勾股定理 说课课件(一)

合集下载

人教版数学八年级下册17.1《勾股定理》说课课件_(共13张PPT)

人教版数学八年级下册17.1《勾股定理》说课课件_(共13张PPT)

教学反思
成功之处 不足之处
A
B
C
图1
2、动手操作,探索新知
A
CC
A
BB 图一 图1-1
C
C AA
B
B
图二 图1-2
引导学生在格子图上画一 个直角边分别为3和4的直 角三角形,并以其各边为 边长作正方形A、B、C。 同时给出图二,让学生小 组合作计算图一和图二中 正方形A、B、C的面积。
正方形面积间的关系:
SA+SB=SC 猜想:直角三角形三边之 间的关系,即:两直角边 的平方和等于斜边的平方。
勾股定理是人类文明的成果,几乎所有拥有古 代文化的民族和国家都对勾股定理有所研究.在地 球以外是否存在生命这个问题上,我国数学家华罗 庚曾认为,如果外星人也拥有文明的话,我们可以 用“勾股定理”的图形,作为人类探寻“外星人” 并与“外星人”联系的“语言”.
教学设计:
一、学情分析 二、教材分析 三、教法学法 四、教学过程设计 五、课后反思

学 有利因素






不利因素

教材分析
教材的地位和作用 教学目标 教学重点、难点
目标分析
知识与技能
过程与方法
情感态度与 价值观
教学重点、难点
重点:勾股定理的及其应用
难点:勾股定理的证明
难点成因
教法学法
教学过程
创设情境—引入新课 动手操作—探索新知 归纳猜想—引出命题 证明猜想—得到定理 运用知识—解决问题 归纳小结—梳理知识 布置作业—巩固知识
创设情境,引入新课
我国是最早了解勾股定理的国家之一.早在 三千多年前, 周朝的数学家商高就提出,将一根直 尺折成一个直角,如果 勾等于三,股等于四, 那么弦就等于五,即“勾三、股四、 弦五”.它被记载于我国古代著名的数学著作《周髀算经》中, 所以在我国人们就把这个定理叫作 “商高定理”。 在这本书 中 的另一处,还记载了勾股定理的一般形式.这一发现,至 少早于古希腊人500多年.作为一名中国人,我们应为我国古 人的博学和多思而感到自豪!

勾股定理(说课课件)

勾股定理(说课课件)

Sa+Sb=Sc
C
c弦
a2+b2=c2
猜想:两直角边a、b与斜边c 之间的关系?
证法一:赵爽弦图
c
a
(1) c c
b
(2) (b-a)2 (3) (2) c
c
(3)
2
a2+b2-2ab = c2-2ab
(4)
1 c 4 ab (b a) 2 2
可得:a2 + Байду номын сангаас2 = c2
证法二: 毕达哥拉斯证法
c
b
a
设计意图:这样的板书比较简洁,但可 以呈现重点难点,强化学生记忆。
⑴若a=6 , c=10 ,则b=____
⑵若a=5 ,b=12 ,则c=____
⑶ 若 c=25 , b=15 ,则a=____
1.求下列图中表示边的未知数x、y、z的值.
144 81 144 169 ② 625
z
576


2.求下列直角三角形中未知边的长:
5
比 一 比 看 看 谁 算 得 快 !
授课人:张碧云
一、说教材 二、说教法学法 三、说教学过程
一.说教材
(一) 地位和作用
本节课是人教版八年级数学下册第十七章第 一节勾股定理第一课时的内容。 勾股定理是学生在已经掌握了直角三角形的 有关性质的基础上进行学习的,它是直角三角形 的一条非常重要的性质,是几何中最重要的定理 之一,它揭示了一个三角形三条边之间的数量关 系,它可以解决直角三角形中的计算问题,是解 直角三角形的主要根据之一,在实际生活中用途 很大。
布置作业
必做题:
P28 习题:1、2
选做题: 这是由两个边长分别为1、2 的正方形连在一起的“L”型 纸片,你能否只剪两刀就能 将所得图形拼成一个正方形?

勾股定理说课课件

勾股定理说课课件

教学目标
• 知识与能力目标: • 过程与方法目标: • 情感态度与价值观:
教学重点、难点
教学方法、教学手段的选择

数学是一门培养人的思维,发展人的思维的重 要学科,因此在教学中,不仅要使学生“知其 然”,而且还要使学生“知其所以然”。针对 八年级学生的认知结构和心理特征,本节课将 借助多媒体进行教学,采用“引导探索法”, 由浅到深,由特殊到一般的提出问题,引导学 生自主探索,合作交流,基本的教学程序是 “提出问题-探究思考 -归纳验证-应用新知 问题解决-课堂小结-布置作业”七个方面。
S正方形c
1 4 3 3 18 2
图2-2
(图中每个小方格代表一个单位面积)
(单位面积)
法一:分“割”成若干个直角边为 整数的三角形
探究思考
C A B C 图2-1 A B
S正方形c
1 62 2
(单位面积) 18
图2-2
(图中每个小方格代表一个单位面积)
法二:把C“补” 成边长为 6的正方形面积的一半
学法指导
新课标明确提出要培养“可持续发展的
学生”,因此教师要有组织、有目的、 有针对性的引导学生并参入到学习活动 中,鼓励学生采用自主探索,合作交流 的研讨式学习方式,培养学生“动手”、 “动脑”、“动口”的习惯与能力,使 学生真正成为学习的主人。
教学程序设计
教学流程图
创 设 情 境 探 索 新 知 探 究 思 考 获 取 新 知 归 纳 验 证 完 善 新 知 问 题 解 决 应 用 新 知 课 堂 小 结 巩 固 新 知
(由学生自主学习讨论合作)
C
图1
C A
B
图2
探究思考
图1

《勾股定理》PPT精品课件(第1课时)

《勾股定理》PPT精品课件(第1课时)

解:本题斜边不确定,需分类讨论: B 4
当AB为斜边时,如图
BC2 AB2 AC2 16 9 7,
3 C 图
B
4 AA 3 C

BC 7.
方法点拨:已知直角三角形的两边求
当BC为斜边时,如图
第三边,关键是先明确所求的边是直
BC2 AB2 AC2 16 9 25, 角边还是斜边,再应用勾股定理. BC 5.
证明:∵S大正方形=c2, S小正方形=(b-a)2,
∴S大正方形=4·S三角形+S小正方形,
c2 4 1 ab b a 2 a2 b2.
2
cb a b-a
赵爽弦图
知识讲解
右图是四个全等的直角三角形拼成的.请你根据此图, 利用它们之间的面积关系推导出: a2 b2 c2
∵S大正方形=(a+b)2=a2+b2+2ab,
知识讲解
猜想直角三角形的三边关系
B
C A
图中每个小方格子都是 边长为1的小正方形.
问题1
1、 BC=_3__, AC=_4__, AB=__5_ 2、 S黄 =_9__, S蓝 =1_6__, S红 =2_5__
3、S黄、S蓝与S红的关系是S_黄__+_S_蓝_=__S_红_.
4、能不能用直角三角形ABC的三边表 示S黄、S蓝、S红的等量关系?
S大正方形=4S直角三角形+ S小正方形 =4× 1 ab+c2
2
=c2+2ab, ∴a2+b2+2ab=c2+2ab,
∴a2 +b2 =c2.
a b
ac b
b ca
cb a
知识讲解
勾股定理

勾股定理说课PPT课件

勾股定理说课PPT课件
观察猜测 动手操作 交流讨论 归纳总结
教学程序设计
教学流程图
回顾小结深化新知 学以致用拓展新知 学生活动验证新知 拼图验证归纳新知 观察特例发现新知 创设情境引入新课
《 勾股定理》说课
《 勾股定理》说课
教学程序设计
第一环节 创设情境 引入新课
赵爽弦图 中国——赵爽
北京欢迎您!
18.1勾股定理(1)
勾股命定题理1: 如果直角三角形的两直角边长分别为
, a,斜b 边长为 ,那c 么 a2 b2 c2.


c
a
股bΒιβλιοθήκη 股世界两千两多千多年年前前,,古古希希腊有腊个有哥拉个毕达哥拉斯 学斯学派派,,他他们们首首先发先现发了勾现股了定勾理,股因定此 理,因此在 在国国外外人人们们通通常常称勾称股勾定理股为定毕理达哥为拉毕斯 达哥拉斯定 定理理。。为为了了纪纪念念毕达毕哥达拉斯哥学拉派斯,1学95派5 ,1955年 年希希腊腊曾曾经经发发行行了一了枚一纪念枚票纪。念邮票。
结论:
a2 b2 c2
a
b c
a
c
b
(a b)2 c2 4 1 ab 2
a2 b2 c2
《 勾股定理》说课
教学程序设计
第五环节 学以致用 拓展新知
基础训练
1、分别求出图中A、B的面积
A
81
144
B 196
289
基础训练
2 .求出下列直角三角形中未知边的长度.
A
A
B
17
3 C4
B
《 勾股定理》说课
教学程序设计
第四环节 学生活动 验证新知
动y动=手0
尝试用下面四个全等的直角三角形围成一个 正方形,然后通过面积分割法和整体计算法分别 求出正方形的的面积,看看你有什么发现。

《勾股定理》PPT优质课件(第1课时)

《勾股定理》PPT优质课件(第1课时)

A. 3
B.3
C. 5
D.5
E
课堂检测
基础巩固题
1. 若一个直角三角形的两直角边长分别为9和12,则斜边的
长为( C)
A.13
B.17
C. 15
D.18
2.若一个直角三角形的斜边长为17,一条直角边长为15,则
另一直角边长为( A )
A.8
B.40
C.50
D.36
3.在Rt△ABC中,∠C=90°,若a︰b=3︰4,c=100,则 a= _6_0___,b = __8_0___.
课堂检测
4.如图,所有的四边形都是正方形,所有的三角形都是直角三角 形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面 积之和为_____4_9_____cm2 .
C D
B A
7cm
课堂检测
能力提升题
在Rt△ABC中,AB=4,AC=3,求BC的长.
解:本题斜边不确定,需分类讨论:
当AB为斜边时,如图,BC 42 32 7;
形,拼成一个新的正方形.
探究新知 剪、拼过程展示:
b
a ca
朱实
b 朱实 黄实朱实
c 〓b
ba
朱实
a
M a P bb
N
探究新知 “赵爽弦图”
c
朱实
b
朱实
黄实 朱实
a
朱实
证明:∵S大正方形=c2, S小正方形=(b-a)2,
∴S大正方形=4·S三角形+S小正方形,
探究新知
毕达哥拉斯证法:请先用手中的四个全等的直角三角形按图 示进行拼图,然后分析其面积关系后证明吧.
因此设a=x,c=2x,根据勾股定理建立方程得 (2x)2-x2=152,

17.1.1 勾股定理 (共24张PPT)

17.1.1 勾股定理 (共24张PPT)

A
B

C


股 A、B、C的面积有什么关系?
SA+SB=SC 定 理
(1)观察图1
正方形A中含有 9 个
C
小方格,即A的面积是
A
9 个单位面积。
正方形B的面积是 9 个单位面积。 正方形C的面积是 18 个单位面积。
B C
图1
A
B 图2
(图中每个小方格代表一个单位面积)
A
图1-1 图1-2
C
C
B
总统巧证勾股定理
C
D
c
a
cb
Ab
Ea B
美国第二十任 总统伽菲尔德
返回
走 进 数 学 史
勾股定理的证明方法
证 法 一



法 二


证 法


(邹元治证明)
(赵爽证明) 赵爽:我国古代数学家
应用勾股定理
a
c
确定斜边 c2= a2+b2

b
a
b
确定斜边 b2= a2+c2

c
b
a
确定斜边 a2= b2+c2
来,人们对它的证明趋之若骛,其中有著名的数学家,也有
பைடு நூலகம்
业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,
甚至有国家总统。也许是因为勾股定理既重要又简单,更容
易吸引人,才使它成百次地反复被人炒作,反复被人论证。
有资料表明,关于勾股定理的证明方法已有500余种,仅我
国清末数学家华蘅芳就提供了二十多种精彩的证法。
的发现,毕达哥拉斯学派杀了一百头牛酬谢供奉神灵,因此这个定理又有人叫做“百 牛定理”.)

勾股定理-说课课件(一)

勾股定理-说课课件(一)

拼图展示
赵爽弦图
思考:大正方形面积怎么求?
c
a c
a
b
b
1 2 (b a) 4 ab c 2
2
b 2ab a 2ab c
2 2
2
结论:
a b c
2 2
2
勾股定理
直角三角形两直角边的平方和等于 斜边的平方.

c
勾a ┏

b
a2+b2=c2
练习一
A 81 144 1、求下图中字母A、B所代 表的正方形的面积 2、求出下图中直角三角形 中未知边的长度
(二)观察特例→发现新知
Hale Waihona Puke A C毕达哥拉斯(公元前572—前 497年),古希腊著名的哲学 家、数学家、天文学家.
B
观察并思考:毕达哥拉斯发现些什么? 等腰直角三角形两条直角边的平方和等于斜边的平方 正方形A、B的面积之和等于大正方形C的面积. 即 a 2 b2 c 2 .
(三)深入探究→交流归纳
教法和学法分析

数学是一门培养人的思维,发展人的思维的重 要学科,因此在教学中,不仅要使学生“知其 然”,而且还要使学生“知其所以然”。针对 八年级学生的认知结构和心理特征,本节课选 择“引导探索法”,由浅到深,由特殊到一般 的提出问题,引导学生自主探索,合作交流。 培养学生“动手”、“动脑”、“动口”的习 惯与能力,使学生真正成为学习的主人。
例1
课堂训练
例2
学生板演
a2 b2 c2
时间分配
1、创设情境
2、实验操作
2分钟
10分钟
3、归纳验证
4、问题解决
10分钟
10分钟

勾股定理说课课件

勾股定理说课课件

数形欣赏: 数形欣赏:
B A C D
8
送给你们一棵“美丽勾股树” 送给你们一棵“美丽勾股树”,所有的正方形都是以 直角三角形的边为边,其中最大的正方形的边长为8cm, 直角三角形的边为边,其中最大的正方形的边长为 求正方形A, , , 的面积之和 的面积之和。 求正方形 ,B,C,D的面积之和。
板书设计
b
c
b
c
b
c
b
c
a
a
a
a
幻灯片 12
赵爽弦图 思考:能否用两种方法表示大正方形面积? c a b c b a b
1 (b − a) + 4 × ab = c 2 2
2
幻灯片 11
}
b − 2ab+ a + 2ab= c
2 2
2
a +b = c
2 2
2
a
分享成果: 分享成果:
勾 股 世 界
两千多年前, 两千多年前 , 两千多年前,古希腊有个毕达哥拉斯 两千多年前,古希腊有个哥拉 斯学派, 他们首先发现了勾股定理, 斯学派, 他们首先发现了勾股定理 学派,他们首先发现了勾股定理, 学派,他们首先发现了勾股定理,因此 ,因此在 在国外人们通常称勾股定理为毕达哥拉斯 国外人们通常称勾股定理称为毕达哥拉斯 定理。为了纪念毕达哥拉斯学派, 定理。为了纪念毕达哥拉斯学派,1955 定理。为了纪念毕达哥拉斯学派, 定理。为了纪念毕达哥拉斯学派,1955 年希腊曾经发行了一枚纪念票。 年希腊曾经发行了一枚纪念票。 年希腊曾经发行了一枚纪念邮票。 年希腊曾经发行了一枚纪念邮票。 国家之一。早在三千多年前, 国家之一。早在三千多年前, 我国是最早了解勾股定理的 国家之一。早在三千多年前, 国家之一。早在三千多年前, 国家之一。早在三千多年前, 国家之一。早在三千多年前,周 国家之一。早在三千多年前, 国家之一。早在三千多年前, 朝数学家商高就提出, 朝数学家商高就提出,将一根直 国家之一。早在三千多年前, 国家之一。早在三千多年前, 尺折成一个直角,如果勾等于三, 尺折成一个直角,如果勾等于三, 国家之一。早在三千多年前, 国家之一。早在三千多年前, 股等于四,那么弦就等于五, 股等于四,那么弦就等于五,即 国家之一。早在三千多年前, 国家之一 、股四、弦五” 勾三、股四、弦五” “勾三。早在三千多年前, ,它被记 国家之一。早在三千多年前, 国家之一。早在三千多年前, 载于我国古代著名的数学著作 国家之一。 国家之一。早在三千多年前 周髀算经》 《周髀算经》中。

17.1勾股定理(第1课时)课件(共23张PPT)

17.1勾股定理(第1课时)课件(共23张PPT)

让我们一起再探究:等腰直角三角形三边关系
C A B 9 C A B 图2-2 4 9 4 18 8
图2-1
(图中每个小方格代表一个单位面积)
C A B 图2-1 A B
S正方形c
C
1 4 3318 2
图2-2
(图中每个小方格代表一个单位面积)
(单位面积)
分“割”成若干个直 角边为整数的三角形
弦 勾

图1-1
漂亮的勾股树
活动 2
相传2500年前,毕达哥拉斯有一次 在朋友家里做客时,发现朋友家用砖铺 成的地面中反映了直角三角形三边的某 种数量关系.
我们也来观察右 图中的地面,看看有 什么发现?
数学家毕达哥拉斯的发现:
A
B
C
A、B、C的面积有什么关系? SA+SB=SC 直角三角形三边有什么关系? 两直边的平方和等于斜边的平方
设:直角三角形的三边长分别是a、b、c
猜想:两直角边a、b与斜边c 之间的关系? A a B b
Sa+Sb=Sc
c
C
2 2 2 a +b =c
b
a
c b (a+b )2
证 明 二
a
c
c
1 = c 4 ab 2
2
a2 + b2 + 2ab = c2+2ab
b a
c
b
a
可得: a2 + b2 = c2
C A B 图2-1 A B
S正方形c
C
1 6 2
2
1 8(单位面积)
图2-2
(图中每个小方格代表一个单位面积)
把C“补” 成边长为6的 正方形面积的一半

勾股定理说课(完整版)PPT课件

勾股定理说课(完整版)PPT课件

教学目标
(1)、知识与技能: 理解勾股定理的两种 证明方法——毕达哥拉斯证法和赵爽的弦图 证法;应用勾股定理解决简单的直角三角形 三边计算问题 (2)、过程与方法:通过对直角三角形三边 关系的猜想验证,经历从特殊到一般的探索 过程,发展合情推理,体会数形结合的思想 (3)、情感态度与价值观:在勾股定理的探 索过程中感受数学文化的内涵,增进数学学 习的信心
2、直角ABC的一条直角边a=10,斜边 c=26,则b=
( 24 )。
3、已知:∠C=90°,a=6, a:b=3:4, 求b和c。
c=10 b=8
ac
b
1.说一说本节课我有哪些收获? 2.本节课我还有哪些疑惑?
-
作业
必做题:课本69页第一题。 选做题:收集有关勾股定理的其它 证明方法,下节课展示、交流。
图2
4
9
13
图2
C
A
B
图3
图3
9 25 34
A、B、 C面积 关系
直角三 角形三 边关系
sA+sB=sC
两直角边的平方和 等于斜边的平方
ac
结论
b
直角三角形两直角边的平方和等于斜边的平方.
是不是所有的直角三角形都具有这样的特点呢? 这就需要我们对一个一般的直角三角形进行证 明.到目前为止,对这个命题的证明方法已有几百 种之多.下面我们就来看一看我国数学家赵爽是怎 样证明这个命题的.
教学重点、难点
重点:探究并理解勾股定理 难点:探索勾股定理的验证方法
教法 分析
平行线的性质是学生对图形性质的第一 次系统研究,对于研究过程和研究方法都 是陌生的,所以学生需要在老师的引导下 类比研究平行线的判定的过程来构建平行 线的性质的研究过程。

勾股定理的应用PPT课件1

勾股定理的应用PPT课件1
B
A
B
B
10
A
10
10
C
A
拓展2
如果盒子换成如图长为3cm,宽为 2cm,高为1cm的长方体,蚂蚁沿着 表面需要爬行的最短路程又是多少呢?
B
A
分析:蚂蚁由A爬到B过程中较短的路线有
多少种情况? B
(1)经过前面和上底面;
2
(2)经过前面和右面;
1
(3)经过左面和上底面.
A
3
C
B
B
A
3
1 2C
B 2
A
A1
3
C
解:(1)当蚂蚁经过前面和上底面时,如图,最 短路程为
B
B
2
1
A
3
C
A
AB= AC2 BC2 = 32 32 = 18
(2)当蚂蚁经过前面和右面时,如图,最短路程 为
B
B
1
A
A
3
2C
AB= AC2 BC2 = 52 12 = 26
(3)当蚂蚁经过左面和上底面时,如图,最短路
程为
B 1m
一个门框的尺寸如图所示, 一块长3m、宽2.1m的薄木板能否
D 从门框内通过?为什么?
解:联结AC,在Rt△ABC中AB=2m, BC=1m ∠B=90°,根据勾股定理:
AB2 BC2 AC2
AC AB2 BC2
12 22 2.236m >2.1m
∴薄木板能从门框内通过。
C
超越自我
6 米
棵树折断之前有多高
吗? A
8米
6

B
C
8米
问题二
帮卡车司机 排忧解难。
一辆装满货物的 卡车,其外形高2.5 米,宽1.6米,要开 进厂门形状如图的 某工厂,问这辆卡 车能否通过该工厂 的厂门?说明理由

勾股定理说课稿ppt课件

勾股定理说课稿ppt课件

2.5m
驶向胜利 的彼岸
(五)教学过程
根据学生的认知规律和学习心理,本节课分 六个活动进行学习,为了扩大课堂容量节省时间 提高课堂效率,拟采用多媒体教学。
活动1、了解勾股定理 (创设情境→激发兴趣 )
2002年在北京召开的第24届国际数学家大会, 2.5m 它是最高水平的全球性数学科学学术会议, 被誉为数学界的“奥运会”。这就是本届大会 会徽的图案(著名的赵爽弦图)。 它象一个 转动的风车,挥舞着手臂,欢迎来自世界各 国的数学家们。 (1)你见过这个图案吗?(2)你听说过“勾股定理”吗? 5 设计意图:在学生欣赏赵爽弦图的过程中,进行爱国主 5 义教育,可以让他们充分体会到我国古代在数学研究方面取 m m 得的伟大成就,从而激发学生的爱国热情和民族自豪感。激 发学生学习兴趣,自然引出本节课的课题。
2m
活动2、探索勾股定理
探究一(观察特例→发现新知)
{问题一}:在图中你能发现哪些基本图形? {问题二}:与等腰直角三角形相邻的正方形面积之间 有怎样的关系? {问题三}:如图,每个小方格的面积为1个单位,你能 写出正方形A、B、C的面积吗? {问题四}:由此你可以得出等腰直角三角形三边存在着一种怎样特殊的数量关 系吗? 学生在独立探究的基础上观察图片,计算面积,分组交流, 猜想和归纳。 教师参与学生小组活动,指导,倾听学生交流。 设计意图:通过讲传说故事来激发学生学习兴趣,引导学生进入学习状态。 学生会很积极的投入到探索这个问题的实践中。 “问题是思维的起点”,通过层层设问,引导学生发现新知。由正方形的面 积等于边长的平方归纳出:等腰直角三角形两条直角边的平方和等于斜边的平 方。 {问题五}:等腰直角三角形三边具有这样的特殊关系,那么一般的直角三角形 呢?
2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学目标
【知识与技能目标】1、了解勾股定理的文化背景,体验勾理的探索过程,了 解利用拼图验证勾股定理的方法。 2、了解勾股定理的内容。 3、能利用已知两边求直角三角形另一边的长。 【能力与方法目标】1、通过拼图活动,体验数学思维的严谨性,发展形象思维。 2、在探索活动中,学会与人合作,并能与他人交流思维的 过程和探索的结果。
课后习题16.1 1.必做题: 复习巩固 练习 综合运用 习题1.2.3. 2.选做题: 了解勾股定理的多种证明方法.
(根据自己的知识能力掌握情况选择完成.)
如果直角三角形两直角边分别为a、b,
板 书 设 计 :
斜边为c,那么
c a

b
a2+b2=c2
直角三角形两直角边的平方和 等于斜边的平方.
在我国,把直角三角形的这一个 特佂叫做勾股定理
2、时间分配
1、创设情境
2、实验操作
2分钟
10分钟
3、归纳验证
4、问题解决
10分钟
10分钟
5、课堂小结
6、推荐作业
6分钟
2分钟
A
B
C
A、B、C的面积有什么关系?
SA+SB=SC
直角三角形三边有什么关系? 两直边的平方和等于斜边的平方
设:直角三角形的三边长分别是a、b、c
猜想:两直角边a、b与斜边c 之间的关系?
A a
B b
SA+SB=SC
c
C
a2+b2=c2
如果直角三角形两直角边分别为a、b,
斜边为c,那么
c a

b
a2+b2=c2
勾 股 世 界
我国是最早了解勾股定理的国 家之一。早在三千多年前,周 朝数学家商高就提出,将一根 直尺折成一个直角,如果勾等 于三,股等于四,那么弦就等 于五,即“勾三、股四、弦 五”,它被记载于我国古代著 名的数学著作《周髀算经》中。
展示问题:2002年北京召开国际数学大会的
会标问题:
1、会标是由什么图形拼成的? 2、你能尝试将四个直角三角形拼出这种正方
81
A 32 60 225
B
2.求下列直角三角形中未知边的长:
5
8 17
x
12
x
应用知识回归生活 y=0
1、如图,受台风麦莎影响,一棵树在离地面4米处断裂, 树的顶部落在离树跟底部3米处,这棵树折断前有多高?
4米
3米
课堂小 结:
1这节课你学到了什么知识? 2 运用“勾股定理”应注意什么问题?
作业
形图案吗? 3、观察这幅图形的面积之间有什么关系?
b
cቤተ መጻሕፍቲ ባይዱ
a
a
b
C
做一做
分别以5cm,12cm为直角边
作出一个直角三角形,并测
斜边的长度,以上的规律 对这个直角三角形是否成立?
12 13
5 12 169 13 169 即: 12 13 5
2 2 2 2 2
5
2
1. 求下列图中字母所代表的正方形的面积
直角三角形两直角边的平方和 等于斜边的平方.
在我国,把直角三角形的这一个 特佂叫做勾股定理
议 一 议
a
c b a2=5 b2=8 c2=9 用数格子的方法 判断图中三角形 的三边长是否满 足 a2+b2=c2.
a b c
2 2
2


在中国古代,人们把弯曲成直角的手臂的上半部分称为 "勾",下半部分称为"股"。我国古代学者把直角三角形 较短的直角边称为“勾”,较长的直角边称为“股”, 斜边称为“弦”.
说课内容
教学方 法选择
教材 分析 学法 指导 教学程 序设计

教材分析
教材地位作用 教学目标
知识与能力目标: 过程与方法目标: 情感态度与价值观:
教学重点、难点
教材地位作用
勾股定理是学生在已经掌握了直角三角形有
关性质的基础上进行学习的,它是直角三角 形的一条非常重要的性质,是几何中最重要 的定理之一,它揭示了直角三角形三条边之 间的数量关系,为以后学习了解直角三角形 奠定基础,在实际生活中用途很大。
教学程序设计
教学流程图
创 设 情 境 探 索 新 知 实 验 操 作 获 取 新 知 归 纳 验 证 完 善 新 知 问 题 解 决 应 用 新 知 课 堂 小 结 巩 固 新 知
推 荐 作 业 拓 展 新 知
思考:
A
C
B
你对直角三角形有哪些认识呢?
A
B
b c a
C
A
B
相传2500年前,古希腊著名数学家毕达哥拉斯从朋友家 的地砖铺成的地面上找到了答案,同学们看看图中有没有直 角三角形,从中你能找到答案吗?
学法指导

针对八年级学生的知识结构和心理特征,本节 课选用“引导探究式”教学方法,先由浅入深, 由特殊到一般地提出问题,接着引导学生通过 实验操作,归纳验证,在学生的自主探究与合 作交流中解决问题,这样既遵循了学生的认知 规律,又充分体现了“学生是数学学习的主人、 教师是数学学习的组织者、引导者与合作者” 的教学理念.
【情感与态度目标】1、通过对勾股定理历史的了解,对比介绍我国古代和西方 数学家关于勾股定理的研究,激发学生热爱祖国悠久文化 的情感,激励学生奋发学习。 2、在探索勾股定理的过程中,体验获得结 论的快乐,锻 炼克服困难的勇气,培养合作意识和探索精神。
教学重点、难点
重点:探索勾股定理 难点:用拼图方法证明勾股定理
相关文档
最新文档