人教版八年级数学分式应用题培优

合集下载

2022年人教版八年级下册数学培优训练——《分式》全章复习与巩固(基础)知识讲解

2022年人教版八年级下册数学培优训练——《分式》全章复习与巩固(基础)知识讲解

《分式》全章复习与巩固(基础)【学习目标】1. 理解分式的概念,能求出使分式有意义、分式无意义、分式值为0的条件.2.了解分式的基本性质,掌握分式的约分和通分法则.3.掌握分式的四则运算.4.结合分析和解决实际问题,讨论可以化为一元一次方程的分式方程,掌握这种方程的解法,体会解方程中的化归思想.【知识网络】【要点梳理】要点一、分式的有关概念及性质1.分式一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.要点诠释:分式中的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B≠0时,分式AB才有意义.2.分式的基本性质(M为不等于0的整式).3.最简分式分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简. 要点二、分式的运算1.约分利用分式的基本性质,把一个分式的分子和分母的公因式约去,不改变分式的值,这样的分式变形叫做分式的约分.2.通分利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把异分母的分式化为同分母的分式,这样的分式变形叫做分式的通分.3.基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下:(1)加减运算 a b a b c c c ±±= ;同分母的分式相加减,分母不变,把分子相加减. ;异分母的分式相加减,先通分,变为同分母的分式,再加减.(2)乘法运算 a c ac b d bd⋅=,其中a b c d 、、、是整式,0bd ≠. 两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.(3)除法运算 a c a d ad b d b c bc÷=⋅=,其中a b c d 、、、是整式,0bcd ≠. 两个分式相除,把除式的分子和分母颠倒位置后,与被除式相乘.(4)乘方运算分式的乘方,把分子、分母分别乘方.4.分式的混合运算顺序先算乘方,再算乘除,最后加减,有括号先算括号里面的.要点三、分式方程1.分式方程的概念分母中含有未知数的方程叫做分式方程.2.分式方程的解法解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程.3.分式方程的增根问题增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根---增根.要点诠释:因为解分式方程可能出现增根,所以解分式方程必须验根.验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.要点四、分式方程的应用列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.【典型例题】类型一、分式及其基本性质1、在ma y x xy x x x x 1,3,3,)1(,21,12+++π中,分式的个数是( ) A.2 B.3 C.4 D.5【答案】C ;【解析】()21131x x a x x x y m+++,,,是分式. 【总结升华】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.2、当x 为何值时,分式293x x -+的值为0? 【思路点拨】先求出使分子为0的字母的值,再检验这个值是否使分母的值等于0,当它使分母的值不等于0时,这个值就是要求的字母的值.【答案与解析】解: 要使分式的值为0,必须满足分子等于0且分母不等于0.由题意,得290,30.x x ⎧-=⎨+≠⎩解得3x =. ∴ 当3x =时,分式293x x -+的值为0. 【总结升华】分式的值为0的条件是:分子为0,且分母不为0,即只有在分式有意义的前提下,才能考虑分式值的情况. 举一反三:【变式】(1)若分式的值等于零,则x =_______;(2)当x ________时,分式没有意义.【答案】(1)由24x -=0,得2x =±. 当x =2时x -2=0,所以x =-2;(2)当10x -=,即x =1时,分式没有意义. 类型二、分式运算3、计算:2222132(1)441x x x x x x x -++÷-⋅++-. 【答案与解析】解:222222132(1)(1)1(2)(1)(1)441(2)(1)1x x x x x x x x x x x x x x -+++-++÷-⋅=⋅⋅++-+-- 22(1)(2)(1)x x x +=-+-. 【总结升华】本题有两处易错:一是不按运算顺序运算,把2(1)x -和2321x x x ++-先约分;二是将(1)x -和(1)x -约分后的结果错认为是1.因此正确掌握运算顺序与符号法则是解题的关键.举一反三:【变式】(2020•滨州)化简:÷(﹣)【答案】解:原式=÷=• =﹣. 类型三、分式方程的解法4、(2020•呼伦贝尔)解方程:.【思路点拨】观察可得最简公分母是(x ﹣1)(x +1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【答案与解析】解:方程的两边同乘(x ﹣1)(x +1),得3x +3﹣x ﹣3=0,解得x=0.检验:把x=0代入(x ﹣1)(x +1)=﹣1≠0.∴原方程的解为:x=0.【总结升华】本题考查了分式方程的解法,注:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.举一反三:【变式】()1231244x x x -=---, 【答案】解: 方程两边同乘以()24x -,得()()12422332x x x =---=-∴ 检验:当32x =-时,最简公分母()240x -≠, ∴32x =-是原方程的解.类型四、分式方程的应用5、(2020•东莞二模)某市为治理污水,需要铺设一条全长为600米的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的工效比原计划增加20%,结果提前5天完成这一任务,原计划每天铺设多少米管道?【思路点拨】先设原计划每天铺设x 米管道,则实际施工时,每天的铺设管道(1+20%)x 米,由题意可得等量关系:原计划的工作时间﹣实际的工作时间=5,然后列出方程可求出结果,最后检验并作答.【答案与解析】解:设原计划每天铺设x 米管道,由题意得: ﹣=5,解得:x=20,经检验:x=20是原方程的解.答:原计划每天铺设20米管道.【总结升华】本题主要考查分式方程的应用,解题的关键是熟练掌握列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.举一反三:【变式】小明家、王老师家、学校在同一条路上,并且小明上学要路过王老师家,小明到王老师家的路程为3 km ,王老师家到学校的路程为0.5 km ,由于小明的父母战斗在抗震救灾第一线,为了使他能按时到校、王老师每天骑自行车接小明上学.已知王老师骑自行车的速度是他步行速度的3倍,每天比平时步行上班多用了20 min ,王老师步行的速度和骑自行车的速度各是多少?【答案】解:设王老师步行的速度为x km/h ,则他骑自行车的速度为3x km/h . 根据题意得:230.50.520360x x ⨯+=+. 解得:5x =.经检验5x =是原方程的根且符合题意.当5x =时,315x =.答:王老师步行的速度为5km/h ,他骑自行车的速度为15km/h .。

八年级数学—分式培优练习题(完整答案)

八年级数学—分式培优练习题(完整答案)

分式培优练习题分式 (一)一 选择 1 下列运算正确的是( )A -40=1B (-3)-1=31 C (-2m-n )2=4m-n D (a+b )-1=a -1+b -1 2 分式28,9,12z y x xy z x x z y -+-的最简公分母是( ) A 72xyz 2 B 108xyz C 72xyz D 96xyz 23 用科学计数法表示的树-3.6×10-4写成小数是( )A 0.00036B -0.0036C -0.00036D -360004 若分式6522+--x x x 的值为0,则x 的值为( )A 2B -2C 2或-2D 2或35计算⎪⎭⎫ ⎝⎛-+÷⎪⎭⎫ ⎝⎛-+1111112x x 的结果是( ) A 1 B x+1 C x x 1+ D 11-x 6 工地调来72人参加挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调动劳动力才能使挖出的土能及时运走,解决此问题,可设派x 人挖土,其它的人运土,列方程 ①3172=-x x ②72-x=3x ③x+3x=72 ④372=-xx 上述所列方程,正确的有( )个 A 1 B 2 C 3 D 47 在ma y x xy x x 1,3,3,21,21,12+++π中,分式的个数是( ) A 2 B 3 C 4 D 58 若分式方程xa x a x +-=+-321有增根,则a 的值是( ) A -1 B 0 C 1 D 29 若3,111--+=-ba ab b a b a 则的值是( )A -2B 2C 3D -310 已知 k ba c c abc b a =+=+=+,则直线y=kx+2k 一定经过( ) A 第1、2象限 B 第2、3象限 C 第3、4象限 D 第 1、4象限二 填空1 一组按规律排列的式子:()0,,,,41138252≠--ab a b a b a b a b ,其中第7个式子是 第n 个式子是2 7m =3,7n =5,则72m-n =3 ()2312008410-+⎪⎭⎫ ⎝⎛--+-= 4 若2222,2ba b ab a b a ++-=则= 三 化简 1 ()d cd b a c ab 234322222-∙-÷ 2 111122----÷-a a a a a a 3 ⎪⎭⎫ ⎝⎛---÷--225262x x x x 四 解下列各题1 已知b ab a b ab a b a ---+=-2232,311求 的值2 若0<x<1,且xx x x 1,61-=+求 的值 五 (5)先化简代数式()()n m n m mn n m n m n m n m -+÷⎪⎪⎭⎫ ⎝⎛+---+222222,然后在取一组m,n 的值代入求值 六 解方程 1 12332-=-x x 2 1412112-=-++x x x 七 2008年5月12日,四川省发生8.0级地震,我校师生积极捐款,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?分式(二)一、选择题:1.已知230.5x y z ==,则32x y z x y z +--+的值是( ) A .17 B.7 C.1 D.132.一轮船从A 地到B 地需7天,而从B 地到A 地只需5天,则一竹排从B 地漂到A 地需要的天数是( )A .12 B.35 C.24 D.473.已知226a b ab +=,且0a b >>,则a b a b +-的值为( ) A .2 B .2± C .2 D .2±二、填空题:4. 若关于x 的分式方程3232-=--x m x x 无解,则m 的值为__________. 5.若分式231-+x x 的值为负数,则x 的取值范围是__________. 6. 已知2242141x y y x y y +-=-+-,则的24y y x ++值为______. 三、解答题:7. 计算: ()3322232n m n m --⋅8. 计算 (1)168422+--x x x x (2)mn n n m m m n n m -+-+--2 9. 先化简,后求值:222222()()12a a a a a b a ab b a b a b -÷-+--++-,其中2,33a b ==- 10. 解下列分式方程.11. 计算:(1)1111-÷⎪⎭⎫ ⎝⎛--x x x (2)4214121111x x x x ++++++-12.已知x 为整数,且918232322-++-++x x x x 为整数,求所有符合条件的x 的值. 13.先阅读下面一段文字,然后解答问题:一个批发兼零售的文具店规定:凡一次购买铅笔301支以上(包括301支)可以按批发价付款;购买300支以下(包括300支)只能按零售价付款.现有学生小王购买铅笔,如果给初三年级学生每人买1支,则只能按零售价付款,需用()12-m 元,(m 为正整数,且12-m >100)如果多买60支,则可按批发价付款,同样需用()12-m 元.设初三年级共有x 名学生,则①x 的取值范围是 ;②铅笔的零售价每支应为 元;③批发价每支应为 元.(用含x 、m 的代数式表示).14. A 、B 两地相距20 km ,甲骑车自A 地出发向B 地方向行进30分钟后,乙骑车自B 地出发,以每小时比甲快2倍的速度向A 地驶去,两车在距B 地12 km 的C 地相遇,求甲、乙两人的车速.分式(三)一、填空题1、在有理式22xy ,πx ,11+a ,y x +1,122-m 中属于分式的有 .2、分式3-x 的值为0,则x= .3、分式x x 2-和它的倒数都有意义,则x 的取值范围是 .4、当_____=x 时,x --11的值为负数;当x 、y 满足 时,)(3)(2y x y x ++的值为32; 5、若分式y x y -3的值为4,则x,y 都扩大两倍后,这个分式的值为6、当x= 时,分式11+x 与11-x 互为相反数.7、若分式方程=-1x m 1-x -11有增根,则m= .8、要使方程=-11x a x -2有正数解,则a 的取值范围是9、+++)2)(1(1 x x )3)(2(1++x x +)2007)(2006(1.....+++x x =_____________10、若=a 3b 4=c 5,则分式222c b a ac bc ab +++-=____________二、选择题11、已知m 、n 互为相反数,a 、b 互为倒数,|x|=2,则ab x x nm -++2的值为( )A 、2B 、3C 、4D 、512. 下列式子:(1)y x y x yx -=--122;(2)c a b a a c a b --=--;(3)1-=--b a a b ;(4)y x yx y x yx +-=--+-中正确的是 ( )A 、1个B 、2 个C 、3 个D 、4 个13. 下列分式方程有解的是( )A 、++12x 13-x =162-x B 、012=+x x C 、0122=-x D 、111=-x14. 若分式m x x ++212不论m 取何实数总有意义,则m 的取值范围是( )A 、m ≥1B 、m >1C 、m ≤1D 、m <115、晓晓根据下表,作了三个推测:①3-x-1x (x>0)的值随着x 的增大越来越小;②3-x-1x (x>0)的值有可能等于2;③3-x-1x (x>O)的值随着x 的增大越来越接近于2.则推测正确的有( ) A 、0个 B 、1个 C 、2个 D 、3个16. 已知分式xy yx -+1的值是a ,如果用x 、y 的相反数代入这个分式所得的值为b ,则a 、b 关系()A 、相等B 、互为相反数C 、互为倒数D 、乘积为-1三、解答题17、化简:[22222a b a ab b -+++2ab ÷(1a +1b )2]·2222a b ab -+.18、当21,23-==b a 时,求⎪⎭⎫⎝⎛-+⋅⎪⎭⎫ ⎝⎛-+-b a ab b a b a ab b a +44的值.19、A 玉米试验田是边长为a 米的正方形减去一个边长为1米的正方形蓄水池后余下部分,B 玉米试验田是边长为(a -1)米的正方形,两块试验田的玉米都收获了500千克.(1)那种玉米的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?四、探索题20、观察以下式子:1112122132+→=+>,5527544264+→=+<,3354355555+→=+>, 773722232+→=+<.请你猜想,将一个正分数的分子分母同时加上一个正数,这个分数的变化情况,并证明你的结论.21、甲、乙两位采购员同去一家饲料公司购买两次饲料.两次饲料的价格有变化,两位采购员的购货方式也不同,其中,甲每次购买1000千克,乙每次用去800元,而不管购买多少饲料.谁的购货方式更合算?22、一个批发兼零售的文具店规定:凡一次购买铅笔300枝以上,(不包括300枝),可以按批发价付款,购买300枝以下,(包括300枝)只能按零售价付款.小明来该店购买铅笔,如果给八年级学生每人购买1枝,那么只能按零售价付款,需用120元,如果多购买60枝,那么可以按批发价付款,同样需要120元,①这个八年级的学生总数在什么范围内?②若按批发价购买6枝与按零售价购买5枝的款相同,那么这个学校八年级学生有多少人?分式(一)参考答案一 CACBC CBBA B二 1 -()n n n a b a b 137201,--, 2 9/5, 3 2, 4 53 三 1 ac1 ,2 1-a a ,3 32+-x 四 1 提示:将所求式子的分子、分母同时除以ab 。

培优专题18 分式方程应用题的常见类型-原卷版

培优专题18 分式方程应用题的常见类型-原卷版

专题18 分式方程应用题的常见类型◎类型一:工程问题1.(2022·四川成都·八年级期末)某车间加工1300个零件后,采用了新工艺,工效提升了30%,这样加工同样多的零件就少用10小时.若设采用新工艺前每小时加工x 个零件,则可列方程为( )A .()1300130010130%x x -=-B .()1300130010130%x x -=+C .()1300130010130%x x -=-D .()1300130010130%x x -=+2.(2022·浙江湖州·七年级期末)某帐篷生产企业承接生产7000顶帐篷的任务,原计划每天生产x 顶,但后因帐篷急需,该企业加大生产投入,提高生产效率,实际每天生产数量提高到原计划的1.4倍,结果提前4天完成任务.根据题意,下面所列方程正确的是( )A .7000700041.4x x x -=+B .7000700041.4x x =-C .7000700041.4x x x -=+D .7000700041.4x x-=3.(2022·甘肃·武威第九中学八年级期末)建筑公司修建一条400米长的道路,开工后每天比原计划多修10米,结果提前2天完成了任务.如果设建筑公司实际每天修x 米,那么可得方程是________.4.(2022·江苏泰州·八年级期末)为了改善生态环境,防止水土流失,某村计划在荒坡上种树960棵,由于青年志愿者支援,实际每天种树的棵数比原计划多50%,结果提前4天完成任务,设原计划每天植树x 棵,根据题意列出方程________.5.(2022·河南信阳·八年级期末)在学习“分式方程应用”时,张老师板书了如下的问题,小明和小亮两名同学都列出了对应的方程.15.3分式方程例:有甲乙两个工程队,甲队修路800m 与乙队修路1200m 所用时间相等,乙队每天比甲队多修40m ,求甲队每天修路的长度小明:800120040xx =+ 小亮:120080040y y -=根据以上信息,解答下列问题:(1)小明同学所列方程中x 表示______,列方程所依据的等量关系是________________________________;小亮同学所列方程中y 表示______,列方程所依据的等量关系是________________________________;(2)请你在两个方程中任选一个,解答老师的例题.6.(2022·福建·莆田二中八年级期末)甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.求甲、乙两个工程队每天各修路多少千米?◎类型二:行程问题(1)基本数量关系:路程=速度×时间(2)常见应用题中的等量关系:①同一路程慢速-同一路程快速=时间差②顺水速度=船的速度+水速 逆水速度=船的速度-水速③一段路程原计划按甲速度行驶完,但行驶途中速度变为乙速度,则:全部路程甲速度=原计划时间,甲速度行驶路程+乙速度行驶路程=全部路程,全部路程甲速度-甲速度行驶路程甲速度-乙速度行驶路程乙速度=时间差7.(2022·浙江金华·七年级期末)某校组织七年级同学乘坐大巴到金华万福塔开展社会实践活动.该塔距离学校5千米.1号车出发4分钟后,2号车才出发,结果两车同时到达.已知2号车的平均速度是1号车的平均速度的1.5倍,求2号车的平均速度.设1号车的平均速度为x km/h ,可列方程为 ( )A .5541.5x x -=B .5541.5x x -=C .5541.560x x -=D .5541.560x x -=8.(2022·辽宁朝阳·中考真题)八年一班学生周末乘车去红色教育基地参观学习,基地距学校60km ,一部分学生乘慢车先行,出发30min 后,另一部分学生乘快车前往,结果同时到达.已知快车的速度是慢车速度的1.5倍,求慢车的速度.设慢车每小时行驶x km ,根据题意,所列方程正确的是( )A.60x﹣601.5x=3060B.601.5x﹣60x=3060C.60x﹣601.5x=30D.601.5x﹣60x=309.(2022·山西·寿阳县教研室九年级期末)斑马线前“礼让行人”,不仅体现着对生命的尊重,也直接反映着城市的文明程度.如图,某路口的斑马线路段“A﹣B﹣C”横穿双向行驶车道,其中AB=BC=12米,在绿灯亮时,小敏共用20秒通过AC,其中通过BC的速度是通过AB速度的1.5倍,求小敏通过AB时的速度.设小敏通过AB时的速度是x米/秒,根据题意列方程为____.10.(2022·浙江浙江·二模)某班同学到距学校12千米的森林公园植树,一部分同学骑自行车先行,半小时后,其余同学乘汽车出发,结果他们同时到达,已知汽车的速度是自行车速度的3倍,求自行车和汽车的速度.设自行车的速度为x千米/时,则根据题意可列方程为________.11.(2022·辽宁沈阳·一模)小明家距学校980m.(1)若他从家跑步上学,路上时间不超过490s,请直接写出小明跑步的平均速度至少为______m/s.(2)若他从家出发,先步行了350m后,发现上学要迟到了,因此换骑上了共享单车,达到学校时,全程共花了480s.已知小明骑共享单车的平均速度是步行平均速度的3倍,求小明骑共享单车的平均速度是多少?(转换出行方式时,所需时间忽略不计,假设家到学校随时都有共享单车).12.(2022·山东潍坊·八年级期末)甲、乙两列高铁列车在不同的时刻分别从北京出发开往上海.已知北京到上海的距离约为1320千米,列车甲行驶的平均速度为列车乙行驶平均速度的43倍,全程运行时间比列车乙少1.5小时,求列车甲从北京到上海运行的时间.◎类型三:打折销售问题总售价=单价×销售量总利润=单价利润×销售量=总售价-总成本1--%100成本售价成本成本售价成本利润利润率==⨯=利润率售价成本+=1利润=成本×利润率=售价-成本价(进价)售价=成本×(1+利润率)=标价×打折数(不打折时,售价=标价)=成本价+利润=成本价×(1+利润率)标价=成本价×(1+提高成数)成本价=售价-利润13.(2022·安徽合肥·七年级期末)母亲节前夕,某花店购进若干束花,很快售完,接着又在原总进价的基础上增加12.5%购进第二批花.已知第二批所购花束数是第一批所购花束数的1.5倍,且每束花的进价比第一批的进价少8元,设第一批花束每束的进价为x 元,依据题意可得方程( )A .1.5112.5%8x x +=-B .1.512.5%8x x =-C .1112.5%81.5x x +-=D .112.5%181.5x x+-=14.(2022·内蒙古巴彦淖尔·八年级期末)某图书馆计划选购甲、乙两种图书,已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.求甲、乙两种图书每本价格分别为多少元,我们设乙图书每本价格为x 元,则可得方程( )A .8008002.5x x -=4B .8008002.5x x -=24C .800 2.5800x x ⨯-=24D .800800 2.5x x⨯-=2415.(2022·贵州铜仁·八年级期末)为做好新冠疫情的防控工作,某单位需购买甲、乙两种消毒液,经了解每桶甲种消毒液的零售价比乙种消毒液的零售价多6元,该单位以零售价分别用900元和720元采购了相同桶数的甲、乙两种消毒液.求甲、乙两种消毒液的零售价分别是每桶多少元?设乙种消毒液零售价x 元/桶,则可立方程为:________.16.(2022·辽宁·沈阳市第七中学八年级阶段练习)某商厦进货员预测一种应季衬衫能畅销市场,就用8万元购进这种衬衫,面市后果然供不应求.商厦又用17.6万元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了5元.商厦销售这种衬衫时每件定价都是60元,最后剩下200件按7折销售,很快售完.在这两笔生意中,商厦共盈利______元.17.(2022·山东·济南市天桥区泺口实验学校八年级期中)购买甲、乙两种物品,已知乙种物品的单价比甲种物品的单价贵10元,用480元购买乙种物品的数量与用360元购买甲种物品的数量相同,求甲、乙两种物品的单价各是多少元?18.(2022·甘肃·民勤县第六中学八年级期末)列方程解应用题:某商店用2000元购进一批小学生书包,出售后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了2元,结果购买第二批书包用了6600元.(1)请求出第一批每只书包的进价;(2)该商店第一批和第二批分别购进了多少只书包;(3)若商店销售这两批书包时,每个售价都是30元,全部售出后,商店共盈利多少元?◎类型四:方案选择问题19.(2022·辽宁沈阳·八年级期末)某校组织540名学生去外地参观,现有A,B两种不同型号的客车可供选择.在每辆车刚好满座的前提下,每辆B型客车比每辆A型客车多坐15人,单独选择B型客车比单独选择A型客车少租6辆.设A型客车每辆坐x人,根据题意可列方程( )A.54015x-﹣540x=6B.540x﹣54015x+=6C.54015x+﹣540x=6D.540x﹣54015x-=620.(2013·山东泰安·九年级期末)小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x千米/小时,根据题意得A.B.C.D.21.(2020·黑龙江哈尔滨·二模)为了配合新型冠状病毒的防控工作,某社区欲购进一批酒精对社区进行消毒,现有A、B 两种酒精可供选择,B 种酒精比 A 种酒精每瓶贵 2 元,用600 元购买 A 种酒精和用800 元购买B 种酒精的数量相同,现要求出A、B 两种酒精每瓶的价格.设A 种酒精每瓶的价格为x 元,则可列方程为__________.22.(2019·浙江温州·中考模拟)某校组织1080名学生去外地参观,现有A、B两种不同型号的客车可供选择.每辆B型客车的载客量比每辆A型客车多坐15人,若只选择B型客车比只选择A型客车少租12辆(每辆客车均坐满).设B型客车每辆坐x人,则列方程为_____.23.(2022·江苏·扬州市江都区第三中学八年级阶段练习)某公司有960件新产品需经加工后才能投放市场,现有甲、乙两家工厂都想加工加工这批产品.已知甲工厂单独完成这批产品比乙工厂单独完成这批产品多用20天,而甲工厂每天加工数量是乙工厂每天加工的数量的23,公司需付甲工厂加工费每天80元,需付乙工厂加工费每天120元.(1)甲、乙两工厂每天能加工多少件新产品?(2)公司制定的方案如下:可以由每个厂家单独完成,也可以有两个厂家合作完成.在加工过程中,公司派一名工程师进行技术指导,并担负每天25元的午餐补助,请帮公司需出一种既省时又省钱的加工方案,并说明理由.24.(2022·浙江舟山·七年级期末)舟山市疫情防控工作领导小组在5月30日发布了常态化核酸检测工作的通知,6月3日起我市居民进入公共场所须凭7天内核酸采样或检测阴性证明.根据文件要求,学生在校期间每周要组织核酸检测一次,某校积极响应,安排校医甲和教师乙进行核酸采集培训.经过培训后,甲采集的速度是乙的两倍,且甲采集52人用时比乙采集30人用时少2分钟.(1)求甲、乙平均每分钟分别采集多少人?(2)该校七年级学生人数比八年级少18人,其中七年级有7个班,每班m人,8八年级有6个班,每班n 人,两名采集员各自用了87分钟完成了七、八年级学生核酸采集工作,求m和n的值;(3)该校教职工70人完成核酸采集后要放入10人试管或20人试管中,在保证每个试管不浪费情况下,有哪几种分装方案?。

培优训练——分式人教版八年级数学上册教材

培优训练——分式人教版八年级数学上册教材
3. 已知 a2+3a+1=0,试求 a4+a-4 的值.
培优训练——分式人教版八年级数学 上册教 材
培优训练——分式人教版八年级数学 上册教 材
4. 先化简:
,然后从不
等式组
的解集中选取一个你喜
欢的 x 的值代入求值.
培优训练——分式人教版八年级数学 上册教 材
培优训练——分式人教版八年级数学 上册教 材
答:第一次购进的单价为50元.
培优训练——分式人教版八年级数学 上册教 材
培优训练——分式人教版八年级数学 上册教 材
6. 某项工程,若由甲队单独施工,刚好如期完
成;若由乙队单独施工,则要超期 3 天完成.
现由甲、乙两队同时施工 2 天后,剩下的工
程由乙队单独做,刚好如期完成. 问规定的
工期是多少天?
ቤተ መጻሕፍቲ ባይዱ
根据题意,得
. 解得x=20.
经检验,x=20是原分式方程的解,且符合题意.
当x=20时, x+10=20+10=30.
答:A型学习用品单价是20元,B型学习用品单价
是30元.
培优训练——分式人教版八年级数学 上册教 材
培优训练——分式人教版八年级数学 上册教 材
(2)设可以购买B型学习用品a件,则A型学习用 品(1 000-a)件. 由题意,得20(1 000-a)+30a≤28 000. 解得a≤800. 答:最多购买B型学习用品800件.
的件数相同.
(1)求 A,B 两种学习用品的单价各是多少元?
(2)若购买这批学习用品的费用不超过 28 000
元,则最多购买 B 型学习用品多少件?
培优训练——分式人教版八年级数学 上册教 材

2024年中考数学复习-分式性质的拓展应用考点培优练习

2024年中考数学复习-分式性质的拓展应用考点培优练习

分式性质的拓展应用考点培优练习考点直击1.分式定义:形如AB的式子叫分式,其中A,B是整式,且B中含有字母.(1) B=0时,分式无意义; B≠0时,分式有意义.(2) 分式的值为0:A=0,B≠0时,分式的值等于0.(3)分式的约分:把一个分式的分子与分母的公因式约去叫作分式的约分.方法是把分子、分母因式分解,再约去公因式.(4)最简分式:一个分式的分子与分母没有公因式时,叫作最简分式.分式运算的最终结果若是分式,一定要化为最简分式.(5)通分:把几个异分母的分式分别化成与原来分式相等的同分母分式的过程,叫作分式的通分.(6)最简公分母:各分式的分母所有因式的最高次幂的积.(7)有理式:整式和分式统称有理式.2.分式的基本性质:(1)AB =A⋅MB⋅M(M是不为0的整式);(2)AB =A÷MB÷M(M是不为0的整式);(3)分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.例题精讲例1若实数a,b,c满足条件1a +1b+1c=1a+b+c,则a,b,c中( )A.必有两个数相等B.必有两个数互为相反的数C.必有两个数互为倒数D.每两个数都不等【思路点拨】首先把等式去分母得到b²c+bc²+a²c+ac²+a²b+ab²+2abc=0,用分组分解法将上式左边分解因式得(a+b)(b+c)(a+c)=0,,从而得到a+b=0或b+c=0或a+c=0,根据相反数的定义即可选出选项.举一反三1 (湖北中考)已知分式x+y1−xy的值是a,如果用x,y的相反数代入这个分式所得的值为b,则a,b ( )A. 相等B.互为相反数C.互为倒数D.乘积为−1举一反三2 下列分式从左到右的变形一定正确的是 ( )A.b+xa+x =baB.b2a=b22abC.x−yx+y =y−xx+yD.−x−yx+y=−1举一反三3 要使1x+2=x−3x2−x−6成立,必须满足 ( )1A. x≠-2B.x≠−2且x≠3C. x≠3D.以上都不对例2 (南京统考)已知三个数x,y,z满足xyx+y =−2,yzy+z=43,xzx+z=−43,求xyzxy+yz+zx的值.【思路点拨】分式的分子是单项式,分母是多项式时,可以通过对等号两边同时取倒数来帮助运算.举一反三 4 已知代数式x⁴−x²+6x−8的值等于1,求代数式xx+1的值.举一反三5 已知xx2+x+1=13,求分式x2x4+x2+1的值.举一反三6 已知1x −1y=3,求分式2x−3xy−2yx−2xy−y的值.例3【探索】(1)若3x+4x+1=3+mx+1,则m=;(2) 若5x−3x+2=5+mx+2,则m= .【总结】若ax+bx+c =a+mx+c(其中a,b,c 为常数),则m=.【应用】利用上述结论解决:若代数式4x−3x−1的值为整数,求满足条件的整数x的值.举一反三7 已知x+1x =3,求x2x4+x2+1的值.11举一反三8 (西安统考)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可化为带分数,如:83=6+23=2+23=223.在分式中,我们定义:对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如x−1x+1,x2x−1这样的分式就是假分式;再如3x+1,2xx2+1这样的分式就是真分式.类似的,假分式也可以化为带分式(即整式与真分式的和的形式).如x−1x+1=(x+1)−2x+1=1−2x+1;再如x2x−1=x2−1+1x−1=(x+1)(x−1)+11=x+1+1x−1.解决下列问题:(1) 分式2x是 (填“真分式”或“假分式”);(2)将假分式x−1x+2化为带分式:;(3)如果分式2x−1x+1的值为整数,那么整数x的值为 .过关检测基础夯实1.下列各式中2x ,a+2b2,a+bπ,a+1a,(x−1)(x+2)x+2,a+√bb,分式的个数是 ( )A. 2B. 3C.4D. 52.使分式x−1x2−3x+2有意义的x 的取值范围是 ( ) A. x≠1 B. x≠2C. x≠1且x≠2D.x可为任何数3.若分式x2−4x+3(x−1)(x−2)的值为0,则( )A. x=1或x=3B. x=3C. x=1D. x≠1且. x≠24.下列约分正确的是 ( )A.a9a3=a3 B.x+1x+1=0 C.x2+2x+1x+1=x+1 D.a2+b2a+b=a+b5.a5,n2m,12π,ab+1,a+b3,y5−1z中,分式有个.6.当分式1x−3有意义时,则 x 满足的条件是 .7.若分式x+1x−1的值为 0,则 x 的值是8.利用分式的基本性质填空:(1)3a5xy =()10axy(a≠0);(2)a+2a2−4=1().9.约分:(1)a3b3a2b+ab ;(2)x2−2x+1(x2+1)2−4x2.10. 通分: 2m−3,12(m+3).能力拓展11. 当分式62x−3的值为整数时,自然数x 的取值可能有 ( )A.3个B. 4个C.6 个D.8个12. 如果分式a2a+b中的a,b都同时扩大2倍,那么该分式的值 ( ) A. 不变 B. 缩小 2倍C. 扩大 2倍D. 扩大 4 倍13. 设xyz≠0,且3x+2y—7z=0,7x+4y—15z=0,则4x2−5y2−6z2x2+2y2+3z2=¯.14.不改变分式的值,将分式的分子、分母的各项系数都化为整数,则a−23b12a+2b=15.x 取何值时,下列分式有意义:(1)x+22x−3;(2)6(x+3)|x|−12;(3)x+6x2+1.16. (1) 已知分式2x2−8x−2,x取何值时,分式的值为0?(2)x 为何值时,分式x2+23x−9的值为正数?17.已知实数a,b满足, 6ᵃ=2010,335ᵇ=2 010,求1a +1b的值.综合创新18. 设 a +b +c = abc(abc≠0),化简: a (1−b 2)(1−c 2)+b (1−c 2)(1−a 2)+c (1−a 2)(1−b )2aℎc= .19.若 x²+x −1=0,则x 4+(x−1)2−1x (x−1)的值为 .20.(舟山中考)给定下面一列分式(其中x≠ 0):x 3y,−x 5y2,x 7y3,−x 9y 4,⋯(1)把任意一个分式除以前面一个分式,你发现了什么规律? (2)根据你发现的规律,试写出给定的那列分式中的第7个分式.4 分式性质的拓展应用【例题精讲】 1. B 解析: 1a+1b+1c=1a+b+c,去分母并整理得 b²c +bc²+a²c +ac²+a²b + ab²+2abc =0,即 (b²c +2abc +a²c )+(bc²+ac²)+(a²b +ab²)=0,∴c(a + b)²+c²(a +b )+ab (a +b )=0,(a +b ). (ac +bc +c²+ab )=0,(a +b )(b +c )⋅(a+c)=0,即a+b=0或b+c=0或a+c=0,则a ,b ,c 中必有两个数互为相反数.2. --4 解析:由已知条件可得x+y xy= −12,y+zyz=34,z+xzx=−34,即 1x+ 1y=−12,1y+1z=34,1z+1x=−34,三式相加得 2x+2y+2z=−12,∴1x+ 1y+1z=−14,∴xy+yz+zxxyz=−14, ∴xyz xy+yz+zx=−4.3.【探索】(1)1 (2)-13【总结】b-ac 【应用】x=2或x=0 解析:【探索】(1)将已知等式整理得3x+4x+1=3x+3+m x+1,即3x+4=3x+3+m,解得m=1;(2) 将已知等式整理得5x−3x+2=5x+10+m x+2,即5x-3=5x+10+m,解得:m=-13.【应用】4x−3x−1=4(x−1)+1x−1=4+1x−1,:x 为整数且4x−3x−1为整数,∴x-1=±1,∴x=21或x=0.【举一反三】1.B 解析:根据题意,用x ,y 的相反数代入这个 分 式,即 b =−x−y1−(−x )(−y )= −x+y 1−xy=−a,所以a ,b 互为相反数.2. D 解析:当a≠0且x=0时,等式才能成立,A 错误;当b≠0时,从左到右的变形才能成立,B 错误;分式从左不能变形到右,C 错误;−x−y x+y=−(x+y )x+y=−1,D 正确.3. B 解析:x+2≠0,解得x≠--2,又∵x²-x--6≠0,(x+2)(x -3)≠0,解得x≠-2且x≠3,则x≠-2且x≠3时,等式成立.4.7±√136解析: ∵x⁴−x²+6x −8=1, ∴x⁴−x²+6x −9=0,∴x⁴−(x −3)²= ,∴(x²+x −3)(x²−x +3)=0,∴x²+(x--3=0或 x²−x +3=0.当 x²−x +3=0时,方程无解;当 x²+x −3=0时,x=−1±√132.当 x =−1+√132时, xx+1=−1+√132−1+√132+1√131+√13= 7−√136;当 x =−1−√132时,xx+1=−1−√132−1−√132+1√131−√13=7+√136. 5. 13解析:由x x 2+x+1=13整理变形得1x+1+1x=13,从而得 x +1x=2.而 x 2+x 2x 4+x 2+1=1x 2+1+1x2,1x 2=(x +1x)2−2=2, 故x2x4+x2+1=13.6. 35解析:∵1x−1y=3,∴y−x=3xy,∴x−y=−3xy,∴2x+3xy−2yx−2xy−y=2(x−y)+3xy(x−y)−2xy=2×(−3xy)+3xy−3xy−2xy=−3xy−5xy=35.7. 18解析:将x+1x=3两边同时乘x,得x2+1=3x,x2x4+x2+1=x2(x2+1)2−x2=x29x2−x2=18.8.(1) 真分式(2)1−3x+2(3)2或-4或0或-2解析:(3)2x−1x+1=2x+2−3x+1=2−3x+1.所以当x+1=3或-3或1或-1时,分式的值为整数.解得x=2或x=-4或x=0或x=-2.【过关检测】1. B 解析: a+2b2,a+bπ的分母中均不含有字母,因此它们是整式,而不是分式;a+√bb的分子不是整式,因此不是分式.2. C 解析: ∵x²−3x+2≠0即(x-1)(x-2)≠0,∴x-1≠0且x-2≠0,∴x≠1且x≠2.3. B 解析:∵分式x2−4x+3(x−1)(x−2)的值为0,∴x²−4x+3=0且(x--1)(x--2)≠0,∴x=3.4. C 解析:原式=a⁶,A错误;原式=1,B错误;该分式是最简分式,不需要约分,D错误.5.3 解析: n2m ,ab+1,y5−1z为分式.6. x≠3解析:由题意得x--3≠0,解得x≠3.7.-1 解析:由分式x+1x−1的值为0,得x+1=0且x-1≠0,解得x=-1.8.(1) 6a² (2)a-29.(1) 原式=a3b3ab(a+1)=a2b2a+1(2) 原式=(x−1)2(x2+1+2x)(x2+1−2x)=(x−1)2(x+1)2(x−1)2=1(x+1)210.2m−3=4(m+3)2(m+3)(m−3)12(m+3)=m−32(m+3)(m−3)11. B 解析:要使62x−3的值为整数,则2x-3只能取±1,±2,±3,±6,而x 是自然数,分析知2x-3可取±1或±3,对应得x为0,1,2,3.12. C 解析:∵分式a2a+b 中的a,b都同时扩大2倍, ∴(2a)22a+2b=2a2a+b,∴该分式的值扩大2倍.13.−116解析:∵xyz≠0,∴x≠0且y≠0且z≠0,{3x+2y−7z=0circle17x+4y−15z=0circle2②--①×2得7x-6x--15z+14z=0,∴x=z,将x=z代入①得3z+2y-7z=0,解得y=2x= 2z,原式=4z2−5×4z2−6z2z2+2×4z2+3z2=−22z212z2=−116.14.6a−4b3a+12b 解析a−23b12a+2b=6(a−23b)6(12a+2b)=6a−4b3a+12b.15.(1)x≠32(2)x≠±12 (3) x 为任意实数解析:(1)要使x+22x−3有意义,则2x-3≠0,解得x≠32.当x≠32时, x+22x−3有意义.(2)要使6(x+3)|x|−12有意义,则|x|-12≠0,解得x≠±12.当x≠±12时, 6(x+3)|x|−12有意义.(3)要使x+6x2+1有意义,则x²+1≠0.x为任意实数,x+6x2+1有意义.16.(1) -2 (2)x>3解析:(1)由2x2−8x−2=0,得2x²−8=0且x--2≠0,解得x=-2.当x=-2时,分式的值为0.(2)x2+23x−9的值为正数,得3x-9>0,解得x>3.当x>3时,分式x2+23x−9的值为正数.17. 1 解析: ∵6ᵃ=2010,335ᵇ=2010,∴6ᵃᵇ=2010ᵇ,335ᵃᵇ=2010ᵃ,∴6ᵃᵇ×335ᵃᵇ=2010ᵇ⁺ᵃ,(6×335)ᵃᵇ=2010ᵃ⁺ᵇ,∴ab=a+b,∴1a +1b=a+bab=1.18.4 解析:分子=a(1−b²−c²+b²c²)+b(1−c²−a²+a²c²)+c(1−a²−b²+a²b²)=(a+b+c)−ab(a+b)−bc(b+c)-ac(c+a)+abc(ab+ac+bc).∵a+b+c=abc,∴分子=abc-ab(abc-c)-bc(abc-a)-ac(abc-b)+abc(ab+ac+bc)=abc-abc(ab-1+bc-1+ac-1)+abc(ab+ac+bc)=abc+3abc=4abc.∴原式=4abcabc=4.19. 3 解析: ∵x²+x−1=0,∴x²=−(x−(1),x2+x=1,∴x4+(x−1)2−1x(x−1)=[−(x−1)]2+(x−1)2−1x(x−1)=2x2−4x+1x2+x−2x=2(1−x)−4x+11−2x=3(1−2x)1−2x=3.20.(1)任意一个分式除以前面一个分式恒等于−x2y(2)观察这一列分式:①发现分母上是y¹,y²,y³,…,故第7 个式子的分母是y⁷.②发现分子上是x³, x⁵,x⁷,…,i故第7个式子的分子是:x¹⁵.③再观察符号,发现第偶数个分式为负,第奇数个分式为正.综上,第 7 个分式应该是x15y7.。

八年级数学分式专题培优

八年级数学分式专题培优

八年级数学分式专题培优八年级数学培优试题 ----分式 11、学完分式运算后,老师出了一道题“化简:x3 2 x ”x 2x 2 4小明得做法就是:原式( x 3)( x 2)x 2 x 2 x 6 x 2 x 2 8 ;x 2 4 x 2 4 x 2 4 x 2 4 小亮得做法就是:原式( x 3)( x 2)(2x) x 2x 6 2 xx 24 ;小芳得做法就是:原式x 3 x 2 x 3 1x3 1 1.x 2 (x 2)( x 2) x 2 x 2x 2此中正确得就是()A .小明B .小亮C .小芳D .没有正确得2、以下四种说法( 1)分式得分子、分母都乘以(或除以)a 2 ,分式得值不变; (2)分3 得值能够等于零; ( 3)方程 x1 11得解就是 x1 ;( 4)x式8 y1 x 12得xx1最小值为零;此中正确得说法有()A 、1 个B 、 2 个C 、 3 个D 、 4 个3、对于 x 得方程2 x a 1 得解就是正数,则a 得取值范围就是()x1A . a >- 1B . a >- 1 且 a ≠ 0C .a <- 1D . a <- 1 且 a ≠- 24.若解分式方程2x m 1 x 1产生增根,则 m 得值就是()x 1x 2 xxA 、 1或 2B 、 1或 2C 、 1或 2D 、 1或 25. 已知1 15则b a )ab a , a 得值就是(bb1 A 、 5B 、 7C 、 3D 、6x 3得值为整数得36.若 x 取整数,则使分式x 值有 ( ) .2x -1(A)3 个 (B)4 个 (C)6个 (D)8 个7、 已知2 x3 x A B,此中 A 、B 为常数,那么 A +B 得值为()x 2x 1xA 、- 2B 、 2C 、- 4D 、 48、 甲、乙两地相距 S 千米,某人从甲地出发,以 v 千米 /小时得速度步行,走了a 小时后改乘汽车,又过b 小时抵达乙地,则汽车得速度()SS av S av 2SA 、B 、C 、bD 、a bbaa b9、当 x时,分式1无心义.x 23a (a 0)②a 21。

人教版八年级数学上册 第15章 分式 培优训练(含答案)

人教版八年级数学上册 第15章 分式 培优训练(含答案)

人教版 八年级数学 第15章 分式 培优训练一、选择题1. 若分式||x -1(x -2)(x +1)的值为0,则x 等于 ( ) A .-1B .-1或2C .-1或1D .12. 计算2x 2-1 ÷1x -1的结果是( ) A.2x -1B.2x 3-1C.2x +1D .2(x +1)3. (2020·成都)已知x =2是分式方程1的解,那么实数k 的值为( ) A .3B .4C .5D .64. 若△÷a 2-1a =1a -1,则“△”可能是( ) A.a +1aB.a a -1C.a a +1D.a -1a5. (2020·抚顺本溪辽阳)随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x 件,根据题意可列方程为( )A .3000x =420080x - B .3000x +80=4200xC .4200x =3000x -80D .3000x =420080x +6. (2020·福建)我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.“其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每件椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x 株,则符合题意的方程是( )A.62103(1)-=x x B.621031=-x C.621031-=x x D.62103=x7. 当分式的值为0时,x 的值是 ( )A .5B .-5C .1或5D .-5或5 8. △△△x △△△x △m x △3△3m3△x △3△△△△△△△m △△△△△△( )A. m <92B. m <92△m ≠32C. m >△94D. m >△94△m ≠△349. 关于x 的方程+=0可能产生的增根是 ( ) A .x=1B .x=2C .x=1或x=2D .x=-1或x=210. 已知=,则的值为 ( ) A .B .C .D .二、填空题11. 计算:y 2x2·x y =________.12. (2020·杭州)若分式11x +的值等于1,则x =________.13. 分式32(x +1),2x -15(x -1),2x +1x2-1的最简公分母是________________.14. 当a =________时,关于x 的方程x +1x -2=2a -3a +5的解为x =0.15. 对于分式x -b x +a,当x =-2时,无意义,当x =4时,值为0,则a +b =________.16. 当a=________时,关于x的方程axa-1-2x-1=1的解与方程x-4x=3的解相同.三、解答题17. △△△△△△△△aa△b(1b△1a)△a△1b△△△a△2△b△13.18. △△△△△△△△(1△1a△1)÷a2△4a△4a2△a△△△a△△1.19. (2020·襄阳)(6分)在襄阳市创建全国文明城市的工作中,市政部门绿化队改进了对某块绿地的灌浇方式.改进后,现在每天用水量是原来每天用水量的45,这样120吨水可多用3天,求现在每天用水量是多少吨?20. 为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批新产品比乙工厂单独加工完成这批新产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.21. 甲、乙两商场自行定价销售同一种商品,销售时得到如下信息:信息1:甲商场将该商品提价15%后的售价为1.15元;信息2:乙商场将该商品提价20%后,用6元钱购买该商品的件数比提价前少买1件.(1)该商品在甲商场的原价为元.(2)求该商品在乙商场的原价是多少.(3)甲、乙两商场把该商品均按原价进行了两次价格调整.甲商场:第一次提价的百分率是a,第二次提价的百分率是b;乙商场:两次提价的百分率都是.(a>0,b>0,a≠b)甲、乙两商场中哪个商场提价较多?请说明理由.人教版八年级数学第15章分式培优训练-答案一、选择题1. 【答案】D[解析] 因为分式||x-1(x-2)(x+1)的值为0,所以|x|-1=0,x-2≠0,x+1≠0,解得x=1.2. 【答案】C3. 【答案】B【解析】把x=2代入分式方程计算即可求出k的值.解:把x=2代入分式方程得:1=1,解得:k=4.故选:B.4. 【答案】A[解析] △=a2-1a·1a-1=(a+1)(a-1)a·1a-1=a+1a.5. 【答案】D【解析】由“原来公司投递快件的能力每周3000件,”可知快递公司人数可表示为3000x人,由“快递公司为快递员更换了快捷的交通工具后投递快件的能力由每周3000件提高到4200件”,可知快递公司人数可表示为420080x+人,再结合快递公司人数不变可列方程:3000x=420080x+.故选项D正确.6. 【答案】A【解析】本题考查了列分式方程解应用题,根据少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱列分式方程A ,因此本题选A .7. 【答案】B [解析] 由分式的值为0,得-5=0,解得x=±5.但当x=5时,x 2-4x -5=0,故舍去,所以分式的值为0时,x 的值是-5.8. 【答案】B △△△△△x △mx △3△3m3△x △3△△x △mx △3△3mx △3△3△△△x △9△2m 2△△△△△⎩⎪⎨⎪⎧9△2m 2>09△2m 2≠3△△m <92△m ≠32△△△B.9. 【答案】C10. 【答案】D [解析] ∵=,∴=6. ∴a+=5.∴a+2=25,即a 2++2=25.∴=a 2++1=24. ∴=.二、填空题11. 【答案】12x12. 【答案】0 【解析】本题考查了分式的值的意义,因为分式11x +的值等于1,所以分子、分母相等,即x +1=1,解得x =0,当x =0时,分母x +1≠0,所以分式11x +的值等于1时,x =0,因此本题答案为0.13. 【答案】10(x +1)(x -1) [解析] 因为x2-1=(x +1)(x -1),所以三个分式的最简公分母是10(x +1)(x -1).14. 【答案】±1 [解析] 去分母,得x -a =a(x +1).整理,得(a -1)x =-2a.当a =1时,0·x =-2,该方程无解.当a≠1时,x =-2a a -1.若x =-1,则原分式方程无解,此时-1=-2a a -1,解得a =-1.综上可知,当a =±1时原分式方程无解.故答案为±1.15. 【答案】6 [解析] 因为对于分式x -b x +a,当x =-2时,无意义,当x =4时,值为0,所以-2+a =0,4-b =0,解得a =2,b =4,则a +b =6.16. 【答案】解:(1)方程两边同乘(9x -3),得2(3x -1)+3x =1.解得x =13.检验:当x =13时,9x -3=0,所以x =13不是原方程的解. 所以原分式方程无解.(2)方程两边同乘(x -1)(x +2),得x(x -1)=2(x +2)+(x -1)(x +2).解得x =-12.检验:当x =-12时,(x -1)(x +2)≠0.所以原分式方程的解为x =-12.(3)方程两边同乘x(x +1)(x -1),得三、解答题17. 【答案】△△△△△a a△b ·a△b ba △a△1b△1b △a△1b△a b .(4△)△△a△2△b△13△△△△△a b △2×3△6.(6△)18. 【答案】△△(1△1a△1)÷a 2△4a△4a 2△a △a△2a△1·a△a△1△△a△2△2△a a△2.△a △△1△△△△△a a△2△△1△1△2△13.19. 【答案】设原来每天用水量为x 吨,则现在每天用水量是45x 吨,根据题意,得 120120345x x -=,即1501203x x -=,解得x =10. 经检验,x =10是原方程的解且符合实际,则45x =8. 答:现在每天用水量是8吨.20. 【答案】解:设甲工厂每天能加工x 件新产品,则乙工厂每天能加工1.5x 件新产品. 依题意得-=10,解得x=40.经检验,x=40是原方程的解且符合题意.1.5x=60.答:甲工厂每天能加工40件新产品,乙工厂每天能加工60件新产品.21. 【答案】 解:(1)1(2)设该商品在乙商场的原价为x 元.则-=1,解得x=1.经检验,x=1是原分式方程的解,且符合题意.答:该商品在乙商场的原价为1元.(3)乙商场提价较多.理由:由于原价均为1元,则甲商场两次提价后的价格为(1+a)(1+b)=(1+a+b+ab)元,乙商场两次提价后的价格为1+2=1+a+b+2元.因为2-ab=2>0,所以乙商场提价较多.。

人教版八年级数学分式应用题培优

人教版八年级数学分式应用题培优

一、分式方程应用培优1、某段公路由上坡、平路、下坡三个等长的路段组成,已知一辆汽车在三个路段上行驶的平均速度分别为V、V V3,则此辆汽车在这段公路上行驶的平均速度为()11113 V- V2V3V1V2V3 1 1 1 1 1 1A. 3 B . 3 C. V1V2 V3 D . V1 V2 V32、已知关于x的方程竺』=3的解是正数,求m的取值范围x 23、设x、y都是整数,-—-= —.求y的最大正整数的解x y 20104、已知方程组込二2,注二—9, 5xyz二&恰好有一组解x 2y 3 2y z xy yz 3zx 72 2 2为x= a,y= b,z = C.求a + b + c 的值.5、某书店老板去图书批发市场购买某种图书•第一次用1200元购书若干本,并按该书定价7元出售,很快售完•由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?6某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队共8700元;乙、丙两队合做10天完成,厂家需付乙、丙队共9500元;甲、丙两队合做5天完成全部工程的3 ,厂家需付甲、丙两队共5500元。

(1)求甲、乙、丙各队单独完成全部工程各需多少天?(2)若工期要求不超过15天完成全部工程,问:可由哪个单独承包此项工程花钱最少?请说明理由。

7、由甲、乙两个工程队承包某校校园绿化工程,甲、乙两队单独完成这项工程所需时间比是3:2,两队合做6天可以完成.⑴求两队单独完成此项工程各需多少天?⑵此项工程由甲、乙两队合做6天完成任务后,学校付给他们20000元报酬, 若按各自完成的工程量分配这笔钱,问甲、乙两队各得到多少元?8、国务院决定从2018年2月1日起,“家电下乡”在全国范围内实施,农民购买入选产品,政府按原价购买总额的13%合予补贴返还.某村委会组织部分农民到商场购买入选的同一型号的冰箱、电视机两种家电,已知购买冰箱的数量是电视机的2倍,且按原价购买冰箱总额为40000元、电视机总额15000元. 根据“家电下乡”优惠政策,每台冰箱补贴返还的金额比每台电视机补贴返还的金额多65元,求冰箱、电视机各购买多少台?项目购买数原价购政府补补贴返每台补家电种量买总额(元)贴返还比例还总额(元)贴返还类(台)金额\(元)冰箱4000013%电视机x1500013%⑴设购买电视机x台,依题意填充下列表格⑵列出方程(组)并解答•9、一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用,已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运这批货物分别用2a次、a次能运完;若甲、丙两车合运相同次数运完这批货物时,甲车共运了180吨;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270吨。

人教版八年级数学上册 15.3 分式方程 培优训练(含答案)

人教版八年级数学上册 15.3 分式方程 培优训练(含答案)

人教版 八年级数学 15.3 分式方程 培优训练一、选择题(本大题共10道小题)1. 甲志愿者计划用若干个工作日完成社区的某项工作.从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是( )A. 8B. 7C. 6D. 52. 分式方程x x +1=12的解是( )A. x =1B. x =-1C. x =2D. x =-23. 分式方程x -31-1=0的解为( ) A .x =1 B .x =2 C .x =3 D .x =44. (2020·抚顺本溪辽阳)随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x 件,根据题意可列方程为( ) A .3000x =420080x - B .3000x +80=4200x C .4200x =3000x -80 D .3000x =420080x +5. (2020·广西北部湾经济区)甲、乙两地相距600km ,提速前动车的速度为vkm /h ,提速后动车的速度是提速前的1.2倍,提速后行车时间比提速前减少20min ,则可列方程为( ) A . B . C .20D .206. (2020·宜宾)学校为了丰富学生知识,需要购买一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多8元,已知学校用15000元购买科普类图书的本数与用12000元购买文学类图书的本数相等.设文学类图书平均每本x 元,则列方程正确的是( )A .150008x -=12000xB .150008x +=12000xC .15000x =120008x -D . 15000x =12000x +87. (2020自贡)某工程队承接了80万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了35%,结果提前40天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( ) A .40 B .40 C .40D .408. 随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x 件,根据题意可列方程为( ) A . B .80C .80D .9. (2020·齐齐哈尔)若关于x 的分式方程3x x -2=m2-x+5的解为正数,则m 的取值范围为( ) A .m <﹣10 B .m ≤﹣10 C .m ≥﹣10且m ≠﹣6 D .m >﹣10且m ≠﹣610. (2020·黑龙江龙东)已知关于x 的分式方程4的解为非正数,则k 的取值范围是( ) A .k ≤﹣12 B .k ≥﹣12 C .k >﹣12 D .k <﹣12二、填空题(本大题共5道小题)11. (2020·菏泽)方程111-+=-x x x x 的解是______.12. (2020·绥化)某工厂计划加工一批零件240个,实际每天加工零件的个数是原计划的1.5倍,结果比原计划少用2天,设原计划每天加工零件x 个,可列方程______.13. 分式方程3122x xx x-+=--的解是 .14. (2020·湘潭)若37y x =,则x yx -=________.15. (2020·潍坊)若关于x 的分式方程33122x m x x +=+--有增根,则m =_________.三、解答题(本大题共5道小题)16. (2020·郴州)解方程:11412+-=-x x x17. (12分)小刚去超市买画笔,第一次花60元买了若干支A 型画笔,第二次超市推荐了B 型画笔,但B 型画笔比A 型画笔的单价贵2元,他又花100元买了相同支数的B 型画笔.(1)超市B 型画笔单价多少元?(2)小刚使用两种画笔后,决定以后使用B 型画笔,但感觉其价格稍贵,和超市沟通后,超市给出以下优惠方案:一次性购买不超过20支,则每支B 型画笔打九折;若一次购买超过20支,则前20支打九折,超过的部分打八折,设小刚购买的B 型画笔x 支,购买费用为y 元,请写出y 关于x 的函数关系式. (3)在(2)的优惠方案下,若小刚计划用270元购买B 型画笔,则能购买多少支B 型画笔?18. (2020·毕节)某学校拟购进甲、乙两种规格的书柜放置新购买的图书.已知每个甲种书柜的进价比每个乙种书柜的进价高20%,用5400元购进的甲种书柜的数量比用6300元购进乙种书柜的数量少6个. (2)若该校拟购进这两种规格的书柜共60个,其中乙种书柜的数量不大于甲种书柜数量的2倍.该校应如何进货使得购进书柜所需费用最少?19. (2020·泰安)中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.2020年5月21日以“茶和世界 共品共享”为主题的第一届国际茶日在中国召开.某茶店用4 000元购进了A 种茶叶若干盒,用8 400元购进了B 种茶叶若干盒,所购B 种茶叶比A 种茶叶多10盒,且B 种茶叶每盒进价是A 种茶叶每盒进价的1.4倍.(1)A ,B 两种茶叶每盒进价分别为多少元?(2)第一次所购茶叶全部售完后,第二次购进A ,B 两种茶叶共100盒(进价不变),A 种茶叶的售价是每盒300元,B 种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5 800元(不考虑其他因素),求本次购进A ,B 两种茶叶各多少盒?20. 某企业有九个生产车间,现在每个车间原有的成品一样多,每个车间每天生产的成品也一样多,有A ,B 两组检验员,其中A 组有8名检验员.他们先用两天将第一、二两个车间的成品检验完毕后,再去检验第三、四两个车间的所有成品,又用去了三天时间;同时,用这五天时间,B 组检验员也检验完余下的五个车间的成品.如果每名检验员的检验速度一样快,每个车间原有的成品为a 件,每个车间每天生产b 件成品.(1)用含a ,b 的式子表示B 组检验员检验的成品总数; (2)求B 组检验员的人数.人教版 八年级数学 15.3 分式方程 培优训练-答案一、选择题(本大题共10道小题)1. 【答案】A【解析】设甲志愿者计划完成此项工作的天数为x 天,依题意得1x ×2+(1x +1x )(x -2-3)=1, 解得x =8.2. 【答案】A【解析】从形式上看是可以化为一元一次方程的分式方程,可以先去分母得:2x =x +1,∴x =1.也可以利用方程的解的概念,把所提供的四个答案代入检验;可得正确答案为A ,体现了数学问题可以从多个角度去分析问题,解决问题.3. 【答案】C【解析】本题考查了分式方程的解法.先去分母,化分式方程为整式方程3-(x -1)=0.解得x =4.经检验x =4是分式方程的解.所以x =4是原分式方程的解.4. 【答案】D【解析】由“原来公司投递快件的能力每周3000件,”可知快递公司人数可表示为3000x人,由“快递公司为快递员更换了快捷的交通工具后投递快件的能力由每周3000件提高到4200件”,可知快递公司人数可表示为420080x+人,再结合快递公司人数不变可列方程:3000x=420080x+.故选项D正确.5. 【答案】A【解析】因为提速前动车的速度为vkm/h,提速后动车的速度是提速前的1.2倍,所以提速后动车的速度为1.2vkm/h,根据题意可得:.因此本题选A.6. 【答案】B【解析】设文学类图书平均每本x元,则科普类图书平均每本(x+8)元,根据“用15000元购买科普类图书的本数与用12000元购买文学类图书的本数相等”得:150008 x+=12000x.7. 【答案】A.【解析】本题考查了分式方程在实际问题中的应用,本题数量关系清晰,难度不大,解:设实际工作时每天绿化的面积为x万平方米,则原计划每天绿化的面积为万平方米,依题意,得:40,即40.因此本题选A.8. 【答案】D【解析】设原来平均每人每周投递快件x件,则现在平均每人每周投递快件(x+80)件,根据“人数=投递快递总数量÷人均投递数量”结合快递公司的快递员人数不变,列出关于x的分式方程:.9. 【答案】D【解析】分式方程去分母化为整式方程,表示出方程的解,由分式方程的解为正数求出m的范围即可.去分母得:3x=﹣m+5(x﹣2),解得:x=m+102,由方程的解为正数,得到m+10>0,且m+10≠4,则m的范围为m>﹣10且m≠﹣6,故选:D.10. 【答案】 A 【解析】本题考查了分式方程的解法,用含字母的式子表示方程的解,解:方程4两边同时乘以(x ﹣3)得:x ﹣4(x ﹣3)=﹣k ,∴x ﹣4x +12=﹣k ,∴﹣3x =﹣k ﹣12,∴x4,∵解为非正数,∴4≤0,∴k ≤﹣12.故选:A .二、填空题(本大题共5道小题)11. 【答案】 x =31【解析】解分式方程的基本思路是通过去分母化为整式方程求解,解分式方程必须验根,把可能产生的增根舍去.方程两边同乘x (x -1),得(x -1)2=x (x +1),化简,得3x =1.∴x =31.经检验,x =31是原分式方程的根.12. 【答案】240x =2401.5x +2 【解析】实际每天加工零件1.5x 个.原计划的工作时间=240x (天),实际的工作时间=2401.5x (天),根据“结果比原计划少用2天”可列方程240x =2401.5x +2.13. 【答案】53【解析】去分母,得 32,x x x --=-解得53x =.检验:53x =是分式方程的根.14. 【答案】47【解析】本题主要考查了比的基本性质,准确利用性质变形是解题的关键. 根据比例的基本性质变形,代入求职即可; 由37y x =可设3y k =,7x k =,k 是非零整数, 则7344777--===x y k k k x k k . 故答案为:47.15. 【答案】3【解析】本题主要考查了利用增根求字母的值,增根就是使最简公分母为零的未知数的值;解决此类问题的步骤:①化分式方程为整式方程;②让最简公分母等于零求出增根的值;③把增根代入到整式方程中即可求得相关字母的值. ()332x m x =++-,解得12m x +=.又∵关于x 的分式方程33122x m x x +=+--有增根,即20x -=,∴2x =,122m +=,解得:3m =,三、解答题(本大题共5道小题)16. 【答案】解:=+1,方程两边都乘(x -1)(x +1),得 x (x +1)=4+(x -1)(x +1), 解得x =3,检验:当x =3时,(x -1)(x +1)=8≠0. 故x =3是原方程的解.17. 【答案】解:(1)设超市B 型画笔单价a 元,则A 型画笔单价为(a -2)元, 由题意列方程,得601002a a=-, 解得,5a =.经检验5a =是原分式方程的根. 答:超市B 型画笔单价是5元. (2)由题意知,当小刚购买的B 型画笔支数x ≤20时,费用为y =0.9×5x =4.5x ;当小刚购买的B 型画笔支数x >20时,费用为y =20×0.9+(x -20)×0.8×5=4x +10.所以 4.5,(20)410,()x x y x x ≤⎧=⎨+⎩>20,其中x 为正整数.(3)当4.5x =270(x ≤20)时,解得x =60,因为60>20不符合题意,舍去. 当4x +10=270(x >20)时,解得x =65. 答:小刚能购买65支B 型画笔.18. 【答案】解:(1)设每个乙种书柜的进价是x 元,则每个甲种书柜的进价是(1+20%)x 元 . 根据题意,得5400120%x +()=6300x-6.解得x =300.经检验x=300是原方程的解.当x=300时,(1+20%)x=360.所以每个乙种书柜的进价是300元,每个甲种书柜的进价是360元.(2)设购进乙种书柜a个,则购进甲种书柜(60-a)个.设购进书柜所需费用w元.根据题意,得w=360(60-a)+300a=-60+21600.∵2(60-a)≥a,∴a≤40.所以该校应购进乙种书柜40个,购进甲种书柜20个时,购进书柜所需费用最少.19. 【答案】(1)设A种茶叶每盒进价为x元,则B种茶叶每盒进价为1.4x元.根据题意,得:4000x+10﹦8400 1.4x.解得x﹦200.经检验:x﹦200是原方程的根.∴1.4x﹦1.4×200﹦280(元).∴A,B两种茶叶每盒进价分别为200元,280元.(2)设第二次A种茶叶购进m盒,则B种茶叶购进(100—m)盒.打折前A种茶叶的利润为m2×100﹦50m.B种茶叶的利润为100—m2×120﹦6 000—60m.打折后A种茶叶的利润为m2×10﹦5m.B种茶叶的利润为0.由题意得:50m+6 000—60m+5m﹦5800.解方程,得:m﹦40.∴100—m﹦100—40﹦60(盒).∴第二次购进A种茶叶40盒,B种茶叶60盒.20. 【答案】解:(1)B组检验员检验的成品总数为(5a+25b)件. (2)∵每名检验员的检验速度一样,∴=,解得a=4b.即每名检验员的速度为==b.B组检验员的人数为==12.答:B组检验员的人数为12人.。

人教版八年级数学上册第十五章 《分式》培优综合练习【含答案】

人教版八年级数学上册第十五章 《分式》培优综合练习【含答案】

人教版八年级数学上册第十五章《分式》培优综合练习一.选择题1.要使分式有意义,则x的取值应满足()A.x=0B.x=1C.x≠0D.x≠12.计算:的结果是()A.B.C.D.3.如果a﹣b=4,且a≠0,b≠0,那么代数式(﹣b)÷()的值是()A.﹣4B.4C.2D.﹣24.分式方程﹣=0的解是()A.x=4B.x=C.x=﹣6D.x=﹣5.如图,在数轴上,表示的值的点可以是()A.P点B.Q点C.M点D.N点6.抗击“新冠肺炎”疫情中,某呼吸机厂家接到一份生产300台呼吸机的订单,在生产完成一半时,应客户要求,需提前供货,每天比原来多生产20台呼吸机,结果提前2天完成任务.设原来每天生产x台呼吸机,下列列出的方程中正确的是()A.+=+2B.+=+2C.=﹣2D.=﹣27.若关于x的方程+=2的解为正数,则m的取值范围是()A.m<6B.m>6C.m>6且m≠8D.m<6且m≠08.已知x﹣=1,则x2+等于()A.3B.2C.1D.09.根据如图所示的框图,若输入x=()﹣1,y=,则输出的m的值为()A.﹣2B.2C.D.﹣0.510.若关于x的一元一次不等式组无解,且关于y的分式方程有非负整数解,则符合条件的所有整数a的和为()A.7B.8C.14D.15二.填空题11.分式和的最简公分母为.12.使代数式有意义的x的取值范围是.13.若a2﹣4a+1=0,那么=.14.已知(ab≠0),则代数式的值为.15.若关于x的分式方程﹣=1的解为正数,且关于y的一元一次不等式组的解集为无解,则符合条件的所有整数a的和为.三.解答题16.化简:(1)x﹣y+;(2)×.17.解方程:(1)=;(2)+2=.18.先化简,再求值:,其中x=﹣6.19.甲、乙两公司全体员工踊跃参与“携手防疫,共渡难关”捐款活动,甲公司共捐款100000元,乙公司共捐款140000元.下面是甲、乙两公司员工的一段对话:(1)甲、乙两公司各有多少人?(2)现甲、乙两公司共同使用这笔捐款购买A、B两种防疫物资,A种防疫物资每箱15000元,B种防疫物资每箱12000元.若购买B种防疫物资不少于10箱,并恰好将捐款用完,有几种购买方案?请设计出来(注:A、B两种防疫物资均需购买,并按整箱配送).20.中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.2020年5月21日以“茶和世界共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A 种茶叶若干盒,用8400元购进B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B 种茶叶每盒进价是A种茶叶每盒进价的1.4倍.(1)A,B两种茶叶每盒进价分别为多少元?(2)第一次所购茶叶全部售完后,第二次购进A,B两种茶叶共100盒(进价不变),A 种茶叶的售价是每盒300元,B种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A,B两种茶叶各多少盒?参考答案一.选择题1.由题意得:x﹣1≠0,解得:x≠1,故选:D.2.原式=÷=•=.故选:A.3.(﹣b)÷()=•=•=a﹣b,∵a﹣b=4,∴原式=4.故选:B.4.分式方程﹣=0,去分母得:2(x+2)﹣3x=0,去括号得:2x+4﹣3x=0,解得:x=4,经检验x=4是分式方程的解.故选:A.5.=+=+==1.故选:C.6.设原来每天生产x台呼吸机,根据题意可列方程:+=﹣2,整理,得:=﹣2,故选:D.7.原方程化为整式方程得:2﹣x﹣m=2(x﹣2),解得:x=2﹣,因为关于x的方程+=2的解为正数,所以2﹣>0,解得:m<6,因为x=2时原方程无解,所以可得2﹣≠2,解得:m≠0.故选:D.8.∵x﹣=1,∴(x﹣)2=1,即x2﹣2+=1,则x2+=3,故选:A.9.∵x=()﹣1=2,y=,∴x≠y,∴m=y=.故选:C.10.解不等式组,得,∵不等式组无解,∴a﹣1≤6,∴a≤7.解分式方程,得y=,∵y=为非负整数,a≤7,∴a=﹣1或1或3或5或7,∵a=1时,y=1,原分式方程无解,故将a=1舍去,∴符合条件的所有整数a的和是﹣1+3+5+7=14,故选:C.二.填空题(共5小题)11.分式和的分母分别是2(m﹣n)、(m﹣n).则它们的最简公分母是2(m ﹣n).故答案是:2(m﹣n).12.由题意,得.解得x≠±3且x≠﹣4.故答案是:x≠±3且x≠﹣4.13.∵a2﹣4a+1=0,∴a﹣4+=0,则a+=4,∴原式=4﹣2=2,故答案为:2.14.∵(ab ≠0),∴,∴(a 2+b 2)2=4a 2b 2,∴(a 2﹣b 2)2=0,∴a 2=b 2,∴a =±b ,当a =b 时,=12019﹣12020=1﹣1=0;当a =﹣b 时,=(﹣1)2019﹣(﹣1)2020=(﹣1)﹣1=﹣2;故答案为:0或﹣2.15.分式方程﹣=1的解为x =且x ≠,∵关于x 的分式方程﹣=1的解为正数,∴>0且≠,∴a >0且a ≠1.,解不等式①得:y >3;解不等式②得:y <a .∵关于y 的一元一次不等式组的解集为无解,∴a ≤3.∴0<a ≤3且a ≠1.∵a 为整数,∴a =2、3,整数a 的和为:2+3=5.故答案为5.三.解答题(共5小题)16.(1)原式=+==;(2)原式=×=.17.(1)两边都乘以(x+1)(x﹣1),得:3(x﹣1)=6,解得x=3,检验:x=3时,(x+1)(x﹣1)=8≠0,∴分式方程的解为x=3;(2)两边都乘以x﹣4,得:﹣3+2(x﹣4)=1﹣x,解得x=4,检验:当x=4时,x﹣4=0,∴x=4是分式方程的增根,∴原分式方程无解.18.原式=×=﹣=,当x=﹣6时,原式==2.19.(1)设甲公司有x人,则乙公司有(x+30)人,依题意,得:×=,解得:x=150,经检验,x=150是原方程的解,且符合题意,∴x+30=180.答:甲公司有150人,乙公司有180人.(2)设购买A种防疫物资m箱,购买B种防疫物资n箱,依题意,得:15000m+12000n=100000+140000,∴m=16﹣n.又∵n≥10,且m,n均为正整数,∴,,∴有2种购买方案,方案1:购买8箱A种防疫物资,10箱B种防疫物资;方案2:购买4箱A种防疫物资,15箱B种防疫物资.20.(1)设A种茶叶每盒进价为x元,则B种茶叶每盒进价为1.4x元,依题意,得:﹣=10,解得:x=200,经检验,x=200是原方程的解,且符合题意,∴1.4x=280.答:A种茶叶每盒进价为200元,B种茶叶每盒进价为280元.(2)设第二次购进A种茶叶m盒,则购进B种茶叶(100﹣m)盒,依题意,得:(300﹣200)×+(300×0.7﹣200)×+(400﹣280)×+(400×0.7﹣280)×=5800,解得:m=40,∴100﹣m=60.答:第二次购进A种茶叶40盒,B种茶叶60盒.。

人教版 八年级数学 15.3 分式方程 培优训练(含答案)

人教版 八年级数学 15.3 分式方程 培优训练(含答案)

D.x+2=3(2x-1)
5. (2020·昆明)某校举行“停课不停学,名师陪你在家学”活动,计划投资 8000 元建设几间直播教室,为了保证教学质量,实际每间建设费用增加了 20%,并比 原计划多建设了一间直播教室,总投资追加了 4000 元.根据题意,求出原计划每 间直播教室的建设费用是( ) A.1600 元 B.1800 元 C.2000 元 D.2400 元
)
A.x+2=3
B.x-2=3
C.x-2=3(2x-1)
D.x+2=3(2x-1)
3. 分式方程x+x 1=12的解是(
)
A. x=1 B. x=-1 C. x=2 D. x=-2
4. 分式方程2x-x 1+1-22x=3 时,去分母化为一元一次方程,正确的是(
)
A.x+2=3
B.x-2=3
C.x-2=3(2x-1)
到原点的距离相等,则 x 的值为
.
15. 拓广应用已知关于 x 的分式方程x+k 1+xx-+1k=1 的解为负数,则 k 的取值范围是____时,关于 x 的方程a-ax1-x-2 1=1 的解与方程x-x 4=3 的解相同.
三、解答题(本大题共 4 道小题) 17. (2020·通辽)解方程: 2 3 .
x
x 200
去年 A 型车每辆售价为 2 000 元;
(2)设今年新进 A 型车 a 辆,则 B 型车(60-a)辆,获利 y 元.由题意得
y=(1800-1500)a+(2400-1800)(60-a).整理,得 y=-300a+36000.∵B 型
车的进货数量不超过 A 型车数量的两倍,∴60-a≤2a,∴a≥20.∵y=-300a+
三、解答题(本大题共 4 道小题)

人教版数学八年级培优竞赛 分式方程的解 专题课件

人教版数学八年级培优竞赛 分式方程的解 专题课件

=1

y= 10+a
2
,∵y≠2,∴a≠-6,又
y=
10+a 2

整数解,∴a=-8 或一 4,所有满足条件的整数 a 的值之和为-12.
1.分式方程 x 1 4 的解为( B)
x 1 (x 1)(x 2)
A.x=1
B.x=2
C.x=-1
D.x=-2
2.若分式方程 6 x 5 有增根,则增根是( A )
x
(2)x+ n n+1 =n+(n+1)得 x=n 或 x=n+1;
x
(3)解 x+ n2+n =2n+4,则(x-3)+ n2+n =2n+1,(x-3)+ nn+1 =n+
x-3
x-3
x-3
(n+l),由(2)得 x-3=n 或 x-3=n+1,故原方程的解为 x=n+3 或 x=n
+4.
谢谢观赏
x 1
10.若解关于 x 的分式方程 2 mx 3 会产生增根,则 m 的值为
x 2 x2 4 x 2
_____-__4__或__.6
11.若分式方程 1 3 ax 无解,求 a 的值.
x2
x2
去分母得 1+3(x-2)=ax,整理得(a-3)x=-5,当 a=3 时,该方程无解;
当 a≠3 时,若 x=2,则分式方程也无解,此时 a= 1 ,综上,a=3 或 a= 1 .
≠-3
时,方程的解为负数,解得
m<4

m≠2.
13.阅读材料:
关于 x 的方程:
x
1 x
c
1 c
的解为:
x1
c
,x2
=
1 c

x
1 x
c

人教版 八年级数学上册 15.1 分式 培优训练(含答案)

人教版 八年级数学上册  15.1 分式 培优训练(含答案)

人教版八年级数学15.1 分式培优训练一、选择题(本大题共10道小题)1. 在式子+中,分式的个数是()A.2B.3C.4D.52. 若分式||x-1(x-2)(x+1)的值为0,则x等于()A.-1 B.-1或2C.-1或1 D.13. 当式子的值为0时,x的值是()A.5B.-5C.1或5D.-5或54. [2018·温州] 若分式的值为0,则x的值是()A.2B.0C.-2D.-55. 计算的结果是()A.x-1B.-x+1C.x+1D.-x-16. 下列分式中,最简分式是()A.B.C.D.7. 下列各式中是最简分式的是()A.B.C.D.8. 不改变分式的值,使分子、分母最高次项的系数变为正数,正确的是()A.B.C.D.9. 若x ,y 的值均扩大为原来的2倍,则下列分式的值保持不变的是 ( )A .B .C .D .10. 下列各项中,所求的最简公分母错误的是 ( )A .与的最简公分母是6x 2 B .与的最简公分母是3a 2b 3c C .与的最简公分母是m 2-n 2 D .与的最简公分母是ab (x -y )(y -x ) 二、填空题(本大题共6道小题)11. 计计计x x 计1计1x 计1计________计12. 分式与的最简公分母是 .13. 请你写出一个分母是二项式且能约分的分式: .14. 对于分式x -b x +a,当x =-2时,无意义,当x =4时,值为0,则a +b =________.15. 当y ≠0时,=,这种变形的依据是 .16. 不改变分式的值,使分子、分母各项系数都化成整数,且首项系数都为正数,则= .三、解答题(本大题共4道小题)17. 若分式215x x -+的值为正数,求x 的取值范围.18. (1)填空:=-=-=,-===-;(2)你对于分式的分子、分母和分式本身三个位置的符号变化有怎样的猜想?19. 阅读下列解题过程,然后回答问题:题目:已知==(a,b,c互不相等),求x+y+z的值.解:设===k,则x=k(a-b),y=k(b-c),z=k(c-a),∴x+y+z=k(a-b+b-c+c-a)=k·0=0,即x+y+z=0.依照上述方法解答下列问题:已知==(x+y+z≠0),求的值.20. 已知无论x取何实数,分式总有意义,求m的取值范围.小明对此题刚写了如下的部分过程,便有事离开.解:==.(1)请将小明对此题的解题过程补充完整;(2)利用小明的思路,解决下列问题:无论x取何实数,分式都有意义,求m的取值范围.人教版八年级数学15.1 分式培优训练-答案一、选择题(本大题共10道小题)1. 【答案】A2. 【答案】D[解析] 因为分式||x-1(x-2)(x+1)的值为0,所以|x|-1=0,x-2≠0,x+1≠0,解得x=1.3. 【答案】B[解析] 由|x|-5=0,得x=±5.而x=5时,x2-4x-5=0;x=-5时,x2-4x-5≠0,所以x=-5.4. 【答案】A[解析] 由题意,得x-2=0,解得x=2.当x=2时,x+5≠0,∴x的值是2.5. 【答案】D[解析] ==-x-1.故选D.6. 【答案】B[解析] ==,=,只有选项B是最简分式.7. 【答案】B8. 【答案】D[解析] 分子的最高次项为-3x2,分母的最高次项为-5x3,系数均为负数,所以应同时改变分子、分母的符号,可得===.9. 【答案】A[解析] 根据分式的基本性质,可知若x,y的值均扩大为原来的2倍,有=.所以选项A符合题意.10. 【答案】D二、填空题(本大题共6道小题)11. 【答案】1计计计计计计计x计1x计1计1.12. 【答案】x2-x13. 【答案】答案不唯一,如14. 【答案】6[解析] 因为对于分式x-bx+a,当x=-2时,无意义,当x=4时,值为0,所以-2+a=0,4-b=0,解得a=2,b=4,则a+b=6.15. 【答案】分式的基本性质16. 【答案】[解析] ===.三、解答题(本大题共4道小题)17. 【答案】1x>【解析】∵20x≥,∴250x+>.∴当10x->时,原分式值为正数.即当1x>时,原分式的值为正数.18. 【答案】解:(1)-b-a-b-a a b(2)对于分式的符号、分子的符号、分母的符号,改变其中任意两个,分式的值不变.19. 【答案】解:设===k,则①+②+③,得2x+2y+2z=k(x+y+z).∵x+y+z≠0,∴k=2.∴===.20. 【答案】解:(1)==.因为无论x取何实数,(x-1)2+(m-1)都不等于0,所以m-1>0.所以m>1.(2)==.因为无论x取何实数,3(x-1)2+m-3都不等于0,所以m-3>0.所以m>3.。

人教版八年级上册数学《分式的基本性质》分式培优说课教学复习课件

人教版八年级上册数学《分式的基本性质》分式培优说课教学复习课件

=
3x2 x2
-15 x - 25
探索新知
知识点3 分式的通分 约分和通分的联系与区别
联系:约分和通分都是根据分式的基本性质对分式进行恒等变形, 二者均不改变分式的值. 区别:约分是针对一个分式而言的,把分式的分子和分母的公因 式约去,将分式化为最简分式或整式;而通分是针对多个异分母 的分式而言的,将分式的分子和分母乘同一个适当的整式,使这 几个异分母的分式化为同分母的分式.
2.分式有意义和无意义的条件是什么?
分式有意义的条件:分式的分母不能为0,即当B≠0时,分式
A B
才有意义.
分式无意义的条件:分式的分母为0,即当B=0时,分式 A 无
B
意义.
复习导入
3.分式值为零的条件是什么? 要使分式 A 的值为零,则A=0,且B≠0.
B
探索新知
知识点1 分式的基本性质 下列两组分数相等吗? (1) 6 6 2 3 相等
分 约分 找公因式

的方法

(1)找系数的最大公约数; (2)找分子分母相同因式的最低次幂; (3)两者的乘积即为公因式.
约 分
内容
把几个异分母的分式分别化成与原来的分

式相等的同分母的分式
通 通分 确定最简公 分
分母的方法
从系数、相同因式、不同因式三个方 面确定,注意多项式要先分解因式
课堂练习
1.下列分式中,最简分式是( D )
(1
m(m m)(1
( a b+ b 2 ) ab2
(2)
×100
(3) 0.01x- 5 (x-500) (4)0.3x 0.04 30x 4
×100
÷x3
x3 x3y 1 y

八年级上册分式解答题(培优篇)(Word版 含解析)

八年级上册分式解答题(培优篇)(Word版 含解析)
经检验,x=100是原分式方程的解,
答:2018年平均每天的垃圾排放量为100万吨.
(2)由(1)得2019年垃圾的排放量为200万吨,
设2020年垃圾的排放量还需要増加m万吨,
90%,
m 98,
∴至少还需要増加98万吨才能使该市2020年平均每天的垃圾处理率符合创卫的要求.
【点睛】
此题考查分式方程的实际应用,一元一次不等式的实际应用,正确理解题意,找到各量之间的关系是解题的关键.
点睛:本题主要考查分式方程的应用,解题的关键是熟练掌握列分式方程解应用题的一般步骤,即①根据题意找出等量关系②列出方程③解出分式方程④检验⑤作答.注意:分式方程的解必须检验.
2.某市2018年平均每天的垃圾处理量为40万吨/天,2019年平均每天的垃圾排放量比2018年平均每天的垃圾排放量多100万吨;2019年平均每天的垃圾处理量是2018年平均每天的垃圾处理量的2. 5倍.若2019年平均每天的垃圾处理率是2018年平均每天的垃圾处理率的1. 25倍.
【答案】(1)100;(2)98.
【解析】பைடு நூலகம்
【分析】
(1)设2018年平均每天的垃圾排放量为x万吨,根据题意列方程求出x的值即可;
(2)设设2020年垃圾的排放量还需要増加m万吨,根据题意列出不等式,解得m的取值范围即可得到答案.
【详解】
(1)设2018年平均每天的垃圾排放量为x万吨,

解得:x=100,
【详解】
解:设规定期限x天完成,则有:

解得x=20.
经检验得出x=20是原方程的解;
答:规定期限20天.
方案(1):20×1.5=30(万元)
方案(2):25×1.1=27.5(万元 ),

人教版八年级数学上册 分式解答题(培优篇)(Word版 含解析)

人教版八年级数学上册 分式解答题(培优篇)(Word版 含解析)

一、八年级数学分式解答题压轴题(难)1.某开发公司生产的 960 件新产品需要精加工后,才能投放市场,现甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用 20天,而甲工厂每天加工的数量是乙工厂每天加工的数量的23,公司需付甲工厂加工费用为每天 80 元,乙工厂加工费用为每天 120 元.(1)甲、乙两个工厂每天各能加工多少件新产品?(2)公司制定产品加工方案如下:可以由每个厂家单独完成,也可以由两个厂家合作完成.在加工过程中,公司派一名工程师每天到厂进行技术指导,并负担每天 15 元的午餐补助费,请你帮公司选择一种既省时又省钱的加工方案,并说明理由.【答案】(1)甲工厂每天加工 16 件产品,乙工厂每天加工 24 件产品. (2)甲、乙两工厂合作完成此项任务既省时又省钱.见解析.【解析】【分析】(1)设甲工厂每天加工 x 件新品,乙工厂每天加工 1.5x 件新品,根据题意找出等量关系:甲厂单独加工这批产品所需天数﹣乙工厂单独加工完这批产品所需天数=20,由等量关系列出方程求解.(2)分别计算出甲单独加工完成、乙单独加工完成、甲、乙合作完成需要的时间和费用,比较大小,选择既省时又省钱的加工方案即可.【详解】(1)设甲工厂每天加工 x 件新品,乙工厂每天加工 1.5x 件新品,则:解得:x=16经检验,x=16 是原分式方程的解∴甲工厂每天加工 16 件产品,乙工厂每天加工 24 件产品(2)方案一:甲工厂单独完成此项任务,则需要的时间为:960÷16=60 天需要的总费用为:60×(80+15)=5700 元方案二:乙工厂单独完成此项任务,则需要的时间为:960÷24=40 天需要的总费用为:40×(120+15)=5400 元方案三:甲、乙两工厂合作完成此项任务,设共需要 a 天完成任务,则16a+24a=960∴a=24∴需要的总费用为:24×(80+120+15)=5 160 元综上所述:甲、乙两工厂合作完成此项任务既省时又省钱.【点睛】本题主要考查分式方程的应用,解题的关键在于理解清楚题意,找出等量关系,列出方程求解.需要注意:①分式方程求解后,应注意检验其结果是否符合题意;②选择最优方案时,需将求各个方案所需时间和所需费用,经过比较后选择最优的那个方案.2.某市为了做好“全国文明城市”验收工作,计划对市区S 米长的道路进行改造,现安排甲、乙两个工程队进行施工.(1)已知甲工程队改造360米的道路与乙工程队改造300米的道路所用时间相同.若甲工程队每天比乙工程队多改造30米,求甲、乙两工程队每天改造道路的长度各是多少米.(2)若甲工程队每天可以改造a 米道路,乙工程队每天可以改造b 米道路,(其中a b ).现在有两种施工改造方案: 方案一:前12S 米的道路由甲工程队改造,后12S 米的道路由乙工程队改造; 方案二:完成整个道路改造前一半时间由甲工程队改造,后一半时间由乙工程队改造. 根据上述描述,请你判断哪种改造方案所用时间少?并说明理由.【答案】(1)甲工程队每天道路的长度为180米,乙工程队每天道路的长度为150米;(2)方案二所用的时间少【解析】【分析】(1)设乙工程队每天道路的长度为x 米,根据“甲工程队改造360米的道路与乙工程队改造300米的道路所用时间相同”,列出分式方程,即可求解;(2)根据题意,分别表示出两种方案所用的时间,再作差比较大小,即可得到结论.【详解】(1)设乙工程队每天道路的长度为x 米,则甲工程队每天道路的长度为()30x +米, 根据题意,得:36030030x x=+, 解得:150x =,检验,当150x =时,()300x x +≠,∴原分式方程的解为:150x =,30180x +=,答:甲工程队每天道路的长度为180米,乙工程队每天道路的长度为150米;(2)设方案一所用时间为:111()222s s a b s t a b ab+=+=, 方案二所用时间为2t ,则221122t a t b s +=,22s t a b=+, ∴22()22()a b a b S S S ab a b ab a b +--=++, ∵a b ,00a b >>,,∴()20a b ->,∴22a bS Sab a b+->+,即:12t t>,∴方案二所用的时间少.【点睛】本题主要考查分式方程的实际应用以及分式的减法法则,找出等量关系,列分式方程,掌握分式的通分,是解题的关键.3.一件工程,甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的23;若由甲队先做 20 天,剩下的工程再由甲、乙两队合作 60天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为 8.6 万元,乙队每天的施工费用为 5.4 万元,工程预算的施工费用为 1000 万元,若在甲、乙工程队工作效率不变的情况下使施工时间最短,问安排预算的施工费用是否够用?若不够用,需追加预算多少万元?【答案】(1)甲、乙两队单独完成这项工程分别需120天、180天(2)工程预算的施工费用不够用,需追加预算8万元【解析】试题分析:(1)首先表示出甲、乙两队需要的天数,进而利用由甲队先做20天,剩下的工程再由甲、乙两队合作60天完成得出等式求出答案;(2)首先求出两队合作需要的天数,进而求出答案.试题解析:解:(1)设乙队单独完成这项工程需要x天,则甲队单独完成这项工程需要23x天.根据题意,得201160()12233x x x++=,解得:x=180.经检验,x=180是原方程的根,∴23x=23×180=120,答:甲、乙两队单独完成这项工程分别需120天和180天;(2)设甲、乙两队合作完成这项工程需要y天,则有11()1120180y+=,解得y=72.需要施工费用:72×(8.6+5.4)=1008(万元).∵1008>1000,∴工程预算的施工费用不够用,需追加预算8万元.点睛:此题主要考查了分式方程的应用以及一元一次方程的应用,正确得出等量关系是解题关键.4.甲、乙、丙三个登山爱好者经常相约去登山,今年1月甲参加了两次登山活动.(1)1月1日甲与乙同时开始攀登一座900米高的山,甲的平均攀登速度是乙的1.2倍,结果甲比乙早15分钟到达顶峰.求甲的平均攀登速度是每分钟多少米?(2)1月6日甲与丙去攀登另一座h 米高的山,甲保持第(1)问中的速度不变,比丙晚出发0.5小时,结果两人同时到达顶峰,问甲的平均攀登速度是丙的多少倍?(用含h 的代数式表示)【答案】(1)甲的平均攀登速度是12米/分钟;(2)360h h+倍. 【解析】【分析】(1)根据题意可以列出相应的分式方程,从而可以求得甲的平均攀登速度;(2)根据(1)中甲的速度可以表示出丙的速度,再用甲的速度比丙的平均攀登速度即可解答本题.【详解】(1)设乙的速度为x 米/分钟, 900900151.2x x+=, 解得,x=10,经检验,x=10是原分式方程的解,∴1.2x=12,即甲的平均攀登速度是12米/分钟;(2)设丙的平均攀登速度是y 米/分,12h +0.5×60=h y , 化简,得 y=12360h h +, ∴甲的平均攀登速度是丙的:1236012360h h h h ++=倍, 即甲的平均攀登速度是丙的360h h+倍.5.符号a b c d 称为二阶行列式,规定它的运算法则为:a b ad bc c d =-,请根据这一法则解答下列问题:(1)计算:211111xx x +-;(2)若2121122x xx -=--,求x 的值.【答案】(1)()()111x x +- (2)5 【解析】【分析】 (1)根据新定义列出代数式,再进行减法计算;(2)根据定义列式后得到关于x 的分式方程,正确求解即可.【详解】(1)原式2111x x x =--+ ()()()()11111x x x x x x -=-+-+-()()111x x =+-; (2)根据题意得:21222x x x--=-- 解之得:5x =经检验:5x =是原分式方程的解所以x 的值为5.【点睛】此题考察分式的计算,分式方程的求解,依据题意正确列式是解此题的关键.6.“绿色环保,健康出行”新能源汽车越来越占领汽车市场,以“北汽”和“北汽 新能源 EV500”为例,分别在某加油站和某充电站加油和充电的电费均为 300 元,而续 航里程之比则为 1∶4.经计算新能源汽车相比燃油车节约 0.6 元/公里.(1)分别求出燃油车和新能源汽车的续航单价(每公里费用);(2)随着更多新能源车进入千家万户,有条件的小区及用户将享受 0.48 元/度的优惠专用电费.以新能源 EV500 为例,充电 55 度可续航 400 公里,试计算每公里所需电费, 并求出与燃油车相同里程下的所需费用(油电)百分比.【答案】(1)燃油车0.8;新能源汽车0.2;(2)8.25%【解析】【分析】(1)设新能源汽车续航单价为x 元/公里,则燃油车续航单价为(x+0.6)元/公里,根据等量关系式:新能源汽车续航里程:燃油车续航里程=4∶1,列出方程,解之即可.(2)根据总价=单价×数量可得新能源汽车400公里所需费用,再用此费用÷总公里数即可得新能源汽车每公里所需电电费;由(1)知燃油汽车每公里费用,用此费用乘以总公里数可得燃油汽车总费用,再用新能源汽车的总费用÷燃油车相同里程下的所需费用即可得答案.【详解】解:(1)设新能源汽车续航单价为x 元/公里,则燃油车续航单价为(x+0.6)元/公里,依题可得:300x :3000.6x+ =4:1, 解得:x=0.2, ∴燃油车续航单价为:x+0.6=0.2+0.6=0.8(元/公里),答:新能源汽车续航单价为0.2元/公里,燃油车续航单价为0.8元/公里.(2)依题可得新能源汽车400公里所需费用为:0.48×55=26.4(元),∴新能源汽车每公里所需电电费为:26.4÷400=0.066(元/公里),依题可得燃油汽车400公里所需费用为:400×0.8=320(元),∴新能源汽车与燃油车相同里程下的所需费用(油电)百分比为:26.4÷320=0.0825=8.25%.答:新能源汽车每公里所需电电费为0.066元;新能源汽车与燃油车相同里程下的所需费用(油电)百分比为8.25%.【点睛】本题主要考查了分式方程的实际应用,找准等量关系,正确列出分式方程是解题的关键.7.我们知道:分式和分数有着很多的相似点.如类比分数的基本性质,我们得到了分式的基本性质;类比分数的运算法则,我们得到了分式的运算法则等等.小学里,把分子比分母小的分数叫做真分数.类似地,我们把分子整式的次数小于分母整式的次数的分式称为真分式;反之,称为假分式.对于任何一个假分式都可以化成整式与真分式的和的形式, 如:112122111111x x x x x x x x +-+-==+=+-----; 2322522552()11111x x x x x x x x -+-+-==+=+-+++++. (1)下列分式中,属于真分式的是:____________________(填序号) ①21a a -+; ②21x x +; ③223b b +; ④2231a a +-. (2)将假分式4321a a +-化成整式与真分式的和的形式为: 4321a a +-=______________+________________. (3)将假分式231a a +-化成整式与真分式的和的形式: 231a a +-=_____________+______________.【答案】(1)③;(2)2,521a -;(3)a +1+41a - . 【解析】 试题分析:(1)认真阅读题意,体会真分式的特点,然后判断即可;(2)根据题意的化简方法进行化简即可;(3)根据题意的化简方法进行化简即可.试题解析:(1)①中的分子分母均为1次,②中分子次数大于分母次数,③分子次数小于分母次数,④分子分母次数一样,故选③.(2)4321a a +-=42552212121a a a a -+=+---,故答案为2,5221a +-; (3)231a a +-=214(1)(1)4111a a a a a a -++-=+---=411a a ++-,故答案为a+1+41a -.8.某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元. (1)该商店第一次购进水果多少千克;(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.【答案】(1)该商店第一次购进水果100千克;(2)每千克水果的标价至少是15元.【解析】【分析】(1)首先根据题意,设该商店第一次购进水果x 千克,则第二次购进水果2x 千克,然后根据:(1000÷第一次购进水果的重量 +2)×第二次购进的水果的重量=2400,列出方程,求出该商店第一次购进水果多少千克即可.(2)首先根据题意,设每千克水果的标价是x 元,然后根据:(两次购进的水果的重量﹣20)×x +20×0.5x ≥两次购进水果需要的钱数+950,列出不等式,求出每千克水果的标价是多少即可.【详解】解:(1)设该商店第一次购进水果x 千克,则第二次购进水果2x 千克, (1000x+2)×2x =2400 整理,可得:2000+4x =2400,解得x =100.经检验,x =100是原方程的解.答:该商店第一次购进水果100千克.(2)设每千克水果的标价是x 元,则(100+100×2﹣20)×x +20×0.5x ≥1000+2400+950 整理,可得:290x ≥4350,解得x ≥15,∴每千克水果的标价至少是15元.答:每千克水果的标价至少是15元.【点睛】此题主要考查了分式方程的应用,以及一元一次不等式的应用,要熟练掌握,注意建立不等式要善于从“关键词”中挖掘其内涵.9.京广高速铁路工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的23;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为8.4万元,乙队每天的施工费用为5.6万元.工程预算的施工费用为500万元.为缩短工期并高效完成工程,拟安排预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.【答案】(1)甲队单独完成需60天,乙队单独完成这项工程需要90天;(2)工程预算的施工费用不够,需追加预算4万元.【解析】【分析】(1)设甲单独完成这项工程所需天数,表示出乙单独完成这项工程所需天数及各自的工作效率.根据工作量=工作效率×工作时间列方程求解;(2)根据题意,甲乙合作工期最短,所以须求合作的时间,然后计算费用,作出判断.【详解】(1)解:设乙队单独完成这项工程需要x天,则甲队单独完成需要2x3填;403012xx3+=解得:x90=经检验,x=90是原方程的根.则22x906033=⨯=(天)答:甲、乙两队单独完成这项工程分别需60天和90天.(2)设甲、乙两队合作完成这项工程需要y天,则有y(160+190)=1.解得y=36.需要施工费用:36×(8.4+5.6)=504(万元).∵504>500.∴工程预算的施工费用不够用,需追加预算4万元.10.某县为落实“精准扶贫惠民政策”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合作施工15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合作完成.则甲、乙两队合作完成该工程需要多少天?【答案】(1)这项工程的规定时间是30天;(2)甲乙两队合作完成该工程需要18天.【解析】【分析】(1)设这项工程的规定时间是x天,则甲队单独施工需要x天完工,乙队单独施工需要1.5x 天完工,依题意列方程即可解答;(2)求出甲、乙两队单独施工需要的时间,再根据题意列方程即可.【详解】(1)设这项工程的规定时间是x天,则甲队单独施工需要x天完工,乙队单独施工需要1.5x天完工,依题意,得: 1551511.5x x++=.解得: 30x=,经检验,30x=是原方程的解,且符合题意.答:这项工程的规定时间是30天.(2)由(1)可知:甲队单独施工需要30天完工,乙队单独施工需要45天完工,111()183045÷+=(天),答:甲乙两队合作完成该工程需要18天.【点睛】本题考查分式方程的应用,理解题意,根据等量关系列出方程是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

为 x= a, y= b, z = C. 求a 2 + b 2 + c 2
的值. \分式方程应用培优
1、某段公路由上坡、平路、下坡三个等长的路段组成,已知一辆汽车在三个 路段上行驶的平均速度分别为 V 1、M 、V 3,则此辆汽车在这段公路上行驶的平 均速度为( )
2、已知关丁 x 的方程 = 3的解是正数,求m 的取值范围
x 2 3、设x 、y 都是整数,--1
= -^―.求y 的最大正整数的解.
x —5xyz — = 15恰好有一组解 xy yz 3zx 7
5、某书店老板去图书批发市场购买某种图书.第一次用 1200元购书若干本, 并按该书定价7元出售,很快售完.由丁该书畅销,第二次购书时,每本书的
批发—= -------- y 2010 4、已知方程组 2xy =- x 2y 3
价已比第一次提高了20%他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?
6、某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队共8700元;乙、
丙两队合做10天完成,厂家需付乙、丙队共9500元;甲、丙两队合做5天完成全部工程的 3 ,厂家需付甲、丙两队共5500元
(1) 求甲、乙、丙各队单独完成全部工程各需多少天?
(2) 若工期要求不超过15天完成全部工程,问:可由哪个单独承包此项工程花钱最少?请说明理由
7、由甲、乙两个工程队承包某校校园绿化工程, 甲、乙两队单独完成这项工 程所需时间比是3:2,两队合做6天可以完成.
⑴求两队单独完成此项工程各需多少天 ?
⑵此项工程由甲、乙两队合做 6天完成任务后,学校付给他们 20000元报酬, 若按各自完成的工程量分配这笔钱,问甲、乙两队各得到多少元 ?
8、国务院决定从2018年2月1日起,“家电下乡”在全国范围内实施,农民 购买入选产品,政府按原价购买总额的13%合予补贴返还.某村委会组织部分农 民到商场购买入选的同一型号的冰箱、电视机两种家电,已知购买冰箱的数量 是电视机的2倍,且按原价购买冰箱总额为 40000元、电视机总额15000元. 根据“家电下乡”优惠政策,每台冰箱补贴返还的金额比每台电视机补贴返还 的金额多65元,求冰箱、电视机各购买多少台?
政府补 补贴返每台补 贴返还比例 还总额(元)贴返还 金额 (元) 原价购 买总额
(元)
冰箱
电视机
⑴设购买电视机 ⑵列出方程(组)并解
40000 15000 x x 台,依题意填充下列表格:
13% 13% 购买数

9、一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用,已知甲、乙、丙
三辆车每次运货量不变,且甲、乙两车单独运这批货物分别用2a次、a次能运
完;若甲、丙两车合运相同次数运完这批货物时,甲车共运了180吨;若乙、丙
两车合运相同次数运完这批货物时,乙车共运了270吨。

(1) 乙车每次所运货物是甲车每次所运货物量的几倍?
(2) 现甲、乙、丙合运相同次数把这批货物运完时,货主应付车主运费各多少元?(按每运1吨付运费20元计算)。

10、某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今
年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.
⑴今年三月份甲种电脑每台售价多少元?
⑵为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价
3500元,乙种电脑每台进价为3000元,公司预计用不多丁5万元且不少丁4.8 万元的资金购进这两种电脑共15台,有几种进货方案?
⑶如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出
一台乙种电脑,返还顾客现金a元,要使⑵中所有方案获利相同,a值应是多
少?此时,哪种方案对公司更有利?。

相关文档
最新文档