三角形是A.锐角三角形B.钝角三角形C.直角三角形D.不能确定思路点拨:理解直角三角形定义,结合三角形内角和得出结论.解析:若△ABC的三个内角∠A、∠B、∠C中,∠A+∠B=∠C又∠A+∠B+∠C=180°,所以2∠C=180°,可得∠C=90°,所以选C.【变式3】下列命题:1等边三角形也是等腰三角形;2三角形的外角等于两个内角的和;3三角形中最大的内角不能小于60°;4锐角三角形中,任意两内角之和必大于90°,其中错误的个数是A.0 个B.1个C.2个D.3个思路点拨:本题的解题关键是要理解定义,掌握每种三角形中角的度数的确定.解析:2中应强调三角形的外角等于不相邻的两个内角的和;三角形中最大的内角若小于60°,则三个角的和就小于180°,不符合三角形内角和定理,故3正确;4三角形中,任意两内角之和若不大于90°,则另一个内角就大于或等于90°,就不能是锐角三角形.所以中有2错,故选B.考点二、三角形的“四心”和中位线4.1与三角形三个顶点距离相等的点是这个三角形的A.二条中线的交点B. 二条高线的交点C.三条角平分线的交点D.三边中垂线的交点考点:线段垂直平分线的定理.思路点拨:三角形三边垂直平分线的交点是外心,是三角形外接圆的圆心,到三角形三个顶点距离相等.答案D若改成二边中垂线的交点也正确.22021四川眉山如图,将第一个图图①所示的正三角形连结各边中点进行分割,得到第二个图图②;再将第二个图中最中间的小正三角形按同样的方式进行分割,得到第三个图图③;再将第三个图中最中间的小正三角形按同样的方式进行分割,……,则得到的第五个图中,共有________个正三角形.考点:三角形中位线找规律思路点拨:图①有1个正三角形;图②有1+4个正三角形;图③有1+4+4个正三角形;图④有1+4+4+4个正三角形;图⑤有1+4+4+4+4个正三角形;….答案:175.一个三角形的内心在它的一条高线上,则这个三角形一定是A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形考点:三角形角平分线定理.思路点拨:本题考查三角形的内心是三角形角平分线的交点,若内心在一条高线上,又符合三线合一的性质.所以该三角形是等腰三角形.故选B.举一反三:【变式1】如图,已知△ABC中,∠A=58°,如果1O为外心;2O为内心;3O为垂心;分别求∠BOC的度数.考点:三角形外心、内心、垂心性质.解析:∠A是锐角时,1O为外心时,∠BOC=2∠A =116°;2O为内心时,∠BOC=90°+ ∠A=119°;3O为垂心,∠BOC=180°-∠A=122°.【变式2】如果一个三角形的内心,外心都在三角形内,则这个三角形是A.锐角三角形B.只有两边相等的锐角三角形C.直角三角形D.锐角三角形或直角三角形解析:三角形的内心都在三角形内部;锐角三角形外心在三角形内部;直角三角形的外心在三角形斜边的中点上、钝角三角形的外心三角形外部.故选A.【变式3】能把一个三角形分成两个面积相等的三角形的线段,是三角形的A.中线B.高线C.边的中垂线D.角平分线思路点拨:三角形面积相等,可利用底、高相等或相同得到.解析:三角形的一条中线分得的两个三角形底相等,高相同.应选A.6.12021广东茂名如图,吴伯伯家有一块等边三角形的空地ABC,已知点E、F分别是边AB、AC的中点,量得EF=5米,他想把四边形BCFE用篱笆围成一圈放养小鸡,则需用篱笆的长是A、15米B、20米C、25米D、30米考点:三角形中位线定理.思路点拨:BE=AE=5 ,CF=FA=5,BC=2EF=10答案:C感谢您的阅读,祝您生活愉快。
中考数学专题复习:几何综合题
【考点总结】四、全等三角形的性质与判定
1.概念:能够完全重合的两个三角形叫做全等三角形. 2.性质:全等三角形的对应边、对应角分别相等. 3.判定:(1)有三边对应相等的两个三角形全等,简记为(SSS); (2)有两边和它们的夹角对应相等的两个三角形全等,简记为(SAS); (3)有两角和它们的夹边对应相等的两个三角形全等,简记为(ASA); (4)有两角和其中一角的对边对应相等的两个三角形全等,简记为(AAS); (5)有斜边和一条直角边对应相等的两个直角三角形全等,简记为(HL).
三角形专题
1,掌握三角形相关基础知识(2课时)
目标
2,掌握三角形有关模型的全等或相似证明(3课时) 3,完成三角形有关模型的全等或相似证明(3课时)
三角形
模型
手拉手模型
三垂直模型
相似模型
三角形有关的知识
【考点总结】一、三角形中的重要线段 1.三角形的高线:从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做 三角形的高线,简称高. 特性:三角形的三条高线相交于一点. 2.三角形的中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.特性:三角 形的三条中线交于一点. 3.三角形的中位线:连接三角形两边中点的线段叫做三角形的中位线. 定理:三角形的中位线平行于第三边,且等于它的一半 4.三角形的角平分线:三角形一个角的平分线和这个角的对边相交,这个角的顶点和交点之间的线 段叫做三角形的角平分线. 特性:三角形的三条角平分线交于一点,这点叫做三角形的内心. 性质:角平分线上的点到角的两边的距离相等.
小组合作
1.在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D.
(1)如图1,点M,N分别在AD,AB上,且∠BMN=90°,当∠AMN=30°,AB=2时,求线段
中考数学专题复习8几何初步及三角形相关计算(原卷版)
几何初步及三角形相关计算复习考点攻略考点一直线、射线、线段相关概念和性质1.直线的性质(1)两条直线相交.只有一个交点;(2)经过两点有且只有一条直线.即两点确定一条直线;(3)直线的基本事实:经过两点有且只有一条直线.2.线段的性质:两点确定一条直线.两点之间.线段最短.两点间线段的长度叫两点间的距离.3.线段的中点性质:若C是线段AB中点.则AC=BC=12AB;AB=2AC=2BC.4.两条直线的位置关系在同一平面内.两条直线只有两种位置关系:平行和相交.5.垂线的性质(1)两条直线相交所构成的四个角中有一个角是直角.则这两条直线互相垂直.其中一条直线叫做另一条直线的垂线;(2)①经过一点有且只有一条直线与已知直线垂直;②直线外一点与直线上各点连接的所有线段中.垂线段最短.6.点到直线的距离:从直线外一点向已知直线作垂线.这一点和垂足之间线段的长度叫做点到直线的距离.7. 角:有公共端点的两条射线组成的图形.8.角平分线(1)定义:在角的内部.以角的顶点为端点把这个角分成两个相等的角的射线(2)角平分线的性质:①若OC是∠AOB的平分线.则∠AOC=∠BOC=12∠AOB.∠AOB=2∠AOC =2∠BOC.②角平分线上的点到角两边的距离相等。
9.度、分、秒的运算方法1°=60′.1′=60″.1°=3600″.1周角=2平角=4直角=360°.10.余角和补角(1)余角:∠1+∠2=90°⇔∠1与∠2互为余角;(2)补角:∠1+∠2=180°⇔∠1与∠2互为补角.(3)性质:同角(或等角)的余角相等;同角(或等角)的补角相等.11.方向角和方位角在描述方位角时.一般应先说北或南.再说偏西或偏东多少度.而不说成东偏北(南)多少度或西偏北(南)多少度.当方向角在45°方向上时.又常常说成东南、东北、西南、西北方向.【例1】如图.在数轴上有A、B、C、D四个整数点(即各点均表示整数).且2AB=BC=3CD.若A、D两点表示的数分别为-5和6.且AC的中点为E.BD的中点为M.BC之间距点B的距离为13BC的点N.则该数轴的原点为A.点E B.点FC.点M D.点N【例2】如图.∠AOB=180°.∠BOC=80°.OD平分∠AOC.∠DOE=3∠COE.求∠BOE.【例3】如图.要修建一条公路.从A村沿北偏东75°方向到B村.从B村沿北偏西25°方向到C 村.若要保持公路CE与AB的方向一致.则∠ECB的度数为A.80°B.90°C.100°D.105°【例4】计算:18°30′=__________°考点二立体图形1.常见的立体图形有:球、柱体和锥体.圆柱和棱柱的区别:圆柱的底面是圆.棱柱的底面是多边形;圆柱的侧面是曲面.棱柱的侧面是四边形;圆锥和棱锥的区别:圆锥的底面是圆.侧面是曲面;棱锥的底面是多边形.侧面是三角形.2.点动成线.线动成面.面动成体.线没有粗细.点没有大小.3.设立体图形的面数为F.顶点数为V.棱数为E.则F+V-E=2.4.正方体的平面展开图有如下11种类型:【例5】如图是一个正方体包装盒的表面积展开图.若在其中的三个正方形A、B、C内分别填上适当的数.使得将这个表面展开图沿虚线折成正方体后.相对面上的两数互为相反数.则填在A、B、C内的三个数依次为A.0.-2.1 B.0.1.2C.1.0.-2 D.-2.0.1考点三三角形的基本概念(1)三角形的概念:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2016中考数学三角形专题复习2016
2016中考数学总复习:三角形(一)三角形基础知识【知识梳理】1、三角形三边的关系;三角形的分类2、三角形内角和及外角和定理及推论;3、三角形的高,中线,角平分线4、三角形中位线的定义及性质 【 思想方法】方程思想,分类讨论等【例题精讲】 例1.(2015•江苏南通)下列长度的三条线段能组成三角形的是( ) A .5,6,10 B .5,6,11 C .3,4,8 D .4a ,4a ,8a (a >0) 例2. (2013湖南郴州)如图,在Rt △ACB 中,∠ACB=90°,∠A=25°,D 是AB 上一点.将Rt △ABC 沿CD 折叠,使B 点落在AC 边上的B′处,则∠ADB′等于( ) A. 25° B. 30° C. 35° D. 40°例3. (2013•宁波)如果三角形的两条边分别为4和6,那么连结该三角形三边中点所得的周长可能是下列数据中的( ).A. 6 B. 8 C. 10 D. 12例4.如图,D E ,分别为ABC △的AC ,BC 边的中点,将此三角形沿DE 折叠,使点C 落在AB 边上的点P 处.若48CDE ∠=°,则APD ∠等于( )A .42°B .48°C .52°D .58°例5如图2所示,A 、B 、C 分别表示三个村庄,AB=1000米,BC=600米,AC=800米,在社会主义新农村建设中,为了丰富群众生活,拟建一个文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P 的位置应在( )A .AB 中点 B .BC 中点 C .AC 中点D .∠C 的平分线及AB 的交点例6.(2015•安徽)在四边形ABCD 中,∠A=∠B=∠C ,点E 在边AB 上,∠AED=60°,则一定有( )A .∠ADE=20°B . ∠ADE=30°C . ∠ADE=∠ADCD . ∠ADE=∠ADC例7.(2015•滨州)在△ABC 中,∠A :∠B :∠C=3:4:5,则∠C 等于( ) A . 45° B . 60° C . 75° D . 90°例8.(2015•山东德州)如图,AD 是△ABC 的角平分线,DE ,DF 分别是△ABD 和△ACD 的高,得到下列四个结论:①OA=OD ;②AD ⊥EF ;③当∠A=90°时,四边形AEDF 是正方形;④AE+DF=AF+DE .其中正确的是( ) A .②③ B . ②④ C . ①③④ D . ②③④例9.(2015•江苏宿迁)如图,在Rt △ABC 中,∠ACB=90°,点D ,E ,F 分别为AB ,AC ,BC 的中点.若CD=5,则EF 的长为.例10.(2015•云南)如图,在△ABC 中,BC=1,点P 1,M 1分别是AB ,AC 边的中点,点P 2,M 2分别是AP 1,AM 1的中点,点P 3,M 3分别是AP 2,AM 2的中点,按这样的规律下去,P n M n 的长为 (n 为正整数F ).A C B(二)全等三角形【知识梳理】1、定义:能够完全重合的两个三角形全等.2、性质:两个全等的三角形的对应边和对应角分别相等3、判定方法:边角边(SAS )角边角(ASA )推论 角角边(AAS )边边边(SSS )“HL” 【例题精讲】 例1. (2013贵州安顺)如图,已知AE =CF ,∠AFD =∠CEB , 那么添加一个条件后,仍无法判定△ADF ≌△CBE 的是( ) A .∠A =∠C B .AD =CB C .BE =DF D .AD ∥BC 例2.如图,在Rt △ABC 中,AB AC =,D 、E 是斜边BC 上两点,且∠DAE =45°,将△ADC 绕点A 顺时针旋转90︒后,得到△AFB ,连接EF ,下列结论:①△AED ≌△AEF ; ②△ABE ∽△ACD ;③BE DC DE +=; ④222BE DC DE +=其中正确的是( )A .②④; B .①④; C .②③; D .①③. 例3.(2015•江苏泰州)如图,△中,AB=AC ,D 是BC 的中点,AC 的垂直平分线分别交 AC 、AD 、AB 于点E 、O 、F ,则图中全等的三角形的对数是( ) A.1对 B.2对 C.3对 D.4对 例4.(2013白银)如图,已知BC=EC ,∠BCE=∠ACD ,要使△ABC ≌△DEC ,则应添加的一个条件为 .(答案不唯一,只需填一个)例5.(2015•四川眉山)如图,以△ABC 的三边为边分别作等边△ACD 、△ABE 、△BCF ,则下列结论:①△EBF ≌△DFC ;②四边形AEFD 为平行四边形;③当AB =AC ,∠BAC =120°时,四边形AEFD 是正方形.其中正确的结论是 .(请写出正确结论的番号).例6. (2013湖北荆门)如图1,在△ABC 中,AB =AC ,点D 是BC 的中点,点E 在AD 上.(1)求证:BE =CE ;(2)若BE 的延长线交AC 于点F ,且BF ⊥AC ,垂足为F ,如图2,∠BAC =45°,原题设其它条件不变. 求证:△AEF ≌△BCF .例7.(2014•广东梅州)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?例8.(2015•怀化)已知:如图,在△ABC中,DE、DF是△ABC的中位线,连接EF、AD,其交点为O.求证:(1)△CDE≌△DBF;(2)OA=OD.(三)等腰三角形【知识梳理】1. 等腰三角形的定义;2. 等腰三角形的性质和判定;3.等边三角形的性质和判定.4.线段的垂直平分线的性质及判定。
2016年度中考数学专业题材复习资料一线三角三等角型
“一线三等角”基本图形解决问题三角形相似在整个初中数学中有着重要的地位,在学习三角形相似形时,我们从复杂图形中分离出基本数学模型,对分析问题、解决问题有化繁为简的效果。
在近几年的中考题中,经常可以看到“一线三等角”的数学模型,所谓“一线三等角”是指在一条直线上出现了三个角相等。
所以,只要见到一条直线上出现了三个等角,往往都存在这样的模型,也会存在相似三角形,当出现了有相等边的条件之后,相似就转化为全等了,综合性题目往往就会把相似和全等的转化,作为出题的一种形式,需要大家注意。
本文将重点对这一基本图形进行探讨。
通过对题目的有效分解,打破同学们对综合题的畏惧心理,让同学们加深对于题目条件的使用:条件用完,即使题目没有求解完毕,也得到相应的分数,提高问题解决的能力,在这个师生共同探讨的过程中鼓励学生尝试解题,并加强题后反思,培养他们解题的能力。
一、知识梳理:(1)四边形ABCD 是矩形,三角板的直角顶点M 在BC 边上运动,直角边分别与射线BA 、射线CD 交于E 、F ,在运动过程中,△EBM ∽△MCF.(2)如图1:已知三角形ABC 中,AB=AC,∠ADE=∠B,那么一定存在的相似三角形有 △ABD ∽△DEC. 如图2:已知三角形ABC 中,AB=AC,∠DEF=∠B,那么一定存在的相似三角形有△DBE ∽△ECF.(图1) (图2) 二、【例题解析】【例1】(2014四川自贡)阅读理解: 如图1,在四边形ABCD 的边AB 上任取一点E (点E 不与点A 、点B 重合),分别连接ED ,EC ,可以把四边形ABCD 分成三个三角形,如果其中有两个三角形相似,我们就把E 叫做四边形ABCD 的边AB 上的相似点;如果这三个三角形都相似,我们就把E 叫做四边形ABCD 的边AB 上的强相似点.解决问题:(1)如图1,∠A=∠B=∠DEC=55°,试判断点E 是否是四边形ABCD 的边AB 上的相似点,并说明理由;(2)如图2,在矩形ABCD 中,AB=5,BC=2,且A ,B ,C ,D 四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图2中画出矩形ABCD 的边AB 上的一个强相似点E ;321FD B M C拓展探究:(3)如图3,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处.若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB和BC的数量关系.【练习】1、已知矩形ABCD中, AB=3,AD=2,点P是AB上的一个动点,且和点A,B 不重合,过点P作PE垂直DP,交边BC于点E,设,PA=x,BE=y,求y关于x的函数关系式,并写出x的取值范围 .2、如图,已知正方形ABCD,将一块等腰直角三角尺的锐角顶点与A重合,并将三角尺绕点旋转,当M点旋转到BC的垂直平分线PQ上时,连接ON,若ON=8,求MQ的长.3. 如图,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与BC 重合).连接DE,作EF⊥DE,EF与射线BA交于点F,设CE=x,BF=y,(1)求y关于x的函数关系式(2)若m=8,求x为何值时,y有最大值,最大值是多少?(3)若12ym,要使△DEF为等腰三角形,m的值应为多少?AB E【例2】等边△ABC 边长为6,P 为BC 边上一点,∠MPN =60°,且PM 、PN 分别于边AB 、AC交于点E 、F .(1)如图1,当点P 为BC 的三等分点,且PE ⊥AB 时,判断△EPF 的形状;(2)如图2,若点P 在BC 边上运动,且保持PE ⊥AB ,设BP =x ,四边形AEPF 面积的y ,求y 与x 的函数关系式,并写出自变量x 的取值范围;(3)如图3,若点P 在BC 边上运动,且∠MPN 绕点P 旋转,当CF =AE =2时,求PE 的长.图1 图2 图3分析过程:(1)△EPF 为等边三角形. (2)设BP=x ,则CP =6-x. 由题意可 △BEP 的面积为238x . △CFP 的面积为23(6)2x -.△ABC 的面积为93. 设四边形AEPF 的面积为y. ∴ 93y =-238x 23(6)2x --=25363938x x -+-. 自变量x 的取值范围为3<x <6. (3)可证△EBP ∽△PCF.∴BP BECF CP=.设BP=x , 则 (6)8x x -=. 解得 124,2x x ==.∴ PE 的长为4或23.【练习】.如图,在△ABC 中,AB =AC =5cm ,BC =8,点P 为BC 边上一动点(不与点B 、C 重合),过点P 作射线PM 交AC 于点M ,使∠APM =∠B ; (1)求证:△ABP ∽△PCM ;(2)设BP =x ,CM =y .求 y 与x 的函数解析式,并写出自变量的取值范围. (3)当△APM 为等腰三角形时,求PB 的长.(4) 当点D 是BC 的中点时,试说明△ADE 是什么三角形,并说明理由.A P M【例3】在ABC ∆中,O BC AC C ,3,4,90===∠o是AB 上的一点,且52=AB AO ,点P 是AC 上的一个动点,OP PQ ⊥交线段BC 于点Q ,(不与点B,C 重合),已知AP=2,求CQ【练习】在直角三角形ABC 中,D BC AB C ,,90==∠o是AB 边上的一点,E 是在AC 边上的一个动点,(与A,C 不重合),DF DE DF ,⊥与射线BC 相交于点F. (1)、当点D 是边AB 的中点时,求证:DF DE = (2)、当m DBAD=,求DF DE 的值【例4】如图,抛物线y=ax 2+bx+c 经过点A(﹣3,0),B(1.0),C(0,﹣3).(1)求抛物线的解析式;(2)若点P 为第三象限内抛物线上的一点,设△PAC 的面积为S ,求S 的最大值并求出此时点P 的坐标;(3)设抛物线的顶点为D ,DE ⊥x 轴于点E ,在y 轴上是否存在点M ,使得△ADM 是直角三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.答案:(1)y=x2+2x ﹣3;(2)S 有最大值827,点P 的坐标为(23-,415-); (3)M 的坐标为(0,23)或(0,27-)或(0,﹣1)或(0,﹣3).课后作业:1. 已知:如图,在△ABC 中,5==AC AB ,6=BC ,点D 在边AB 上,AB DE ⊥,点E 在边BC 上.又点F 在边AC 上,且B DEF ∠=∠. (1) 求证:△FCE ∽△EBD ; (2) 当点D 在线段AB 上运动时,是否有可能使EBD FCE S S ∆∆=4. 如果有可能,那么求出BD 的长.如果不可能请说明理由.2. 如图,在△ABC 中,AB =AC =5,BC =6,P 是BC 上一点,且BP =2,将一个大小与∠B 相等的角的顶点放在P 点,然后将这个角绕P 点转动,使角的两边始终分别与AB 、AC 相交,交点为D 、E 。
2016年中考数学试题——三角形(各省统一命题版)(真题模拟)
一、选择题:1.(2015.上海市,第4题,3分)如果一个正多边形的中心角为72,那么这个正多边形的边数是……………().A、4;B、5;C、6;D、7.2. (2015.天津市,第2题,3分)cos45︒的值等于( )(B)2(C)3(D)3(A)12【答案】B.【解析】试题分析:根据特殊角的三角函数值即可得cos45︒=2,故答案选B.考点:特殊角的三角函数值.3. (2015.北京市,第6题,3分)如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AM的长为1.2km,则M、C两点间的距离为( )A0.5km B.0.6km C.0.9km D.1.2km【答案】D.【解析】试题分析:根据直角三角形斜边上的中线等于斜边的一半可得MC=1.2km .故选D . 考点:直角三角形斜边上的中线等于斜边的一半4. (2015.陕西省,第6题,3分)如图,在△ABC 中,∠A=36°,AB=AC ,BD 是△ABC 的角平分线,若在边AB 上截取BE=BC,连接DE,则图中等腰三角形共有( )A.2个B.3个C.4个D.5个二、填空题:1.(2015.上海市,第15题,4分)如图,已知在ABC ∆中,D 、E 分别是边AB 、边AC 的中点,AB m =,AC n =,那么向量用向量m 、表示为______________.ED CBA【答案】1122m n -+【解析】试题分析:先根据三角形法则将DE 用DA AE +表示出来,再根据中点及平行向量将其转化为用m 、n 表示,即11112222DE DA AE AB AC m n =+=-+=-+. 考点:平面向量的基本运算.2. (2015.河南省,第10题,3分)如图,△ABC 中,点D 、E 分别在边AB ,BC 上,DE//AC ,若DB=4,DA=2,BE=3,则EC=.【答案】23. 【解析】试题分析:∵DE//AC,∴DB:AD=BE:CE,∴4:2=3:EC,EC=23.考点:平行线分线段成比例定理.3.(2015.宁夏,第13题,3分)如图,港口A 在观测站O 的正东方向,OA =4,某船从港口A 出发,沿北偏东15°方向航行一段距离后到达B 处,此时从观测站O 处测得该船位于北偏东60°的方向,则该船航行的距离(即AB 的长)为.【答案】22.E CDBA 第10题【解析】试题分析:如图,过点A 作AD ⊥OB 于D .先解Rt △AOD ,得出AD=21OA=2,再由△ABD 是等腰直角三角形,得出BD=AD=2,则AB=2AD=22.考点:解直角三角形的应用(方向角问题);特殊角的三角函数值.4. (2015.重庆市A 卷,第15题,4分)已知△ABC ∽△DEF,ABC ∆与DEF ∆的相似比为4:1,则ABC ∆与DEF ∆对应边上的高之比为.5. (2015.重庆市B 卷,第14题,4分)已知△ABC ∽△DEF ,若△ABC 与△DEF 的相似比为2:3,则△ABC 与△DEF 对应边上的中线的比为________. 【答案】2:3 【解析】试题分析:根据相似三角形对应边上的中线之比等于相似比可得:△ABC 与△DEF 对应边上的中线的比为2:3. 考点:相似三角形的应用.6. (2015.天津市,第16题,3分)如图,在△ABC 中,DE ∥BC ,分别交AB ,AC 于点D ,E . 若AD =3,DB =2,BC =6,则DE的长为.EDB【答案】185.【解析】试题分析:由DE∥BC可得△ADE∽△ABC,根据相似三角形的性质可得3,56AD DE DE=AB BC=即,解得185DE=. 考点:相似三角形的判定与性质.7. (2015.陕西省,第12题,3分)请从以下两小题中任选一个作答,若多选,则按第一题计分。
2016年中考数学三角形热点练习
2016年中考数学三角形热点练习专题六三角形⊙热点一:与三角形有关的边角计算1.(2015年湖南长沙)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()ABCD2.(2015年北京)如图Z6­6,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AM的长为1.2km,则M,C两点间的距离为()图Z6­6A.0.5kmB.0.6kmC.0.9kmD.1.2km⊙热点二:全等、相似和等腰三角形的证明与性质3.(2015年山东菏泽)已知∠ABC=90°,D是直线AB上的点,AD=BC.(1)如图Z6­7,过点A作AF⊥AB,并截取AF=BD,连接DC,DF,CF,判断△CDF的形状并证明;(2)如图Z6­8,E是直线BC上一点,且CE=BD,直线AE,CD相交于点P,∠APD的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由.图Z6­7图Z6­8⊙热点三:与三角形有关的综合题4.(2015年江苏常州)如图Z6­9,在ABCD中,∠BCD =120°,分别延长DC,BC到点E,F,使得△BCE和△CDF都是正三角形.(1)求证:AE=AF;(2)求∠EAF的度数.图Z6­9⊙热点四:解直角三角形与勾股定理的应用5.(2015年四川达州)学习“利用三角函数测高”后,某综合实践活动小组实地测量了凤凰山与中心广场的相对高度AB,其测量步骤如下:①在中心广场测点C处安置测倾器,测得此时山顶A的仰角∠AFH=30°;②在测点C与山脚B之间的D处安置测倾器(C,D与B在同一直线上,且C,D之间的距离可以直接测得),测得此时山顶上红军亭顶部E的仰角∠EGH=45°;③测得测倾器的高度CF=DG=1.5米,并测得CD之间的距离为288米;如图Z6­10,已知红军亭高度为12米,请根据测量数据求出凤凰山与中心广场的相对高度AB.(3取1.732,结果保留整数)图Z6­10专题六三角形【提升专项训练】1.A2.D3.解:(1)△CDF是等腰直角三角形,理由如下:∵AF⊥AD,∠ABC=90°,∴∠FAD=∠D BC.在△FAD与△DBC中,AD=BC,∠FAD=∠DBC,AF=BD,∴△FAD≌△DBC(SAS).∴FD=DC.∴△CDF是等腰三角形.∵△FAD≌△DBC,∴∠FDA=∠,∴∠BDC+∠FDA=90°.∴△CDF是等腰直角三角形.(2)作AF⊥AB于A,使AF=BD,连接DF,CF,如图D112,图D112∵AF⊥AD,∠ABC=90°,∴∠FAD=∠DBC.在△FAD与△DBC中,AD=BC,∠FAD=∠DBC,AF=BD,∴△FAD≌△DBC(SAS).∴FD=DC.∴△CDF是等腰三角形.∵△FAD≌△DBC,∴∠FDA=∠,∴∠BDC+∠FDA=90°.∴△CDF是等腰直角三角形.∴∠FCD=45°.∵AF∥CE,且AF=CE,∴四边形AFCE是平行四边形.∴AE∥CF,∴∠APD=∠FCD=45°.4.(1)证明:∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=120°,∠ABC=∠ADC,AB=CD,BC=AD,∵△BCE和△CDF都是正三角形,∴BE=BC,DF=CD,∠EBC=∠CDF=60°.∴∠ABE=∠FDA,AB=DF,BE=AD.在△ABE和△FDA中,AB=DF,∠ABE=∠FDA,BE=AD,∴△ABE≌△FDA(SAS).∴AE=AF.(2)解:∵△ABE≌△FDA,∴∠AEB=∠120°,∴∠AEB +∠BAE=60°.∴∠FAD+∠BAE=60°.∴∠EAF=120°-60°=60°. 5.解:设AH=x米,在Rt△EHG中,∵∠EGH=45°,∴GH=EH=AE+AH=x+12.∵GF=CD=288(米),∴HF=GH+GF=x+12+288=x+300.在Rt△AHF中,∵∠AFH=30°,∴AH=HFtan∠AFH,即x=(x+300)33,解得x=150(3+1).∴AB=AH+BH≈409.8+1.5≈411(米).答:凤凰山与中心广场的相对高度AB大约是411米.。
近年中考数学复习 第8讲 三角形(一)综合测试题(2021年整理)
2016中考数学复习第8讲三角形(一)综合测试题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016中考数学复习第8讲三角形(一)综合测试题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016中考数学复习第8讲三角形(一)综合测试题的全部内容。
第5题图三角形(一)综合测试题(时间: 满分: 120分)(班级: 姓名: 得分: )一、选择题(每题3分,共30分)1。
有下列长度的三条线段,能组成三角形的是( )A.1cm ,2cm ,3cm B 。
1cm , 2cm , 4cm C.2cm , 3cm ,4cm D.2cm , 3cm ,6cm2.在ABC △中,1123A B C ∠=∠=∠,则此三角形是 ( ) A 。
锐角三角形 B 。
直角三角形 C.钝角三角形 D.等腰三角形 3。
等腰三角形的周长为26㎝,一边长为6㎝,那么腰长为( )A.6㎝B.10㎝ C.6㎝或10㎝ D.14㎝4。
若三角形一边的中线和这边上的高重合,则这个三角形是( ) A .直角三角形B .等腰三角形 C .锐角三角形 D .钝角三角形 5.如图,在△ABC 中,∠BAC =90︒,AB =AC ,∠BAD =30︒,AD =AE,则∠EDC 的度数为( )A .10︒B .12︒C .15︒D .20︒6.等腰三角形一腰上的高与另一腰的夹角是50︒,则这个等腰三角形的底角是( )A .70︒B .20︒C .70︒或20︒D .40︒或140︒7.如图,平行四边形ABCD 中,E,F 是对角线BD 上的两点,如果添加一个条件使△ABE≌△CDF,则添加的条件不能是( ) A .AE=CFB .BE=DFC . BF=DED . ∠1=∠2第7题图 第8题图8。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新文件---------------- 仅供参考--------------------已改成-----------word文本 --------------------- 方便更改专题复习(七)几何图形综合题几何图形综合题是四川各地中考的必考题,难度较大,分值也较大,要想在中考中取得较高的分数,必须强化这类题目的训练.题型1与三角形、四边形有关的几何综合题类型1操作探究题(2015·南充)如图,点P是正方形ABCD内一点,点P到点A,B和D的距离分别为1,22,10.△ADP沿点A旋转至△ABP′,连PP′,并延长AP与BC相交于点Q.(1)求证:△APP′是等腰直角三角形;(2)求∠BPQ的大小;(3)求CQ的长.【思路点拨】(1)利用旋转相等的线段、相等的角△APP′是等腰直角三角形;(2)利用勾股定理逆定理证△BPP′是直角三角形,再利用(1)的结论,得∠BPQ的大小;(3)过点B作BM⊥AQ于M,充分利用等腰直角三角形、直角三角形的性质,特别是锐角三角函数,先求得正方形的边长和BQ的长,进而求得CQ的长度.【解答】(1)证明:由旋转可得:AP=AP′,∠BAP′=∠DAP.∵四边形ABCD是正方形,∴∠BAD=90°.∴∠PAP′=∠PAB+∠BAP′=∠PAB+∠DAP=∠BAD=90°.∴△APP′是等腰直角三角形.(2)由(1)知∠PAP′=90°,AP=AP′=1,∴PP′= 2.∵P′B=PD=10,PB=22,∴P′B2=PP′2+PB2.∴∠P ′PB =90°.∵△APP ′是等腰直角三角形, ∴∠APP ′=45°.∴∠BPQ =180°-90°-45°=45°. (3)过点B 作BM⊥AQ 于M.∵∠BPQ =45°,∴△PMB 为等腰直角三角形. 由已知,BP =22,∴BM =PM =2. ∴AM =AP +PM =3. 在Rt△ABM 中, AB =AM 2+BM 2=32+22=13.∵cos ∠QAB =AM AB =AB AQ ,即313=13AQ ,∴AQ =133.在Rt △ABQ 中,BQ =AQ 2-AB 2=2313.∴QC =BC -BQ =13-2313=133.1.图形的旋转涉及三角形的全等,会出现相等的线段或者角.若旋转角是直角,则会出现等腰直角三角形,若旋转角是60度,则会出现等边三角形.2.旋转的题目中若出现三条线段的长度,则不妨考虑通过旋转将条件集中,看是否存在直角三角形.1.(2015·自贡)在△ABC中,AB=AC=5,cos∠ABC=35,将△ABC绕点C顺时针旋转,得到△A1B1C.图1图2(1)如图1,当点B1在线段BA延长线上时.①求证:BB1∥CA1;②求△AB1C的面积;(2)如图2,点E是BC上的中点,点F为线段AB上的动点,在△ABC绕点C顺时针旋转过程中,点F的对应点是F1,求线段EF1长度的最大值与最小值的差.2.(2013·自贡)将两块全等的三角板如图1摆放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.(1)将图1中的△A1B1C顺时针旋转45°得图2,点P1是A1C与AB的交点,点Q是A1B1与BC的交点,求证:CP1=CQ;(2)在图2中,若AP1=2,则CQ等于多少?(3)如图3,在B1C上取一点E,连接BE、P1E,设BC=1,当BE⊥P1B时,求△P1BE面积的最大值.3.(2013·内江)如图,在等边△ABC中,AB=3,D,E分别是AB,AC上的点,且DE∥BC,将△ADE沿DE翻折,与梯形BCED重叠的部分为图形L.(1)求△ABC的面积;(2)设AD=x,图形L的面积为y,求y关于x的函数解析式;(3)已知图形L 的顶点均在⊙O 上,当图形L 的面积最大时,求⊙O 的面积.类型2 动态探究题(2015·乐山)如图1,四边形ABCD 中,∠B =∠D =90°,AB =3,BC =2,tanA =43.(1)求CD 边的长;(2)如图2,将直线CD 边沿箭头方向平移,交DA 于点P ,交CB 于点Q(点Q 运动到点B停止),设DP=x,四边形PQCD的面积为y,求y与x的函数关系式,并求出自变量x的取值范围.【思路点拨】(1)分别延长AD、BC相交于E,通过构造的Rt△ABE、Rt△DCE求解;(2)利用△EDC∽△EPQ及S四边形PQCD=S△EPQ-S△EDC求解.【解答】(1)分别延长AD、BC相交于E.在Rt△ABE中,∵tanA=4,AB=3,∴BE=4.3∵BC=2,∴EC=2.在Rt△ABE中,AE=AB2+BE2=32+42=5.∴sinE =35=DC EC .∴CD =65.(2)∵∠B =∠ADC =90°,∠E =∠E , ∴∠ECD =∠A. ∴tan ∠ECD =tanA =43.∴ED CD =ED 65=43,解得ED =85. 如图4,由PQ∥DC ,可知△EDC∽△EPQ ,∴ED EP =DCPQ .∴8585+x =65PQ ,即PQ =65+34x. ∵S 四边形PQCD =S △EPQ -S △EDC , ∴y =12PQ ·EP -12DC ·ED=12(65+34x)(85+x)-12×65×85=38x 2+65x.如图5,当Q 点到达B 点时,EC =BC ,DC ∥PQ ,可证明△DCE≌△HQC ,从而得CH =ED =85, ∴自变量x 的取值方范围为:0<x≤85.动态型问题包括动点、动线、动形问题,解动态问题的关键就是:从特殊情形入手,变中求不变,动中求静,抓住静的瞬间,以静制动,把动态的问题转化为静态的问题来解决.本题化动为静后利用三角形相似列比例式,表示出相关线段的长,求出函数关系.1.(2013·成都)如图,点B在线段AC上,点D,E在AC的同侧,∠A=∠C=90°,BD⊥BE,AD=BC.(1)求证:AC=AD+CE;(2)若AD=3,AB=5,点P为线段AB上的动点,连接DP,作PQ⊥DP,交直线BE于点Q.的值;①当点P与A,B两点不重合时,求DPPQ②当点P从A点运动到AC的中点时,求线段DQ的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)2.(2015·攀枝花)如图1,矩形ABCD的两条边在坐标轴上,点D与坐标原点O重合,且AD=8,AB=6,如图2,矩形ABCD沿OB方向以每秒1个单位长度的速度运动,同时点P 从A点出发也以每秒1个单位长度的速度沿矩形ABCD的边AB经过点B向点C运动,当点P到达C时,矩形ABCD和点P同时停止运动,设点P的运动时间为t秒.(1)当t=5时,请直接写出点D、点P的坐标;(2)当点P在线段AB或线段BC上运动时,求出△PBD的面积S关于t的函数关系式,并写出相应t的取值范围;(3)点P在线段AB或线段BC上运动时,作PE⊥x轴,垂足为点E,当△PEO与△BCD相似时,求出相应的t值.3.(2015·绵阳)如图,在边长为2的正方形ABCD中,G是AD延长线上的一点,且DG=AD,动点M从A点出发,以每秒1个单位的速度沿着A、C、G的路线向G点匀速运动(M不与A、G重合),设运动时间为t秒,连接BM并延长交AG于N.(1)是否存在点M,使△ABM为等腰三角形?若存在,分析点M的位置;若不存在,请说明理由;(2)当点N在AD边上时,若BN⊥HN,NH交∠CDG的平分线于H,求证:BN=NH;(3)过点M分别作AB、AD的垂线,垂足分别为E、F,矩形AEMF与△ACG重叠部分的面积为S,求S的最大值.类型3类比探究题(2015·成都)已知AC ,EC 分别为四边形ABCD 和EFCG 的对角线,点E 在△ABC 内,∠CAE +∠CBE =90°.(1)如图1,当四边形ABCD 和EFCG 均为正方形时,连接BF. ①求证:△CAE∽△CBF ; ②若BE =1,AE =2,求CE 的长.(2)如图2,当四边形ABCD 和EFCG 均为矩形,且AB BC =EFFC =k 时,若BE =1,AE =2,CE=3,求k 的值;(3)如图3,当四边形ABCD 和EFCG 均为菱形,且∠DAB =∠GEF =45°时,设BE =m ,AE =n ,CE =p ,试探究m ,n ,p 三者之间满足的等量关系.(直接写出结果,不必写出解答过程)【思路点拨】 (1)利用“夹这个角的两边对应成比例”得△CAE∽△CBF ,进而证明∠EBF =90°,利用勾股定理求EF ,进而求CE ;(2)类比(1)解题思路以及相似三角形性质得到对应边成比例,进而用含有k 的式子表示出CE ,BF ,并建立CE 2,BF 2的等量关系,从而求出k ;(3)类比(1)、(2)的思路及菱形的性质找m ,n ,p 的关系.【解答】 (1)①∵∠ACE +∠ECB =45°,∠BCF +∠ECB =45°, ∴∠ACE =∠BCF.又∵AC BC =CECF =2,∴△CAE ∽△CBF.②∵AE BF =ACBC =2,AE =2,∴BF = 2.由△CAE∽△CBF 可得∠CAE =∠CBF. 又∠CAE +∠CBE =90°,∴∠CBF +∠CBE =90°,即∠EBF =90°. ∴EF =BE 2+BF 2= 3.∴CE =2EF = 6.(2)连接BF ,同理可得∠EBF =90°, 由AB BC =EFFC =k ,可得BC∶AB∶A C =1∶k∶k 2+1,CF ∶EF ∶EC =1∶k∶k 2+1.∴AC BC =AE BF =k 2+1.∴BF =AEk 2+1,BF 2=AE2k 2+1.∴CE 2=k 2+1k 2×EF 2=k 2+1k2(BE 2+BF 2),即32=k 2+1k 2(12+22k 2+1),解得k =104.(3)p 2-n 2=(2+2)m 2.提示:连接BF ,同理可得∠EBF =90°,过C 作CH⊥AB ,交AB 延长线于H ,可解得AB2∶BC2∶AC2=1∶1∶(2+2),EF2∶FC2∶EC2=1∶1∶(2+2),∴p2=(2+2)EF2=(2+2)(BE2+BF2)=(2+2)(m2+n22+2)=(2+2)m2+n2.∴p2-n2=(2+2)m2.本例是将某一问题的解决方法,运用到解决不同情境下的类似问题,这类题充分体现了实践性、探究性,其解答思路的突破点是紧扣题中交代的思想方法,结合不同情境中对应知识来解决问题.1.(2013·乐山)阅读下列材料:如图1,在梯形ABCD 中,AD ∥BC ,点M ,N 分别在边AB ,DC 上,且MN∥AD ,记AD =a ,BC =b.若AM MB =mn ,则有结论:MN =bm +an m +n.请根据以上结论,解答下列问题:如图2,图3,BE ,CF 是△ABC 的两条角平分线,过EF 上一点P 分别作△ABC 三边的垂线段PP 1,PP 2,PP 3,交BC 于点P 1,交AB 于点P 2,交AC 于点P 3.(1)若点P 为线段EF 的中点.求证:PP 1=PP 2+PP 3;(2)若点P 为线段EF 上的任意位置时,试探究PP 1,PP 2,PP 3的数量关系,并给出证明.2.(2015·随州)问题:如图1,点E、E分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.[发现证明]小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图1证明上述结论.[类比引申]如图2,四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足______关系时,仍有EF=BE+FD.[探究应用]如图3,在某公园的同一水平面上,四条道路围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=40(3-1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据:2≈1.41,3≈1.73).参考答案类型1操作探究题1.(1)①证明:∵AB=AC,∴∠B=∠ACB.∵B1C=BC,∴∠CB1B=∠B.又由旋转性质得∠A1CB1=∠ACB,∴∠CB1B=∠A1CB1.∴BB1∥CA1.②过A 作AG⊥BC 于G ,过C 作CH⊥AB 于H.∵AB =AC ,AG ⊥BC , ∴BG =CG.∵在Rt△AGB 中,cos ∠ABC =BG AB =35,AB =5,∴BG =3.∴BC =6.∴B 1C =BC =6.∵B 1C =BC ,CH ⊥AB ,∴BH =B 1H.∴B 1B =2BH. ∵在Rt△BHC 中,cos ∠ABC =BH BC =35,∴BH =185.∴BB 1=365.∴AB 1=BB 1-AB =365-5=115,CH =BC 2-BH 2=62-(185)2=245.∴S △AB 1C =12AB 1·CH =12×115×245=13225.(2)过点C 作CF⊥AB 于F ,以点C 为圆心,CF 为半径画圆交BC 于F 1,此时EF 1最小. 此时在Rt△BFC 中,CF =245.∴CF 1=245.∴EF 1的最小值为CF -CE =245-3=95.以点C 为圆心,BC 为半径画圆交BC 的延长线于F ′1,此时EF′1有最大值.此时EF′1=EC +CF′1=3+6=9.∴线段EF 1的最大值与最小值的差9-95=365.2.(1)证明:∵∠B 1CB =45°,∠B 1CA 1=90°,∴∠B 1CQ =∠BCP 1=45°.在△B 1CQ 和△BCP 1中,⎩⎪⎨⎪⎧∠B 1CQ =∠BCP 1,B 1C =BC ,∠B 1=∠B ,∴△B 1CQ ≌△BCP 1.∴CQ =CP 1. (2)作P 1D ⊥CA 于D ,∵∠A =30°, ∴P 1D =12AP 1=1.∵∠P 1CD =45°, ∴CP 1=2P 1D = 2. ∵CP 1=CQ , ∴CQ = 2.(3)∵∠ACB =90°,∠A =30°, ∴AC =3BC.∵BE ⊥P 1B ,∠ABC =60°, ∴∠CBE =30°. ∴∠CBE =∠A.由旋转的性质可得:∠ACP 1=∠BCE , ∴△AP 1C ∽△BEC.∴AP 1∶BE =AC∶BC =3∶1. 设AP 1=x ,则BE =33x ,在Rt△ABC 中,∠A =30°,∴AB =2BC =2.∴BP 1=2-x.∴S △P 1BE =12×33x(2-x)=-36x 2+33x =-36(x -1)2+36,∵-36<0, ∴当x =1时,△P 1BE 面积的最大值为36. 3.(1)作AH⊥BC 于H ,∴∠AHB =90°.在Rt△AHB 中,AH =AB·sinB =3×sin60°=3×32=332. ∴S △ABC =3×3232=934.(2)如图1,当0<x≤1.5时,y =S △ADE .图1作AG⊥DE 于G ,∴∠AGD =90°,∠DAG =30°. ∴DE =x ,AG =32x. ∴y =x ×32x2=34x 2.如图2,当1.5<x <3时,作MG⊥DE 于G ,图2∵AD =x ,∴DE =AD =x ,BD =DM =3-x. ∴DG =12(3-x),MF =MN =2x -3.∴MG =32(3-x). ∴y =(2x -3+x )32(3-x )2=-334x 2+33x -934.∴y =⎩⎪⎨⎪⎧34x 2(0<x≤1.5),-334x 2+33x -934(1.5<x <3).(3)当0<x≤1.5时,y =34x 2,∵a =34>0,开口向上,在对称轴的右侧y 随x 的增大而增大,∴x =1.5时,y 最大=9316,如图3,当1.5<x <3时,y =-334x 2+33x -934,∴y =-334(x 2-4x)-934=334(x -2)2+334.∵a =-334<0,开口向下,∴x =2时,y 最大=334.∵334>9316,∴y 最大时,x =2.图3∴DE =AD =2,BD =DM =1. 作FO⊥DE 于O ,连接MO ,ME. ∴DO =OE =1.∴DM =DO. ∵∠MDO =60°, ∴△MDO 是等边三角形.∴∠DMO =∠DOM =60°,MO =DO =1. ∴MO =OE ,∠MOE =120°. ∴∠OME =30°. ∴∠DME =90°.∴DE 是直径,S ⊙O =π×12=π.类型2 动态探究题1.(1)证明:∵BD⊥BE ,A ,B ,C 三点共线, ∴∠ABD +∠CBE =90°. ∵∠C =90°, ∴∠CBE +∠E =90°. ∴∠ABD =∠E.又∵∠A =∠C ,AD =BC , ∴△DAB ≌△BCE(AAS).∴AB =CE. ∴AC =AB +BC =AD +CE.(2)①连接DQ ,设BD 与PQ 交于点F.∵∠DPF =∠QBF =90°,∠DFP =∠QFB , ∴△DFP ∽△QFB.∴DF QF =PFBF.又∵∠DFQ =∠PFB ,∴△DFQ ∽△PFB.∴∠DQP =∠DBA. ∴tan ∠DQP =tan ∠DBA.即在Rt△DPQ 和Rt△DAB 中,DP PQ =DAAB .∵AD =3,AB =CE =5, ∴DP PQ =35.②过Q 作QH⊥BC 于点H.∵PQ⊥DP ,∠A =∠H =90°,∴△APD ∽△HQP.∴DP PQ =DA PH =35.∵DA =3,∴PH =5.∵AP =PC =4,AB =PH =5,∴PB =CH =1. ∵EC⊥BH ,QH ⊥BH ,∴EC QH =BC BH .∴5QH =34.∴QH =203.在Rt△BHQ 中,BQ =BH 2+QH 2=(203)2+(123)2=4343. ∵MN 是△BDQ 的中位线,∴MN =2343.2.(1)D(-4,3),P(-12,8).(2)当点P 在边AB 上时,BP =6-t.∴S =12BP ·AD =12(6-t)·8=-4t +24.当点P 在边BC 上时,BP =t -6. ∴S =12BP ·AB =12(t -6)·6=3t -18.∴S =⎩⎪⎨⎪⎧-4t +24(0≤t≤6),3t -18(6<t≤14).(3)∵D(-45t ,35t),当点P 在边AB 上时,P(-45t -8,85t).若PE OE =CD CB 时,85t 45t +8=68,解得t =6.若PE OE =CB CD 时,85t 45t +8=86,解得t =20. ∵0≤t≤6,∴t =20时,点P 不在边AB 上, 不合题意.当点P 在边BC 上时,P(-14+15t ,35t +6).若PE OE =CD BC 时,35t +614-15t=68,解得t =6.若PE OE =BC CD 时,35t +614-15t=86,解得t =19013.∵6≤t≤14,∴t=19013时,点P不在边BC上,不合题意.∴当t=6时,△PEO与△BCD相似.3.(1)当点M为AC的中点时,有AM=BM,则△ABM为等腰三角形;当点M与点C的重合时,BA=BM,则△ABM为等腰三角形;当点M在AC上且AM=2时,AM=AB,则△ABM为等腰三角形;当点M为CG的中点时,有AM=BM,则△ABM为等腰三角形.(2)证明:在AB上取点K,使AK=AN,连接KN.∵AB=AD,BK=AB-AK,ND=AD-AN,∴BK=DN.又DH平分直角∠CDG,∴∠CDH=45°.∴∠NDH=90°+45°=135°.∵∠BKN=180°-∠AKN=135°,∴∠BKN=∠NDH.∵在Rt△ABN中,∠ABN+∠ANB=90°,又BN⊥NH,即∠BNH=90°,∴∠ANB+∠DNH=180°-∠BNH=90°.∴∠ABN=∠DNH.∴△BNK≌△NHD(ASA),∴BN=NH.(3)①当M在AC上时,即0<t≤22时,易知:△AMF为等腰直角三角形.∵AM=t,∴AF=FM=22t.∴S=12AF·FM=12·22t·22t=14t2.当M在CG上时,即22<t<42时,CM=t-AC=t-22,MG=42-t. ∵AD=DC,∠ADC=∠CDG,CD=CD,∴△ACD ≌△GCD(SAS).∴∠ACD =∠GCD =45°.∴∠ACM =∠ACD +∠GCD =90°.∴∠G =90°-∠GCD =90°-45°=45°. ∴△MFG 为等腰直角三角形.∴FG =MG·cos45°=(42-t)·22=4-22t. ∴S =S △ACG -S △MCJ -S △FMG =12×4×2-12·CM ·CM -12·FG ·FM =4-12·(t -22)2-12·(4-22t)2=-34t2+42t -8.∴S =⎩⎨⎧14t 2(0<t≤22),-34t 2+42t -8(22<t <42).②在0<t≤22范围内,当t =22时,S 的最大值为14×(22)2=2;在22<t <42范围内,S =-34(t -823)2+83.当t =823时,S 的最大值为83.∵83>2,∴当t =823秒时,S 的最大值为83. 类型3 类比探究题1.(1)证明:过点E 作ER⊥BC 于点R ,ES ⊥AB 于点S. ∵BE 为角平分线,∴ER =ES.过点F 作FM⊥BC 于点M ,FN ⊥AC 于点N ,同理FM =FN.∵ES⊥BA ,PP 2⊥AB ,∴PP 2∥ES.同理得PP 3∥FN ,FM ∥PP 1∥ER. ∵点P 为EF 中点,PP 2∥ES , ∴△FPP 2∽△FES.∴ES =2PP 2,同理FN =2PP 3. ∴FM =2PP 3,ER =2PP 2.在梯形FMRE 中,FM ∥PP 1∥ER ,FP PE =11,∴根据题设结论可知:PP 1=ER×1+FM×11+1=ER +FM 2=2PP 2+2PP 32=PP 2+PP 3.(2)探究结论:PP 1=PP 2+PP 3.证明:过点E 作ER⊥BC 于点R ,ES ⊥AB 于点S ,则有ER =ES.过点F 作FM⊥BC 于点M ,FN ⊥AC 于点N ,则有FM =FN.点P 为EF 上任意一点,不妨设FPPE =m n ,则PF EF =m m +n ,PE EF =n m +n .∵PP 2∥ES ,∴PP 2ES =PF EF =n m +n . ∴ES =m +n mPP 2.∵PP 3∥FN ,∴PP 3FN =PE EF =nm +n .∴FN =m +n n PP 3.∴ER =m +n m PP 2,FM =m +n n PP 3.在梯形FMRE 中,FM ∥PP 1∥ER ,PF PE =mn,∴根据题设结论可知:PP 1=mER +nFM m +n=m ·m +n m PP 2+n ·m +n nPP 3m +n=(m +n )PP 2+(m +n )PP 3m +n=PP 2+PP 3.2.[发现证明]:将△ABE 绕点A 逆时针旋转90°至△ADG ,使AB 与AD 重合.∴△ABE≌△ADG.∴∠BAE =∠DAG ,∠B =∠ADG ,AE =AG ,BE =DG. ∴∠GAF =∠GAD +∠DAF =∠BAE +∠DAF =45°. 在正方形ABCD 中,∠B =∠ADF =90°.∴∠ADG +∠ADF =180°,即点G 、D 、F 在一条直线上.在△EAF 和△GAF 中,⎩⎪⎨⎪⎧AE =AG ,∠EAF =∠GAF =45°,AF =AF ,∴△EAF ≌△GAF.∴EF =GF.又GF =DG +DF =BE +DF. ∴EF =BE +FD.[类比引申]:∠EAF =12∠BAD ,理由如下:将△ABE 绕点A 逆时针方向旋转∠DAB 至△ADG ,使AB 与AD 重合. ∴△ABE≌△ADG.∴∠BAE =∠DAG ,∠B =∠ADG ,AE =AG ,BE =DG. ∴∠GAF =∠GAD +∠DAF =∠BAE +∠DAF =12∠BAD.∵在四边形ABCD 中,∠B +∠ADF =180°.∴∠ADG +∠ADF =180°,即点G 、D 、F 在一条直线上.在△E AF 和△GAF 中,⎩⎨⎧AE =AG ,∠EAF =∠GAF =12∠BAD ,AF =AF ,∴△EAF ≌△GAF. ∴EF =GF.又GF =DG +DF =BE +DF , ∴EF =BE +FD.[探究应用]:连接AF,延长BA、CD交于点O.则∠BOC=180°-∠B-∠C=90°.∴△AOD为直角三角形.在Rt△AOD中,∠ODA=60°,∠OAD=30°,AD=80米.∴AO=403米,OD=40米.∵OF=OD+DF=40+40(3-1)=403(米),∴AO=OF.∴∠OAF=45°.∴∠DAF=45°-30°=15°.∴∠EAF=90°-15°=75°.∴∠EAF=1∠2 BAD.∵∠BAE=180°-∠OAF-∠EAF=60°,∠B=60°,∴△BAE为等边三角形.∴BE=AB=80米.由[类比引申]的结论可得EF=BE+DF=40(3+1)≈109(米).最新文件---------------- 仅供参考--------------------已改成-----------word文本 --------------------- 方便更改赠人玫瑰,手留余香。