人教版必修高一数学《三角恒等变换》测试题A卷及答案

合集下载

高一数学三角函数三角恒等变换解三角形试题答案及解析

高一数学三角函数三角恒等变换解三角形试题答案及解析

高一数学三角函数三角恒等变换解三角形试题答案及解析1.下列说法正确的是()A.小于的角是锐角B.在中,若,那么C.第二象限的角大于第一象限的角D.若角与角的终边相同,那么【答案】B【解析】因为余弦函数在上单调递减,故有,则,根据终边相同的角、象限角的概念可知A、B、C选项不对。

【考点】终边相同的角、象限角的概念。

2.已知中,分别为的对边,,则为()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形【答案】D【解析】根据正弦定理,原式化为:,所以,或是,即,或是,所以是等腰三角形,或是直角三角形.【考点】1.正弦定理;2.判定三角形的形状.3.()A.0B.-C.1D.【答案】D【解析】【考点】二倍角公式4.函数的一个单调增区间是().A.B.C.D.【答案】D【解析】由诱导公式原三角函数可化为,原函数的单调递增区间即为函数的单调递减区间,由,可得所求函数的单调递增区间为,故原函数的一个单调增区间为.【考点】正弦函数的单调性5.在中的内角所对的边分别为,若,则的形状为A.直角三角形B.锐角三角形C.钝角三角形D.不确定【答案】A【解析】由正弦定理得,故选A.【考点】正弦定理,两角和的正弦公式.6.若,且是锐角三角形,则周长的取值范围__________.【答案】【解析】根据正弦定理,,那么,,所以三角形的周长是,整理得到:,根据三角形是锐角三角形,所以,所以周长的取值范围是.【考点】1.正弦定理;2.三角函数的取值范围.7.若且是,则是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角【答案】C【解析】由于,故可能是第三或者第四象限角;由于,故可能是第一或者第三象限角.由于且,故是第三象限角,故选C.【考点】象限角8.计算下列几个式子,①,②2(sin35°cos25°+sin55°cos65°), ③, ④,结果为的是()A.①②B.①③C.①②③D.①②③④【答案】C【解析】①原式;②原式;③原式;④原式【考点】三角函数基本公式9.给出下列四个命题:①函数y=sin(cosx)的最小正周期是;②在△ABC中, 若AB=2,AC=3,∠ABC=,则△ABC必为锐角三角形;③函数的值域是;④在同一坐标系中,函数的图象和函数的图象有三个公共点;其中正确命题的是(把你认为正确的序号都填上)【答案】②④【解析】①函数y=sin(cosx)的最小正周期是2;②若AB=2,AC=3,∠ABC=,由余弦定理可得,由三边长度可知三角形为锐角三角形;③函数的值域是;④在同一坐标系中,函数的图象和函数的图象有无数个公共点【考点】1.三角函数性质;2.解三角形10.已知,则A.B.C.D.【答案】D【解析】,故选D.【考点】同角三角函数关系式,二倍角公式.11.在△ABC中,角A,B,C的对边分别为a,b,c,已知a=,c=,C=,则角B= .【答案】或【解析】根据正弦定理,,所以,那么或,那么或【考点】正弦定理12.在△ABC中,如果,那么等于.【答案】【解析】,由正弦定理可知,所以【考点】正余弦定理解三角形13.已知,是第一象限角,则的值为()A.B.C.D.【答案】C【解析】因为,是第一象限角,所以,则,故选C【考点】同角三角函数的基本关系及诱导公式14.为了得到函数的图像,只需把函数的图像()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【答案】D【解析】把函数的图象向右平移个单位长度得函数的图象.故选D.【考点】三角函数图象变换.15.若一扇形的面积为80π ,半径为20 ,则该扇形的圆心角为________.【答案】72°(或)【解析】由扇形的面积,得,解得,即扇形的圆心角为.【考点】扇形的面积公式.【知识点睛】在弧度制下,计算扇形的面积和弧长比在角度制下更方便、简捷,熟悉并牢记下列公式:①;②;③,其中是扇形的半径,是弧长,为圆心角,是扇形面积是解答此类试题的关键.16.的三个内角所对边长分别为,设向量, ,若,则角的大小为()A.B.C.D.【答案】B【解析】由,得,由正弦定理,得=,整理得,所以由余弦定理,得,所以,故选B.【考点】1、平面向量平行的充要条件;2、正余弦定理.【题型点睛】平面向量与解三角形的综合,常常是以三角形的边或以角的三角函数为向量的纵、横坐标,同时已知两个或几个向量间的垂直、平行、数量积等关系,求解相应的三角形问题,求解时通常利用向量知识将已知转化为三角函数关系,然后结合正弦定理与余弦定理等知识求解.17.函数的部分图像如图所示,则的单调递减区间为()A.B.C.D.【答案】D【解析】由五点作图知,,解得,,所以,令,解得,故单调减区间为,,故选D.【考点】三角函数的解析式,三角函数的单调性.18.函数的最大值为________.【答案】1【解析】由题意知:即,因为,所以的最大值为1.【考点】两角和与差的三角函数,三角函数的最值.19.(2015秋•和平区期末)已知扇形的周长为8cm,圆心角为2rad,则该扇形的面积为.考点:扇形面积公式.【答案】4【解析】设扇形的半径为r,弧长为l,根据扇形周长和弧长公式列式,解之得r=2,l=4,再由扇形面积公式可得扇形的面积S.解:设扇形的半径为r,弧长为l,则解得r=2,l=4由扇形面积公式可得扇形面积S=lr==4故答案为:420.(2015秋•和平区期末)已知函数f(x)=Asin(3x+φ)(A>0.x∈(﹣∞,+∞),0<φ<π)在x=时取得最大值4..(1)求f(x)的最小正周期;(2)求f(x)的解析式;(3)若f(α+)=.求tan2α的值.【答案】(1);(2)f(x)=4sin(3x+);(3)±.【解析】(1)根据题意,求出f(x)的最小正周期T=;(2)根据f(x)=f()求出A与φ的值即可;max(3)根据f(α+)的值求出cos2α与sin2α的值,再求出tan2α的值.解:(1)∵函数f(x)=Asin(3x+φ),∴f(x)的最小正周期为T==;=f()=Asin(3×+φ)=4,(2)∵f(x)max∴A=4,且sin(+φ)=1,又∵0<φ<π,∴<+φ<,∴+φ=,解得φ=,∴f(x)=4sin(3x+);(3)∵f(α+)=,∴4sin[3(α+)+]=,化简得sin(2α+)=,即cos2α=,∴sin2α=±=±,∴tan2α==±.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的图象.21.在中,,,为三个内角为相应的三条边,若,且(1)求证:;(2)若,试将表示成的函数,并求值域.【答案】(1)证明见解析;(2)=,值域是.【解析】(1)给出了的边角关系式,用正弦定理化成关于三角形内角三角函数的关系,通过三角恒等变换和三角形内角的性质得证;(2)由(1)可得,把平方,整理可得关于三角形边和角的关系,消去角,即得的函数关系式,结合角的范围可求得其值域.试题解析:(1)由,及正弦定理有,∴或.若,且,∴,;∴,所以,(2)∵,∴。

人教版高一数学第三章《三角恒等变换》测试题(A卷)及答案

人教版高一数学第三章《三角恒等变换》测试题(A卷)及答案
7.已知
i
sin
1
B.-3
cos
a的值为
1
代3
3—sin70的
8.2等于
2—cos10
1 2
A.2b.~2"
1n
9.把尹n20+cos(§—
2,3
3
C.
2
n
2 0)]—sin —cosCf^+20)化简,可得
A.sin20B.—sin20C.cos20D.—cos20
10.已知3cos(2a+ 3+5cos3=0,贝U tan(a+ 3tana的值为
三、解答题(共76分).
15.(本题满分
12分)已知
cosa—sin
a=
3.2,且
n«|n,求
sin2a+2sin
1—tana
a的值.
16.(本题满分12分)已知
(X、
B均为锐角,且
cos
^5
sinA ,w,求
a—3的值.
1
17.(本题满分12分)求证:丽
疏=|2cos20°
高中数学必修
考试时间:100分钟,满分:150分
、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代
号填在题后的括号内(每小题5分,共50分)
2
1.计算1-2sin 22.5的结果等于
A.1B晋
2 2
2.cos39 cos(—9°)—sin39
1
A.2
7
A.8
C.
3.已知
4,则
A. ±4B.4C.—4D.1
二、填空题(每小题6分,共计24分).
11.(1+tan17 )(1+tan28的=.

高一必修4三角恒等变换测试题及答案

高一必修4三角恒等变换测试题及答案

高一必修4三角恒等变换测试题及答案2一、选择题(本大题共12个小题,每小题5分,共60分)1、cos 24cos36cos66cos54︒︒︒︒-的值为( )A 0B 12C 3 D12-2.3cos 5α=-,,2παπ⎛⎫∈ ⎪⎝⎭,12sin 13β=-,β是第三象限角,则=-)cos(αβ( )A 、3365-B 、6365C 、5665 D 、1665-3. tan 20tan 40320tan 40︒︒︒︒++的值为( )A 1 B3 C 3 D34. 已知()()tan 3,tan 5αβαβ+=-=,则()tan 2α的值为( )A 47-B 47 C 18D 18-5.βα,都是锐角,且5sin 13α=,()4cos 5αβ+=-,则βsin 的值是( )A 、3365B 、1665C 、56653D 、63656.,)4,43(ππ-∈x 且3cos 45x π⎛⎫-=- ⎪⎝⎭则cos2x 的值是( ) A 、725- B 、2425- C 、2425D 、7257. 函数44sincos y x x=+的值域是( )A []0,1B []1,1-C 13,22⎡⎤⎢⎥⎣⎦D1,12⎡⎤⎢⎥⎣⎦8. 已知等腰三角形顶角的余弦值等于54,则这个三角形底角的正弦值为( ) A1010 B1010-C10103 D10103-9.要得到函数2sin 2y x =的图像,只需将xx y 2cos 2sin 3-=的图像( )A 、向右平移6π个单位B 、向右平移12π个单位C 、向左平移6π个单位D 、向左平移12π个单位 10. 函数sin 322xxy =+的图像的一条对称轴方程是4( )A 、x =113π B 、x =53π C 、53x π=- D 、3x π=- 11. 已知1cos sin 21cos sin x xx x-+=-++,则xtan 的值为( )A 、34B 、34-C 、43D 、43- 12.若0,4πα⎛⎫∈ ⎪⎝⎭()0,βπ∈且()1tan 2αβ-=,1tan 7β=-,则=-βα2( )A 、56π-B 、23π-C 、 712π- D 、34π-二、填空题(本大题共4小题,每小题5分,共20分.请把答案填在题中的横线上) 13. .在ABC ∆中,已知tanA ,tanB 是方程23720x x -+=的两个实根,则tan C =14. 已知tan 2x =,则3sin 22cos 2cos 23sin 2x xx x+-的值为 15. 已知直线12//l l ,A 是12,l l 之间的一定点,并且A 点到12,l l 的距离分别为12,h h ,B 是直线2l 上一动点,作AC ⊥AB ,且使AC 与直线1l 交于点C ,则ABC ∆面积的最小值为 。

人教版高中数学高一A版必修4单元检测 三角恒等变换(附答案)

人教版高中数学高一A版必修4单元检测 三角恒等变换(附答案)

数学人教A 版必修4第三章三角恒等变换单元检测(时间:90分钟 满分:100分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.tan 105°=( )A .2B .-2C .-3D .-22.已知sin 2α=45,cos 2α=35-,则sin α等于( ) A .1225-B .725-C .2425-D .6253.函数y =3sin x -x 的最大值是( )A .3+B .C .6D .34.若函数f (x )=cos 22x -sin 22x +sin 4x (x ∈R ),则f (x )的( )A .最小正周期为π2,最大值为1 B .最小正周期为πC .最小正周期为π2,最小值为D .最小正周期为π,最小值为-15.函数f (x )=1-2π2sin 4x ⎛⎫+⎪⎝⎭,则π6f ⎛⎫⎪⎝⎭=( )A .B .12-C .12D 6.若cos α=45-,α是第三象限角,则πsin 4α⎛⎫+ ⎪⎝⎭=( )A .10-B .10C .10-D .107.已知x ∈π,02⎛⎫-⎪⎝⎭,cos(π-x )=45-,则tan 2x 等于( )A .724B .724-C .247D .247-8.函数f (x )=(1tan x )cos x 的最小正周期为( )A .2πB .3π2C .πD .π29.已知2sin θ=1+cos θ,则tan 2θ的值为( ) A .2B .12C .12或不存在 D .2或不存在10.已知a =(cos x ,sin x ),b =(sin x ,cos x ),记f (x )=a ·b ,要得到函数y =sin 4x -cos 4x 的图象,只需将函数y =f (x )的图象( )A .向左平移π2个单位长度 B .向右平移π2个单位长度 C .向左平移π4个单位长度D .向右平移π4个单位长度二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上) 11.sin 45°cos 15°+cos 225°sin 15°的值为__________. 12.已知tan α=12,tan(β-α)=25,那么tan(β-2α)=__________. 13.设向量a =(4sin α,3),b =(2,3cos α),且a ∥b ,则锐角α=__________. 14.sin(α-β)cos α-cos(α-β)sin α=35,则cos 2β=__________. 15.在△ABC 中,sin 2A =23,则sin A +cos A =__________. 三、解答题(本大题共2小题,共25分.解答时应写出文字说明、证明过程或演算步骤) 16.(10分)(2011·广东惠州一模)已知函数f (x )=2+sin 2x +cos 2x ,x ∈R . (1)求函数f (x )的最大值及取得最大值时的自变量x 的集合; (2)求函数f (x )的单调增区间.17.(15分)已知tan α=13-,cos β=5,α,β∈(0,π).求:(1)tan(α+β)的值;ππcos 66αβ⎛⎫⎛⎫-++⎪ ⎪⎝⎭⎝⎭的值.17.(15分)已知tan α=13-,cos β=5,α,β∈(0,π).求:(1)tan(α+β)的值;ππcos 66αβ⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭的值.。

高中试卷-专题5.5 三角恒等变换(含答案)

高中试卷-专题5.5   三角恒等变换(含答案)

专题5.5 三角恒等变换(一)两角和与差的正弦、余弦、正切公式1.C (α-β):cos(α-β)=cos αcos β+sin αsin β;C (α+β):cos(α+β)=cos αcos_β-sin_αsin β;S (α+β):sin(α+β)=sin αcos β+cos αsin β;S (α-β):sin(α-β)=sin_αcos_β-cos αsin β;T (α+β):tan(α+β)=tan α+tan β1-tan αtan β;T (α-β):tan(α-β)=tan α-tan β1+tan αtan β.2.变形公式:tan α±tan β=tan(α±β)(1∓tan αtan β);.sin αsin β+cos(α+β)=cos αcos β,cos αsin β+sin(α-β)=sin αcos β,3.辅助角公式:函数f(α)=acos α+bsin α(a ,b 为常数),可以化为f(α)+φ)或f(α)=-φ),其中φ可由a ,b 的值唯一确定.(二)二倍角的正弦、余弦、正切公式1.S 2α:sin 2α=2sin αcos α;C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;T 2α:tan 2α=2tan α1-tan 2α.2.变形公式:(1)降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2,sin αcos α=12sin 2α.(2)升幂公式1+cos α=2cos 2α2;1-cos α=2sin 2α2;1+sin α=(sin α2+cos α2)2;1-sin α=(sin α2-cos α2)2.)4sin(2cos sin πααα±=±(3)配方变形:1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)21±sin α=(sin α2±cos α2)2,1+cos α=2cos 2α2,1-cos α=2sin 2α2(4)sin 2α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α;cos 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α.tan α2=sin α1+cos α=1-cos αsin α.(三)常见变换规律(1)角的变换:明确各个角之间的关系(包括非特殊角与特殊角、已知角与未知角),熟悉角的变换技巧,及半角与倍角的相互转化,如:2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β,40°=60°-20°,(π4+α)+(π4-α)=π2,α2=2×α4等.(2)名的变换:明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.一、单选题1.sin 40sin 50cos 40cos50°°-°°等于( )A .1-B .1C .0D .cos10-°【来源】陕西省西安市莲湖区2021-2022学年高一下学期期末数学试题【答案】C【解析】由两角和的余弦公式得:()()sin 40sin 50cos 40cos50cos 40cos50sin 40sin 50cos 4050cos900°°-°°=-°°-°°=-+=-=o o o 故选:C2.已知()5cos 2cos 22παπαæö-=+ç÷èø,且()1tan 3αb +=,则tan b 的值为( )A .7-B .7C .1D .1-【来源】辽宁省沈阳市第一中学2021-2022学年高一下学期第三次阶段数学试题【答案】D【解析】:因为()5cos 2cos 22παπαæö-=+ç÷èø,所以sin 2cos αα=,所以sin tan 2cos ααα==,又()1tan 3αb +=,所以()()()12tan tan 3tan tan 111tan tan 123αb αb αb ααb α-+-=+-===-éùëû+++´.故选:D3.已知,αb 均为锐角,且1sin 2sin ,cos cos 2αb αb ==,则()sin αb -=( )A .35B .45CD .23【来源】辽宁省县级重点高中协作体2021-2022学年高一下学期期末考试数学试题【答案】A【解析】:因为1sin 2sin ,cos cos 2αb αb ==,所有22221sin cos 4sin cos 14ααb b +=+=,则2153sin 44b =,又,αb均为锐角,所以sin b =cos b =所以sin αα==所以()3sin sin cos cos sin 5αb αb αb -=-=.故选:A.4.已知()1sin 5αb +=,()3sin 5αb -=,则tan tan αb 的值为( )A .2B .2-C .12D .12-【来源】内蒙古自治区包头市2021-2022学年高一下学期期末数学试题【答案】B【解析】()()1sin sin cos cos sin 53sin sin cos cos sin 5αb αb αb αb αb αb ì+=+=ïïíï-=-=ïî,解得2sin cos 51cos sin 5αb αb ì=ïïíï=-ïî,所以tan sin cos 2tan cos sin ααbb αb==-.故选:B5.已知sin sin 13πq q æö++=ç÷èø,则tan 6πq æö+=ç÷èø( )ABC .D .【来源】陕西省汉中市六校联考2021-2022学年高一下学期期末数学试题(B 卷)【答案】D【解析】sin sin(13πq q ++=,则1sin sin 12q q q +=,即312q =,1cos 2q q +=sin 6πq æö+ç÷èøcos 6πq æö+==ç÷èø所以tan 6πq æö+==ç÷èø故选:D6.下面公式正确的是( )A .3sin cos 2πq q æö+=ç÷èøB .2cos212cos q q =-C .3cos sin 2πq q æö+=-ç÷èøD .cos(sin 2πq q-=【来源】陕西省宝鸡市渭滨区2021-2022学年高一下学期期末数学试题【答案】D 【解析】对A ,3sin cos 2πq q æö+=-ç÷èø,故A 错误;对B ,2cos 22cos 1q q =-,故B 错误;对C ,3cos sin 2πq q æö+=ç÷èø,故C 错误;对D ,cos()sin 2πq q -=,故D 正确;故选:D7.已知2tan()5αb +=,1tan(44πb -=,则tan()4πα+的值为( )A .16B .322C .2213D .1318【来源】内蒙古自治区呼伦贝尔市满洲里市第一中学2021-2022学年高一下学期期末数学试题【答案】B【解析】:因为2tan()5αb +=,1tan()44πb -=,所以()tan()tan 44ππααb b éùæö+=+--ç÷êúèøëû()()tan tan 41tan tan 4παb b παb b æö+--ç÷èø=æö++-ç÷èø213542122154-==+´.故选:B 8.设1cos102a =o o,22tan131tan 13b =+oo,c =,则a ,b ,c 大小关系正确的是( )A .a b c <<B .c b a <<C .a c b<<D .b c a<<【来源】湖北省云学新高考联盟学校2021-2022学年高一下学期5月联考数学试题【答案】C【解析】()1cos10cos 6010cos 70sin 202a =°=°+°=°=°o ,2222sin132tan13cos132sin13cos13sin 26sin 131tan 131cos 13b °°°===°°=°°+°+°,sin 25c ===o ,因为函数sin y x =在0,2πæöç÷èø上是增函数,故sin 20sin 25sin 26<<o o o ,即a c b <<.故选:C.9.已知sin()6πα+=2cos(2)3πα-=( )A .23-B .13-C .23D .13【来源】海南省海口市第一中学2021-2022学年高一下学期期中考试数学试题(A )【答案】B【解析】:因为sin()6πα+=,所以2cos 2cos 263παππαéùæöæö-=-ç÷ç÷êúèøë+øèû6cos 2πα÷+æö=-çèø212n 6si παéùæö=--ç÷êúøë+èû21123éùæêú=--=-ççêúèëû故选:B10.若11tan ,tan()72b αb =+=,则tan =α( )A .115B .112C .16D .13【来源】北京市房山区2021—2022学年高一下学期期末学业水平调研数学试题【答案】D【解析】:因为11tan ,tan()72b αb =+=,所以()()()11tan tan 127tan =tan 111tan tan 3127αb b ααb b αb b -+-+-===éùëû+++´.故选:D.11.已知3cos 16πααæö--=ç÷èø,则sin 26παæö+=ç÷è( )A .13-B .13C .D【来源】四川省内江市2021-2022学年高一下学期期末数学理科试题【答案】B【解析】:因为3cos 16πααæö--=ç÷èø,即3cos cos sin sin 166ππαααæö-+=ç÷èø,即13sin 12αααö-+=÷÷ø3sin 12αα-=1cos 123παααöæö=+=÷ç÷÷èøø,所以cos 3παæö+=ç÷èø所以sin 2cos 2662πππααæöæö+=-++ç÷ç÷èøèø2cos 22cos 133ππααéùæöæö=-+=-+-ç÷ç÷êúèøèøëû21213éùêú=--=êúëû.故选:B 12.已知4sin 5α=,π5,π,cos ,213αb b æöÎ=-ç÷èø是第三象限角,则()cos αb -=( )A .3365-B .3365C .6365D .6365-【来源】西藏林芝市第二高级中学2021-2022学年高一下学期第二学段考试(期末)数学试题【答案】A【解析】由4sin 5α=,π,π2αæöÎç÷èø,可得3cos 5α===-由5cos ,13b b =-是第三象限角,可得12sin 13b ===-则()3541233cos cos cos sin sin 51351365αb αb αb æöæöæö-=+=-´-+´-=-ç÷ç÷ç÷èøèøèø故选:A13.若sin 2α=()sin b α-=,4απéùÎπêúëû,3,2b ππéùÎêúëû,则αb +的值是( )A .54πB .74πC .54π或74πD .54π或94π【答案】B【解析】,,2,242ππαπαπéùéùÎ\ÎêúêúëûëûQ ,又∵sin 22,,,242πππααπαéùéù=\ÎÎêúêúëûëû,∴cos2α==又∵35,,,224πππb πb αéùéùÎ\-Îêúêúëûëû,∴()cos b α-==于是()()()()cos cos 2cos 2cos sin 2sin αb αb ααb ααb α+=+-=---éùëûææ==ççççèè5,24αb πéù+Îπêúëû,则74αb π+=.故选:B.14.)sin20tan50=oo ( )A .12B .2C D .1【来源】安徽省宣城市泾县中学2021-2022学年高一下学期第一次月考数学试题【答案】D 【解析】原式()()()2sin 20sin 50602sin 20sin 9020cos50cos 9050++===-oooooooo o 2sin 20cos 20sin 401sin 40sin 40===o o o o o.故选:D.15.若1cos ,sin(),0722ππααb αb =+=<<<<,则角b 的值为( )A .3πB .512πC .6πD .4π【来源】陕西省西安中学2021-2022学年高一下学期期中数学试题【答案】A 【解析】∵0,022ππαb <<<<,0αb π\<+<,由1cos 7α=,()sin αb +=sin α=,11cos()14αb +=±,若11cos()14αb +=,则sin sin[()]b αb α=+-sin()cos cos()sin αb ααb α=+-+1110714=-<,与sin 0b >矛盾,故舍去,若11cos()14αb +=-,则cos cos[()]b αb α=+-cos()cos sin()sin αb ααb α=+++111147=-´+12=,又(0,)2πb ÎQ ,3πb \=.故选:A.161712πα<<,且7cos 268παæö+=-ç÷ø,则αö=÷ø( )A .B .CD .14-【来源】河南省南阳地区2021-2022学年高一下学期期终摸底考试数学试题【答案】A【解析】由27cos 212sin 6128ππααæöæö+=-+=-ç÷ç÷èøèø,得215sin 1216παæö+=ç÷èø.因为7171212ππα<<,所以233122πππα<+<,所以sin 12παææö+Î-çç÷çèøè,所以sin 12παæö+=ç÷èø所以5cos cos sin 1221212ππππαααæöæöæöæö-=-+=+=ç÷ç÷ç÷ç÷èøèøèøèø故选:A17.已知sin cos αα-=π£,则sin 2æçè )A C .D 【来源】湖北省新高考联考协作体2021-2022学年高一下学期期末数学试题【答案】D【解析】:因为sin cos αα-=()22sin cos αα-=,即222sin 2sin cos cos 5αααα-+=,即21sin 25α-=,所以3sin 25α=,又sin cos 4παααæö--=ç÷èø即sin 4παæö-=ç÷èø因为0απ££,所以3444πππα-£-£,所以044ππα<-£,即42ππα<£,所以22παπ<£,所以4cos 25α==-,所以sin 2sin 2cos cos 2sin333πππαααæö-=-ç÷èø314525æö=´--=ç÷èø;故选:D18.若10,0,cos ,cos 224342ππππb αb αæöæö<<-<<+=-=ç÷ç÷èøèøcos 2b αæö+=ç÷èø( )A B .C D .【来源】广东省佛山市顺德区乐从中学2021-2022学年高一下学期期中数学试题【答案】C 【解析】cos cos cos cos sin sin 2442442442b ππb ππb ππb ααααéùæöæöæöæöæöæöæö+=+--=+-++-ç÷ç÷ç÷ç÷ç÷ç÷ç÷êúèøèøèøèøèøèøèøëû,因为0,022ππαb <<-<<所以3,444πππαæö+Îç÷èø,,4242πb ππæö-Îç÷èø,因为1cos 43παæö+=ç÷èø,cos 42πb æö-=ç÷èø所以sin 4παæö+=ç÷èø,sin 42πb æö-=ç÷èø则1cos 23b αæö+==ç÷èøC19.已知πcos sin 6ααæö-+ç÷èø,则2πcos 3αæö+ç÷èø的值是( )A .45-B .45C .D 【来源】广东省汕尾市2021-2022学年高一下学期期末数学试题【答案】A【解析】由πcos sin 6ααæö-+=ç÷èøππ3πcos cossin sin sin sin 6623ααααααæö++=+=-=ç÷èø所以,π4cos 35αæö-=ç÷èø,所以,2πππ4cos cos πcos 3335αααæöæöæöæö+=--=--=-ç÷ç÷ç÷ç÷èøèøèøèø.故选:A.20.已知,2παπæöÎç÷ø,且25,则cos()α-=( )A B C D 【来源】陕西省商洛市2021-2022学年高一下学期期末数学试题【答案】C【解析】因为,2παπæöÎç÷èø,所以35,444πππαæö+Îç÷èø.又2sin 45παæö+=ç÷èø,所以cos 4παæö+==ç÷èøcos()cos cos cos cos sin sin 444444ππππππαααααéùæöæöæö-==+-=+++=ç÷ç÷ç÷êúèøèøèøëû故选:C.二、多选题21.对于函数()sin 22f x x x =,下列结论正确的是( )A .()f x 的最小正周期为πB .()f x 的最小值为2-C .()f x 的图象关于直线6x π=-对称D .()f x 在区间,26ππæö--ç÷èø上单调递增【来源】湖北省部分普通高中联合体2021-2022学年高一下学期期中联考数学试题【答案】AB【解析】()1sin 222(sin 22)2sin(223f x x x x x x π==+=+,22T ππ==,A 正确;最小值是2-,B 正确;()2sin()0633f πππ-=-+=,C 错误;(,)26x ππÎ--时,22(,0)33x ππ+Î-,232x ππ+=-时,()f x 得最小值2-,因此函数不单调,D 错误,故选:AB .22 )A .222cos2sin 1212ππ-B .1tan151tan15+°-°C .cos 75°°D .cos15°°【来源】江西省南昌市第十中学2021-2022学年高一下学期期中考试数学试题【答案】ABC【解析】A :222cos 2sin 2cos12126πππ-==B :1tan15tan 45tan15tan 601tan151tan 45tan15+°°+°==°=-°-°°C :cos 75sin1530°°=°°=°=,符合;D :cos152sin(3015)2sin15°°=°-°=°¹.故选:ABC23.已知函数2()cos sin 222x x xf x =-,则下列结论正确的有( )A .()f x 的最小正周期为4πB .直线23x π=-是()f x 图象的一条对称轴C .()f x 在0,2πæöç÷èø上单调递增D .若()f x 在区间,2m πéù-êúëû上的最大值为12,则3m π³【来源】江苏省南京师范大学附属中学2021-2022学年高一下学期期中数学试题【答案】BD【解析】:()21cos 1cos sin sin 222262x x x x f x x x π-æö=-=-=+-ç÷èø,所以()f x 的最小正周期为2,π故A 不正确;因为2362πππ-+=-,所以直线23x π=-是()f x 图象的一条对称轴,故B 正确;当02x π<<时,2+663x πππ<<,而函数sin y x =在2,63ππæöç÷èø上不单调,故C 不正确;当2x m π-££时,++366x m πππ-££,因为()f x 在区间,2m πéù-êúëû上的最大值为12,即11sin 622x πæö+-£ç÷èø,所以sin 16x πæö+£ç÷èø,所以+62m ππ³,解得3m π³,故D 正确.故选:BD.24.已知函数22()cos cos sin (0)f x x x x x ωωωωω=+->的周期为π,当π[0]2x Î,时,()f x 的( )A .最小值为2-B .最大值为2C .零点为5π12D .增区间为π06éùêúëû,【来源】江苏省徐州市2021-2022学年高一下学期期中数学试题【答案】BCD【解析】22()cos cos sin (0)f x x x x x ωωωωω=+->2cos 2x xωω=+2sin 26x πωæö=+ç÷èø,因为()f x 的周期为π,所以22ππω=,得1ω=,所以()2sin 26f x x πæö=+ç÷èø,当π[02x Î,时,72,666x πππéù+Îêúëû,所以1sin 2126x πæö-£+£ç÷èø,所以12sin 226x πæö-£+£ç÷èø,所以 ()f x 的最小值为1-,最大值为2,所以A 错误,B 正确,由()2sin 206f x x πæö=+=ç÷èø,72,666x πππéù+Îêúëû,得26x ππ+=,解得512x π=,所以()f x 的零点为5π12,所以C 正确,由2662x πππ£+£,得06x π££,所以()f x 的增区间为π06éùêëû,,所以D 正确,故选:BCD25.关于函数()cos 2cos f x x x x =-,下列命题正确的是( )A .若1x ,2x 满足12πx x -=,则()()12f x f x =成立;B .()f x 在区间ππ,63éù-êúëû上单调递增;C .函数()f x 的图象关于点π,012æöç÷èø成中心对称;D .将函数()f x 的图象向左平移7π12个单位后将与2sin 2y x =的图象重合.【来源】广东省佛山市顺德区第一中学2021-2022学年高一下学期期中数学试题【答案】ACD【解析】()1cos 2cos cos 222cos 222f x x x x x x x x æö=-==ç÷ç÷èøπ2cos 23x æö=+ç÷èø,对于A ,若1x ,2x 满足12πx x -=,则()()()1222ππ2cos 2π2cos 233f x x x f x éùæö=++=+=ç÷êúëûèø成立,故A 正确;对于B ,由ππ2π22π2π,3k x k k Z +£+£+Î,得:π5πππ,36k x k k +££+ÎZ ,即()f x 在区间π5π,36éùêúëû上单调递增,故B 错误;对于C ,因为πππ2cos 2012123f æöæö=´+=ç÷ç÷èøèø,所以函数()f x 的图象关于点π,012æöç÷èø成中心对称,故C 正确;对于D ,将函数()f x 的图象向左平移7π12个单位后得到7π7ππ3π2cos 22cos 22sin 2121232y f x x x x éùæöæöæö=+=++=+=ç÷ç÷ç÷êèøèøèøëû,其图象与2sin 2y x =的图象重合,故D 正确.故选:ACD三、解答题26.求下列各式的值(1)cos54cos36sin54sin36×-×o o o o (2)sin7cos37cos(7)sin(37)×+-×-o o o o (3)ππcos sin 1212×(4)22ππsincos 88-【来源】黑龙江省鸡西市第四中学2021-2022学年高一上学期期末考试数学试题【答案】(1)0;(2)12-;(3)14;(4)【解析】(1)cos54cos36sin54sin36cos(5436)cos900×-×=+==o o o o o o o .(2)sin7cos37cos(7)sin(37)sin7cos37cos7sin37×+-×-=×-×o o o o o o o o1sin(737)sin(30)2=-=-=-o o o .(3)ππ1π1cossin sin 1212264×==.(4)22πππsin cos cos 884-=-=27.已知3sin 5α=,其中2απ<<π.(1)求tan α;(2)若0,cos 2πb b <<=()sin αb +的值.【来源】广东省珠海市2021-2022学年高一下学期期末数学试题(A 组)【答案】(1)34-(2)【解析】(1)由3sin 5α=可得4cos 5α==±,因为2απ<<π,故4cos 5α=-,进而sintan cos ααα==(2)π0,cos 2b b <<,故sinb =;()34sin =sin cos cos sin 55αb αb αb ++=28.已知角α为锐角,2πb απ<-<,且满足1tan23=α,()sin b α-(1)证明:04πα<<;(2)求b .【来源】江西省名校2021-2022学年高一下学期期中调研数学试题【答案】(1)证明见解析(2)3.4πb =【解析】(1)证明:因为1tan23α=,所以2122tan332tan 1tan 1441tan 129απαα´===<=--,因为α为锐角且函数tan y x =在0,2πæöç÷èø上单调递增,所以04πα<<(2)由22sin 3tan cos 4sin cos 1αααααì==ïíï+=î,结合角α为锐角,解得3sin 5α=,4cos 5α=,因为2πb απ<-<)=所以()cos b α-==()()()sin sinsin cos cos sin b αbααb ααbαéù=+-=-+-ëû3455æ=´+=çè又5224πππαb πα<+<<+<,所以3.4πb =29.已知α,b 为锐角,πsin 3αæö-=ç÷èø()11cos 14αb +=-.(1)求cos α的值;(2)求角b .【来源】江苏省南京市六校联合体2021-2022学年高一下学期期末数学试题【答案】(1)17(2)π3【解析】(1)因为π0,2αæöÎç÷èø,所以ππ336παæö-Îç÷ø-,,又πsin 3αæö-=ç÷èø所以π13cos 314αæö-===ç÷èø所以ππcos =cos +33ααéùæö-ç÷êúèøëûππππ1cos cos sin sin =33337ααæöæö=---ç÷ç÷èøèø(2)因为α,b 为锐角,所以0αb <+<π,则()sin 0αb +>,因为()11cos 14αb +=-,所以()sin αb +==又α为锐角,1cos 7α=,所以sin α==故()()()sin sin sin cos cos sin b αb ααb ααb α=+-=+-+éùû111714=+=因为b 为锐角,所以π3b =.30.已知sincos22αα-=(1)求sin α的值;(2)若αb ,都是锐角,()3cos 5αb +=,求sin b 的值.【来源】湖北省部分市州2021-2022学年高一下学期7月期末联考数学试题【答案】(1)12【解析】(1)解:2221sin cos sin 2sin cos cos 1sin 2222222a ααααααæö-=-+=-=ç÷èø,1sin 2a =.(2)因为αb ,都是锐角,所以0αb <+<π,()4sin 5αb +==,1sin cos 2a a =Þ=,()()()43sin cos c s 1si o 55n sin sin 2αb ααb ααb b α=+=+-=+-=´éùëû31.已知tan ,tan αb 是方程23570x x +-=的两根,求下列各式的值:(1)()tan αb +(2)()()sin cos αb αb +-;(3)()cos 22αb +.【来源】江苏省泰州市兴化市楚水实验学校2021-2022学年高一下学期阶段测试一数学试题【答案】(1)12-(2)54(3)35【解析】(1)由题意可知:57tan tan ,tan tan 33αb αb +=-=-()5tan tan 13tan 71tan tan 213αb αb αb -++===--+(2)()()5sin sin cos cos sin tan tan 537cos cos cos sin sin 1tan tan 413αb αb αb αb αb αb αb αb -+++====-++-(3)()22222211cos ()sin ()1tan ()34cos 221cos ()sin ()1tan ()514αb αb αb αb αb αb αb -+-+-++====++++++。

高一数学三角函数三角恒等变换解三角形试题答案及解析

高一数学三角函数三角恒等变换解三角形试题答案及解析

高一数学三角函数三角恒等变换解三角形试题答案及解析1.已知△ABC的平面直观图△是边长为a的正三角形,则原△ABC的面积为()A.B.C.D.【答案】D【解析】三角形由平面图形转化到直观图形时,位于上的边长不变,位于轴上的长度减半,因此直观图与平面图比较底边长不变,高为平面图高的倍,【考点】平面图形的直观图2.下列函数中,最小正周期为π的偶函数为A.B.C.D.【答案】D【解析】A中函数为奇函数;B中函数最小周期为;C中由函数图像可知函数不具有周期性;D中函数周期为,且为偶函数【考点】三角函数的周期性奇偶性3.(本小题满分12分)在中,角的对边分别为,且.(1)求的值;(2)若成等差数列,且公差大于0,求的值.【答案】(1);(2).【解析】(1)根据正弦定理,将边化为角,直接求得;(2)因为三边成等差数列,所以,同样根据正弦定理,将边化角得到,第二步,考虑两角和的公式,所以将,两个式子平方相加能够解得,第三步,考虑的大小关系,得到.试题解析:(1)由,根据正弦定理得,所以(2)由已知和正弦定理以及(1)得①设,②①2+②2,得③代入③式得因此【考点】1.正弦定理;2.两角和的余弦公式.4.如果,那么的值为()A.-2B.2C.-D.【答案】C【解析】上下同时除以,得到:,解得.【考点】同角三角函数基本关系式5.将函数的图象沿轴向左平移个单位后,得到一个偶函数的图象,则的一个可能取值为A.B.C.0D.-【答案】B【解析】平移个单位得到,令知满足,故选B.【考点】三角函数的图像与性质.6.(本小题满分12分)已知.(1)若且=l时,求的最大值和最小值,以及取得最大值和最小值时x的值;(2)若且时,方程有两个不相等的实数根,求b的取值范围及的值.【答案】(1)(2),或【解析】第一问首先利用数量积的坐标运算公式以及倍角公式,两角和的正弦公式化简f(x),再利用得,结合三角函数的图像性质得,第二问要使方程有两个不相等的实数根,须满足,,试题解析:解:当且=l时,当且时,且而,要使方程有两个不相等的实数根,须满足----12分又【考点】向量的数量积公式,倍角公式,两角和的正弦公式,三角函数的图像性质.7.计算的值是.【答案】【解析】【考点】两角和与差的正弦公式8.把函数的图像经过变化而得到的图像,这个变化是()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位【答案】B【解析】,与比较可知:只需将向右平移个单位即可【考点】三角函数化简与平移9.已知角的终边过点,则的值是()A.1B.C.D.-1【答案】C【解析】,,,所以原式等于.【考点】三角函数的定义10.的最大值为()A.B.C.1D.2【答案】C【解析】函数可化为,显然最大值为1,故选C【考点】•辅助角公式 三角函数求最值11.(本小题满分12分)已知,.(1)求及的值;(2)求满足条件的锐角.【答案】(1),;(2)【解析】(1)由同角三角函数的基本关系及角的范围即可求出,再由倍角公式及角的范围即可求出。

高一数学三角恒等变换试题答案及解析

高一数学三角恒等变换试题答案及解析

高一数学三角恒等变换试题答案及解析1.已知,则【答案】【解析】由,因此,.【考点】(1)诱导公式的应用;(2)同角三角函数的基本关系.2.已知0<β<<α<π,且,,求cos(α+β)的值.【答案】.【解析】(1)三角函数的给值求值的问题一般是正用公式将“复角”展开,看需要求相关角的哪些三角函数值,然后根据角的范围求出相应角三角函数值,代入展开即可,注意角的范围;(2)利用两角和正弦公式和降幂公式化简,要熟练掌握公式,不要把符号搞错,很多同学化简不正确;(3)求解较复杂三角函数的最值时,首先化成形式,在求最大值或最小值,寻求角与角之间的关系,化非特殊角为特殊角;正确灵活运用公式,通过三角变换消去或约去一些非特殊角的三角函数值,注意题中角的范围.试题解析:解:,,∴==,sin==,∴==+sin sin=×+×=,∴(α+β)=2-1=2×-1=-.【考点】根据三角函数值求值.3.若,则,则的值为()A.B.C.D.【答案】D【解析】,因为,所以,平方得:,故选择D.【考点】三角恒等变换中的求值.4.已知,,且为锐角,则___________.【答案】【解析】由,两式平方相加得:,即有,由为锐角,且,知,从而得,因此,所以,观察式子的结构特点,注意解题技巧的积累.【考点】三角恒等变换之一:求值.5.设且则()A.B.C.D.【答案】C【解析】由,又,,故,即.故选C.【考点】二倍角公式的应用.6.已知,且.(1)求的值;(2)求的值.【答案】(1);(2)【解析】(1)=;(2)因为,由已知易求出,,则.试题解析:(1)原式=,则【考点】1.三角恒等变换;2.三角函数的和角公式与差角公式7.已知向量,,,.(Ⅰ)若,求函数的值域;(Ⅱ)若关于的方程有两个不同的实数解,求实数的取值范围.【答案】(Ⅰ)函数的值域为;(Ⅱ)实数的取值范围为.【解析】(Ⅰ)将向量语言进行转换,将问题转化为三角问题,通过换元进一步将问题转化为二次函数在给定区间上的值域问题,从而得以解决;(Ⅱ)通过换元将问题转化为一元二次方程根的分布问题,通过数形结合,最终归结为解一个不等式组的问题.试题解析:(Ⅰ) 1分,,, 2分,,, 3分,, 4分,又,, 6分(Ⅱ)由得,令,,则,关于的方程有两个不同的实数解,,在有两个不同的实数解, 8分令,则应有11分解得 14分【考点】三角恒等变换及三个二次的综合应用.8.设a=(sin56°-cos56°), b=cos50°·cos128°+cos40°·cos38°,c= (cos80°-2cos250°+1),则a,b,c的大小关系是 ( ).A.a>b>c B.b>a>c C.c>a>b D.a>c>b【答案】B.【解析】因为,,,又因为在内余弦函数单调递减,所以,即c<a<b.【考点】辅助角公式(化一公式),诱导公式,两角和的余弦公式,二倍角的余弦公式,余弦函数单调性.9.求值: ___________.【答案】.【解析】.【考点】三角恒等变形.10. (cos- sin) (cos+sin)= ()A.B.C.D.【解析】显然上式满足平方差公式,所以其等于,发现符合余弦二倍角公式,所以等于.【考点】三角化简.11. 4 sin.cos =_________.【答案】1【解析】根据正弦二倍角公式,可得.【考点】正弦二倍角公式.12.已知,(1)求;(2)求。

高一数学(必修一)《第五章 三角恒等变换》练习题及答案解析-人教版

高一数学(必修一)《第五章 三角恒等变换》练习题及答案解析-人教版

高一数学(必修一)《第五章 三角恒等变换》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.已知2tan 5α=-,则1sin 2cos 2αα+=( ) A .1318B .522 C .37-D .372.若1sin 84x π⎛⎫-= ⎪⎝⎭,则sin 24x π⎛⎫+= ⎪⎝⎭( )A .14-BC .78D .3.已知sin cos αβ+=cos sin αβ+sin()αβ+=( )A .12B C .12- D .4.sin cos 44ππαβ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭化为和差的结果是( )A .11sin()cos()22αβαβ++-B .11cos()sin()22αβαβ++-C .11sin()sin()22αβαβ++- D .11cos()cos()22αβαβ++-5.已知()11cos 3cos cos 42πππαα⎛⎫⎛⎫+=-+ ⎪⎪⎝⎭⎝⎭,则cos2=α( )A B .13- C .23- D .136.0000cos80cos130sin100sin130-等于A B .12C .12-D .7.已知25cos2cos αα+=,()4cos 25αβ+=与0,2πα⎛⎫∈ ⎪⎝⎭和3,22πβπ⎛⎫∈ ⎪⎝⎭,则cos β的值为( )A .45- B .44125C .44125-D .458.已知π2cos()33α+=,则πsin()6α-=( )A B . C .23-D .139.图象为如图的函数可能是( )A .()sin(cos )f x x =B .()sin(sin )f x x =C .()cos(sin )f x x =D .()cos(cos )f x x =二、填空题10.数列{}n a 的通项公式为[]2log n a n n =+,其中[]x 表示不超过x 的最大整数,则{}n a 的前32项和为__________.11.已知,2παπ⎛⎫∈ ⎪⎝⎭,且()23cos sin 210απα++=,则tan α=__________.12.已知1sin 3α=,cos()1αβ+=-则sin(2)αβ+=______.13.已知sin 2πααπ<<,则tan α=______________. 14.已知角0,2πθ⎛⎫∈ ⎪⎝⎭对任意的x ∈R ,()()2213cos 4sin 122x x x θθ+≥⋅恒成立,则θ的取值范围是_____.三、解答题15.已知函数()()1tan cos f x x x =+⋅(1)若44f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,求tan x ;(2)若,02πα⎛⎫∈- ⎪⎝⎭时,则()f α=,求cos2α.16.已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且2A C =.(1)若a c =,求cos B 的大小; (2)若1b =,3c =求sin A .17.已知函数22π()sin 2cos sin ,6f x x x x x ⎛⎫=+-+∈ ⎪⎝⎭R .(1)求()f x 求函数的最小正周期及对称中心. (2)求函数()y f x =在π0,2x ⎡⎤∈⎢⎥⎣⎦值域.18.ABC 的内角,,A B C 的对边分别为,,a b c ,已知()sin sin cos cos 2cos a A B c A a A b B +=+ (1)求B ;(2)若6b AB CB =⋅=,求ABC 的周长19.已知向量(sin ,cos 1)a x x =-,(3cos ,cos 1)b x x =+和1()2f x a b =⋅+. (1)求函数的最小正周期T 及单调递增区间; (2)若ππ,63x ⎡⎤∈-⎢⎥⎣⎦,求函数()f x 的值域.四、双空题 20.已知4sin 5α,且α是第二象限角,则cos α=______;sin 2α=_______. 参考答案与解析1.D【分析】结合二倍角公式,将所求表达式转化为只含tan α的式子,由此求得正确答案. 【详解】原式222222cos sin 2sin cos 1tan 2tan cos sin 1tan ααααααααα++++==-- 4491932552542121712525+-====-. 故选:D 2.C【分析】利用诱导公式和二倍角公式可得解.【详解】1sin 84x π⎛⎫-= ⎪⎝⎭sin 2sin 2cos 2cos 244248x x x x πππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫∴+=-+=-=- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦2712sin 88x π⎛⎫=--= ⎪⎝⎭故选:C . 3.A【分析】将两个已知等式两边平方相加,再根据两角和的正弦公式可求出结果.【详解】由sin cos αβ+=225sin cos 2sin cos 4αβαβ++⋅=由cos sin αβ+=227cos sin 2cos sin 4αβαβ++⋅=两式相加得22(sin cos cos sin )3αβαβ++=,得1sin()2αβ+=.故选:A 4.B【分析】利用积化和差公式()()1sin cos sin sin 2αβαβαβ⎡⎤=++-⎣⎦化简即可. 【详解】解:原式1sin sin()22παβαβ⎡⎤⎛⎫=+++- ⎪⎢⎥⎝⎭⎣⎦11cos()sin()22αβαβ=++-. 故选:B .【点睛】本题考查积化和差公式的应用,属于基础题. 5.B【分析】首先根据诱导公式以及同角三角函数的基本关系求得tan α=再根据二倍角公式以及“1”的代换求得cos2α.【详解】由诱导公式化简原式,得cos 2αα-=,故tan α=所以22222222cos sin 1tan 1cos 2cos sin sin cos tan 13ααααααααα--=-===-++. 故选:B . 6.D【详解】试题分析:原式3cos80cos130sin 80sin130cos(80130)cos(18030)2=-=+=+=-. 考点:三角恒等变换. 7.B【解析】先根据二倍角余弦公式求cos α,解得cos2α,最后根据两角差余弦公式得结果.【详解】2125cos2cos 10cos cos 30cos 2ααααα+=∴--=∴=-或35因为0,2πα⎛⎫∈ ⎪⎝⎭,所以3cos 5α=22443247sin ,sin 22,cos 2cos sin 5552525ααααα∴==⨯⨯==-=-,42ππα⎛⎫∴∈ ⎪⎝⎭()()43cos 2,2(2,3)sin 255αβαβππαβ+=+∈∴+=cos cos(22)cos(2)cos 2sin(2)sin 2βαβααβααβα∴=+-=+++4732444525525125=-⨯+⨯=故选:B【点睛】本题考查二倍角余弦公式、两角差余弦公式,考查基本分析求解能力,属中档题. 8.C【分析】利用诱导公式化简变形可得结果【详解】解:因为π2cos()33α+=所以π2sin()sin cos cos 662633ππππαααα⎡⎤⎛⎫⎛⎫⎛⎫-=--=---=-+=-⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ 故选:C 9.A【分析】从特殊的函数(0)f 为最大值排除两个选项,再由余弦函数性质确定函数值的正负排除一个选项后得正确结论.【详解】因为(0)f 为最大值,排除BD ;又因为cos(sin )0x >,排除C . 故选:A . 10.631【分析】由[]22log [log ]n a n n n n =+=+,分析n 的不同取值对应的2[log ]n 的取值情况,分组求和即得解 【详解】由题意[]22log [log ]n a n n n n =+=+ 当1n =时,则2[log ]0n =; 当2,3n =时,则2[log ]1n =; 当4,5,6,7n =时,则2[log ]2n =; 当8,9,10,...,15n =时,则2[log ]3n =; 当16,17,18,...,31n =时,则2[log ]4n =; 当32n =时,则2[log ]5n =; 故{}n a 的前32项和为:3212...32102142831645S =++++⨯+⨯+⨯+⨯+⨯+(132)321035281036312+⨯=+=+= 故答案为:631 11.-7【详解】22221tan 131cos 232tan 31tan cos sin(2)sin 21021021tan 10αααααπααα-+++++=∴-=∴-=∴+ tan 7,tan 1αα=-= (舍).12.13-【分析】先由cos()1αβ+=-,得sin()0αβ+=,再由sin(2)sin()sin cos()+cos sin()αβααβααβααβ+=++=⋅+⋅+即可求出结果.【详解】因cos()1αβ+=-,得sin()0αβ+=所以1sin(2)sin()sin cos()+cos sin()3αβααβααβααβ+=++=⋅+⋅+=-.【点睛】本题主要考查三角函数的两角和差化积公式,熟记公式即可,属于常考题型. 13.-2【分析】利用同角的三角函数中的平方和关系求出cos α,再利用同角的三角函数关系中的商关系求出tan α即可.【详解】2sin sin cos tan 22cos παααπααα=<<∴===-. 【点睛】本题考查了同角三角函数关系中的平方和关系和商关系,考查了角的余弦值的正负性的判断,考查了数学运算能力. 14.5,1212ππ⎡⎤⎢⎥⎣⎦【分析】根据题意转化为22341()cos ()sin 432x x θθ+≥在0,2πθ⎛⎫∈ ⎪⎝⎭上恒成立,利用基本不等式求得2234()cos ()sin sin 243x x θθθ+≥,得到1sin 22θ≥,结合三角函数的性质,即可求解.【详解】由()()2213cos 4sin 122x x x θθ+≥⋅,即()()2213cos 4sin 324x xx x θθ+≥⋅⋅即22341()cos ()sin 432x x θθ+≥在0,2πθ⎛⎫∈ ⎪⎝⎭上恒成立又由2234()cos ()sin 2sin cos sin 243x x θθθθθ+≥=所以1sin 22θ≥又因为0,2πθ⎛⎫∈ ⎪⎝⎭,可得()20,θπ∈,所以5266ππθ≤≤,解得51212ππθ≤≤即θ的取值范围是5[,]1212ππ.故答案为:5[,]1212ππ.15.(1)tan 1x =(2)9【分析】(1)根据同角三角函数的关系、两角和正弦公式、诱导公式化简即可求解; (2)根据角的变换及两角差的正弦公式,二倍角的余弦公式计算即可求解. (1) ()sin cos 4f x x x x π⎛⎫=++ ⎪⎝⎭由44f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭2x x π⎛⎫=+ ⎪⎝⎭即有sin cos x x =,所以tan 1x =. (2)由()43f παα⎛⎫=+= ⎪⎝⎭1sin 43πα⎛⎫+= ⎪⎝⎭∵,02πα⎛⎫∈- ⎪⎝⎭∴,444πππα⎛⎫+∈- ⎪⎝⎭∴cos 4πα⎛⎫+= ⎪⎝⎭∴4sin sin 446ππαα⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦故22cos 212sin 12αα=-=-⨯=⎝⎭16.(1;(2. 【分析】(1)由正弦定理求出cos C ,进而求得sin C 、sin A 及cos A ,再利用和角公式即可得解;(2)由(1)结合余弦定理求得a ,进而求得cos C 及sin C 即可得解. 【详解】(1)ABC 中由正弦定理可得sin sin 22cos sin sin a A CC c C C===所以cos C =,sin C =和sin 2sin cos A C C ==221cos cos sin 3A C C =-=-所以cos cos()B A C =-+cos cos sin sin A C A C =-+13= (2)由(1)可知2cos aC c=,所以2cos 6cos a c C C ==由余弦定理可知222cos 2a b c C ab +-=282a a -=,于是2862a a a a -=⋅⇒=则cos C =,sin C =所以sin 2sin cos A C C =2==17.(1)π ππ,0,Z 212k k ⎛⎫+∈ ⎪⎝⎭(2)1,12⎡⎤-⎢⎥⎣⎦.【分析】(1)由三角恒等变换可得正弦型三角函数,据此求周期、对称中心即可; (2)利用整体代换法求正弦函数的值域即可. (1)1()2co πs 2cos 2sin 226f x x x x x ⎛⎫=+-=- ⎪⎝⎭ 所以函数的最小正周期为2ππ2= ()sin 26πf x x ⎛⎫=- ⎪⎝⎭,令π2π6x k -=解得ππ212k x =+ ∴()f x 的对称中心是ππ,0,Z 212k k ⎛⎫+∈ ⎪⎝⎭(2)令π26t x =-由π0,2x ⎡⎤∈⎢⎥⎣⎦,则ππ5π2,666t x ⎡⎤=-∈-⎢⎥⎣⎦则1()12f x ≤-≤所以()y f x =的值域是1,12⎡⎤-⎢⎥⎣⎦.18.(1)3B π=;(2)【分析】(1)根据()sin sin cos cos 2cos a A B c A a A b B +=+,利用正弦定理结合两角和与差的三角函数化简为2sin cos sin B B B =求解;(2)利用余弦定理得到()2312a c ac +-=,然后由6AB CB ⋅=求得ac 代入即可. 【详解】(1)因为 ()sin sin cos cos 2cos a A B c A a A b B +=+ 所以()sin sin cos cos cos 2cos a A B A B c A b B -+= 所以cos()cos 2cos a A B c A b B -++= 所以cos cos 2cos a C c A b B +=由正弦定理得sin cos sin cos 2sin cos A C C A B B += 整理得()sin 2sin cos sin A C B B B +== 因为在ABC 中所以sin 0B ≠,则2cos 1B = 所以3B π=(2)由余弦定理得 2222cos b a c ac B =+-即()2312a c ac +-=因为1cos 62AB CB BA BC ac B ac ⋅=⋅=== 所以12ac = 所以()23612a c +-=解得a c +=所以ABC 的周长是【点睛】方法点睛:在解有关三角形的题目时,则要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则则考虑用正弦定理;以上特征都不明显时,则则要考虑两个定理都有可能用到. 19.(1)πT = πππ,π36k k ⎡⎤-++⎢⎥⎣⎦Z k ∈;(2)1,12⎡⎤-⎢⎥⎣⎦.【分析】(1)根据平面向量数量积的坐标表示公式,结合降幂公式、辅助角公式、二倍角公式、正弦型函数的最小正周期公式以及单调性进行求解即可;(2)利用换元法,结合正弦型函数的最值性质进行求解即可. (1)由211()3sin cos cos 22f x a b x x x =⋅+=+-1π2cos 2sin 226x x x ⎛⎫=+=+ ⎪⎝⎭ 故函数()f x 的最小正周期πT = 当πππ2π22π(Z)262k x k k -≤+≤+∈时,则函数单调递增 解得ππππ36k x k -+≤≤+ Z k ∈函数的单调递增区间为πππ,π36k k ⎡⎤-++⎢⎥⎣⎦Z k ∈;(2)π()sin 26f x x ⎛⎫=+ ⎪⎝⎭,ππ,63x ⎡⎤∈-⎢⎥⎣⎦令π26t x =+,则sin y t =,π5π,66t ⎡⎤∈-⎢⎥⎣⎦所以当π6t =-即π6x =-时,则min 1()2 f x =-当π2t =即π6x =时,则min ()1 f x =故函数()f x 的值域为1,12⎡⎤-⎢⎥⎣⎦.20.352425-【分析】根据正余弦恒等式求出cos α,再利用二倍角的正弦公式求出sin 2α. 【详解】因为4sin 5α,且α是第二象限角所以3cos 5α==-4324sin 22sin cos 25525ααα⎛⎫==⨯⨯-=- ⎪⎝⎭.故答案为:352425-。

高一数学三角恒等变换试题答案及解析

高一数学三角恒等变换试题答案及解析

高一数学三角恒等变换试题答案及解析1.已知,化简+=A.-2cos B.2cos C.-2sin D.2sin【答案】C【解析】因为,所以,,从而===--()=-2sin,故选C。

【考点】本题主要考查二倍角的正弦公式。

点评:此类问题是高考考查的重点内容之一。

本题中注意“1”的代换,讨论角的范围,确定得到是化简的关键。

2.已知sin=,cos=-,则角是A.第一象限角B.第二象限角C.第三象限角D.第四象限角【答案】D【解析】因为sin=,cos=-<0,所以是第二象限角,且,所以,角是第四象限角,选D。

【考点】本题主要考查任意角的三角函数、象限角。

点评:的终边所在位置与的终边所在位置,存在一定结论,根据函数值进一步缩小角的范围,是解题的关键。

3.若是方程的两个根,则之间的关系是( )A.B.C.D.【答案】B【解析】由题意可知:所以选B。

【考点】本题主要考查两角和的正切公式。

点评:首先利用韦达定理将表示出来,再由两角差的正切公式对其进行化简,从而得出结论。

4.求【答案】【解析】。

【考点】本题主要考查两角和与差的正切公式。

点评:要注意公式的变形使用和逆向使用,注意“1”的代换,配凑公式。

5.求【答案】【解析】由两角和的正切公式可得,,所以=。

【考点】本题主要考查两角和与差的正切公式。

点评:要注意公式的变形使用和逆向使用,注意公式的灵活运用。

6.已知,求证:【答案】【解析】1.解:,在区间内正切值为的角只有1个即,所以【考点】本题主要考查两角和的正切公式。

点评:应用两角和的正切公式先求,结合角的范围及正切函数单调性进一步求角。

此类问题,要特别注意角的范围。

7.若,则_________;=___________.【答案】3,【解析】因为,所以,,所以3【考点】本题主要考查“倍半公式”的应用点评:解题过程中,注意观察已知与所求的差异,灵活选用公式,通过变名、变角、变式,达到解题目的。

8.已知为第四象限角,求的值.【答案】(1)当为第二象限角时,,,(2)当为第四象限角时,,,.【解析】由为第四象限角,得为第二或第四象限角.(1)当为第二象限角时,(2)当为第四象限角时,,,.【考点】本题主要考查“倍半公式”的应用点评:牢记公式是灵活地将进行三角恒等变形的基础。

(完整版)高一必修4三角恒等变换测试题及答案

(完整版)高一必修4三角恒等变换测试题及答案

5山东省莱州一中高一数学试题-三角恒等变换测试题第I 卷、选择题(本大题共 12个小题,每小题5分,共60分)4.已知 tan 3,tan44A-B — C775.,都是锐角,且sin513 3316 A 、 B— 65651 3A 0,1B 1,1C 丄,32 21、cos 24 cos36 cos66 cos54 的值为(3 2. cos 5 ,,sin 212 13是第三象限角,则 cos (33 6563 6556 6516 653. tan 20 tan 40 • 3tan20 tan 40 的值为(5,则 tan 2的值为()11— D — 8 4 8则sin 的值是(55663 C 、 D 、 — 6565C - 3D .3)6., x (34 ,)且 cos x 3 —则cos2x 的值是 54 472424A 、 —B 、 —C 、25 2525251,144 7.函数y sin x cos x 的值域是(8.已知等腰三角形顶角的余弦值等于4,则这个三角形底角的正弦值为()J10 V10 3J10 3J10AB C D10 10 10 109.要得到函数y 2sin 2x的图像,只需将y , 3sin 2x cos2x的图像()A、向右平移一个单位B、向右平移一个单位C向左平移—个单位D向左平移—个单位6 12 6 12 10. 函数y .x sin 、3 cos的图像的一条对称轴方程是( )2 2A、1 5 5x B 、x C 、x D 、x —3 3 3 311. 已知1cosx sin x2,则tanx的值为( )1 cosx sin xA、4B4 3 3、-- C 、 D 、3 34 412若0,—0, 且ta n 「tan -,则2 ( )4 2 7A、5 2 7 3B 、C 、D 、6 3 12 4二、填空题(本大题共 4 小题,每小题5分,共20分.请把答案填在题中的横线上)13. .在ABC中,已知tanA ,tanB是方程3x2 7x 2 0的两个实根,则tanC _______________3sin 2x 2cos 2x 砧14. 已知tanx 2,贝U 的值为_____________________cos2x 3sin 2x15. 已知直线IJ/12, A是"J之间的一定点,并且A点到「J的距离分别为0山2 , B是直线I?上一动点,作AC AB,且使AC与直线|1交于点C,则ABC面积的最小值为___________________ 。

人教版高一数学第三章《三角恒等变换》测试题(A卷)及答案

人教版高一数学第三章《三角恒等变换》测试题(A卷)及答案

高中数学必修4 第三章《 三角恒等变换》测试题A 卷考试时间:100分钟,满分:150分一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分).1.计算1-2sin 222.5°的结果等于 ( )A.12B.22C.33D.32 2.cos39°cos(-9°)-sin39°sin(-9°)等于 ( )A.12B.32 C .-12 D .-323.已知cos ⎝⎛⎭⎫α-π4=14,则sin2α的值为 ( ) A.78 B .-78 C.34 D .-344.若tan α=3,tan β=43,则tan(α-β)等于 ( ) A .-3 B .-13C .3 D.13 5.cos 275°+cos 215°+cos75°·cos15°的值是( )A.54B.62C.32 D .1+23 6.y =cos 2x -sin 2x +2sin x cos x 的最小值是 ( )A. 2 B .- 2 C .2 D .-27.已知sin ⎝⎛⎭⎫α-π3=13,则cos ⎝⎛⎭⎫π6+α的值为 ( ) A.13 B .-13 C.233 D .-2338.3-sin70°2-cos 210°等于 ( ) A.12 B.22 C .2 D.329.把12[sin2θ+cos(π3-2θ)]-s in π12cos(π12+2θ)化简,可得 ( ) A .sin2θ B .-sin2θ C .cos2θ D .-cos2θ10.已知3cos(2α+β)+5cos β=0,则tan(α+β)·tan α的值为 ( )A .±4B .4C .-4D .1二、填空题(每小题6分,共计24分).11.(1+tan17°)(1+tan28°)=________.12.化简3tan12°-3sin12°·(4cos 212°-2)的结果为________. 13.若α、β为锐角,且cos α=110,sin β=25,则α+β=______.14.函数f (x )=sin ⎝⎛⎭⎫2x -π4-22sin 2x 的最小正周期是________. 三、解答题(共76分).15.(本题满分12分)已知cos α-sin α=352,且π<α<32π,求sin2α+2sin 2α1-tan α的值.16.(本题满分12分)已知α、β均为锐角,且cos α=25,sin β=310,求α-β的值.17.(本题满分12分)求证:1sin 210°-3cos 210°=32cos20°.18.(本题满分12分)已知-π2<α<π2,-π2<β<π2,且tan α、tan β是方程x 2+6x +7=0的两个根,求α+β的值.19.(本题满分14分)已知-π2<x <0,sin x +cos x =15,求: (1)sin x -cos x 的值;(2)求3sin 2x 2-2sin x 2cos x 2+cos 2x 2tan x +1tan x 的值.20.(本题满分14分)已知函数f (x )=12sin2x sin φ+cos 2x cos φ-12sin ⎝⎛⎭⎫π2+φ(0<φ<π),其图象过点⎝⎛⎭⎫π6,12.(1)求φ的值;(2)将函数y =f (x )的图象上各点的横坐标缩短到原来的12,纵坐标不变,得到函数y =g (x )的图象,求函数g (x )在⎣⎡⎦⎤0,π4上的最大值和最小值.高中数学必修4 第三章《 三角恒等变换》测试题A 卷参考答案一、 选择题1. 【答案】B. 【解析】 1-2sin 222.5°=cos45°=22,故选B. 2. 【答案】B. 【解析】 cos39°cos(-9°)-sin39°sin(-9°)=cos(39°-9°)=cos30°=32. 3. 【答案】B.【解析】 sin2α=cos(2α-π2)=2cos 2⎝⎛⎭⎫α-π4-1=-78. 4. 【答案】 D【解析】 tan(α-β)=tan α-tan β1+tan αtan β=3-431+3×43=13. 5. 【答案】 A【解析】 原式=sin 215°+cos 215°+sin15°cos15°=1+12sin30°=54. 6. 【答案】 B【解析】y =cos2x +sin2x =2sin(2x +π4),∴y max =- 2. 7. 【答案】B.【解析】 cos ⎝⎛⎭⎫π6+α=sin ⎝⎛⎭⎫π2-π6-α =sin ⎝⎛⎭⎫π3-α=-sin ⎝⎛⎭⎫α-π3=-13. 8.【答案】C.【解析】 3-sin70°2-cos 210°=3-sin70°2-1+cos20°2=2(3-cos20°)3-cos20°=2. 9.【答案】A.【解析】原式=12[cos(π2-2θ)+cos(π3-2θ)]-sin π12cos(π12+2θ)=cos(5π12-2θ)cos π12-sin π12sin(5π12-2θ)=cos[(5π12-2θ)+π12]=cos(π2-2θ)=sin2θ. 10.【答案】C.【解析】 3cos[(α+β)+α]+5cos β=0,即3cos(α+β)cos α-3sin(α+β)sin α+5cos β=0.3cos(α+β)cos α-3sin(α+β)sin α+5cos[(α+β)-α]=0,3cos(α+β)cos α-3sin(α+β)sin α+5cos(α+β)·cos α+5sin(α+β)sin α=0,8cos(α+β)cos α+2sin(α+β)sin α=0,8+2tan(α+β)tan α=0,∴tan(α+β)tan α=-4.二、 填空题11. 【答案】 2【解析】原式=1+tan17°+tan28°+tan17°·tan28°,又tan(17°+28°)=tan17°+tan28°1-tan17°·tan28°=tan45°=1,∴tan17°+tan28°=1-tan17°·tan28°,代入原式可得结果为2.12.【答案】-4 3【解析】3tan12°-3sin12°·(4cos 212°-2)=3tan12°-32sin12°·cos24° =(3tan12°-3)2cos12°2sin12°·cos12°·2cos24°=23sin12°-6cos12°sin48°=43(sin12°·cos60°-cos12°·sin60°)sin48° =-43sin48°sin48°=-4 3. 13.【答案】3π4【解析】∵α、β为锐角,∴sin α=31010,cos β=55,∴cos(α+β)=cos αcos β-sin αsin β =1010×55-31010×255=-22<0,又0<α<π2,0<β<π2,∴π2<α+β<π. ∴α+β=3π4. 14.【答案】π 【解析】f (x )=sin ⎝⎛⎭⎫2x -π4-22sin 2x =sin ⎝⎛⎭⎫2x -π4-2(1-cos2x ) =sin2x cos π4-sin π4cos2x +2cos2x - 2=22sin2x -22cos2x +2cos2x -2 =22sin2x +22cos2x -2=sin ⎝⎛⎭⎫2x +π4-2∴最小正周期为π.三、解答题15. 解: 因为cos α-sin α=325,所以1-2sin αcos α=1825,所以2sin αcos α=725. 又α∈(π,3π2),故sin α+cos α=-1+2sin αcos α=-425, 所以sin2α+2sin 2α1-tan α=(2sin αcos α+2sin 2α)cos αcos α-sin α=2sin αcos α(cos α+sin α)cos α-sin α=725×(-425)325=-2875.16. 解: 已知α、β均为锐角,且cos α=25,则sin α=1-(25)2=15. 又∵sin β=310,∴cos β=1-(310)2=110. ∴sin(α-β)=sin αcos β-cos αsin β=15×110-25×310=-550=-22. 又∵sin α<sin β,∴0<α<β<π2. ∴-π2<α-β<0.∴α-β=-π4. 17. 证明:左边=11-cos20°2-31+cos20°2=21-cos20°-61+cos20°=8cos20°-41-cos 220°=8(cos20°-12)sin 220° =8(cos20°-cos60°)sin 220°=8[cos (40°-20°)-cos (40°+20°)]sin 220°=16sin40°sin20°sin 220°=32sin 220°cos20°sin 220°=32cos20°=右边,∴原式成立. 18. 解: 由题意知tan α+tan β=-6,tan αtan β=7∴tan α<0,tan β<0.又-π2<α<π2,-π2<β<π2, ∴-π2<α<0,-π2<β<0. ∴-π<α+β<0.∵tan(α+β)=tan α+tan β1-tan αtan β=-61-7=1, ∴α+β=-3π4. 19. 解:(1)由sin x +cos x =15,得2sin x cos x =-2425. ∵(sin x -cos x )2=1-2sin x cos x =4925, ∵-π2<x <0.∴sin x <0,cos x >0. ∴sin x -cos x <0.故sin x -cos x =-75. (2)3sin 2x 2-2sin x 2cos x 2+cos 2x 2tan x +1tan x=2sin 2x 2-sin x +1sin x cos x +cos x sin x=sin x cos x ⎝⎛⎭⎫2sin 2x 2-sin x +1 =sin x cos x [2(1-cos 2x 2)-sin x +1)] =sin x cos x ⎝⎛⎭⎫1-2cos 2x 2+2-sin x =sin x cos x (-cos x +2-sin x )=⎝⎛⎭⎫-1225×⎝⎛⎭⎫2-15 =-108125. 20. 解:(1)因为f (x )=12sin2x sin φ+cos 2x cos φ-12sin ⎝⎛⎭⎫π2+φ(0<φ<π), 所以f (x )=12sin2x sin φ+1+cos2x 2cos φ-12cos φ =12sin2x sin φ+12cos2x cos φ =12(sin2x sin φ+cos2x cos φ) =12cos(2x -φ). 又函数图象过点⎝⎛⎭⎫π6,12,所以12=12cos ⎝⎛⎭⎫2×π6-φ,即cos ⎝⎛⎭⎫π3-φ=1. 又0<φ<π,∴φ=π3. (2)由(1)知f (x )=12cos ⎝⎛⎭⎫2x -π3. 将f (x )图象上所有点的横坐标缩短到原来的12,纵坐标不变,变为g (x )=12cos ⎝⎛⎭⎫4x -π3. ∵0≤x ≤π4,∴-π3≤4x -π3≤2π3. 当4x -π3=0,即x =π12时,g (x )有最大值12; 当4x -π3=2π3,即x =π4时,g (x )有最小值-14.。

2023-2024学年高一上数学必修一:三角恒等变换(附答案解析)

2023-2024学年高一上数学必修一:三角恒等变换(附答案解析)
2023-2024 学年高中数学必修一:三角恒等变换
一、选择题(每小题 5 分,共 40 分)
1.cos2π-1的值为( B ) 84
A. 2-1 B. 2+1 C. 2 D. 2
4
4
4
2
解析:cos2π-1=1+cosπ4-1= 2+1.
84
2
44
2.若sinα+cosα=1,则 tan2α等于( B ) sinα-cosα 2
第3页共6页
9.化简 cos(36°+α)cos(α-54°)+sin(36°+α)sin(α-54°)=0.
解析:原式=cos[(36°+α)-(α-54°)]=cos90°=0.
10.如图,在平面直角坐标系中,锐角α,β的终边分别与单位圆
交于
A,B
两点,如果点
A
的纵坐标为3,点 5
B
的横坐标为 5 ,则 13
3- 2. 2
解析:由题可得
f(x)=
22sin
2x-π4
+3,所以最小正周期 2
T=π,
最小值为3- 2. 2
三、解答题(共 45 分)
12.(15 分)求证:ta1ncαo-s2tαanα2=14sin2α. 2
第4页共6页
cos2α
cos2α
cos2α
证明:左边=
1 sinα
-1-cosα sinα
2sin10°cos10°
1cos10°- 3sin10°
2
2

4sins3in02°-0°10°=14.
4.tan13°+tan32°+tan13°tan32°等于( D )
A.- 2 B. 2 C.-1 D.1 22
第1页共6页

高一数学三角函数三角恒等变换解三角形试题答案及解析

高一数学三角函数三角恒等变换解三角形试题答案及解析

高一数学三角函数三角恒等变换解三角形试题答案及解析1.已知是第二象限的角,,则▲.【答案】【解析】略2.的值为 ( )A.B.C.D.【答案】D【解析】略3.已知,求的值。

【答案】解:……………………………5分……10分【解析】略4.在中,边分别为角的对边,若,,则当取最大值时,的面积为 .【答案】【解析】,所以,当时,即时,取得最大值,此时三角形是一直角三角形,,所以三角形的面积【考点】1.正弦定理;2.三角形面积公式5.在中,角、、的对边分别是、、,若,,,则角的大小为【答案】【解析】sinB+cosB=,整体平方可得=2,可推2sinBcosB=sin2B=1得∠B=45度,则sinB=,在三角形ABC中,已知角A,B,C所对边分别为a,b,c,且a=,b=2和∠B=45度,求∠A用正弦定理,,sinA===,A=30°【考点】三角形正弦定理6.(本题12分)已知△ABC的内角A、B、C的对边分别为,向量,且满足.(1)若,求角;(2)若,△ABC的面积,求△ABC的周长.【答案】(1);(2).【解析】(1)首先根据向量数量积的坐标表示出,化简后得到角,然后根据正弦定理,计算出角;(2)第一步,根据面积公式,计算出,第二步,根据余弦定理,,结合,计算出,最后得到周长.试题解析:(1)(2)【考点】1.向量数量积的坐标表示;2.正弦定理;3.余弦定理.7.已知tan α=2,则=____.【答案】【解析】根据诱导公式原式等于,然后再上下同时除以,得到【考点】1.诱导公式;2.同角基本关系式8.已知函数f(x)=sin4ωx-cos4ωx(ω>0)的最小正周期是π,则ω=.【答案】【解析】【考点】三角函数化简及性质9.(本小题满分12分)已知在ABC中,内角A,B,C的对边分别为.且.(Ⅰ)求的值;(Ⅱ)若=,b=2,求的面积S。

【答案】(Ⅰ)2(Ⅱ)【解析】(Ⅰ)中首先利用正弦定理将已知中的边化为角,利用基本的三角函数公式整理出的值;(Ⅱ)中由余弦定理得到的关系式,与(Ⅰ)中得到的关系式结合可求得的值,代入公式求面积试题解析:(Ⅰ)由正弦定理,设则所以即,化简可得又,所以因此 (6)(Ⅱ)由得由余弦定理解得a=1。

高一数学(必修一)《第五章 三角恒等变换》练习题附答案解析-人教版

高一数学(必修一)《第五章 三角恒等变换》练习题附答案解析-人教版

高一数学(必修一)《第五章 三角恒等变换》练习题附答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.已知sin(α+45°)sin2α等于( ) A .-45B .-35C .3 5D .4 52.已知13a =,4log 3b =和sin 210c =︒,则( )A .c a b <<B .c b a <<C .a c b <<D .b c a <<3.()sin cos f x x x =最小值是 A .-1B .12-C .12D .14.关于函数sin cos y x x =+,以下说法正确的是( ) A .在区间0,2π⎛⎫⎪⎝⎭上是增函数B .在区间0,2π⎛⎫⎪⎝⎭上存在最小值C .在区间,02π⎛⎫- ⎪⎝⎭上是增函数D .在区间,02π⎛⎫- ⎪⎝⎭上存在最大值5.函数()22f x cos x sinx =+ 的最小值和最大值分别为( ) A .3,1-B .2,2-C .332-,D .322-,6.将函数()2sin(2)26f x x π=-+向左平移6π个单位后得函数()g x ,则()g x 在20,3π⎡⎤⎢⎥⎣⎦上的取值范围是A .[2,2]-B .[3,4]C .[0,3]D .[0,4]7.sin15sin 75的值为( )A .14B .12C D 8.已知tan α和tan 4πα⎛⎫- ⎪⎝⎭是方程20ax bx c ++=的两个根,则,,a b c 的关系是( )A .b a c =+B .2b a c =+C .c b a =+D .c ab =9.设sin18cos44cos18sin 44a =︒︒︒+︒,2sin 29cos29b =︒︒和cos30c =︒,则有( ) A .c a b <<B .b c a <<C .a b c <<D .b a c <<二、填空题10.若sin 2α=()sin βα-=π,π4α⎡⎤∈⎢⎥⎣⎦和3π,π2β⎡⎤∈⎢⎥⎣⎦,则αβ+的值是________.11.已知角α的终边经过点(3,1)P t ,且3cos()5πα+=,则tan α的值为_________.12.函数44cos sin y x x =-的最小正周期是______ 13.22sin 20cos 50sin 20cos50︒+︒+︒︒=______.14.已知α为第二象限角,sinα+cosαcos2α=________. 15.设α为锐角,若4cos 65πα⎛⎫+= ⎪⎝⎭,则sin(2)12πα+的值为____________.16.已知函数()()sin 0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭,其图象的对称轴与对称中心之间的最小距离为4π,3x π=-是函数()f x 的一个极小值点.若把函数()f x 的图象向右平移()0t t >个单位长度后,所得函数的图象关于点,03π⎛⎫⎪⎝⎭对称,则实数t 的最小值为___________.三、解答题17.已知函数()()sin 2(0),,04f x x πϕϕπ⎛⎫=+<< ⎪⎝⎭是该函数图象的对称中心(1)求函数()f x 的解析式;(2)在ABC 中角,,A B C 的对边分别为,,a b c ,若()1,23f C C π=->和1c =,求2+a b 的取值范围.18.函数()cos()f x A x ωφ=+(其中 0A >,0>ω和||2ϕπ<)的部分图象如图所示,先把函数 ()f x 的图象上的各点的横坐标缩短为原来的12(纵坐标不变),把得到的曲线向左平移4π个单位长度,再向上平移1个单位,得到函数()g x 的图象.(1)求函数()g x 图象的对称中心.(2)当,88x ππ⎡⎤∈-⎢⎥⎣⎦时,则求 ()g x 的值域.(3)当,88x ππ⎡⎤∈-⎢⎥⎣⎦时,则方程 ()()2()230g x m g x m +-+-=有解,求实数m 的取值范围.19.在ABC 中角A ,B ,C 所对边分别为a ,b ,c ,且1b c -=,2cos 3A =和ABC S =△(1)求边a 及sinB 的值;(2)求cos 26C π⎛⎫- ⎪⎝⎭的值.20.求444sin 10sin 50sin 70︒︒︒++的值.21.已知函数()222cos 36f x x x ππ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭ x ∈R .(1)求()6f π的值及()f x 的最小正周期;(2)当[0,]x π∈时,则求函数()f x 的零点所构成的集合.参考答案与解析1.B【分析】利用两角和的正弦函数化简已知条件,利用平方即可求出所求结果.【详解】sin(α+45°)=(sin α+cos α∴sin α+cos α. 两边平方,得1+sin2α=25,∴sin2α=-35.故选B【点睛】本题目是三角函数正弦函数的题目,掌握同角三角函数的二倍角公式是解题的关键. 2.A【分析】根据诱导公式求出c ,再根据对数函数的单调性比较,a b 的大小,即可得出答案. 【详解】解:()1sin 210sin 18030sin 302c =︒=︒+︒=-︒=-113244441log 4log 4log 2log 33a ==<=<所以c a b <<. 故选:A. 3.B【详解】试题分析:∵()sin cos f x x x =1sin 22x =,∴当sin2x=-1即x=()4k k Z ππ-∈时,则函数()sin cos f x x x =有最小值是12-,故选B考点:本题考查了三角函数的有界性点评:熟练掌握二倍角公式及三角函数的值域是解决此类问题的关键,属基础题 4.C【分析】将原式化简为)4y x π=+,再结合正弦函数的性质,即可求解.【详解】解:sin cos )4y x x x π=++∴令22,242k x k k Z πππππ-+++∈ ∴322,44k x k k Z ππππ-++∈即函数的单调递增区间为32,2,44k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦故选项A 错误,选项C 正确 当2,42x k k Z πππ+=-+∈,即32,4x k k Z ππ=-+∈时,则y 取得最小值,故在区间(0,)2π上不存在最小值,故选项B 错误 当2,42x k k Z πππ+=+∈,即2,4x k k Z ππ=+∈时,则y 取得最大值,故在区间(,0)2π-上不存在最大值,故选项D 错误. 故选:C . 5.C 【详解】()112sin22sin 2sin 2f x x x x ⎛⎫- ⎪⎝⎭=-+=-232+. ∴当1sin 2x =时,则()3max ?2f x =,当1sinx =- 时则()3min f x =- ,故选C. 6.D【分析】按照图象的平移规律,写出()g x 的表达式,利用正弦函数的图象,求出()g x 在20,3π⎡⎤⎢⎥⎣⎦上的取值范围.【详解】因为函数()2sin(2)26f x x π=-+向左平移6π个单位后得函数()g x ,所以()2sin[2()]22sin(2)2666g x x x πππ=+-+=++230,(2)[,]sin((2)[1,1]3662)[0,4]6x x x g x πππππ∈⎡⎤∴+∈∴+∈-∴⎢⎥⎣⎦∈,故本题选D. 【点睛】本题考查了正弦型函数的平移、以及闭区间上正弦型函数的最值问题,正确求出平移后的函数解析式,是解题的关键. 7.A【分析】利用诱导公式结合二倍角的正弦公式化简可得结果.【详解】()11sin15sin 75sin15sin 9015sin15cos15sin 3024=-===.故选:A. 8.C【分析】根据根与系数的关系以及两角和的正切公式可得结果. 【详解】由题意可知,tan tan ,tan tan 44b ca aππαααα⎛⎫⎛⎫+-=--= ⎪ ⎪⎝⎭⎝⎭tantan 44ππαα⎛⎫∴=+- ⎪⎝⎭tan tan 4111tan tan 4b a ca πααπαα⎛⎫+--⎪⎝⎭===⎛⎫--- ⎪⎝⎭1b ca a∴-=- b a c ∴-=- c a b ∴=+. 故选:C .【点睛】本题考查了根与系数的关系,考查了两角和的正切公式,属于基础题. 9.B【分析】先利用两角和的正弦公式对a 化简,利用二倍角公式对b 化简,然后利用正弦函数的单调性即可比较大小【详解】解:sin18cos 44cos18sin sin(1844)sin 4624a ︒︒=︒+︒==︒︒+︒ 2sin 29cos29sin58b =︒︒=︒ cos30sin60c =︒=︒ 因为sin y x =在(0,90)︒︒上为增函数,且586062︒<︒<︒ 所以sin58sin60sin62︒<︒<︒,即可b c a << 故选:B【点睛】此题考查两角和的正弦公式和二倍角公式的应用,考查正弦函数的单调性,属于基础题 10.74π【分析】依题意,可求得ππ,42α⎡⎤∈⎢⎥⎣⎦,进一步可知π5,π24βα⎡⎤-∈⎢⎥⎣⎦,于是可求得()cos βα-与cos2α的值,再利用两角和的余弦公式及角βα+的范围即可求得答案. 【详解】因为π,π4α⎡⎤∈⎢⎥⎣⎦,所以π2,2π2α⎡⎤∈⎢⎥⎣⎦因为sin 2α=π2,π2α⎡⎤∈⎢⎥⎣⎦,即ππ,42α⎡⎤∈⎢⎥⎣⎦所以cos 2=α因为ππ,42α⎡⎤∈⎢⎥⎣⎦,3π,π2β⎡⎤∈⎢⎥⎣⎦所以π5,π24βα⎡⎤-∈⎢⎥⎣⎦因为()sin βα-=所以()cos βα-==所以()()cos cos 2βαβαα+=-+()()=cos cos2sin sin 2βααβαα---=⎛⎛⨯ ⎝⎭⎝⎭因为ππ,42α⎡⎤∈⎢⎥⎣⎦,3π,π2β⎡⎤∈⎢⎥⎣⎦,所以5π,24βαπ⎡⎤+∈⎢⎥⎣⎦所以7=4παβ+. 故答案为:74π 11.43-【解析】先计算出3cos 5α=-,再点的坐标特征可得角的终边的位置,从而可求tan α的值.【详解】因为3cos()5πα+=,故3cos 5α=-,故角α的终边在第二象限或第三象限又P 的纵坐标为1,故角α的终边在第二象限,所以sin 0α>所以sin 4tan cos 35ααα====--. 故答案为:43-【点睛】方法点睛:(1)角的终边的位置可根据三角函数值的正负来确定,也可以根据终边上的点的坐标特征来确定;(2)三个三角函数值,往往是“知一求二”,这里利用方程的思想. 12.π【分析】逆用二倍角公式将原式降幂,原式化简为cos()y A x ωϕ=+形式,利用2T ωπ=即可求得函数最小正周期. 【详解】()()442222cos sin cos sin o s =c s +in y x x x x x =--22cos sin cos 2x x x =-=22==2T πππω=T π∴=故答案为:π.【点睛】本题考查二倍角的余弦公式的应用、余弦三角函数最小正周期公式2T ωπ=,属于基础题. 13.34【分析】)(1cos 203020sin 202︒+︒︒-︒,化简计算即可得出结果. 【详解】原式)()(22sin 20cos 2030sin 20cos 2030=︒+︒+︒+︒︒+︒2211sin 2020sin 20sin 2020sin 2022⎫⎫=︒+︒-︒+︒︒-︒⎪⎪⎪⎪⎭⎭⎝⎝2222311sin 20cos 20sin 20sin 20442=︒+︒+︒-︒34=. 故答案为:3414【详解】∵sinα+cosα∴(sinα+cosα)2=13∴2sinαcosα=-23,即sin2α=-23.∵α为第二象限角且sinα+cosα∴2kπ+2π<α<2kπ+34π(k ∈Z),∴4kπ+π<2α<4kπ+32π(k ∈Z),∴2α为第三象限角,∴cos2α15【分析】利用二倍角公式,同角三角函数的基本关系式、两角差的正弦公式求得所求表达式的值.【详解】α为锐角2663πππα<+<3sin 65πα⎛⎫+== ⎪⎝⎭.sin(2)sin(2)22123433πππππαααα⎛⎫⎛⎫+=+-=++ ⎪ ⎪⎝⎭⎝⎭22sin cos 2cos 1666πππααα⎤⎛⎫⎛⎫⎛⎫=+++- ⎪ ⎪ ⎪⎥⎝⎭⎝⎭⎝⎭⎣⎦234421555⎤⎛⎫=⨯⨯-⎥ ⎪⎝⎭⎢⎥⎣⎦.16.512π##512π 【分析】对称轴与对称中心之间的最小距离为4π,可求得函数的周期,从而可求出2ω=,再由3x π=-是一个极小值点,可求得6π=ϕ,从而可得()sin 26f x x π⎛⎫+ ⎝=⎪⎭,进而可得()sin 226g x x t π⎛⎫=-+ ⎪⎝⎭,再由()g x 图象关于点,03π⎛⎫⎪⎝⎭对称,可得5212k t ππ=-+,从而可求出实数t 的最小值【详解】因为对称轴与对称中心之间的最小距离为4π,所以44T π=,所以T π= 22πωπ== 因为3x π=-是一个极小值点所以()2232k k z ππϕπ-+=-+∈,又因为02πϕ<<,所以6π=ϕ()sin 26f x x π⎛⎫+ ⎝=⎪⎭.把函数()f x 的图象向右平移()0t t >个单位长度后得函数()sin 226g x x t π⎛⎫=-+ ⎪⎝⎭,()g x 图象关于点,03π⎛⎫⎪⎝⎭对称,则()2236t k k z πππ-+=∈ 5212k t ππ=-+ 因为0t >,当0k =时,则实数t 的最小值为512π. 故答案为:512π17.(1)()cos2f x x = (2)()1,2【分析】(1)由题意得2,Z 4k k πϕπ⨯+=∈,则可求出2ϕπ=,从而可求出函数()f x 的解析式;(2)由()12f C =-可求出23C π=,由正弦定理得,a A b B ==,从而可表示出2+a b ,化简后利用三角函数的性质可求得结果 (1) 由题知2,Z 4k k πϕπ⨯+=∈因为0ϕπ<<,所以2ϕπ=所以函数()sin 22f x x π⎛⎫=+ ⎪⎝⎭即为()cos2f x x =. (2)由题知()12f C =-,即1cos22C =-因为3C ππ<<,所以2223C ππ<<,所以423C π= 即21,33C A B ππ=+=.所以由正弦定理得sin sin sin a b c A B C === 所以,a Ab B == 2a b A B +=+)sin 2sinA B =+sin 2sin3B B π⎤⎛⎫=-+ ⎪⎥⎝⎭⎦sin cos cos sin 2sin33B B B ππ⎫=-+⎪⎭3sin2B B ⎫=+⎪⎪⎭2sin 6B π⎛⎫=+ ⎪⎝⎭因为10,3B π<<所以662B πππ<+<所以1sin 126B π⎛⎫<+< ⎪⎝⎭,所以12sin 26B π⎛⎫<+< ⎪⎝⎭ 所以2+a b 取值范围为()1,2.18.(1)(),1124k k ππ⎛⎫-+∈ ⎪⎝⎭Z ;(2)30,2⎡⎤⎢⎥⎣⎦;(3)3310⎡⎤⎢⎥⎣⎦.【分析】(1)观察图象,由函数最值求出A ,由周期求出ω,再将7,112π⎛⎫- ⎪⎝⎭代入得出 ϕ,即可求出函数()f x 的解析式,进而得出函数()g x 的解析式以及对称中心; (2)由x 的范围结合余弦函数的性质可得()g x 的值域;(3)将已知方程参变分离,利用对勾函数的性质求出值域,可得实数m 的取值范围. 【详解】(1)根据图象可知1A = 174123T ππ=- ∴T π=,∴22Tπω== ()()cos 2f x x φ=+ 将7,112π⎛⎫-⎪⎝⎭代入得 7cos 16πϕ⎛⎫+=- ⎪⎝⎭ 即726k πϕππ+=+,解得 26k πϕπ=- k Z ∈ ∵2πϕ<,∴0k = 6πϕ=-∴()cos 26f x x π⎛⎫=- ⎪⎝⎭.函数()f x 的图象上的各点的横坐标缩短为原来的12(纵坐标不变),可得 cos 46y x π⎛⎫=- ⎪⎝⎭,曲线再向左平移4π个单位长度,再向上平移1个单位得()5cos 416g x x π⎛⎫=++ ⎪⎝⎭令54,62x k k Z πππ+=+∈,解得 124k x ππ=-+ ∴此函数图象的对称中心为(),1124k k ππ⎛⎫-+∈ ⎪⎝⎭Z . (2)当,88x ππ⎡⎤∈-⎢⎥⎣⎦时,则 54514,cos 41,63362x x ππππ⎡⎤⎛⎫⎡⎤+∈⇔+∈- ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎣⎦()53cos 410,62g x x π⎛⎫⎡⎤=++∈ ⎪⎢⎥⎝⎭⎣⎦,即 ()g x 的值域为30,2⎡⎤⎢⎥⎣⎦. (3)()()()2230g x m g x m +-+-=()()()2231g x g x m g x ⇔++=+⎡⎤⎣⎦()()()2231g x g x m g x ++⇔=+令()1s g x =+,由(2)知51,2s ⎡⎤∈⎢⎥⎣⎦2223310s m s s s +⎡⎤==+∈⎢⎥⎣⎦因此m 的取值范围为3310⎡⎤⎢⎥⎣⎦.【点睛】关键点点睛:本题考查三角函数图象的应用,考查余弦函数的性质,考查有解问题的应用,解决本题的关键点是将已知方程化简,参变分离,利用对勾函数的性质求出对应函数的值域,进而得出参数的取值范围,考查学生计算能力,属于中档题.19.(1)a = sin 1B =【分析】(1)先由cos A 求得sin A ,结合三角形面积公式可得6bc =,根据条件可得b ,c 的值,再利用余弦定理求得a ,利用正弦定理求得sin B ;(2)由(1)可知2B π=,则2sin cos 3C A == cos sin C A ==. (1)因为2cos 3A =,()0,A π∈所以sin A =因为1sin 2ABCS bc A =6bc = 又1b c -=,所以3b = 2c =所以a ==因为sin sin a b A B =3sin B =,所以sin 1B =. (2)在ABC 中由(1)可知2B π=,则2A C π+=所以2sin cos 3C A == cos sin C A ==则sin 22sin cos C C C ==221cos 2cos sin 9C C C =-=所以cos 2cos 2cos sin 2sin 666C C C πππ⎛⎫-=+= ⎪⎝⎭20.98【分析】先将题中正弦值利用诱导公式转化为余弦值,再用降次公式将式子中高次转化为1次,再观察题中角度与特殊角的联系,再用两角和差公式展开化简求值.【详解】444sin 10sin 50sin 70︒︒︒++444cos 80cos 40cos 20︒︒︒=++2221cos1601cos801cos40222︒︒︒⎛⎫⎛⎫⎛⎫+++=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ()222132cos1602cos802cos40cos 160cos 80cos 404︒︒︒︒︒︒=++++++ ()3111cos401cos1601cos80cos20cos80cos40424222︒︒︒︒︒︒⎛⎫+++=+-+++++ ⎪⎝⎭ ()95cos80cos40cos2088︒︒︒=++- ()()95cos 6020cos 6020cos2088︒︒︒︒︒⎡⎤=+++--⎣⎦ ()952cos60cos20cos2088︒︒︒=+-98=. 【点睛】本题考查了三角恒等变换,运用降次公式,两角和与差公式进行化简求值,注意观察角度间的联系及与特殊角的联系,还考查了学生的分析观察能力,运算能力,难度较大.21.(1)()16f π=,最小正周期为π; (2)0,,3ππ⎧⎫⎨⎬⎩⎭【分析】(1)利用三角恒等变换化简函数()f x 的解析式,利用正弦函数的性质即可求解;(2)令()0f x =,可得266x ππ+=或56π或136π,即可求解x 的值.(1)解:因为()222cos 2cos 213633f x x x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫=+-+=+-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭2sin 212sin 21366x x πππ⎡⎤⎛⎫⎛⎫=+--=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以2sin 1162f ππ⎛⎫=-= ⎪⎝⎭,最小正周期为 22T ππ==. (2)令()0f x =,则1sin 262x π⎛⎫+= ⎪⎝⎭,因为[0,]x π∈,所以132,666x πππ⎡⎤+∈⎢⎥⎣⎦,所以266x ππ+=或56π或136π,即0x =或3π或π,所以函数()f x 的零点所构成的集合为0,,3ππ⎧⎫⎨⎬⎩⎭.。

[精品]人教a版数学高一单元测试卷第31课时简单的三角恒等变换含解析

[精品]人教a版数学高一单元测试卷第31课时简单的三角恒等变换含解析

第31课时 简单的三角恒等变换1.2.了解和差化积与积化和差公式,以及它与两角和与差公式的内在联系.3.了解y =a sin x +b x 的函数的性质.1.半角公式:sin 2α2=1-cos α2,sin α2=± 1-cos α2 cos 2α2=1+cos α2,cos α2=±1+cos α2 tan2α2=1-cos α1+cos α,tan α2=± 1-cos α1+cos α根号前符号,由α2所在象限三角函数符号确定.2.辅助角公式:a sin x sin φ=b a 2+b 2.一、选择题1.已知cos θ=-14(-180°<θ<-90°),则cos θ2=( )A .-64 B.64 C .-38 D.38答案:B 解析:因为-180°<θ<-90°,所以-90°<θ2<-45°.又cos θ=-14,所以cos θ2=1+cos θ2=1-142=64,故选B.2.已知α∈⎝ ⎛⎭⎪⎫-π2,0,cos α=45,则tan α2=( ) A .3 B .-3 C.13 D .-13 答案:D解析:因为α∈⎝ ⎛⎭⎪⎫-π2,0,且cos α=45,所以α2∈⎝ ⎛⎭⎪⎫-π4,0,tan α2=-1-cos α1+cos α=-1-451+45=-13,故选D. 3.在△ABC 中,若B =45°,则cos A sin C 的取值范围是( )A .[-1,1] B.⎣⎢⎡⎦⎥⎤2-24,2+24C.⎣⎢⎡⎦⎥⎤-1,2+24D.⎣⎢⎡⎦⎥⎤24,2+24 答案:B解析:在△ABC 中,B =45°,所以cos A sin C =12[sin(A +C )-sin(A -C )]=24-12sin(A -C ),因为-1≤sin(A -C )≤1,所以2-24≤cos A sin C ≤2+24,故选B. 4.若sin(α-β)sin β-cos(α-β)cos β=45,且α是第二象限角,则tan ⎝ ⎛⎭⎪⎫π4+α等于( ) A .7 B .-7 C.17 D .-17 答案:C解析:∵sin(α-β)sin β-cos(α-β)cos β=45,∴cos α=-45.又α是第二象限角,∴sin α=35,则tan α=-34.∴tan ⎝ ⎛⎭⎪⎫π4+α=tan π4+tan α1-tan π4tan α=1-341+34=17. 5.函数f (x )=sin2x cos x1-sin x的值域为( )A.⎝ ⎛⎭⎪⎫-12,+∞B.⎣⎢⎡⎭⎪⎫-12,4C.⎝ ⎛⎭⎪⎫-12,4D.⎣⎢⎡⎦⎥⎤-12,4 答案:B解析:f (x )=2sin x cos 2x 1-sin x =2sin x -sin 2x 1-sin x=2sin x +2sin 2x ,又-1≤sin x <1,∴f (x )∈⎣⎢⎡⎭⎪⎫-12,4.故选B. 6.在△ABC 中,若sin A sin B =cos 2C2,则△ABC 是( )A .等边三角形B .等腰三角形C .不等边三角形D .直角三角形 答案:B解析:sin A sin B =1+cos C22sin A sin B =1-cos(π-A -B )cos A cos B +sin A sin B =1 cos(A -B )=1 A =B∴是等腰三角形. 二、填空题7.若3sin x -3cos x =23sin(x +φ),φ∈(-π,π),则φ等于________.答案:-π6解析:3sin x -3cos x =2 3sin ⎝⎛⎭⎪⎫x -π6,所以φ=-π6.8.已知sin ⎝ ⎛⎭⎪⎫π6+α=23,则cos 2⎝ ⎛⎭⎪⎫π6-α2=________.答案:56解析:因为cos ⎝ ⎛⎭⎪⎫π3-α=sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π3-α=sin ⎝ ⎛⎭⎪⎫π6+α=23.所以cos 2⎝ ⎛⎭⎪⎫π6-α2=1+cos ⎝ ⎛⎭⎪⎫π3-α2=1+232=56.9.在△ABC 中,若3cos 2A -B 2+5sin 2A +B 2=4,则tan A tan B =________. 答案:14解析:因为3cos 2A -B 2+5sin 2A +B 2=4, 所以32cos(A -B )-52cos(A +B )=0,所以32cos A cos B +32sin A sin B -52cos A cos B +52sin A sin B =0,即cos A cos B =4sin A sin B ,所以tan A tan B =14.三、解答题10.已知α为钝角,β为锐角,且sin α=45,sin β=1213,求cos α-β2.解:∵α为钝角,β为锐角,sin α=45,sin β=1213,∴cos α=-35,cos β=513.cos(α-β)=cos αcos β+sin αsin β=-35×513+45×1213=3365.又∵π2<α<π,0<β<π2,∴0<α-β<π,0<α-β2<π2.∴cosα-β2=1+α-β2=76565.11.已知sin(2α+β)=5sin β.求证:2tan(α+β)=3tan α. 证明:由条件得sin[(α+β)+α]=5sin[(α+β)-α],两边分别展开得sin(α+β)cos α+cos(α+β)sin α=5sin(α+β)cos α-5cos(α+β)sin α. 整理得:4sin(α+β)cos α=6cos(α+β)sin α. 两边同除以cos(α+β)cos α得: 2tan(α+β)=3tan α.12.要使3sin α+cos α=4m -64-m有意义,则应有( )A .m ≤73B .m ≥-1C .m ≤-1或m ≥73D .-1≤m ≤73答案:D解析:3sin α+cos α=2⎝ ⎛⎭⎪⎫32sin α+12cos α=2sin ⎝ ⎛⎭⎪⎫α+π6=4m -64-m ,所以sin ⎝ ⎛⎭⎪⎫α+π6=2m -34-m ,由于-1≤sin ⎝ ⎛⎭⎪⎫α+π6≤1,所以-1≤2m -34-m ≤1,所以-1≤m ≤73.13.已知函数f (x )=sin x ·(2cos x -sin x )+cos 2x . (1)求函数f (x )的最小正周期;(2)若π4<α<π2,且f (α)=-5213,求sin2α的值.解:(1)因为f (x )=sin x ·(2cos x -sin x )+cos 2x ,所以f (x )=sin2x -sin 2x +cos 2x =sin2x +cos2x =2sin ⎝⎛⎭⎪⎫2x +π4,所以函数f (x )的最小正周期是π.(2)f (α)=-5213,即2sin ⎝ ⎛⎭⎪⎫2α+π4=-5213,sin ⎝⎛⎭⎪⎫2α+π4=-513. 因为π4<α<π2,所以3π4<2α+π4<5π4,所以cos ⎝⎛⎭⎪⎫2α+π4=-1213, 所以sin2α=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫2α+π4-π4 =22sin ⎝ ⎛⎭⎪⎫2α+π4-22cos ⎝⎛⎭⎪⎫2α+π4 =22×⎝ ⎛⎭⎪⎫-513-22×⎝ ⎛⎭⎪⎫-1213 =7226.。

高一数学三角恒等变换试题答案及解析

高一数学三角恒等变换试题答案及解析

高一数学三角恒等变换试题答案及解析1.已知函数,,且求的值;设,,,求的值.【答案】(1);(2).【解析】(1)利用公式化简,要熟练掌握公式,不要把符号搞错,很多同学化简不正确;(2)求解较复杂三角函数的时,寻求角与角之间的关系,化非特殊角为特殊角;正确灵活运用公式,通过三角变换消去或约去一些非特殊角的三角函数值,注意题中角的范围;;(3)要注意符号,有时正负都行,有时需要舍去一个;(4)三角函数的给值求值的问题一般是正用公式将“复角”展开,看需要求相关角的哪些三角函数值,然后根据角的范围求出相应角三角函数值,代入展开即可,注意角的范围.试题解析:解:(1),解得. 5分(2),即,,即. 8分因为,所以,,所以. 12分【考点】(1)三角函数给值求值,(2)诱导公式的应用.2.化简得到()A.B.C.D.【答案】A【解析】【考点】三角函数的诱导公式和倍角公式.3.【答案】【解析】本题为由切求弦,由已知利用两角差的正切公式计算可得的值,并将已知化为正切的形式,考虑恒等变化故在原式填一分母,然后弦化切(分子分母同除以).试题解析:因为所以所以 3分故 7分10分【考点】由切求弦.4.已知、、是△的三内角,向量,且,,求.【答案】.【解析】首先运用内角和定理将问题转化为,这样只要研究、的三角函数值即可,由条件可以建立两个关于、的方程,可解出关于、的三角函数值,进而求出的值.试题解析:由,得,即 1分而∴∴, 3分7分∴ 9分∴为锐角,∴ 10分13分【考点】三角恒等变换中的求值问题.5.已知,则 .【答案】【解析】两式平方相加并整理得,所以.注意公式的结构特点,从整体去解决问题.【考点】三角恒等变换.6. (cos- sin) (cos+sin)= ()A.B.C.D.【答案】【解析】显然上式满足平方差公式,所以其等于,发现符合余弦二倍角公式,所以等于.【考点】三角化简.7.已知=2,则的值为;的值为_____.【答案】【解析】,又,,。

高一数学三角函数三角恒等变换解三角形试题答案及解析

高一数学三角函数三角恒等变换解三角形试题答案及解析

高一数学三角函数三角恒等变换解三角形试题答案及解析1.(本小题满分12分)已知函数.(1)化简;(2)已知常数,若函数在区间上是增函数,求的取值范围;(3)若方程有解,求实数a的取值范围.【答案】(1)f(x)(2)(3)【解析】(1)························· 4分(2) ∵由∴的递增区间为∵在上是增函数∴当k = 0时,有∴解得∴的取值范围是····················· 8分(3) 解一:方程即为从而问题转化为方程有解,只需a在函数的值域范围内∵当;当∴实数a的取值范围为················ 12分解二:原方程可化为令,则问题转化为方程在[– 1,1]内有一解或两解,设,若方程在[– 1,1]内有一个解,则解得若方程在[– 1,1]内有两个解,则解得∴实数a的取值范围是[– 2,]2.已知函数(1)求函数f(x)的最小正周期及单调递增区间;(2)在中,A、B、C分别为三边所对的角,若a=f(A)=1,求的最大值.【答案】(1),单调增区间;(2)【解析】(1)首先借助于基本三角函数公式将函数式化简为的最简形式,周期由的系数求解,求增区间需令,解得的范围得到单调区间;(2)中由的值求得角,借助于三角形余弦定理可得到关于两边的关系式,进而结合不等式性质得到关于的不等式,求得范围试题解析:(1),所以函数的最小正周期为.由得所以函数的单调递增区间为.(2)由可得,又,所以。

5.5.2三角恒等变换(典例精讲)-【巅峰课堂】2021-2022学年高一数学同步精讲+检测(人教A

5.5.2三角恒等变换(典例精讲)-【巅峰课堂】2021-2022学年高一数学同步精讲+检测(人教A

1.向量的有关概念名称 定义备注向量 具有大小和方向的量;向量的大小叫做向量的长度(或称模) 平面向量是自由向量零向量 长度为0的向量;其方向不确定记作0单位向量 长度等于1个单位的向量非零向量a 的单位向量为±a|a |平行向量(共线向量) 共线向量的方向相同或相反0与任意向量平行或共线 相等向量 大小、方向都相同的向量 两向量只有相等或不等,不能比较大小 相反向量长度相等且方向相反的向量0的相反向量为02.向量的线性运算向量运算定义法则(或几何意义)运算律 向量的加法求两个向量和的运算(1)交换律: a +b =b +a .(2)结合律: (a +b )+c =a +(b +c ).向量的减法 求a 与b 的相反向量-b 的和的运算叫做a 与b 的差三角形法则a -b =a +(-b )数乘向量求实数λ与向量a 的积的运算(1)|λa |=|λ||a |; (2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0或a =0时,λa =0(1)(λ+μ)a =λa+μa ; (2)λ(μa )=(λμ)a ; (3)λ(a +b )=λa+λb3.平行向量基本定理如果a =λb ,则a ∥b ;反之,如果a ∥b ,且b ≠0,则一定存在唯一一个实数λ,使a =λb . 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)向量与有向线段是一样的,因此可以用有向线段来表示向量.( × ) (2)|a |与|b |是否相等与a ,b 的方向无关.( √ ) (3)若a ∥b ,b ∥c ,则a ∥c .( × )(4)向量AB →与向量CD →是共线向量,则A ,B ,C ,D 四点在一条直线上.( × ) (5)当两个非零向量a ,b 共线时,一定有b =λa ,反之成立.( √ ) (6)△ABC 中,D 是BC 中点,则AD →=12(AC →+AB →).( √ )1.给出下列命题:①零向量的长度为零,方向是任意的;②若a ,b 都是单位向量,则a =b ;③向量AB →与BA →相等.则所有正确命题的序号是( ) A.① B.③ C.①③ D.①②答案 A解析 根据零向量的定义可知①正确;根据单位向量的定义可知,单位向量的模相等,但方向不一定相同,故两个单位向量不一定相等,故②错误;向量AB →与BA →互为相反向量,故③错误. 2.如图所示,向量a -b 等于( )A.-4e 1-2e 2B.-2e 1-4e 2C.e 1-3e 2D.3e 1-e 2解析 由题图可得a -b =BA →=e 1-3e 2.3.(2015·课标全国Ⅰ)设D 为△ABC 所在平面内一点,BC →=3CD →,则( ) A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC →答案 A解析 ∵BC →=3CD →,∴AC →-AB →=3(AD →-AC →), 即4AC →-AB →=3AD →,∴AD →=-13AB →+43AC →.4.(教材改编)已知▱ABCD 的对角线AC 和BD 相交于O ,且OA →=a ,OB →=b ,则DC →=________,BC →=________(用a ,b 表示). 答案 b -a -a -b解析 如图,DC →=AB →=OB →-OA →=b -a ,BC →=OC →-OB →=-OA →-OB →=-a -b .5.已知a 与b 是两个不共线向量,且向量a +λb 与-(b -3a )共线,则λ=________. 答案 -13解析 由已知得a +λb =-k (b -3a ),∴⎩⎪⎨⎪⎧λ=-k ,3k =1.解得⎩⎨⎧λ=-13,k =13.题型一 平面向量的概念例1 下列命题中,正确的是________.(填序号) ①有向线段就是向量,向量就是有向线段;②向量a 与向量b 平行,则a 与b 的方向相同或相反; ③向量AB →与向量CD →共线,则A 、B 、C 、D 四点共线; ④两个向量不能比较大小,但它们的模能比较大小.解析 ①不正确,向量可以用有向线段表示,但向量不是有向线段,有向线段也不是向量;②不正确,若a 与b 中有一个为零向量,零向量的方向是不确定的,故两向量方向不一定相同或相反; ③不正确,共线向量所在的直线可以重合,也可以平行;④正确,向量既有大小,又有方向,不能比较大小;向量的模均为实数,可以比较大小.思维升华 (1)相等向量具有传递性,非零向量的平行也具有传递性.(2)共线向量即为平行向量,它们均与起点无关.(3)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象的移动混为一谈.(4)非零向量a 与a |a |的关系:a|a |是与a 同方向的单位向量.设a 0为单位向量,①若a 为平面内的某个向量,则a =|a |a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.上述命题中,假命题的个数是( ) A.0 B.1 C.2 D.3答案 D解析 向量是既有大小又有方向的量,a 与|a |a 0的模相同,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0的方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.综上所述,假命题的个数是3. 题型二 平面向量的线性运算 命题点1 向量的线性运算例2 (1)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →等于( ) A.BC → B.12AD → C.AD →D.12BC → (2)在△ABC 中,AB →=c ,AC →=b ,若点D 满足BD →=2DC →,则AD →等于( ) A.23b +13c B.53c -23b C.23b -13c D.13b +23c 答案 (1)C (2)A解析 (1)EB →+FC →=12(AB →+CB →)+12(AC →+BC →)=12(AB →+AC →)=AD →. (2)∵BD →=2DC →,∴AD →-AB →=BD →=2DC →=2(AC →-AD →), ∴3AD →=2AC →+AB →,∴AD →=23AC →+13AB →=23b +13c .命题点2 根据向量线性运算求参数例3 (1)在△ABC 中,已知D 是AB 边上的一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ等于( )A.23B.13C.-13D.-23(2)在△ABC 中,点D 在线段BC 的延长线上,且BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合),若AO →=xAB →+(1-x )AC →,则x 的取值范围是( ) A.⎝⎛⎭⎫0,12 B.⎝⎛⎭⎫0,13 C.⎝⎛⎭⎫-12,0 D.⎝⎛⎭⎫-13,0 答案 (1)A (2)D 解析 (1)∵AD →=2DB →, 即CD →-CA →=2(CB →-CD →), ∴CD →=13CA →+23CB →,∴λ=23.(2)设CO →=yBC →, ∵AO →=AC →+CO →=AC →+yBC →=AC →+y (AC →-AB →) =-yAB →+(1+y )AC →.∵BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合), ∴y ∈⎝⎛⎭⎫0,13, ∵AO →=xAB →+(1-x )AC →, ∴x =-y ,∴x ∈⎝⎛⎭⎫-13,0. 思维升华 平面向量线性运算问题的常见类型及解题策略 (1)向量加法或减法的几何意义.向量加法和减法均适合三角形法则.(2)求已知向量的和.一般共起点的向量求和用平行四边形法则;求差用三角形法则;求首尾相连向量的和用三角形法则.(3)求参数问题可以通过研究向量间的关系,通过向量的运算将向量表示出来,进行比较求参数的值.如图,一直线EF 与平行四边形ABCD 的两边AB ,AD 分别交于E ,F两点,且交对角线AC 于K ,其中,AE →=25AB →,AF →=12AD →,AK →=λAC →,则λ的值为( ) A.29 B.27 C.25 D.23答案 A解析 ∵AE →=25AB →,AF →=12AD →,∴AB →=52AE →,AD →=2AF →.由向量加法的平行四边形法则可知, AC →=AB →+AD →, ∴AK →=λAC →=λ(AB →+AD →) =λ⎝⎛⎭⎫52AE →+2AF → =52λAE →+2λAF →, 由E ,F ,K 三点共线,可得λ=29,故选A.题型三 平行向量基本定理的应用 例4 设两个非零向量a 与b 不共线,(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),求证:A 、B 、D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 共线.(1)证明 ∵AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ), ∴BD →=BC →+CD →=2a +8b +3(a -b ) =2a +8b +3a -3b =5(a +b )=5AB →. ∴AB →、BD →共线,又∵它们有公共点B , ∴A 、B 、D 三点共线.(2)解 ∵k a +b 和a +k b 共线, ∴存在实数λ,使k a +b =λ(a +k b ), 即k a +b =λa +λk b .∴(k -λ)a =(λk -1)b . ∵a 、b 是两个不共线的非零向量, ∴k -λ=λk -1=0,∴k 2-1=0.∴k =±1.思维升华 (1)证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别与联系.当两向量共线且有公共点时,才能得出三点共线.(2)向量a 、b 共线是指存在不全为零的实数λ1,λ2,使λ1a +λ2b =0成立,若λ1a +λ2b =0,当且仅当λ1=λ2=0时成立,则向量a 、b 不共线.(1)已知向量AB →=a +3b ,BC →=5a +3b ,CD →=-3a +3b ,则( )A.A ,B ,C 三点共线B.A ,B ,D 三点共线C.A ,C ,D 三点共线D.B ,C ,D 三点共线(2)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________. 答案 (1)B (2)12解析 (1)∵BD →=BC →+CD →=2a +6b =2(a +3b )=2AB →, ∴BD →、AB →共线,又有公共点B , ∴A ,B ,D 三点共线.故选B. (2)DE →=DB →+BE →=12AB →+23BC →=12AB →+23(AC →-AB →) =-16AB →+23AC →,∵DE →=λ1AB →+λ2AC →,∴λ1=-16,λ2=23,故λ1+λ2=12.10.方程思想在平面向量线性运算中的应用典例 (12分)如图所示,在△ABO 中,OC →=14OA →,OD →=12OB →,AD 与BC 相交于点M ,设OA →=a ,OB →=b .试用a 和b 表示向量OM →.思维点拨 (1)用已知向量来表示另外一些向量是用向量解题的基本要领,要尽可能地转化到平行四边形或三角形中去求解.(2)既然OM →能用a 、b 表示,那我们不妨设出OM →=m a +n b . (3)利用向量共线建立方程,用方程的思想求解. 规范解答解 设OM →=m a +n b ,则AM →=OM →-OA →=m a +n b -a =(m -1)a +n b .AD →=OD →-OA →=12OB →-OA →=-a +12b .[3分]又∵A 、M 、D 三点共线,∴AM →与AD →共线. ∴存在实数t ,使得AM →=tAD →, 即(m -1)a +n b =t ⎝⎛⎭⎫-a +12b .[5分] ∴(m -1)a +n b =-t a +12t b .∴⎩⎪⎨⎪⎧m -1=-t ,n =t2,消去t 得,m -1=-2n , 即m +2n =1.① [7分]又∵CM →=OM →-OC →=m a +n b -14a =⎝⎛⎭⎫m -14a +n b , CB →=OB →-OC →=b -14a =-14a +b .又∵C 、M 、B 三点共线,∴CM →与CB →共线.[10分] ∴存在实数t 1,使得CM →=t 1CB →, ∴⎝⎛⎭⎫m -14a +n b =t 1⎝⎛⎭⎫-14a +b , ∴⎩⎪⎨⎪⎧m -14=-14t 1,n =t 1. 消去t 1得,4m +n =1. ②由①②得m =17,n =37,∴OM →=17a +37b .[12分]温馨提醒 (1)本题考查了向量的线性运算,知识要点清楚,但解题过程复杂,有一定的难度.(2)易错点是找不到问题的切入口,想不到利用待定系数法求解.(3)数形结合思想是向量加法、减法运算的核心,向量是一个几何量,是有“形”的量,因此在解决向量有关问题时,多数习题要结合图形进行分析、判断、求解,这是研究平面向量最重要的方法与技巧.如本题易忽视A 、M 、D 三点共线和B 、M 、C 三点共线这个几何特征.(4)方程思想是解决本题的关键,要注意体会.[方法与技巧]1.向量的线性运算要满足三角形法则和平行四边形法则,做题时,要注意三角形法则与平行四边形法则的要素.向量加法的三角形法则要素是“首尾相接,指向终点”;向量减法的三角形法则要素是“起点重合,指向被减向量”;平行四边形法则要素是“起点重合”.2.证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.3.对于三点共线有以下结论:对于平面上的任一点O ,OA →,OB →不共线,满足OP →=xOA →+yOB →(x ,y ∈R ),则P ,A ,B 共线⇔x +y =1. [失误与防范]1.解决向量的概念问题要注意两点:一是不仅要考虑向量的大小,更重要的是要考虑向量的方向;二是考虑零向量是否也满足条件.要特别注意零向量的特殊性.2.在利用向量减法时,易弄错两向量的顺序,从而求得所求向量的相反向量,导致错误.A 组 专项基础训练 (时间:30分钟)1.设O 是正方形ABCD 的中心,则向量AO →,BO →,OC →,OD →是( ) A.相等的向量 B.平行的向量 C.有相同起点的向量 D.模相等的向量答案 D解析 这四个向量的模相等.2.设a 0,b 0分别是与a ,b 同向的单位向量,则下列结论中正确的是( ) A.a 0=b 0 B.a 0·b 0=1 C.|a 0|+|b 0|=2 D.|a 0+b 0|=2 答案 C解析 因为是单位向量,所以|a 0|=1,|b 0|=1.3.在四边形ABCD 中,AB ∥CD ,AB =3DC ,E 为BC 的中点,则AE →等于( )A.23AB →+12AD →B.12AB →+23AD →C.56AB →+13AD →D.13AB →+56AD → 答案 A解析 BC →=BA →+AD →+DC →=-23AB →+AD →,AE →=AB →+BE →=AB →+12BC →=AB →+12⎝⎛⎭⎫AD →-23AB →=23AB →+12AD →. 4.已知平面内一点P 及△ABC ,若P A →+PB →+PC →=AB →,则点P 与△ABC 的位置关系是( ) A.点P 在线段AB 上 B.点P 在线段BC 上 C.点P 在线段AC 上 D.点P 在△ABC 外部答案 C解析 由P A →+PB →+PC →=AB →得P A →+PC →=AB →-PB →=AP →,即PC →=AP →-P A →=2AP →,所以点P 在线段AC 上. 5.已知点O 为△ABC 外接圆的圆心,且OA →+OB →+OC →=0,则△ABC 的内角A 等于( ) A.30° B.60° C.90° D.120° 答案 B解析 由OA →+OB →+OC →=0,知点O 为△ABC 的重心, 又∵O 为△ABC 外接圆的圆心, ∴△ABC 为等边三角形,A =60°.6.已知O 为四边形ABCD 所在平面内一点,且向量OA →,OB →,OC →,OD →满足等式OA →+OC →=OB →+OD →,则四边形ABCD 的形状为________. 答案 平行四边形解析 由OA →+OC →=OB →+OD →得OA →-OB →=OD →-OC →, 所以BA →=CD →.所以四边形ABCD 为平行四边形.7.设点M 是线段BC 的中点,点A 在直线BC 外,BC →2=16,|AB →+AC →|=|AB →-AC →|,则|AM →|=________. 答案 2解析 由|AB →+AC →|=|AB →-AC →|可知,AB →⊥AC →,则AM 为Rt △ABC 斜边BC 上的中线, 因此,|AM →|=12|BC →|=2.8.(2015·北京)在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =________;y =________. 答案 12 -16解析 MN →=MC →+CN →=13AC →+12CB → =13AC →+12(AB →-AC →) =12AB →-16AC →,∴x =12,y =-16.9.在△ABC 中,D 、E 分别为BC 、AC 边上的中点,G 为BE 上一点,且GB =2GE ,设AB →=a ,AC →=b ,试用a ,b 表示AD →,AG →.解 AD →=12(AB →+AC →)=12a +12b .AG →=AB →+BG →=AB →+23BE →=AB →+13(BA →+BC →)=23AB →+13(AC →-AB →)=13AB →+13AC →=13a +13b .10.设两个非零向量e 1和e 2不共线.(1)如果AB →=e 1-e 2,BC →=3e 1+2e 2,CD →=-8e 1-2e 2,求证:A 、C 、D 三点共线;(2)如果AB →=e 1+e 2,BC →=2e 1-3e 2,CD →=2e 1-k e 2,且A 、C 、D 三点共线,求k 的值.(1)证明 ∵AB →=e 1-e 2,BC →=3e 1+2e 2,CD →=-8e 1-2e 2,∴AC →=AB →+BC →=4e 1+e 2=-12(-8e 1-2e 2)=-12CD →,∴AC →与CD →共线.又∵AC →与CD →有公共点C ,∴A 、C 、D 三点共线.(2)解 AC →=AB →+BC →=(e 1+e 2)+(2e 1-3e 2)=3e 1-2e 2,∵A 、C 、D 三点共线,∴AC →与CD →共线,从而存在实数λ使得AC →=λCD →,即3e 1-2e 2=λ(2e 1-k e 2),得⎩⎪⎨⎪⎧ 3=2λ,-2=-λk ,解得λ=32,k =43.B 组 专项能力提升(时间:15分钟)11.设a ,b 不共线,AB →=2a +p b ,BC →=a +b ,CD →=a -2b ,若A ,B ,D 三点共线,则实数p 的值是() A.-2 B.-1 C.1 D.2答案 B解析 ∵BC →=a +b ,CD →=a -2b ,∴BD →=BC →+CD →=2a -b .又∵A ,B ,D 三点共线,∴AB →,BD →共线.设AB →=λBD →,∴2a +p b =λ(2a -b ),∴2=2λ,p =-λ,∴λ=1,p =-1.12.如图,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →等于( )A.a -12bB.12a -bC.a +12b D.12a +b 答案 D解析 连接CD ,由点C ,D 是半圆弧的三等分点,得CD ∥AB 且CD →=12AB →=12a , 所以AD →=AC →+CD →=b +12a . 13.设G 为△ABC 的重心,且sin A ·GA →+sin B ·GB →+sin C ·GC →=0,则B 的大小为( )A.45°B.60°C.30°D.15°答案 B解析 ∵G 是△ABC 的重心,∴GA →+GB →+GC →=0,GA →=-(GB →+GC →),将其代入sin A ·GA →+sin B ·GB →+sinC ·GC →=0,得(sin B -sin A )GB →+(sin C -sin A )GC →=0.又GB →,GC →不共线,∴sin B -sin A =0,sin C -sin A =0,则sin B =sin A =sin C .根据正弦定理知b =a =c ,∴△ABC 是等边三角形,则角B =60°.故选B.14.在▱ABCD 中,AB →=a ,AD →=b ,AN →=3NC →,M 为BC 的中点,则MN →=____________.(用a ,b 表示)答案 -14a +14b 解析 由AN →=3NC →得AN →=34AC →=34(a +b ),AM →=a +12b ,所以MN →=AN →-AM → =34(a +b )-⎝⎛⎭⎫a +12b =-14a +14b . 15.如图,经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ→=nOB →,m ,n ∈R ,则1n +1m的值为________. 答案 3解析 设OA →=a ,OB →=b ,由题意知OG →=23×12(OA →+OB →)=13(a +b ),PQ →=OQ →-OP →=n b -m a ,PG →=OG →-OP →=⎝⎛⎭⎫13-m a +13b ,由P ,G ,Q 三点共线得,存在实数λ,使得PQ →=λPG →,即n b -m a =λ⎝⎛⎭⎫13-m a +13λb , 从而⎩⎨⎧ -m =λ⎝⎛⎭⎫13-m ,n =13λ,消去λ得1n +1m =3.。

人教A版新教材高一数学必修一三角函数恒等变换专项训练题

人教A版新教材高一数学必修一三角函数恒等变换专项训练题

人教A 版新教材高一数学必修一三角函数恒等变换专项训练题时间:120分钟 满分:150分 命卷人: 审核人:一、选择题(每小题5分,共10小题50分) 1,且α为第二象限角,则 )2、已知,αβ均为锐角,3 )4,则cos2α=( )5、已知角θ的终边经过点 )6、若tan α=则2cos 2sin2αα-=7、已知在ABC 中,,则sin2A =( )8、角α的终边与单位圆交于点则cos2α=( )9、已知,则( )A. B. C. D.10、已知1sin cos 63παα⎛⎫--= ⎪⎝⎭,则cos 23πα⎛⎫+= ⎪⎝⎭( )A .518 B .518- C .79 D .79-二、填空题(每小题5分,共5小题25分)11、若4cos (0)5ααπ=<<,则tan 4πα⎛⎫+= ⎪⎝⎭__________.12、若()tan 4cos 22πθπθ⎛⎫-=- ⎪⎝⎭, 2πθ<,则tan2θ=__________.13、当02x π<<时,函数()21cos28sin sin2x xf x x ++=的最小值为__________10、若02tan tan420α=,则tan 3πα⎛⎫+= ⎪⎝⎭ __________.15、已知,2παπ⎛⎫∈ ⎪⎝⎭, 4sin 3cos 0αα+=,则2sin23cos αα+的值为____________.三、解答题(第17题12分,第18题12分,第19题12分,第20题12分,第21题13分,第22题14分,共6小题75分) 16、已知02παβπ<<<<,1tan22α=,()2cos 10βα-=.(1)求sin α的值; (2)求β的值.17、已知tan 2α=,1tan 3β=-,其中0,22ππαβπ<<<<.(1)求tan()αβ-;(2)求αβ+的值. 18、已知,,,.(1)求的值;(2)求的值.19、已知02παβπ<<<<,1cos 43πβ⎛⎫-= ⎪⎝⎭,()4sin 5αβ+=.(1)求sin2β的值;(2)求cos 4πα⎛⎫+ ⎪⎝⎭的值.20、已知πsin 4x ⎛⎫- ⎪⎝⎭=25π3π,,524x ⎛⎫∈ ⎪⎝⎭(1)求cos x 的值;(2)求πsin 23x ⎛⎫- ⎪⎝⎭的值.21、(1求sin cos αα-的值;(2)已知tan 3α=,求22sin 3sin cos 4cos αααα-+的值.22、(A )已知()sin ,cos a x x ωω=,(cos b x ω=32a b ⋅-,且函数()f x 的最小正周期为π.(1(2()cos 22αβ-的值.(B )已知()sin ,cos a x x ωω=,(cos b x ω=32a b ⋅-,且函数()f x 的最小正周期为π. (1)求()f x 的解析式;(2)若关于x 的方程,在[)0,π内有两个不同的解α,β,求证:参考答案1故选:D2、【答案】A【解析】A 点睛: 三角函数式的化简要遵循“三看”原则(1)一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”;(3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,如“遇到分式要通分”等 3、【答案】C()1cos25cos 6025sin25cos30cos85sin25cos3012cos25cos25cos252+++===,故选C 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修4??第三章《?三角恒等变换》测试题A卷
考试时间:100分钟,满分:150分
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分).
1.计算1-2sin222.5°的结果等于()
A. B.C. D.
2.cos39°cos(-9°)-sin39°sin(-9°)等于()
A.B.C.-D.-
3.已知cos=,则sin2α的值为()
A.B.-C. D.-
4.若tanα=3,tanβ=,则tan(α-β)等于()
A.-3B.-C.3 D.
5.cos275°+cos215°+cos75°·cos15°的值是()
A.B.C. D.1+
6.y=cos2x-sin2x+2sin x cos x的最小值是()
A.B.-C.2 D.-2
7.已知sin=,则cos的值为()
A.B.-C. D.-
8.等于()
A.B.C.2 D.
9.把[sin2θ+cos(-2θ)]-sincos(+2θ)化简,可得()
A.sin2θB.-sin2θC.cos2θD.-cos2θ
10.已知3cos(2α+β)+5cosβ=0,则tan(α+β)·tanα的值为()
A.±4B.4C.-4 D.1
二、填空题(每小题6分,共计24分).
11.(1+tan17°)(1+tan28°)=________.
12.化简的结果为________.
13.若α、β为锐角,且cosα=,sinβ=,则α+β=______.
14.函数f(x)=sin-2sin2x的最小正周期是________.
三、解答题(共76分).
15.(本题满分12分)已知cosα-sinα=,且π<α<π,求的值.
16.(本题满分12分)已知α、β均为锐角,且cosα=,sinβ=,求α-β的值.
17.(本题满分12分)求证:-=32cos20°.
18.(本题满分12分)已知-<α<,-<β<,且tanα、tanβ是方程x2+6x+7=0的两个根,求α+β的值.
19.(本题满分14分)已知-<x<0,sin x+cos x=,求:
(1)sin x-cos x的值;
(2)求的值.
20.(本题满分14分)已知函数f(x)=sin2x sinφ+cos2x cosφ-sin(0<φ<π),其图象过点.
(1)求φ的值;
(2)将函数y=f(x)的图象上各点的横坐标缩短到原来的,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)在上的最大值和最小值.
高中数学必修4??第三章《?三角恒等变换》测试题A卷参考答案
一、选择题
1.【答案】B.
【解析】1-2sin222.5°=cos45°=,故选B.
2.【答案】B.
【解析】cos39°cos(-9°)-sin39°sin(-9°)=cos(39°-9°)=cos30°=.
3.【答案】B.
【解析】sin2α=cos(2α-)=2cos2-1=-.
4.【答案】 D
【解析】tan(α-β)===.
5.【答案】 A
【解析】原式=sin215°+cos215°+sin15°cos15°=1+sin30°=.
6.【答案】 B
【解析】y=cos2x+sin2x=sin(2x+),∴y max=-.
7.【答案】B.
【解析】cos=sin=sin=-sin=-.
8.【答案】C.
【解析】===2.
9.【答案】A.
【解析】原式=[cos(-2θ)+cos(-2θ)]-sincos(+2θ)=cos(-2θ)cos-sinsin(-2θ)=cos[(-2θ)+]=cos(-2θ)=sin2θ.
10.【答案】C.
【解析】3cos[(α+β)+α]+5cosβ=0,即3cos(α+β)cosα-3sin(α+β)sinα+5cosβ=0. 3cos(α+β)cosα-3sin(α+β)sinα+5cos[(α+β)-α]=0,3cos(α+β)cosα-3sin(α+β)sinα+5cos(α+β)·cosα+
5sin(α+β)sinα=0,8cos(α+β)cosα+2sin(α+β)sinα=0,8+2tan(α+β)tanα=0,∴tan(α+β)tanα=-4.
二、填空题
11.【答案】 2
【解析】原式=1+tan17°+tan28°+tan17°·tan28°,又tan(17°+28°)==tan45°=1,∴tan17°+tan28°=1-tan17°·tan28°,代入原式可得结果为2.
12.【答案】-4
【解析】===
===-4.
13.【答案】
【解析】∵α、β为锐角,∴sinα=,cosβ=,∴cos(α+β)=cosαcosβ-sinαsinβ
=×-×=-<0,又0<α<,0<β<,∴<α+β<π.∴α+β=.
14.【答案】π
【解析】f(x)=sin-2sin2x=sin-(1-cos2x)=sin2x cos-sincos2x+cos2x-
=sin2x-cos2x+cos2x-=sin2x+cos2x-=sin-∴最小正周期为π.
三、解答题
15.解:因为cosα-sinα=,所以1-2sinαcosα=,所以2sinαcosα=.
又α∈(π,),故sinα+cosα=-=-,
所以====-.
16.解:已知α、β均为锐角,且cosα=,则sinα==.
又∵sinβ=,∴cosβ==.
∴sin(α-β)=sinαcosβ-cosαsinβ
=×-×=-=-.
又∵sinα<sinβ,∴0<α<β<.
∴-<α-β<0.∴α-β=-.
17.证明:左边=-=-
==


==
=32cos20°=右边,
∴原式成立.
18.解:由题意知tanα+tanβ=-6,tanαtanβ=7
∴tanα<0,tanβ<0.
又-<α<,-<β<,
∴-<α<0,-<β<0.
∴-π<α+β<0.
∵tan(α+β)===1,
∴α+β=-.
19.解:(1)由sin x+cos x=,得2sin x cos x=-.
∵(sin x-cos x)2=1-2sin x cos x=,
∵-<x<0.∴sin x<0,cos x>0.
∴sin x-cos x<0.故sin x-cos x=-.
(2)

=sin x cos x
=sin x cos x[2(1-cos2)-sin x+1)]
=sin x cos x
=sin x cos x(-cos x+2-sin x)
=×=-.
20.解:(1)因为f(x)=sin2x sinφ+cos2x cosφ-sin(0<φ<π),
所以f(x)=sin2x sinφ+cosφ-cosφ
=sin2x sinφ+cos2x cosφ
=(sin2x sinφ+cos2x cosφ)
=cos(2x-φ).
又函数图象过点,
所以=cos,即cos=1.
又0<φ<π,∴φ=.
(2)由(1)知f(x)=cos.
将f(x)图象上所有点的横坐标缩短到原来的,纵坐标不变,变为g(x)=cos. ∵0≤x≤,∴-≤4x-≤.
当4x-=0,即x=时,g(x)有最大值;
当4x-=,即x=时,g(x)有最小值-.。

相关文档
最新文档