大学物理第三章
大学物理-第3章-静电场中的导体
R2 R1
在金属球壳与导体球之间(r0 < r < R1时):
q r0
作过 r 处的高斯面S1
q
S1 E2 dS 0
得
E2 r
q
40r 2
q
E2 40r 2 er
在金属球壳内(R1< r < R2时):电场 E3 0
在金属球壳外( r > R2时): 作过 r 处的高斯面 S 2
S2
E4
dS
在它形成的电场中平行放置一无限大金属平板。求:
金属板两个表面的电荷面密度?
解:带电平面面电荷密度0 ,导体两面感应电荷面密度分 别为1 和 2,由电荷守恒有
1 2 0 (1)
导体内场强为零(三层电荷产生)
σ0 σ1
σ2
E0 E1 E2 0
(2)
E0
0 1 2 0
(3)
20 20 20
导体表面任一点的电场强度都与导体表面垂 直。
20
2.导体在静电平衡状态下 的一些特殊性质
❖ 导体是等势体,导体表面是等势面。
在导体内部任取两点P和Q,它们之间的电势差可以表示为
VP VQ
Q
E
dl
0
P
❖ 导体表面的电场强度方向与导体的表面相垂直。
❖ 导体上感应电荷对原来的外加电场施加影响,改
Q1
Q2
0
q
q
0
得
E4r
q
4 0 r 2
E4
q
4 0 r 2
er
43
思考:(3)金属球壳和金属球的电势各 为多少?
解:设金属球壳的电势为U壳 ,则:
U壳
R2 E4 dl
大学物理学第3章 力学的守恒定律
00:03
t2 I F (t )dt
t1
注意
•力的冲量是矢量,计算 冲量要考虑 方向 性。
•冲量是过程量。 •冲量决定于力和时间两个因素。
•F-t图上曲线下的面积与冲量大小 的关系。
00:03
(三)用冲量概念表述动量定理
质点动量定理的微分形式 dp
F
m v Fdp Fdt d
00:03
(3)矢量性质: 系统各质点的动量的矢量和不变;
若某一方向合外力为零, 则此方向动量守恒 .
ex x
F
0, 0,
px mi vix C x p y mi viy C y pz mi viz Cz
Fyex 0 , F
ex z
(4)瞬时特征: 任意两个瞬时,动量的大小和方向都相同。
m1 v' 则 v2 v m1 m2
v2 2. 10 m s 17
3 1
(m1 m2 )v m1v1 m2 v2
v1 3. 103 m s 1 17
• 力 F=12ti(SI)作用在质量m=2kg的物体上, 使物体由原点从静止开始运动,则它在3秒末的动量 为: (A)-54 i kg.m/s (B)54i kg.m/s (C)-108 i kg.m/s (D)108 i kg.m/s (B)
y
s
v
z'
y'
s'
v'
x x'
o
00:03
z
o'
已知
v 2.5 10 m s 3 1 v' 1.0 10 m s
大学物理第三章刚体力学
薄板的正交轴定理:
Jz Jx J y
o x
y
X,Y 轴在薄板面上,Z轴与薄板垂直。
例3、质量m,长为l 的四根均匀细棒, O 组成一正方形框架,绕过其一顶点O 并与框架垂直的轴转动,求转动惯量。 解:由平行轴定理,先求出一根棒 对框架质心C的转动惯量:
C
m, l
1 l 2 1 2 2 J ml m( ) ml 12 2 3
M F2 d F2 r sin
若F位于转动平面内,则上式简化为
M Fd Fr sin
力矩是矢量,在定轴转动中, 力矩的方向沿着转轴,其指向 可按右手螺旋法则确定:右手 四指由矢径r的方向经小于的 角度转向力F方向时,大拇指的 指向就是力矩的方向。根据矢 量的矢积定义,力矩可表示为:
例9 行星运动的开普勒第二运动定律:行星对太阳 的位矢在相等的时间内扫过相等的面积。 解:行星在太阳引力(有心 力)作用下沿椭圆轨道运动, 因而行星在运行过程中,它 对太阳的角动量守恒不变。
L rmvsin 常量
因而掠面速度:
dS dt
r dr sin 2dt
1 rv sin 常量 2
Fi fi Δmi ai
切向的分量式为
Fi sin i f i sin i mi ri
Fi sin i f i sin i mi ri
两边同乘ri,得
Fi ri sin i fi ri sin i mi ri2
上式左边第一项为外力Fi对转轴的力矩,而第二项是 内力fi 对转轴的力矩。对刚体的所有质点都可写出类 似上式的方程,求和得
质点的角动量一质量为m的质点以速度v运动相对于坐标原点o的位置矢量为r定义质点对坐标原点o的角动量为sinrmv282质点的角动量定理质点所受的合外力对某一参考点的力矩等于质点对该点的角动量对时间的变化率角动量定理
大学物理 第3章动量定理
(m2
m1)v2o m1 m2
2m1v1o
2v1o
vr1o
m2 m1
当m1>>m2时,且第二个 球静止,则碰后,第一个球 速度不变,而第二球以2倍 于第一个球的初速度运动。
第一篇 力学
2.完全非弹性碰撞 totally non-elastic collision
特点:机械能不守恒,动量守恒。碰撞
大
数
理 学
例如:两队运动员拔河,有的人说甲队力气大,乙队
院 力气小,所以甲队能获胜,这种说法是否正确?
赵 承 均
甲队
乙队
第一篇 力学
重
大
数
理
学 院
r
F1
r F2
赵 承
均 分析:
拔河时,甲队拉乙队的力,与乙队拉甲队的力是一对作用 力与反作用力,为系统的内力,不会改变系统总的动量。只 有运动员脚下的摩擦力才是系统外力,因此哪个队脚下的摩 擦力大,哪个队能获胜。所以拔河应选质量大的运动员,以 增加系统外力。
重
大 数
质点质量与速度的乘积,可以表征质点瞬时运动的量,称为动量。
理
rr
学 院
p mv
单位:千克·米/秒, kg·m/s
赵 承 均
由Newton第二定律,得:F
ma
m
dv
d (mv)
dp
dt dt
即:
F dt
这就是动量定理。
在经典力学范围内,m=constant,动量定理与F=ma等价,但在高 速运动情况下,只有动量定理成立。
杆跃过自由下落,运动员与地面的作用时间分别
为 1 秒和 0.1 秒,求地面对运动员的平均冲击力。
大学物理第三章-动量守恒定律和能量守恒定律-习题及答案
即:作用在两质点组成的系统的合外力的冲量等于系统内两质点动量之和的增 量,即系统动量的增量。 2.推广:n 个质点的情况
t2 t2 n n n n F d t + F d t m v mi vi 0 i外 i内 i i i 1 i 1 i 1 i 1 t1 t1
yv 2
同乘以 ydy,得
y 2 gdty y
积分 得
y
0
y
gdty
yvdt( yv)
0
1 3 1 gy ( yv) 2 3 2
因而链条下落的速度和落下的距离的关系为
2 v gy 3
1/ 2
7
第4讲
动量和冲量
考虑到内力总是成对出现的,且大小相等,方向相反,故其矢量和必为零, 即
F
i 0
n
i内
0
设作用在系统上的合外力用 F外力 表示,且系统的初动量和末动量分别用
5
第4讲
动量和冲量
P0 和 P 表示,则
t2 n n F d t m v mi vi 0 i i 外力 t1
F外 dt=dPFra bibliotek力的效果 关系 适用对象 适用范围 解题分析
*动量定理与牛顿定律的关系 牛顿定律 动量定理 力的瞬时效果 力对时间的积累效果 牛顿定律是动量定理的 动量定理是牛顿定律的 微分形式 积分形式 质点 质点、质点系 惯性系 惯性系 必须研究质点在每时刻 只需研究质点(系)始末 的运动情况 两状态的变化
1
第4讲
动量和冲量
§3-1 质点和质点系的动量定理
实际上,力对物体的作用总要延续一段时间,在这段时间内,力的作用将 积累起来产生一个总效果。下面我们从力对时间的累积效应出发,介绍冲量、 动量的概念以及有关的规律,即动量守恒定律。 一、冲量 质点的动量定理 1.动量:Momentum——表示运动状态的物理量 1)引入:质量相同的物体,速度不同,速度大难停下来,速度小容易停下;速 度相同的物体,质量不同,质量大难停下来,质量小容易停下。 2)定义:物体的质量 m 与速度 v 的乘积叫做物体的动量,用 P 来表示 P=mv 3)说明:动量是矢量,大小为 mv,方向就是速度的方向;动量表征了物体的 运动状态 -1 4)单位:kg.m.s 5)牛顿第二定律的另外一种表示方法 F=dP/dt 2.冲量:Impulse 1)引入:使具有一定动量 P 的物体停下,所用的时间Δt 与所加的外力有关, 外力大,Δt 小;反之外力小,Δt 大。 2)定义: 作用在物体外力与力作用的时间Δt 的乘积叫做力对物体的冲量, 用 I 来表 示 I= FΔt 在一般情况下,冲量定义为
大学物理第三章动量守恒定律和能量守恒定律
动量守恒定律的表述
总结词
动量守恒定律表述为系统不受外力或所 受外力之和为零时,系统总动量保持不 变。
VS
详细描述
动量守恒定律是自然界中最基本的定律之 一,它表述为在一个封闭系统中,如果没 有外力作用或者外力之和为零,则系统总 动量保持不变。也就是说,系统的初始动 量和最终动量是相等的。
动量守恒定律的适用条件
能量守恒定律可以通过电磁学 的基本公式推导出来。
能量守恒定律可以通过相对论 的质能方程推导出来。
能量守恒定律的应用实例
01
02
03
04
机械能守恒
在无外力作用的系统中,动能 和势能可以相互转化,但总和
保持不变。
热能守恒
在一个孤立系统中,热量只能 从高温物体传递到低温物体,
最终达到热平衡状态。
电磁能守恒
详细描述
根据牛顿第三定律,作用力和反作用力大小相等、方向相反。如果将一个物体施加一个力F,则该力会产生一个 加速度a,进而改变物体的速度v。由于力的作用是相互的,反作用力也会对另一个物体产生相同大小、相反方向 的加速度和速度变化。因此,在系统内力的相互作用下,系统总动量保持不变。
02
能量守恒定律
能量守恒定律的表述
感谢观看
01
能量守恒定律表述为:在一个封闭系统中,能量不能被创造或消灭, 只能从一种形式转化为另一种形式。
02
能量守恒定律是自然界的基本定律之一,适用于宇宙中的一切物理过 程。
03
能量守恒定律是定量的,可以用数学公式表示。
04
能量守恒定律是绝对的,不受任何物理定律的限制。
能量守恒定律的适用条件
能量守恒定律适用于孤立系统,即系统与外界没有能量 交换。
大学物理-第三章三大守恒定律
i
i
1 若质点系动量守恒,则动量在三个坐标轴上的分量都守恒。
2、在系统内质点间的碰撞,打击,爆炸过程中,内力很大,可 忽略重力、摩擦力等外力,可近似认为动量守恒。
上一页 下一页
3、虽然有时系统总动量不守恒,但只要系统在某个方向受 的合外力为0,则系统在该方向动量守恒。
即 F x 当 F ix 0 时 p x , m iv ix 常量
mv1
得 F (0 .3 )22 0 32 0 2 2 0 3c0o 3 s()0 14 (N )51
0 .01
根据正弦定理
sm i 2 nvsiF n t() 18 ,即力的 v 夹 方 角 1向 6 。 为 2
上一页 下一页
例2-6质量为m=30kg的铁锤(彩电)从1m高处由静止下落,碰撞
Ixt1 t2F xd tpx2px1mx2 vmx1v Iyt1 t2F yd tpy2py1my2v my1v Izt1 t2F zd tpz2pz1mz2 vmz1v
4 . 对于碰撞、打等 击过 、程 爆, 炸物体互 之作 间用 的
称为冲力, 值其 大特 , 点 变 t短是 化 ,峰 大 在, 某
b v2
d v
d(m v )
d p
t 2
Fm am
Fdtdp
dt dt
微分形式
dt
a
v1
I 定义 :t1 t动2F 量 d ptp p 1 m 2d vp p 2 t 1 p 1 P 2m mv( 2v I2 t1t2v F1 d)t
( M d)v M (d v ) d( v M d v u ) Mv
大学物理 第三章 动量守恒定律和能量守恒定律 3-9 质心 质心运动定律
第五版
3-9 质心 -
质心运动定律
一 质心
1 质心的概念
板上C点的运动轨迹是抛物线 板上 点的运动轨迹是抛物线 其余点的运动=随 点的平动+绕 点的 点的平动 点的转动 其余点的运动 随C点的平动 绕C点的转动
第三章 动量守恒和能量守恒
1
物理学
第五版
3-9 质心 -
质心运动定律
2 质心的位置 由n个质点组成 个质点组成 的质点系, 的质点系,其质心 的位置: 的位置:
13
物理学
第五版
3-9 质心 n n v v v m'vC = ∑ mi vi = ∑ pi = p i =1 i =1
质心运动定律
求一阶导数, 再对时间 t 求一阶导数,得
质心加速度
dp v m'aC = dt v v dp ex 根据质点系动量定理 = Fi dt
第三章 动量守恒和能量守恒
}⇒
x2 = 2 xC
17
第三章 动量守恒和能量守恒
物理学
第五版
3-9 质心 -
质心运动定律
例4 用质心运动定律 y F 来讨论以下问题. 来讨论以下问题. 一长为l 一长为 、密度均匀的 y 柔软链条, 柔软链条,其单位长度的质 c yC 量为 λ .将其卷成一堆放在 地面. 若手提链条的一端, 地面. 若手提链条的一端, o 以匀速v 将其上提.当一端 以匀速 将其上提. 被提离地面高度为 y 时,求手的提力. 求手的提力.
竖直方向作用于链条的合外力为 F − λyg
第三章 动量守恒和能量守恒
20
物理学
第五版
3-9 质心 -
质心运动定律
v 得到 F − yλg = lλ ⋅ l
大学物理 第3章 刚体力学基础
2 1
Jd
1 2
J22
1 2
J12
2 Md (1 J2 )
1
2
力矩对刚体所做的功,等于刚体转动动能的增量。
例 如图所示,一根质量为m,长为l的均匀细棒OA,可绕固定点O在竖直平 面内转动.今使棒从水平位置开始自由下摆,求棒摆到与水平位置成30°角 时中心点C和端点A的速度.
F
·
F
式中为力F到轴的距离
F
若力的作用线不在转动在平面内,
则只需将力分解为与轴垂直、平行
r
的两个分力即可。
力对固定点的力矩为零的情况:
1、力F等于零, 2、力F的作用线与矢径r共线
(有心力对力心的力矩恒为零)。
力对固定轴的力矩为零的情况:
若力的作用线与轴平行 若力的作用线与轴相交
则力对该轴无力矩作用。
dJ R2dm
考虑到所有质元到转轴的距离均为R,所以细圆环对中心轴的转动惯量为
J dJ R2dm R2 dm mR2
m
m
(2)求质量为m,半径为R的圆盘对中心轴的转动惯量.整个圆盘可以看成许
多半径不同的同心圆环构成.为此,在离转轴的距离为r处取一小圆环,如
图2.36(b)所示,其面积为dS=2πrdr,设圆盘的面密度(单位面积上的质量)
力矩在x,y,z轴的分量式,称力对轴的矩。例如上面所列
Mx , My , Mz , 即为力对X轴、Y轴、Z轴的矩。 设力F 的作用线就在Z轴
的转动平面内,作用点到Z
轴的位矢为r,则力对Z轴
的力矩为
M z rF sin
r sin F F rF sin rF
大学物理第三章动量守恒定律和能量守恒定律
探索其他守恒定律
鼓励了对其他守恒定律的探索,如角动量守恒定律、电荷守恒定律等。
THANKS
感谢观看
探索性实验:动量与能量的关系研究
实验目的
研究动量与能量的关系,探索两者之间的联系和 区别。
实验步骤
选择合适的实验器材,如弹性碰撞器、非弹性碰 撞器等,设计不同的碰撞条件,记录实验数据。
实验原理
动量和能量是描述物体运动状态的物理量,两者 之间存在一定的关系。通过研究不同运动状态下 物体的动量和能量变化,可以深入理解两者之间 的关系。
05
实验验证与探索
动量守恒定律的实验验证
实验目的
通过实验验证动量守恒定律, 加深对动量守恒定律的理解。
实验原理
动量守恒定律指出,在没有外 力作用的情况下,系统的总动 量保持不变。
实验步骤
选择合适的实验器材,如滑轨、 滑块、碰撞器等,按照实验要求 进行操作,记录实验数据。
实验结果
通过分析实验数据,验证动量 守恒定律的正确性。
动量守恒定律的应用实例
总结词:举例说明
详细描述:应用动量守恒定律的实例包括行星运动、碰撞、火箭推进等。例如,在行星运动中,行星绕太阳旋转时动量守恒 ;在碰撞过程中,两物体相互作用时的动量变化遵循动量守恒定律;火箭推进则是通过燃料燃烧产生高速气体,利用反作用 力推动火箭升空,这一过程中动量守恒。
03
守恒定律的意义
强调了守恒定律在物理学中的重要地位,以及在解决实际问题中的应 用价值。
对动量守恒定律和能量守恒定律的思考
守恒的哲学思考
探讨了守恒定律在哲学上的意义,以及它们 对宇宙观的影响。
大学物理-第三章 刚体力学
大小:M rF sin Fd
M
O
z
M
r
d
P*
F
方向:右手螺旋,图中向上
0 , M o,沿转轴向上,使刚体绕转轴逆时针转
2 , M o,沿转轴向下,使刚体绕转轴顺时针转
上一页 下一页
2.外力F不在转动平面内 MFOFr FFz r F r Fz
T
N2
mg T2 T2 2m
2mg
解 : 设 整 体 顺 时 针 运 动, 即 两 滑 轮 转 轴 正 向 向内 。
右 质 点2m正 向 向 下 , 左 质 点m正 向 向 上 ,
受力分析如图。
上一页 下一页
右质点 2mg T2 2ma
左质点 T1 mg ma
右 滑 轮 T2 r
Tr
第三章 刚体力学
上一页 下一页
刚体:不发生形变的物体(理想模型)
刚体模型突出了物体的大小形状,忽略形变和振动。 刚体的运动形式:平动、转动、滚动、进动
刚体复杂运动可视为:平动 转动(绕某轴线转动) 刚体力学研究方法 把刚体看成不变质点系(任意两个质元的相对距离 保持不变),运用质点系定理和定律研究刚体的运动。
m 2
r
2
左滑轮Tr
T1r
m 2
r 2
关联方程 a r
解出 T 11 mg 8
N1
T
T1
mg
T1 m
mg
T
N2
a
mg T2
T2 2m
2mg
上一页 下一页
M,
J
大学物理03-刚体力学基础
J
r
m
2
dm
• 刚体的形状(质量分布)
16
J
注 意
r
m
2
dm
只有对于几何形状规则、质量连续且均匀分布 的刚体,才能用积分计算出刚体的转动惯量
例3-2 一均匀细棒,质量为 m ,长为 l 。求该棒对下列转轴 的转动惯量:(1)通过棒中心且与棒垂直的轴;(2)通过 棒的一端且与棒垂直的轴。 解:取如图坐标,在棒上任取质元,到转轴的垂直距离为x, 长度为 d x,该质元的质量为 dm = (m/l )dx (质量为线分布)。 A L/2 C
S
O
Mz r d
P
F
M r F
O r
F
P
F
F //
大小: M rF sin Fd 方向: 由右手螺旋法则确定
转动平面
F 应该理解为外力在转动平面内的 分力F//
转动平面
在定轴转动中,M 的方向只有两种可能指向。若先选 定了转轴的正方向,则 M 与转轴方向一致时取正 值,反之为负值
11
(3) 如果有几个外力矩作用在刚体上,则合力矩等 于各个力矩的代数和
M
i i i
ri Fi
12
2
二 刚体绕定轴的转动定律
刚体可视为由许多质点组成的,而每一个质点都遵从质点力学 的规律。刚体转动定律可由牛顿第二定律直接导出。
Fi f i mi ai mi ri
一、力对转轴的力矩
力是引起质点运动状态变化的原因,而力 矩是引起转动物体运动状态变化的原因
(2) 外力F 不在转动平面内(任意力) 可将 F 分解为转动平面内的分力 F// 和垂直于转动平面的分力F F不能引起刚体转动状态的变化 力矩:
大学物理:第三章 理想光学系统
3. 物右移200mm,像移动多大距离?
例:有一光组将物放大3倍,成像在影屏上,当透镜向物 体方向移动18mm时,物象放大率为4倍。求光组焦距。
三、由多个光组组成的理想光学系统
相应于高斯公式:
l2 l1 d1
………
d1 H1H 2
lk …lk1 d k1 (主面间隔)
相应于牛顿公式:
l HA,l H A
由图,有: x l f , x l f
代入牛顿公式,得: lf lf ll
f f 1 l l
n n n n l l f f
放大率公式为:
f f f f l nl
x f x f l n l
x f f f f f x f
x2 x1 1
………
1 F1F2
xk … xk 1 k1 (光学间隔)
光学间隔Δ和主面间隔d 的关系为:
1 d1 f1 f 2
………
k 1 …d k 1 f k1 f k 1
垂轴放大率为: yk y1 y2 yk
y1 y1 y2
yk
1 2 k
四、光学系统的光焦度
f h tgU
象方主点H′到象方焦点F′的距离称为象方 焦距(后焦距或第二焦距)
f h tgU
说明:
1)对于理想光学系统,不管其结构(r,d,n)如何,只 要知道其焦距值和焦点或主点的位置,其光学性质就确 定了。
2) f n n =n′ f f
fn
h ltgU ltgU
x f tgU x f tgU
§ 3-2 理想光学系统的基点、基面
1. 焦点、焦平面 物方焦点:对应像点在像方光轴上无限远处
焦点 像方焦点:对应物点在物方光轴上无限远处
大学物理-第三章-动量守恒定律和能量守恒定律
20
★一对作用力与反作用力的功只与相对位移有关
f ji
ri
f ij
rij
rj
0
dW
jidWij
f
ji
dri
fij drj
f ji fij
fji f ji
(dd(rriidrrjj))
f ji
drij
S
S u
动量的相 对性和动量定 理的不变性
F(t)
t1 m
v1
光滑
v 2
m t2
参考系 t1 时刻 t2 时刻
动量定理
S系
S’系
mv1
mv2
m(v1 u) m(v2 u)
t2 t1
F (t )dt
mv2
mv1
5
例3-1: 作用在质量为1kg 的物体上的力 F=6t+3,如果物体在这
0=m1(v1+v2)+m2v2
v2
m1v1 m1 m2
x
t 0
v2dt
m1 m1 m2
t 0
v1dt
L
t
0 v1dt
x m1L 0.8m m1 m2
负号表示船移动的方向与人前进的方向相反。
17
3-4 动能定理
一、功的概念(work) 功率(power) 1、恒力的功
2、动能定理
2
1
或
F
dr
F
dr
1 2
mv22
大学物理 第三章 光的偏振
9.请将下列各图中反射光及折射光的偏振态 9.请将下列各图中反射光及折射光的偏振态 画出来. 画出来.图中i0 = tg-1 n2/n1 i≠i0
(E) I 0 cos α .
4
(B) 0.
1 2 (D) I 0 sin α. 4
[ C ]
6.如图,P1, P2为偏振化方向间夹角为α的两个偏 如图, , 为偏振化方向间夹角为α 如图 振片.光强为I 的平行自然光垂直入射到P 表面上, 振片.光强为 0的平行自然光垂直入射到 1表面上, 1 I cos α. 则通过P 的光强I= 则通过 2的光强 2
3. 晶体的光轴 当光在晶体内沿某个特殊方向传播时不发生 当光在晶体内沿某个特殊方向传播时不发生 双折射,该方向称为晶体的光轴 光轴. 双折射,该方向称为晶体的光轴. 例如,方解石晶体(冰洲石) 例如,方解石晶体(冰洲石) 光轴是一特殊的方向 , 凡 平行于此方向的直线均为光 轴. 单轴晶体: 单轴晶体:只有一个光轴的晶体
υ e → ne =
c
υe
根据n 的关系可分为正, 根据 0 ,ne的关系可分为正,负晶体 负晶体 : ve > v0 方解石 : ve < v0 正晶体 英 ne< no,如 ne> no,如石
5. 单轴晶体的主平面 主平面: 主平面:单轴晶体中光的传播方向与晶体 光轴构成的平面. 光轴构成的平面.
α = 0,I = I max = I 0 三. 检偏
消光 α = ,I = 0 ——消光
2
旋转一周 2 明2 暗 自然光 部分偏振光
π
用偏振器件 分析, 分析,检验 光的偏振态
?
堆叠在一起, 例1. 三个偏振片 P1,P2与P3 堆叠在一起, 的偏振化方向相互垂直, P1 与 P3 的偏振化方向相互垂直 , P2 与 P1 的偏振化方向间的夹角为 30 ° .强度为 I0 的自然光垂直入射到偏振片 P1,并依次透过 偏振片 P1 , P2 与 P3 , 若不考虑偏振片的吸 收和反射,则通过三个偏振片后的光强为: 收和反射,则通过三个偏振片后的光强为:
《大学物理》第三章 刚体的定轴转动
P
t
=
1 2
ω J 2 自
t
=
ω J 2 自 2P
=
2×105× (30π)
2×736×103
2
=
1.21×103s
(2) ω进 = 1度 秒 = 0.0175rad/s
ω进 =
M
Jω自
M = Jω进ω自
M = 2×105×0.0175×30π= 3.3×105 N返回.m退出
3-14 在如图所示的回转仪中,转盘的 质量为 0.15kg , 绕其轴线的转动惯量为: 1.50×10-4 kg.m2 ,架子的质量为 0.03kg, 由转盘与架子组成的系统被支持在一个支柱 的尖端O,尖端O到转盘中心的距离为0.04 m , 当转盘以一定角速度ω 绕其轴旋转时, 它便在水平面内以1/6 rev/s的转速进动。
为25cm,轴的一端 A用一根链条挂起,如
果原来轴在水平位置,并使轮子以ω自=12 rad/s的角速度旋转,方向如图所示,求:
(1)该轮自转的角动量;
(2)作用于轴上的外力矩;
(3)系统的进动角速度, ω
并判断进动方向。
AO
B
R
l 返回 退出
解:
(1)
J
=
m
R
2
回
=
5×(0.25 )2
ω
= 0.313 kg.m2
a
=
m
1+
m m
1g 2+
J
r2
T1 =
m 1g (m 2+ J m 1+m 2 + J
r 2) r2
T2 =
m 1m 2g m 1+m 2 + J
大学物理课件第3章 动量与角动量
§3.3 动量守恒定律 质点系所受合外力为零, Σ 时间改变,即
Fi = 0 总动量不随
N P pi 常矢量
i 1
1. 合外力为零,或外力与内力相比小很多;
2. 合外力沿某一方向为零;
p i
i
const .
3. 只适用于惯性系; 4. 比牛顿定律更普遍的最基本的定律。
M r F
力
M F d F r sin
提问:力矩为0的情况?
力矩
Lrp
动量
N m 矢量性: r F
单位:
三、角动量定理
pr p v pr F Lr 角动量定理: r F M (力矩)
q
v
V
v sinq
v cosq V
解:设车相对地面的反冲速度为V,方向水平向左 炮弹相对地面的速度水平分量为 v cosq V mv cosq 水平方向动量守恒 m(v cosq V ) MV 0 解得V
炮弹相对地面的速度竖直分量为 v sinq
m M
v sinq tg v cosq V
t2
mg
3秒时物是否被拉起?
F cos f 0 N F sin mg 0 f N t1 1.9 s
I x 0.62 Kgm / s
t1
F
x
dt 1.12t (cos sin ) mg dt
3
I x mvx 0 0.62Kgm / s
6
h
v
0
N =
m 2gh
τ
m 工件
mg
大学物理第三章动量与角动量分解
相碰时的相互作用内力为 f 和f
同时受系统外其它物体的作用外力为 F1和F 2
d P1 对质点m1: F1 f dt d P2 对质点m2:F2 f dt
两式相加,得
13
f f
d P1 d P2 F1 F2 f f dt dt
d F1 F2 ( P1 P2 ) dt ( F1 F2 )dt d ( P1 P2 ) ( m1 1 m2 2 ) ( m1 10 m2 20 )
由牛顿第三定律有: f ij 0
i j i
15
d t d pi 所以有: ( Fi) i i 令 Fi F外 , pi P
则有:
F外 d t d P
F外 dP dt
i
i
或
质点系动量定理 (微分形式)
t2 F t1 外
m’ N
已知μs
解:箱子是否下滑,决定于物体坠入 箱子时,在冲力的作用下箱子的受力 是否
mgsin f s mg cos s tg
当一物体竖直坠入箱中,在冲力作用下,时的瞬间应满足:
s ( mg cos F cos ) ( mg sin F sin ) ma
力在时间上的积累效应:
平动 冲量,改变动量 转动 冲量矩,改变角动量
2
1、冲量(impulse)
定义:力对一段时间的积累
t2 大小: I = Fdt
t1
F F
方向:速度变化的方向 单位:N· s 0 t
量纲:MLT-1
微分形式: d I F d t d p
v 2 gh 2 9.80 2 6.26 m/s
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3章 习题一、填空题3.1.1 跨过定滑轮的细绳下端系质量为m 的物体,在物体以4/g 的恒定加速度下落一段距离h 的过程中,绳的拉力对物体做的功为考察物体以4g的恒定加速度下落一段距离h 的过程。
设初速率为P v ,末速率Q v 满足 22224Q P g v v a s h -=∆=(3-1) 物体受到重力mg r和绳子的拉力T r 的作用,合外力F r 做功为Q Q Q mg T PPPA F dr mg dr T dr A A =⋅=⋅+⋅=+⎰⎰⎰r r r r r r(3-2)注意到重力是保守力,其做功为()()()mg pQ pP Q P P Q A E E mgh mgh mg h h mgh =--=--=-=(3-3)对物体使用动能定理,有()2222111222kQ kP Q P Q P A E E mv mv m v v =-=-=-(3-4)联立(3-1)~(3-4),可求出绳的拉力对物体所做的功为34T A mgh =-3.1.2 高m 100的瀑布每秒钟下落31200m 水,假设水下落过程中动能的75%由水力发电机转换成电能,则此发电机的输出功率为 。
依题设,每秒钟有质量为33361.0101200 1.210m V kg m m kg ρ-==⨯⋅⨯=⨯的瀑布水下落。
取水和地球为系统,在水从瀑布最高点下落h 的过程中,系统机械能守恒,有k E mgh =经水力发电机转换后的电能为6875% 1.2109.810075%8.8210()E mgh J =⨯=⨯⨯⨯⨯=⨯由于以上电能是每秒钟产生的,所以发电机的输出功率为888.82108.8210()1E P W t ⨯===⨯3.1.3 质量为kg 1000的汽车以h km /36的速率匀速行驶,摩擦系数为0.10。
在水平路面上行驶发动机的功率为 。
小车的速率110003636103600mv km h m s s-==⨯=⋅小车匀速行驶,故30.1010009.8109.810()9.8()P Fv fv mgv W kW μ====⨯⨯⨯=⨯=3.1.4 以恒定速率拉一小船所需的力与速率成正比,使该小船速率达到s m /2.1所需的功率为1N ,使小船速率达到s m /6.3所需的功率为2N ,则2N 是1N 的 倍。
依题意,设以恒定速率拉船所需的力F 与速率v 满足如下关系F kv =其中k 为一常数。
所需的功率为2P Fv kv ==所以2222222111 3.691.2N v v N v v ⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭3.1.5 速度为0v 的子弹射穿木板后,速度恰好变为零。
设木板对子弹的阻力恒定不变,那么,当子弹射入木板的深度等于木板厚度的一半时,子弹速度的大小为 。
以质量为m 的子弹为对象,考察子弹以初速0v 从与厚度为d 木板相碰至恰好射穿的过程,设木板对子弹的平均阻力为f ,依据动能定理,可知20102fd mv -=-现考察子弹从木板相碰至射入木板的深度为木板厚度的一半(设此时子弹的速率为v )的过程,仍然对子弹使用动能定理,有22011222d fmv mv -=- 由以上两式,可解出所求子弹速率为v =3.1.6 质量为kg 100的货物平放在卡车车厢底板上,卡车以2/4s m 的加速度起动,4秒内摩擦力对该货物所做的功为 。
考察货物自静止开始随汽车匀加速运动4秒内的过程,显然,初速率10P v m s -=⋅,而4秒末的速率为104416()Q P v v at m s -=+=+⨯=⋅在该过程中,货物受到3个力的作用,即:重力mg r,车厢底板对它的支持力N r 和静摩擦力f r ,对货物使用动能定理,合外力F r做功为Q Q Q Q Q Qf f PPPPPPA F dr mg dr N dr f dr mg vdt N vdt A A =⋅=⋅+⋅+⋅=⋅+⋅+=⎰⎰⎰⎰⎰⎰r r r r r r r r r r r r所以摩擦力做功为22224111110016100022221.2810()f kQ kP Q P A A E E mv mv J ==-=-=⨯⨯-⨯⨯=⨯3.1.7 以N 200的水平推力推一个原来静止的小车,使它沿水平路面行驶了m 0.5。
若小车的质量为kg 100,小车运动时的摩擦系数为0.10,则小车的末速为 。
考察小车从静止出发至行驶5m 的过程,小车受到四个力的作用,分别为:重力mg r,地面的支持力N r 和摩擦力f ,还有推力F r。
由动能定理,有2102mg N F f F f kQ kP A A A A A A A E E mv =+++=+=-=-而F A F s =∆ 和 f A f s =-∆其中摩擦力f mg μ=所以小车的末速为13.2()v m s -==≈⋅3.1.8 从轻弹簧原长开始,第一次拉伸l ,在此基础上,第二次再拉伸l ,继而,第三次又拉伸l ,则第三次拉伸弹簧与第二次拉伸弹簧弹力所做功之比为 。
由于弹簧的弹性力是保守力,其做功为2211()22pQ pP Q P A E E kx kx ⎛⎫=--=-- ⎪⎝⎭第一次拉伸l 的过程,0P x =,Q x l =,弹性力做功为2221111222Q P A kx kx kl ⎛⎫=--=- ⎪⎝⎭在此基础上,第二次再拉伸l 的过程,P x l =,2Q x l =,弹性力做功为2222113222Q P A kx kx kl ⎛⎫=--=- ⎪⎝⎭继而,第三次又拉伸l 的过程,2P x l =,3Q x l =,弹性力做功为2223115222Q P A kx kx kl ⎛⎫=--=- ⎪⎝⎭所求第三次拉伸弹簧与第二次拉伸弹簧弹性力所做功之比为2322552332kl A A kl -==-3.1.9 功的大小不仅与物体的始、末位置有关,而且还与物体的运动路径有关,这样的力称 。
非保守力3.1.10 有一倔强系数为k 的轻弹簧,竖直放置,下端悬一质量为m 的小球,先使弹簧为原长,而小球恰好与地接触,再将弹簧上端缓慢地提起,直到小球刚能脱离地面为止。
在此过程中外力所作的的功为 。
考察小球,地球和弹簧组成的系统,对题设的过程应用功能原理,有21=()()2A E Q E P kx -=外又kx mg =可解出21=()2A mg k外3.1.11 以初速率0v 将质量为kg 9的物体竖直向上发射出去,物体运动过程中受空气阻力而损耗的能量为J 680。
如果不计空气阻力,则物体上升的高度将比有空气阻力时增加 。
如果不计空气阻力,设物体能达到的高度为0H 。
今取物体,地球为系统,在物体自初速率0v 发射(P 态,设高度为0)至最高点(Q 态)的过程中,该系统机械能守恒,有20012mv mgH = 同样的过程,考虑到空气阻力f ,设物体能达到的高度为H ,对物体应用动能定理,有2102mg f kQ kP A A A E E mv =+=-=- 因重力是保守力,它在此过程对物体做功()(0)mg pQ pP A E E mgH mgH =--=--=-由以上三式,可得0f A H H mg=+所求没有空气阻力时物体上升的高度将比有空气阻力时增加06807.799.8f A H H H m mg-∆=-=-=-≈⨯3.1.12 质量为m 的质点沿竖直平面内半径为R 的光滑圆形轨道内侧运动,质点在最低点时的速率为0v ,使质点能沿此圆形轨道运动而不脱离轨道,0v 的值至少应为 。
当物体运动至最高点时,其受力情况如图3-1所示,设此物体的速率为v ,则有2v N mg m R+=质点能沿此圆形轨道运动而不脱离轨道的条件为轨道对物体的作用力0N =取物体,圆形轨道和地球为系统,在物体从最高点运动至最低点的过程,该系统机械能守恒,可知2211(2)22mv mg R mv += 图3-1 由以上三式可求出05v gR =3.1.13 一皮球从m 5.2高处自由落下,与地面碰撞后,竖直上跳,起跳速率为落地速率的3/5,不计空气阻力,皮球跳起能达到的最大高度为 。
取皮球,地球为系统,在皮球自高度为0 2.5H m =自由下落至刚触地(设此时皮球速率为0v )的过程中该系统机械能守恒,有20012mgH mv = 再考察皮球自地面起跳(此时皮球速率为035v v =)至最高点(设高度为H )的过程,该系统机械能仍然守恒,有212mv mgH = 由以上两式,可求出皮球跳起能达到的最大高度为22003 2.50.9()5v H H m v ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭二、选择题3.2.1 一个质点在几个力同时作用下的位移为m k j i r )456(ρρρρ+-=∆,其中一个力N k j i F )359(ρρρρ--=,则这个力在该位移过程中所做的功为:( )A. J 91B. J 67C. J 17D. J 67-因为()()95365467()A F r i j k i j k J =⋅∆=--⋅-+=r r r r r r rr选B 。
3.2.2 质量为m 的物体置于电梯底板上,电梯以加速度2/g 匀加速下降距离h ,在此过程中,电梯作用于物体的力对物体所做的功为:( ) A. mgh B. mgh - C.mgh 21 D. mgh 21-人受到两个力的作用,分别为重力mg r和电梯地板对他的支持力N r 。
法一:因人随电梯相对于地面匀加速下降,故2g mg N m-= 可知12N mg =,方向竖直向上。
在人下降h 的过程中,支持力做功为12N A Nh mgh =-=-法二:考察人随电梯下降h 的过程,由动能定理,有221122N mg kQ kP Q P A A A E E mv mv =+=-=-因重力是保守力,故()()mg pQ pP Q P A E E mgh mgh mgh =--=--=又,人以匀加速度2g下降了h ,其初、末速率满足如下关系 2222Q P g v v h -=⨯⨯联立以上三式,可知支持力做功为12N A mgh =-选D 。
3.2.3 一单摆摆动的最大角度为0θ,当此单摆由0θ向平衡位置(0=θ)摆动过程中,重力做功功率最大的位置θ为:( ) A.0=θ B. 0θθ=C. 00θθ<<D. 由于机械能守恒,所以功率不变当0θ=时,mg r 与v r 垂直,0P mg v =⋅=r r ,A 排除;当0θθ=时,0v =r ,0P mg v =⋅=r r,B 排除;而当00θθ<<时,cos(,)P mg v mgv g v =⋅=r r r r一般大于0。