勾股定理 说课课件(一)
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课后习题16.1 1.必做题: 复习巩固 练习 综合运用 习题1.2.3. 2.选做题: 了解勾股定理的多种证明方法.
(根据自己的知识能力掌握情况选择完成.)
如果直角三角形两直角边分别为a、b,
板 书 设 计 :
斜边为c,那么
c a
┏
b
a2+b2=c2
直角三角形两直角边的平方和 等于斜边的平方.
在我国,把直角三角形的这一个 特佂叫做勾股定理
A
B
C
A、B、C的面积有什么关系?
SA+SB=SC
直角三角形三边有什么关系? 两直边的平方和等于斜边的平方
设:直角三角形的三边长分别是a、b、c
猜想:两直角边a、b与斜边c 之间的关系?
A a
B b
SBaidu Nhomakorabea+SB=SC
c
C
a2+b2=c2
如果直角三角形两直角边分别为a、b,
斜边为c,那么
c a
┏
b
a2+b2=c2
说课内容
教学方 法选择
教材 分析 学法 指导 教学程 序设计
说
教材分析
教材地位作用 教学目标
知识与能力目标: 过程与方法目标: 情感态度与价值观:
教学重点、难点
教材地位作用
勾股定理是学生在已经掌握了直角三角形有
关性质的基础上进行学习的,它是直角三角 形的一条非常重要的性质,是几何中最重要 的定理之一,它揭示了直角三角形三条边之 间的数量关系,为以后学习了解直角三角形 奠定基础,在实际生活中用途很大。
学法指导
针对八年级学生的知识结构和心理特征,本节 课选用“引导探究式”教学方法,先由浅入深, 由特殊到一般地提出问题,接着引导学生通过 实验操作,归纳验证,在学生的自主探究与合 作交流中解决问题,这样既遵循了学生的认知 规律,又充分体现了“学生是数学学习的主人、 教师是数学学习的组织者、引导者与合作者” 的教学理念.
教学程序设计
教学流程图
创 设 情 境 探 索 新 知 实 验 操 作 获 取 新 知 归 纳 验 证 完 善 新 知 问 题 解 决 应 用 新 知 课 堂 小 结 巩 固 新 知
推 荐 作 业 拓 展 新 知
思考:
A
C
B
你对直角三角形有哪些认识呢?
A
B
b c a
C
A
B
相传2500年前,古希腊著名数学家毕达哥拉斯从朋友家 的地砖铺成的地面上找到了答案,同学们看看图中有没有直 角三角形,从中你能找到答案吗?
81
A 32 60 225
B
2.求下列直角三角形中未知边的长:
5
8 17
x
12
x
应用知识回归生活 y=0
1、如图,受台风麦莎影响,一棵树在离地面4米处断裂, 树的顶部落在离树跟底部3米处,这棵树折断前有多高?
4米
3米
课堂小 结:
1这节课你学到了什么知识? 2 运用“勾股定理”应注意什么问题?
作业
【情感与态度目标】1、通过对勾股定理历史的了解,对比介绍我国古代和西方 数学家关于勾股定理的研究,激发学生热爱祖国悠久文化 的情感,激励学生奋发学习。 2、在探索勾股定理的过程中,体验获得结 论的快乐,锻 炼克服困难的勇气,培养合作意识和探索精神。
教学重点、难点
重点:探索勾股定理 难点:用拼图方法证明勾股定理
形图案吗? 3、观察这幅图形的面积之间有什么关系?
b
c
a
a
b
C
做一做
分别以5cm,12cm为直角边
作出一个直角三角形,并测
斜边的长度,以上的规律 对这个直角三角形是否成立?
12 13
5 12 169 13 169 即: 12 13 5
2 2 2 2 2
5
2
1. 求下列图中字母所代表的正方形的面积
2、时间分配
1、创设情境
2、实验操作
2分钟
10分钟
3、归纳验证
4、问题解决
10分钟
10分钟
5、课堂小结
6、推荐作业
6分钟
2分钟
勾 股 世 界
我国是最早了解勾股定理的国 家之一。早在三千多年前,周 朝数学家商高就提出,将一根 直尺折成一个直角,如果勾等 于三,股等于四,那么弦就等 于五,即“勾三、股四、弦 五”,它被记载于我国古代著 名的数学著作《周髀算经》中。
展示问题:2002年北京召开国际数学大会的
会标问题:
1、会标是由什么图形拼成的? 2、你能尝试将四个直角三角形拼出这种正方
教学目标
【知识与技能目标】1、了解勾股定理的文化背景,体验勾理的探索过程,了 解利用拼图验证勾股定理的方法。 2、了解勾股定理的内容。 3、能利用已知两边求直角三角形另一边的长。 【能力与方法目标】1、通过拼图活动,体验数学思维的严谨性,发展形象思维。 2、在探索活动中,学会与人合作,并能与他人交流思维的 过程和探索的结果。
直角三角形两直角边的平方和 等于斜边的平方.
在我国,把直角三角形的这一个 特佂叫做勾股定理
议 一 议
a
c b a2=5 b2=8 c2=9 用数格子的方法 判断图中三角形 的三边长是否满 足 a2+b2=c2.
a b c
2 2
2
勾
股
在中国古代,人们把弯曲成直角的手臂的上半部分称为 "勾",下半部分称为"股"。我国古代学者把直角三角形 较短的直角边称为“勾”,较长的直角边称为“股”, 斜边称为“弦”.
(根据自己的知识能力掌握情况选择完成.)
如果直角三角形两直角边分别为a、b,
板 书 设 计 :
斜边为c,那么
c a
┏
b
a2+b2=c2
直角三角形两直角边的平方和 等于斜边的平方.
在我国,把直角三角形的这一个 特佂叫做勾股定理
A
B
C
A、B、C的面积有什么关系?
SA+SB=SC
直角三角形三边有什么关系? 两直边的平方和等于斜边的平方
设:直角三角形的三边长分别是a、b、c
猜想:两直角边a、b与斜边c 之间的关系?
A a
B b
SBaidu Nhomakorabea+SB=SC
c
C
a2+b2=c2
如果直角三角形两直角边分别为a、b,
斜边为c,那么
c a
┏
b
a2+b2=c2
说课内容
教学方 法选择
教材 分析 学法 指导 教学程 序设计
说
教材分析
教材地位作用 教学目标
知识与能力目标: 过程与方法目标: 情感态度与价值观:
教学重点、难点
教材地位作用
勾股定理是学生在已经掌握了直角三角形有
关性质的基础上进行学习的,它是直角三角 形的一条非常重要的性质,是几何中最重要 的定理之一,它揭示了直角三角形三条边之 间的数量关系,为以后学习了解直角三角形 奠定基础,在实际生活中用途很大。
学法指导
针对八年级学生的知识结构和心理特征,本节 课选用“引导探究式”教学方法,先由浅入深, 由特殊到一般地提出问题,接着引导学生通过 实验操作,归纳验证,在学生的自主探究与合 作交流中解决问题,这样既遵循了学生的认知 规律,又充分体现了“学生是数学学习的主人、 教师是数学学习的组织者、引导者与合作者” 的教学理念.
教学程序设计
教学流程图
创 设 情 境 探 索 新 知 实 验 操 作 获 取 新 知 归 纳 验 证 完 善 新 知 问 题 解 决 应 用 新 知 课 堂 小 结 巩 固 新 知
推 荐 作 业 拓 展 新 知
思考:
A
C
B
你对直角三角形有哪些认识呢?
A
B
b c a
C
A
B
相传2500年前,古希腊著名数学家毕达哥拉斯从朋友家 的地砖铺成的地面上找到了答案,同学们看看图中有没有直 角三角形,从中你能找到答案吗?
81
A 32 60 225
B
2.求下列直角三角形中未知边的长:
5
8 17
x
12
x
应用知识回归生活 y=0
1、如图,受台风麦莎影响,一棵树在离地面4米处断裂, 树的顶部落在离树跟底部3米处,这棵树折断前有多高?
4米
3米
课堂小 结:
1这节课你学到了什么知识? 2 运用“勾股定理”应注意什么问题?
作业
【情感与态度目标】1、通过对勾股定理历史的了解,对比介绍我国古代和西方 数学家关于勾股定理的研究,激发学生热爱祖国悠久文化 的情感,激励学生奋发学习。 2、在探索勾股定理的过程中,体验获得结 论的快乐,锻 炼克服困难的勇气,培养合作意识和探索精神。
教学重点、难点
重点:探索勾股定理 难点:用拼图方法证明勾股定理
形图案吗? 3、观察这幅图形的面积之间有什么关系?
b
c
a
a
b
C
做一做
分别以5cm,12cm为直角边
作出一个直角三角形,并测
斜边的长度,以上的规律 对这个直角三角形是否成立?
12 13
5 12 169 13 169 即: 12 13 5
2 2 2 2 2
5
2
1. 求下列图中字母所代表的正方形的面积
2、时间分配
1、创设情境
2、实验操作
2分钟
10分钟
3、归纳验证
4、问题解决
10分钟
10分钟
5、课堂小结
6、推荐作业
6分钟
2分钟
勾 股 世 界
我国是最早了解勾股定理的国 家之一。早在三千多年前,周 朝数学家商高就提出,将一根 直尺折成一个直角,如果勾等 于三,股等于四,那么弦就等 于五,即“勾三、股四、弦 五”,它被记载于我国古代著 名的数学著作《周髀算经》中。
展示问题:2002年北京召开国际数学大会的
会标问题:
1、会标是由什么图形拼成的? 2、你能尝试将四个直角三角形拼出这种正方
教学目标
【知识与技能目标】1、了解勾股定理的文化背景,体验勾理的探索过程,了 解利用拼图验证勾股定理的方法。 2、了解勾股定理的内容。 3、能利用已知两边求直角三角形另一边的长。 【能力与方法目标】1、通过拼图活动,体验数学思维的严谨性,发展形象思维。 2、在探索活动中,学会与人合作,并能与他人交流思维的 过程和探索的结果。
直角三角形两直角边的平方和 等于斜边的平方.
在我国,把直角三角形的这一个 特佂叫做勾股定理
议 一 议
a
c b a2=5 b2=8 c2=9 用数格子的方法 判断图中三角形 的三边长是否满 足 a2+b2=c2.
a b c
2 2
2
勾
股
在中国古代,人们把弯曲成直角的手臂的上半部分称为 "勾",下半部分称为"股"。我国古代学者把直角三角形 较短的直角边称为“勾”,较长的直角边称为“股”, 斜边称为“弦”.