2019年高等数学基础期末考试复习试题及答案

合集下载

2019最新高等数学(上册)期末考试试题(含答案)VE

2019最新高等数学(上册)期末考试试题(含答案)VE

2019最新高等数学期末考试试题(含答案)一、解答题1.利用洛必达法则求下列极限:⑴ πsin 3lim tan 5x x x →; ⑵ 3π2ln sin lim (2)x x x π→-; ⑶ 0e 1lim (e 1)x x x x x →---; ⑷ sin sin lim x a x a x a→--; ⑸ lim m mn n x a x a x a →--; ⑹ 1ln(1)lim cot x x arc x→+∞+; ⑺ 0ln lim cot x x x +→; ⑻ 0lim sin ln x x x +→; ⑼ 0e 1lim()e 1x x x x →--; ⑽ 01lim(ln )x x x+→; ⑾ 2lim (arctan )πx x x →+∞⋅; ⑿ 10lim(1sin )x x x →+; ⒀ 0lim[ln ln(1)]x x x +→⋅+; ⒁lim )x x →+∞; ⒂ sin 0e e lim sin x x x x x →--; ⒃ 210sin lim()x x x x→; ⒄ 1101lim[(1)]e x x x x →+.解:⑴ 原式=2π3cos33lim 5sec 55x x x →=-. ⑵ 原式=2ππ221cot 1csc 1lim lim 4π-2428x x x x x →→--=-=--. ⑶ 原式=000e 1e 11lim lim lim e 1e 2e e 22x x x x x x x x x x x x →→→-===-+++. ⑷ 原式=cos lim cos 1x a x a →=. ⑸ 原式=11lim m m n n x a mx m a nx n---→=. ⑹ 原式=22221()11lim lim 111x x x x x x x x x →+∞→+∞⋅-++==+-+.⑺ 原式=22001sin lim lim 0csc x x x x x x++→→=-=-. ⑻ 原式=001ln lim lim 0csc csc cot x x x x x x x++→→==-⋅. ⑼ 原式22200e e e e lim =lim (e 1)x x x x x x x x x x x →→----=-202e e 1=lim 2x x x x→-- 204e e 3=lim 22x x x →-=. ⑽ 原式=0lim(1ln )xx x +→- 令(1ln )xy x =- 00020011()ln(1ln )1ln lim ln lim lim 111 lim lim 011ln x x x x x x x x y x xx x x+++++→→→→→⋅---==-===-- ∴原式=00lim e 1x y +→==. ⑾ 令2(arctan )πx y x =⋅,则 2222211lnln arctan πarctan 1lim ln lim lim 1112 lim arctan 1πx x x x x x x y x xx x x →+∞→+∞→+∞→+∞+⋅+==-=-⋅=-+ ∴原式=2πe -.⑿ 令1(1sin )x y x =+,则000cos ln(1sin )1sin limln lim lim 11x x x xx x y x →→→++=== ∴原式=e =e '.⒀ 原式00ln lim(ln )lim 1x x x x x x ++→→=⋅=0021=lim =lim()01x x x x x++→→-=-⒁原式lim x x→+∞= 2234232311111=lim (1)(23)=33x x x x x x x x ----→+∞+++⋅++⋅ ⒂ 原式sin sin 0e (e 1)lim sin x x x x x x -→-=-sin 00e (sin )=lim =e =1sin x x x x x x→⋅-- ⒃ 令12sin ()x x y x =,则 200023002220011cos ln sin ln sin lim ln lim lim 2cos sin cos sin lim lim 2sin 2cos sin cos 1 lim lim .666x x x x x x x x x x xx y x xx x x x x x x x x x x x x x x x →→→→→→→--==--==---===- ∴原式=16e -.⒄ 令111[(1)]e x x y x =+,则11ln [ln(1)1]x y x x=+- 2000011ln(1)1lim ln lim lim 2111 lim .212x x x x x x xy x x x →→→→-+-+===-=-+2.将下列函数f (x )展开为傅里叶级数:(1)()()πππ42x f x x =--<<(2)()()sin 02πf x xx =≤≤ 解:(1) ()ππ0-ππ11ππcos d d ππ422x a f x nx x x -⎛⎫==-= ⎪⎝⎭⎰⎰ []()ππππ-π-πππ1π11cos d cos d x cos d π4242π1sin 001,2,4n x a nx x nx x nx x nx n n--⎛⎫=-=- ⎪⎝⎭=-==⎰⎰⎰()ππππ-π-π1π11sin d sin d xsin d π4242π11n n x b nx x nx x nx x n-⎛⎫=-=- ⎪⎝⎭=-⋅⎰⎰⎰故()()1πsin 14n n nx f x n∞==+-∑ (-π<x <π) (2)所给函数拓广为周期函数时处处连续, 因此其傅里叶级数在[0,2π]上收敛于f (x ),注意到f (x )为偶函数,有b n =0,()ππ0πππ011cos0d sin d ππ24sin d ππa f x x x x x x x --====⎰⎰⎰ ()()()()()()ππ0ππ02222cos d sin cos d ππ1sin 1sin 1d π211π10,1,3,5,4,2,4,6,π1n n a f x nx x x nx x n x n x x n n n n -===+--⎡⎤⎣⎦-⎡⎤=+-⎣⎦-=⎧⎪-=⎨=⎪-⎩⎰⎰⎰所以 ()()2124cos2ππ41n nx f x n ∞=-=+-∑ (0≤x ≤2π)3.利用柯西审敛原理判别下列级数的敛散性:(1) ()111n n n +∞=-∑; (2) 1cos 2n n nx ∞=∑; (3) 1111313233n n n n ∞=⎛⎫+- ⎪+++⎝⎭∑. 解:(1)当P 为偶数时,()()()()2341111112311111231111112112311n n n n p n n n n p n n n n p n p n p n n pn n n +++++----=++++++++-+--=++++⎛⎫⎛⎫-=----- ⎪ ⎪+-+-++++⎝⎭⎝⎭<+ 当P 为奇数时, ()()()()1223411111123111112311111112311n n n pn n n n p U U U n n n n p n n n n p n p n p n n n n +++++++++++----=++++++++-+-+=++++⎛⎫⎛⎫-=---- ⎪ ⎪+-++++⎝⎭⎝⎭<+ 因而,对于任何自然数P ,都有12111n n n p U U U n n ++++++<<+, ∀ε>0,取11N ε⎡⎤=+⎢⎥⎣⎦,则当n >N 时,对任何自然数P 恒有12n n n p U U U ε++++++<成立,由柯西审敛原理知,级数()111n n n +∞=-∑收敛. (2)对于任意自然数P ,都有()()()12121cos cos cos 12222111222111221121112212n n n p n n n p n p n p n xn p x x n n ++++++++++=+++≤+++⎛⎫- ⎪⎝⎭=-⎛⎫=- ⎪⎝⎭< 于是, ∀ε>0(0<ε<1),∃N =21log ε⎡⎤⎢⎥⎣⎦,当n >N 时,对任意的自然数P 都有12n n n p U U U ε++++++<成立,由柯西审敛原理知,该级数收敛.(3)取P =n ,则 ()()()()()121111113113123133213223231131132161112n n n p U U U n n n n nn n n n n ++++++⎛⎫=+-+++- ⎪++++++⋅+⋅+⋅+⎝⎭≥++++⋅+≥+> 从而取0112ε=,则对任意的n ∈N ,都存在P =n 所得120n n n p U U U ε++++++>,由柯西审敛原理知,原级数发散.4.写出下列级数的一般项:(1)1111357++++;2242468x x ++⋅⋅⋅⋅;(3)35793579a a a a -+-+; 解:(1)121n U n =-;(2)()2!!2nn x U n =;(3)()211121n n n a U n ++=-+; 5.有一等腰梯形闸门,它的两条底边各长10m 和6m ,高为20m ,较长的底边与水面相齐,计算闸门的一侧所受的水压力. 解:如图20,建立坐标系,直线AB 的方程为 y =-x 10+5. 压力元素为 d F =x ·2y d x =2x ⎝⎛⎭⎫-x 10+5d x所求压力为F =⎠⎛0202x ⎝⎛⎭⎫-x 10+5d x =⎣⎡⎦⎤5x 2-115x 3200 =1467(吨) =14388(KN)6. 求下列曲线段的弧长:a) y 2=2x ,0≤x ≤2;解:见图18,2yy ′=2. y ′=1y∴1+y ′2=1+1y 2.从而 (18)l =2⎠⎛021+y ′2d x =2⎠⎛021+1y 2d x =2⎠⎛021y 1+y 2d y 22 =2⎠⎛021+y 2d y =y 1+y 2+ln ()y +1+y 2⎪⎪20=25+ln(2+5) b) y =ln x ,3≤x ≤8;解:l =⎠⎛381+y ′2d x =⎠⎛381+1x 2d x =⎠⎛381+x 2x d x =⎣⎡⎦⎤1+x 2-ln 1+1+x 2x 83=1+12ln 32. c) y =⎠⎜⎛−π2x cos t d t , −π2≤t ≤π2; (20)解:l =⎠⎜⎜⎛−π2π21+y ′2d x =⎠⎜⎜⎛−π2π21+cos x d x =⎠⎜⎜⎛−π2π22cos x 2d x =42⎠⎜⎛0π2cos x 2d x 2 =42sin x 2⎪⎪⎪π20=4.7.求下列旋转体的体积: (1) 由y =x 2与y 2=x 3围成的平面图形绕x 轴旋转; 解: 求两曲线交点⎩⎨⎧y =x 2y 2=x 3得(0,0),(1,1) V =π⎠⎛01()x 3-x 4d x =π⎣⎡⎦⎤14x 4-15x 510=π20. (14) (2)由y =x 3,x =2,y =0所围图形分别绕x 轴及y 轴旋转;解:见图14,V x =π⎠⎛02x 6d x =1287π V y =π⎠⎛08⎝⎛⎭⎫22-y 23d y =645π. (2)星形线x 2/3+y 2/3=a 2/3绕x 轴旋转; 解:见图15,该曲线的参数方程是: ⎩⎨⎧x =a cos 3t y =a sin 3t0≤t ≤2π , 由曲线关于x 轴及y 轴的对称性,所求体积可表示为V x =2π⎠⎛0ay 2d x=2π⎠⎜⎛π20()a sin 3t 2d ()a cos 3t =6πa 3⎠⎜⎛0π2sin 7t cos 2t d t =32105πa 3 (15)8.求由参数式2020sin d cos d t t x u u y u u ⎧=⎪⎨⎪=⎩⎰⎰所确定的函数y 对x 的导数d d y x . 解:222d d cos d cot .d d sin d yy t t t x x tt===9.利用定义计算下列定积分:(1) d ();ba x x ab <⎰解:将区间[a , b ]n 等分,分点为(), 1,2,,1;i i b a x a i n n -=+=-记每个小区间1[,]i i x x -长度为,i b a x n-∆=取, 1,2,,,i i x i n ξ== 则得和式 211()2(1)()[()]()2n n i i i i i b a b a n n f x a b a a b a n n n ξ==--+∆=+-⋅=-+∑∑ 由定积分定义得 220122()(1) d lim ()lim[()]21 ().2n bi i a n i b a n n x x f x a b a nb a λξ→→∞=-+=∆=-+=-∑⎰ (2) 10e d .x x ⎰解:将区间[0, 1] n 等分,分点为 (1,2,,1),i i x i n n ==-记每个小区间长度1,i x n ∆=取 (1,2,,),i i x i n ξ==则和式111()in n n i i i i f x e nξ==∆=∑∑ 12101111111e d lim e lim (e e e )1e (1e )1e (e 1)limlim 1e e 11e (e 1)1lim e 1.1i n nxn n n n n n i n n n n n n n n n x n n n n n n n →∞→∞=→∞→∞→∞==+++--==---==-∑⎰10.利用函数的图形的凹凸性,证明下列不等式:()1(1) (0,0,,1)22nn n x y x y x y n x y +⎛⎫>>>≠>+ ⎪⎝⎭; 证明:令 ()n f x x = 12(),()(1)0n n f x nx f x n n x --'''==-> , 则曲线y =f (x )是凹的,因此,x y R +∀∈, ()()22f x f y x y f ++⎛⎫< ⎪⎝⎭, 即 1()22nn n x y x y +⎛⎫<+ ⎪⎝⎭. 2e e (2)e ()2x y x yx y ++>≠ ; 证明:令f (x )=e x()e ,()e 0x x f x f x '''==> .则曲线y =f (x )是凹的,,,x y R x y ∀∈≠ 则 ()()22f x f y x y f ++⎛⎫< ⎪⎝⎭即 2e e e 2x yx y++<. (3) ln ln ()ln (0,0,)2x y x x y y x y x y x y ++>+>>≠ 证明:令 f (x )=x ln x (x >0) 1()ln 1,()0(0)f x x f x x x '''=+=>> 则曲线()y f x =是凹的,,x y R +∀∈,x ≠y ,有 ()()22f x f y x y f ++⎛⎫< ⎪⎝⎭即 1ln (ln ln )222x y x y x x y y ++<+, 即 ln ln ()ln2x y x x y y x y ++>+.11.求下列函数图形的拐点及凹或凸的区间:32(1) 535y x x x =-++;解:23103y x x '=-+ 610y x ''=-,令0y ''=可得53x =.当53x <时,0y ''<,故曲线在5(,)3-∞内是凸弧; 当53x >时,0y ''>,故曲线在5[,)3+∞内是凹弧. 因此520,327⎛⎫⎪⎝⎭是曲线的唯一拐点.(2) e xy x -=;解:(1)e , e (2)xxy x y x --'''=-=- 令0y ''=,得x =2当x >2时,0y ''>,即曲线在[2,)+∞内是凹的; 当x <2时,0y ''<,即曲线在(,2]-∞内是凸的. 因此(2,2e -2)为唯一的拐点.4(3) (1)e x y x =++;解:324(1)e , e 12(1)0xxy x y x '''=++=++> 故函数的图形在(,)-∞+∞内是凹的,没有拐点. (4) y =ln (x 2+1);解:222222(1), 1(1)x x y y x x -'''==++ 令0y ''=得x =-1或x =1.当-1<x <1时,0y ''>,即曲线在[-1,1]内是凹的.当x >1或x <-1时,0y ''<,即在(,1],[1,)-∞-+∞内曲线是凸的. 因此拐点为(-1,ln2),(1,ln2).arctan (5) e x y =;解:arctan arctan 222112e ,e 1(1)x xx y y x x -'''==++ 令0y ''=得12x =. 当12x >时,0y ''<,即曲线在1[,)2+∞内是凸的; 当12x <时,0y ''>,即曲线在1(,]2-∞内是凹的, 故有唯一拐点1arctan 21(,e)2. (6) y =x 4(12ln x -7).解:函数y 的定义域为(0,+∞)且在定义域内二阶可导.324(12ln 4),144ln .y x x y x x '''=-=令0y ''=,在(0,+∞),得x =1.当x >1时,0y ''>,即曲线在[1,)+∞内是凹的; 当0<x <1时,0y ''<,即曲线在(0,1]内是凸的, 故有唯一拐点(1,-7).12.在半径为r 的球中内接一正圆柱体,使其体积为最大,求此圆柱体的高.解:设圆柱体的高为h ,,223πππ4V h r h h =⋅=-令0V '=,得.h =时,其体积为最大.13.已知a >0,试证:11()11f x x x a =+++-的最大值为21aa++. 证明: 11,01111(),01111,11x x x a f x x a x x a x a x x a⎧+<⎪--+⎪⎪=+≤≤⎨+-+⎪⎪+>⎪++-⎩当x <0时,()()2211()011f x x x a '=+>--+;当0<x <a 时,()()2211()11f x x x a '=-++-+;此时令()0f x '=,得驻点2ax =,且422a f a⎛⎫= ⎪+⎝⎭, 当x >a 时,()()2211()011f x x x a '=--<++-,又lim ()0x f x →∞=,且2(0)()1af f a a+==+. 而()f x 的最大值只可能在驻点,分界点,及无穷远点处取得 故 {}max 242(),,0121a af x a a a++==+++.14.求如图所示的三角形脉冲函数的频谱函数.解:()202202E T E t t T f t E T E t t T ⎧+-≤≤⎪⎪=⎨⎪-<≤⎪⎩()()02022e d 22e d e d 41cos 2i t Ti t i t T F f tt E E t t E t E t T T E T T ωωωωωω+∞--∞---=⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭⎛⎫=- ⎪⎝⎭⎰⎰⎰15.求下列极限问题中,能使用洛必达法则的有( ).⑴ 201sinlimsin x x x x →; ⑵ lim (1)x x k x→+∞+; ⑶ sin lim sin x x xx x→∞-+; ⑷ e e lim .e e x x xx x --→+∞-+ 解:⑴ ∵200111sin2sin coslimlim sin cos x x x x x x x x x→→-=不存在,(因1sin x ,1cos x 为有界函数) 又2001sin1limlim sin 0sin x x x x x x x→→==, 故不能使用洛必达法则. ⑶ ∵sin 1cos limlimsin 1cos x x x x xx x x→∞→∞--=++不存在, 而sin 1sin lim lim 1.sin sin 1x x x x x x xx x x→∞→∞--==++故不能使用洛必达法则.⑷ ∵e e e e e e lim lim lim e e e e e ex x x x x xxx x x x x x x x ------→+∞→+∞→+∞-+-==+-+利用洛必达法则无法求得其极限.而22e e1elim lim1e e1ex x xx x xx x----→+∞→+∞--==++.故答案选(2). 16.证明:11(1)arcsin h ln( (2)arctan h ln,1121xx x x xx+==-<<-证: (1)由e esinh2x xy x--==得2e2e10x xy--=解方程2e2e10x xy--=得e x y=因为e0x>,所以e x y=ln(x y=所以sinhy x=的反函数是arcsin h ln(().y x x x==+-∞<<+∞(2)由e etanhe ex xx xy x---==+得21e1xyy+=-,得1112ln,ln121y yx xy y++==--;又由11yy+>-得11y-<<,所以函数tanhy x=的反函数为11arctan h ln (11).21xy x xx+==-<<-17.设()f x在[,]a b上有(1)n-阶连续导数,在(,)a b内有n阶导数,且(1)()()()()0.nf b f a f a f a-'=====试证:在(,)a b内至少存在一点ξ,使()()0nfξ=.证明:首先,对()f x在[,]a b上应用罗尔定理,有1(,)a a b∈,即1a a b<<,使得1()0f a'=;其次,对()f x'在[,]a b上应用罗尔定理,有21(,)a a b∈,即12a a a b<<<,使得2()0;,f a''=一般地,设在(,)a b内已找到1n-个点121,,,,na a a-其中121,na a a a b-<<<<<使得(1)1()0nnf a--=,则对(1)()0nf x-=在1[,]na b-上应用罗尔定理有1(,)(,),na b a bξ-∈⊂使得()()0nfξ=.18.球的半径以速率v改变,球的体积与表面积以怎样的速率改变?解:324dπ,π,.3drV r A r vt===2d d d 4πd d d d d d 8πd d d V V rr v t r tA A r r v t r t =⋅=⋅=⋅=⋅19.利用微分求下列各数的近似值: ⑴⑵ ln 0.99; ⑶ arctan1.02.解:⑴113x ≈+,有112(1) 2.0083380==≈⋅+⨯=. ⑵ 利用近似公式ln(1)x x +≈,有ln 0.99ln(10.01)0.0100.=-≈-⑶ 取()arctan f x x =,令01,0.02x x ==, 而21()1f x x'=+,则 21arctan1.02arctan10.0211=0.7954.≈+⨯+20.求由下列参数方程所确定函数的二阶导数22d d yx:⑴ (sin ),(1cos ),x a t t y a t =-⎧⎨=-⎩ (a 为常数);⑵ (),()(),x f t y tf t f t '=⎧⎨'=-⎩设()f t ''存在且不为零.解:⑴ d d sin sin d d d (1cos )1cos d y y a t tt x x a t tt===-- 2222d d sin d sin 1()()d d d 1cos d 1cos d cos (1-cos )-sin sin 1=(1-cos )(1cos )1=.(1cos )y t t xx x t t t tt t t t t a t a t ==⋅--⋅⋅---⑵ d d ()()()d d d ()d y y f t tf t f t t t x x f t t''''+-==='' 22d d d 111()()1d d d d ()()d y t t x x x t f t f t t==⋅=⋅=''''.21.已知()f x ''存在,求22d d yx:⑴ 2()y f x =; ⑵ ln ()y f x =. 解:⑴ 22()y xf x ''=222222()22() 2()4()y f x x xf x f x x f x '''''=+⋅'''=+⑵ ()()f x y f x ''=22()()[()]()f x f x f x y f x '''-''=22.试求曲线exy -=在点(0,1)及点(-1,0)处的切线方程和法线方程.解:231e e (1)3xxy x ---'=-⋅+12. 3x x y y ==-''=-=∞故在点(0,1)处的切线方程为:21(0)3y x -=--,即2330x y +-=法线方程为:21(0)3y x -=-,即3220x y -+= 在点(-1,0)处的切线方程为:1x =- 法线方程为:0y =23.证明:双曲线2xy a =上任一点处的切线与两坐标轴构成的三角形的面积都等于22a .证明:在双曲线上任取一点00(,),M x y则222220, , x a a a y y y x xx =''==-=-,则过M 点的切线方程为:20020()a y y x x x -=--令220000002202x y x a y x x x x a a=⇒=+=+=得切线与x 轴的交点为0(2,0)x ,令2000000002x y a x y y y y x x =⇒=+=+=得切线与y 轴的交点为0(0,2)y , 故 2000012222.2S x y x y a ===24.设()()f x x a x ϕ=-,其中a 为常数,()x ϕ为连续函数,讨论()f x 在x a =处的可导性. 解:()()()()()lim lim ()()()()()()lim lim ()x a x a x a x a f x f a x a x f a a x a x af x f a a x x f a a x a x aϕϕϕϕ++--+→→-→→--'===----'===---.故当()0a ϕ=时,()f x 在x a =处可导,且()0f a '= 当()0a ϕ≠时,()f x在x a =处不可导.25.求下列函数的导数: (1) y =解:y '=(2) y =解:5323yx -'=-(3) 2y =解:2512326y x x +-==561.6y x -'=26.求下列函数在0x 处的左、右导数,从而证明函数在0x 处不可导.(1) 03sin ,0,0;,0,x x y x x x ≥⎧==⎨<⎩证明:00()(0)sin (0)lim lim 1,0x x f x f xf x x+++→→-'===- 300()(0)(0)lim lim 0,0x x f x f x f x x---→→-'===- 因(0)(0)f f +-''≠,故函数在00x =处不可导.(2) 10,0,0;1e 0,0,xx x y x x ⎧≠⎪==+⎨⎪=⎩证明:100()(0)1(0)lim lim 0,01e xx x f x f f x +++→→-'===-+ 100()(0)1(0)lim lim 1,01e xx x f x f f x ---→→-'===-+ 因(0)(0)f f +-''≠,故函数在00x =处不可导.(3) 021,1.,1,x y x x x ≥==<⎪⎩证明:11()(1)1(1)lim lim ,12x x f x f f x +++→→-'===- 211()(1)1(1)lim lim 2,11x x f x f x f x x ---→→--'===-- 因(1)(1)f f +-''≠,故函数在01x =处不可导.27.设函数2,1,(),1.x x f x ax b x ⎧≤=⎨+>⎩ 为了使函数()f x 在1x =点处连续且可导,,a b 应取什么值?解:因211lim ()lim 1(1)x x f x x f --→→=== 11lim ()lim()x x f x ax b a b ++→→=+=+ 要使()f x 在1x =处连续,则有1,a b +=又211()(1)1(1)lim lim 2,11x x f x f x f x x ---→→--'===-- 111(1)lim lim ,11x x ax b ax af a x x +++→→+--'===-- 要使()f x 在1x =处可导,则必须(1)(1)f f -+''=, 即 2.a =故当2,1a b ==-时,()f x 在1x =处连续且可导.28.设()f x 在[0,2]a 上连续,且(0)(2)f f a =,证明:方程()()f x f x a =+在[0,a ]内至少有一根.证:令()()()F x f x f x a =-+,由()f x 在[0,2]a 上连续知,()F x 在[0,]a 上连续,且(0)(0)(),()()(2)()(0)F f f a F a f a f a f a f =-=-=-若(0)()(2),f f a f a ==则0,x x a ==都是方程()()f x f x a =+的根,若(0)()f f a ≠,则(0)()0F F a <,由零点定理知,至少(0,)a ξ∃∈,使()0F ξ=, 即()()f f a ξξ=+,即ξ是方程()()f x f x a =+的根, 综上所述,方程()()f x f x a =+在[0,]a 内至少有一根.29.当0x →时,22x x -与23x x -相比,哪个是高阶无穷小量?解:232200limlim 022x x x x x x x x x→→--==-- ∴当0x →时,23x x -是比22x x -高阶的无穷小量.30.试问a 为何值时,函数1()sin sin 33f x a x x =+在π3x =处取得极值?它是极大值还是极小值?并求此极值. 解:f (x )为可导函数,故在π3x =处取得极值,必有 π3π0()(coscos3)3x f a x x ='==+,得a =2. 又 π3π0()(2sin 3sin 3)3x f xx =''=<=--,所以π3x =是极大值点,极大值为π()3f =【参考答案】***试卷处理标记,请不要删除一、解答题 1.无 2.无3.无4.无5.无6.无7.无8.无9.无10.无11.无12.无13.无14.无15.无16.无17.无18.无19.无20.无21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。

2019最新高等数学(上册)期末考试试题(含答案)AKN

2019最新高等数学(上册)期末考试试题(含答案)AKN

2019最新高等数学期末考试试题(含答案)一、解答题1.国民收入的年增长率为7.1%,若人口的增长率为1.2%,则人均收入年增长率为多少? 解:人均收入年增长率=国民收入的年增长率-人口增长率=7.1%-1.2%=5.9%.习题三2.判定下列级数是否收敛?若收敛,是绝对收敛还是条件收敛?(1)1+; (2)()()1111ln 1n n n ∞-=-+∑;(3) 2341111111153535353⋅-⋅+⋅-⋅+;(4)()21121!n n n n ∞-=-∑; (5)()()1111n n R n αα∞-=∈-∑;(6) ()11111123nnn n ∞=⎛⎫-++++ ⎪⎝⎭∑. 解:(1)()11n n U -=-,级数1n nU ∞=∑>,0n =,由莱布尼茨判别法级数收敛,又11121nn n Un∞∞===∑∑是P <1的P 级数,所以1nn U∞=∑发散,故原级数条件收敛. (2)()()111ln 1n n U n -=-+,()()1111ln 1n n n ∞---+∑为交错级数,且()()11ln ln 12n n >++,()1lim0ln 1n n →∞=+,由莱布尼茨判别法知原级数收敛,但由于()11ln 11n U n n =≥++ 所以,1nn U∞=∑发散,所以原级数条件收敛.(3)()11153n n n U -=-⋅民,显然1111115353n n n n n n U ∞∞∞=====⋅∑∑∑,而113nn ∞=∑是收敛的等比级数,故1nn U∞=∑收敛,所以原级数绝对收敛.(4)因为2112lim lim 1n n n n nU U n ++→∞→∞==+∞+.故可得1n n U U +>,得lim 0n n U →∞≠,∴lim 0n n U →∞≠,原级数发散.(5)当α>1时,由级数11n n α∞=∑收敛得原级数绝对收敛. 当0<α≤1时,交错级数()1111n n n α∞-=-∑满足条件:()111n n αα>+;1lim 0n nα→∞=,由莱布尼茨判别法知级数收敛,但这时()111111n n n n n αα∞∞-===-∑∑发散,所以原级数条件收敛. 当α≤0时,lim 0n n U →∞≠,所以原级数发散.(6)由于11111123n nn ⎛⎫⋅>++++ ⎪⎝⎭ 而11n n ∞=∑发散,由此较审敛法知级数 ()11111123nn nn ∞=⎛⎫-⋅++++ ⎪⎝⎭∑发散. 记1111123n U nn ⎛⎫=⋅++++ ⎪⎝⎭,则 ()()()()()()1222111111123111111112311111111231110n n U U n n n n n n n n n n n n n n +⎛⎫⎛⎫-=-++++- ⎪⎪+⎝⎭⎝⎭+⎛⎫=-++++ ⎪⎝⎭++⎛⎫⎛⎫-=++++ ⎪ ⎪⎝⎭+++⎝⎭>即1n n U U +> 又01111lim lim12311d n n n n U n n x n x→∞→∞⎛⎫=++++ ⎪⎝⎭=⎰ 由0111lim d lim 01t t t t x t x →+∞→+∞==⎰ 知lim 0n n U →∞=,由莱布尼茨判别法,原级数()11111123nn nn ∞=⎛⎫-⋅++++ ⎪⎝⎭∑收敛,而且是条件收敛.3.用比值判别法判别下列级数的敛散性:(1) 213n n n ∞=∑;(2)1!31nn n ∞=+∑; (3)232333331222322n n n +++++⋅⋅⋅⋅;(4) 12!n nn n n ∞=⋅∑ 解:(1) 23n n n U =,()2112311lim lim 133n n n n n nU n U n ++→∞→∞+=⋅=<,由比值审敛法知,级数收敛.(2) ()()111!311lim lim 31!31lim 131n n n n n nn n n U n U n n ++→∞→∞+→∞++=⋅++=⋅++=+∞所以原级数发散.(3) ()()11132lim lim 2313lim 21312n nn n n n n nn U n U n n n +++→∞→∞→∞⋅=⋅⋅+=+=> 所以原级数发散.(4) ()()1112!1lim lim 2!1lim 21122lim 1e 11n nn n nn n nnn n n U n n U n n n n n +++→∞→∞→∞→∞⋅+=⋅⋅+⎛⎫= ⎪+⎝⎭==<⎛⎫+ ⎪⎝⎭故原级数收敛.4.设某工厂生产某种产品的固定成本为零,生产x (百台)的边际成本为C ′(x )(万元/百台),边际收入为R ′(x )=7-2x (万元/百台). (1) 求生产量为多少时总利润最大?(2) 在总利润最大的基础上再生产100台,总利润减少多少?解:(1) 当C ′(x )=R ′(x )时总利润最大. 即2=7-2x ,x=5/2(百台)(2) L ′(x )=R ′(x )-C ′(x )=5-2x .在总利润最大的基础上再多生产100台时,利润的增量为 ΔL (x )=772255222(52)d 51x x x x-=-=-⎰.即此时总利润减少1万元.5. 把长为10m ,宽为6m ,高为5m 的储水池内盛满的水全部抽出,需做多少功?解:如图19,区间[x ,x +d x ]上的一个薄层水,有微体积d V =10·6·dx(19)设水的比重为1,,则将这薄水层吸出池面所作的微功为 d w =x ·60g d x =60gx d x . 于是将水全部抽出所作功为 w =⎠⎛0560gx d x=60g 2x 2⎪⎪50 =750g (KJ) .6. 求下列旋转体的体积:(1)由y =x 2与y 2=x 3围成的平面图形绕x 轴旋转;解: 求两曲线交点⎩⎨⎧y =x2y 2=x3得(0,0),(1,1)V =π⎠⎛01()x 3-x 4d x =π⎣⎡⎦⎤14x 4-15x 510 =π20. (14) (2)由y =x 3,x =2,y =0所围图形分别绕x 轴及y 轴旋转;解:见图14,V x =π⎠⎛02x 6d x =1287πV y =π⎠⎛08⎝⎛⎭⎫22-y 23d y=645π. (2)星形线x 2/3+y 2/3=a 2/3绕x 轴旋转;解:见图15,该曲线的参数方程是:⎩⎨⎧x =a cos 3t y =a sin 3t0≤t ≤2π , 由曲线关于x 轴及y 轴的对称性,所求体积可表示为V x =2π⎠⎛0ay 2d x=2π⎠⎜⎛π20()a sin 3t 2d ()a cos 3t=6πa 3⎠⎜⎛0π2sin 7t cos 2t d t=32105πa 3(15)7.已知sin πd 2x x x +∞=⎰,求: 0sin cos (1)d ;x xx x+∞⎰解:(1)原式=001sin(2)1sin πd(2)d .2224x t x t x t +∞+∞==⎰⎰22sin (2) d .x x x+∞⎰解:222002200200020000sin 1cos 2d d 21cos 2d d 22111d cos 2d 2211111d cos 2dcos2222111sin 2cos 2d2222ππ0.22x x x x x xx x x x x x x x xx x x x x xx x xx x x +∞+∞+∞+∞+∞+∞+∞+∞+∞+∞+∞-==-=+=+⋅-⎡⎤=-+⋅+⎢⎥⎣⎦=+=⎰⎰⎰⎰⎰⎰⎰⎰⎰8.求不定积分max(1,)d x x ⎰.解: ,1max(1,)1,11,1x x x x x x -<-⎧⎪=-≤≤⎨⎪>⎩故原式=212231,12,111,12x c x x c x x c x ⎧-+<-⎪⎪+-≤≤⎨⎪⎪+>⎩又由函数的连续性,可知:213111,1,2c c c c c c =+=+= 所以 221,121max(1,)d ,11211,12x c x x x c x x x c x ⎧-+<-⎪⎪⎪=++-≤≤⎨⎪⎪++>⎪⎩⎰9.求下列不定积分:221(1)d (1)(1)x x x x ++-⎰; 解:原式=2111111d ln ln 1122122(1)(1)(1)x c x x x x x x ⎛⎫ ⎪-=++++-++ ⎪+++-⎝⎭⎰ 211ln .112c x x =++-+ 33d (2)1x x +⎰;解:原式=22211112d ln ln d 1122111x x x x x x x x x x x -+⎛⎫=-+++-+⎪-++-+⎝⎭⎰⎰3c =++. 5438(3)d x x x x x+--⎰; 解:原式=2843d 111x x x x x x ⎛⎫+++-- ⎪+-⎝⎭⎰ 32118ln 4ln 3ln .1132x x x c x x x =+++--++-26(4)d 1x x x +⎰;解:原式=33321d()1arctan .31()3x x c x =++⎰ sin (5)d 1sin xx x+⎰;解:原式=222sin 1d tan d (sec 1)d sec tan .cos cos x x x x x x x x x c x x -=--=-++⎰⎰⎰ cot (6)d sin cos 1xx x x ++⎰;解:原式22tan 222222212d 1111111d d d 22(1)22211111x t t t t t t t t t t t t t t t t t t =-⋅-++==-+⎛⎫-++⎪+++⎝⎭⎰⎰⎰⎰令1111ln ln tan .tan 222222x x t c c t =-+=-+(7)x ;解:原式=2.c =+(8)x ;解:原式=2d 2ln 21x x x x x ⎛=+-+ ⎝⎰ 又2x2221d 44d 11t t t t t t =+--⎰⎰142ln1t t c c t -''=++=++故原式=1)x c -+.10.利用定积分概念求下列极限:111(1)lim 122n n n n →+∞⎛⎫+++⎪++⎝⎭解:原式110011111lim d ln 2.ln(1)121111n x x n n x nn n →+∞⎛⎫+++⎪=⋅===++++ ⎪+⎝⎭⎰221(2)lim).n n n →+∞+解:原式1320122lim ..33n n x x n n →+∞⎫====+⎪⎭⎰11.利用定义计算下列定积分: (1)d ();bax x a b <⎰解:将区间[a , b ]n 等分,分点为(), 1,2,,1;i i b a x a i n n-=+=- 记每个小区间1[,]i i x x -长度为,i b ax n-∆=取, 1,2,,,i i x i n ξ==则得和式211()2(1)()[()]()2nni i i i i b a b a n n f x a b a a b a n n n ξ==--+∆=+-⋅=-+∑∑ 由定积分定义得22122()(1) d lim ()lim[()]21().2nbi i an i b a n n x x f x a b a n b a λξ→→∞=-+=∆=-+=-∑⎰(2)1e d .xx ⎰解:将区间[0, 1] n 等分,分点为 (1,2,,1),i ix i n n==-记每个小区间长度1,i x n∆=取 (1,2,,),i i x i n ξ==则和式111()i nnni i i i f x enξ==∆=∑∑ 12101111111e d lim e lim (e e e )1e (1e )1e (e 1)lim lim 1e e 11e (e 1)1lim e 1.1i n nxn n n nn n i n nnnn n n n n x n n n nn n n →∞→∞=→∞→∞→∞==+++--==---==-∑⎰12.甲、乙两用户共用一台变压器(如13题图所示),问变压器设在输电干线AB 的何处时,所需电线最短?解:所需电线为()(03)()L x x L x =<<'=13题图在0<x <3得唯一驻点x =1.2(km),即变压器设在输电干线离A 处1.2km 时,所需电线最短.13.试证明:如果函数32y ax bx cx d =+++满足条件230b ac -<,那么这函数没有极值.证明:232y ax bx c '=++,令0y '=,得方程2320ax bx c ++=,由于 22(2)4(3)4(3)0b a c b ac ∆=-=-<,那么0y '=无实数根,不满足必要条件,从而y 无极值.14.将()2132f x x x =++展开成(x +4)的幂级数. 解:21113212x x x x =-++++ 而()()()011113411431314413334713nn nn n x x x x x x x ∞=∞+==+-++=-⋅+-+⎛+⎫⎛⎫=-< ⎪⎪⎝⎭⎝⎭+=--<<∑∑又()()()0101122411421214412224622nn nn n x x x x x x x ∞=∞+==+-++=-+-+⎛+⎫⎛⎫=-< ⎪⎪⎝⎭⎝⎭+=--<<-∑∑所以()()()()()2110011013244321146223n nn n n n nn n n f x x x x x x x ∞∞++==∞++==++++=-+⎛⎫=-+-<<- ⎪⎝⎭∑∑∑15.下列函数在指定区间上是否满足罗尔定理的三个条件?有没有满足定理结论中的ξ?⑴ 2, 01,() [0,1] 0, 1,x x f x x ⎧≤<=⎨=⎩; ⑵ ()1, [0,2] f x x =-; ⑶ sin , 0π,() [0,π] . 1, 0,x x f x x <≤⎧=⎨=⎩解:⑴ ()f x 在[0,1]上不连续,不满足罗尔定理的条件.而()2(01)f x x x '=<<,即在(0,1)内不存在ξ,使()0f ξ'=.罗尔定理的结论不成立. ⑵ 1, 12,()1, 0 1.x x f x x x -≤<⎧=⎨-<<⎩(1)f '不存在,即()f x 在区间(0,2) 内不可导,不满足罗尔定理的条件.而1, 12,()1, 0 1.x f x x <<⎧'=⎨-<<⎩即在(0,2)内不存在ξ,使()0f ξ'=.罗尔定理的结论不成立.⑶ 因(0)1(π)=0f f =≠,且()f x 在区间[0,π] 上不连续,不满足罗尔定理的条件. 而()cos (0π)f x x x '=<<,取π2ξ=,使()0f ξ'=.有满足罗尔定理结论的π2ξ=. 故罗尔定理的三个条件是使结论成立的充分而非必要条件.16.求下列函数的反函数及其定义域:2531(1); (2)ln(2)1;1(3)3; (4)1cos ,[0,π].x xy y x xy y x x +-==+++==+∈ 解: (1)由11xy x-=+解得11y x y -=+,所以函数11x y x -=+的反函数为1(1)1xy x x-=≠-+. (2)由ln(2)1y x =++得1e 2y x -=-, 所以,函数ln(2)1y x =++的反函数为1e 2()x y x -=-∈ R .(3)由253x y +=解得31(log 5)2x y =- 所以,函数253x y +=的反函数为31(log 5)(0)2y x x =-> . (4)由31cos y x =+得cos x =,又[0,π]x ∈,故x =又由1cos 1x -≤≤得301cos 2x ≤+≤,即02y ≤≤,故可得反函数的定义域为[0,2],所以,函数31cos ,[0,π]y x x =+∈的反函数为(02)y x =≤≤.17.计算抛物线y =4x -x 2在它的顶点处的曲率. 解:y =-(x -2)2+4,故抛物线顶点为(2,4) 当x =2时, 0,2y y '''==- , 故 23/22.(1)y k y ''=='+18.利用泰勒公式求下列极限:⑴ 30sin lim ;x x x x →- ⑵ tan 0e 1lim ;x x x →- (3) 21lim[ln(1)].x x x x →∞-+ 解:⑴ 34sin 0()3!x x x x =-+ 343300[0()]sin 13!lim lim 6x x x x x x x x x x →→--+-∴== ⑵tan 2e 1tan 0(tan )x x x =++tan 200e 11tan 0(tan )1lim lim 1x x x x x x x→→-++-∴== (3) 令1x t=,当x →∞时,0t →,2222022011111lim[2ln(1)]lim[ln(1)]lim{[()]}21()1lim().22x t t t t x x t t o t x t t t t o t t →∞→∞→→-+=-+=--+=-=19.根据下面所给的值,求函数21y x =+的,d y y ∆及d y y ∆-: ⑴ 当1,0.1x x =∆=时; 解:2222()1(1)2210.10.10.21d 2210.10.2d 0.210.20.01.y x x x x x x y x x y y ∆=+∆+-+=∆+∆=⨯⨯+==⋅∆=⨯⨯=∆-=-=. ⑵ 当1,0.01x x =∆=时. 解:222210.010.010.0201d 2210.010.02d 0.02010.020.0001.y x x x y x x y y ∆=∆+∆=⨯⨯+==⋅∆=⨯⨯=∆-=-=20.设()f x 具有二阶连续导数,且(0)0f =,试证:(), 0,()(0), 0,f x xg x xf x ⎧≠⎪=⎨⎪'=⎩ 可导,且导函数连续.证明:因()f x 具有二阶连续导数,故0x ≠时,()g x 可导,又002000()(0)()(0)(0)lim lim 0()(0)()(0)lim lim2()(0)lim ,22x x x x x f x f g x g xg x xf x f x f x f x xf x f →→→→→'--'==-'''-⋅-==''''== 故 ()g x 是可导的,且导函数为 2()(), 0,()(0), 0, 2xf x f x x xg x f x '-⎧≠⎪⎪'=⎨''⎪=⎪⎩又因2()()lim ()limx x xf x f x g x x→→'-'=000()()()lim2()(0)lim lim (0) 22x x x f x xf x f x xf x fg →→→''''+-='''''===故()g x 的导函数是连续的.21.求由下列参数方程所确定函数的二阶导数22d d yx:⑴ (sin ),(1cos ),x a t t y a t =-⎧⎨=-⎩ (a 为常数);⑵ (),()(),x f t y tf t f t '=⎧⎨'=-⎩设()f t ''存在且不为零.解:⑴ d d sin sin d d d (1cos )1cos d y y a t tt x x a t t t===-- 2222d d sin d sin 1()()d d d 1cos d 1cos d cos (1-cos )-sin sin 1=(1-cos )(1cos )1=.(1cos )y t t xx x t t t tt t t t t a t a t ==⋅--⋅⋅--- ⑵ d d ()()()d d d ()d y y f t tf t f t t t x x f t t''''+-==='' 22d d d 111()()1d d d d ()()d y t t x x x t f t f t t==⋅=⋅=''''.22.若π1()1,(arccos )3f y f x '==,求2d d x y x=.解:22d 11(arccos )(()d d π11(d 344x y f x x xy f x ='=⋅-'===23.证明:双曲线2xy a =上任一点处的切线与两坐标轴构成的三角形的面积都等于22a . 证明:在双曲线上任取一点00(,),M x y则222220, , x a a a y y y x xx =''==-=-,则过M 点的切线方程为:20020()a y y x x x -=--令220000002202x y x a y x x x x a a=⇒=+=+=得切线与x 轴的交点为0(2,0)x ,令2000000002x y a x y y y y x x =⇒=+=+=得切线与y 轴的交点为0(0,2)y , 故 2000012222.2S x y x y a ===24.求下列函数的导数:(1) y =解:y '=(2)y =解:5323y x -'=-(3) 2y =解:2512326y x x +-==561.6y x -'=25.试证:方程sin x a x b =+至少有一个不超过a b +的正根,其中0,0a b >>. 证:令()sin f x x a x b =--,则()f x 在[0,]a b +上连续, 且 (0)0,()(1sin )0f b f a b a x =-<+=-≥, 若()0f a b +=,则a b +就是方程sin x a x b =+的根. 若()0f a b +>,则由零点定理得.(0,)a b ξ∃∈+,使()0f ξ=即sin 0a b ξξ--=即sin a b ξξ=+,即ξ是方程sin x a x b =+的根,综上所述,方程sin x a x b =+至少有一个不超过a b +的正根.26.下列函数在指定点处间断,说明它们属于哪一类间断点,如果是可去间断点,则补充或改变函数的定义,使它连续:2221(1),1,2;32π(2),π,π,0,1,2,;tan 21(3)cos ,0;x y x x x x x y x k x k k x y x x-===-+===+=±±==1,1,(4) 1.3,1,x x y x x x -≤⎧==⎨->⎩解:22111(1)(1)(1)lim lim 232(1)(2)x x x x x x x x x →→--+==--+-- 2221lim 32x x x x →-=∞-+ 1x ∴=是函数的可去间断点.因为函数在x =1处无定义,若补充定义(1)2f =-,则函数在x =1处连续;x =2是无穷间断点.π0π2(2)lim1,lim 0tan tan x x k x x x x →→+==当0k ≠时,πlimtan x k xx→=∞.π0,π,0,1,2,2x x k k ∴==+=±±为可去间断点,分别补充定义f (0)=1,π(π)02f k +=,可使函数在x =0,及ππ2x k =+处连续.(0,1,2,k =±±);π,0,1,2,x k k k =≠=±±为无穷间断点(3)∵当0x →时,21cosx呈振荡无极限, ∴x =0是函数的振荡间断点.(第二类间断点). (4)11lim lim(3) 2.x x y x ++→→=-= 11lim lim(1)0x x y x --→→=-= ∴x =1是函数的跳跃间断点.(第一类间断点.)27.通过恒等变形求下列极限:2222214123(1)11(1)lim; (2)lim;1222168(3)lim; (4)lim ;154n nn x x n n xx x x x x x →∞→∞→→++++-⎛⎫+++⎪⎝⎭-+-+--+32233π5422(5)lim ; 1cot lim ;2cot cot (9)lim(1)(1)(1)(1);(10)nx x x x x xxx x x x x x →+∞→→→→∞---+++< 12231100)(1)113(11)lim ; (12)lim ;(1)11log (1)1(13)lim ; (14)lim n x x x x a x x x x x x x x x a x x→→→→→--+⎛⎫- ⎪---⎝⎭+-3sin 00;sin (15)lim(12); (16)lim ln .x x x xx x→→+解:22123(1)(1)111(1)lim lim lim .1222n n n n n n n n n →∞→∞→∞++++--⎛⎫===- ⎪⎝⎭ 1221112244411112(2)lim lim 2.11221221(1)(3)lim lim lim(1)0.1168(2)(4)22(4)lim lim lim .54(1)(4)13n n nn x x x x xx x x x xx x x x x xx x x x x x +→∞→∞→→→→→→⎛⎫- ⎪⎛⎫⎝⎭==+++ ⎪⎝⎭--+-==-=---+---===-+---32222000(5)lim limlim2.(1lim lim(1 2.x x x x x x xx x →+∞→→→===+==-=--5555x x x x →→→→=====3333ππ4422π422π41cot 1cot (8)lim lim 2cot cot (1cot )(1cot )(1cot )(1cot cot )lim (1cot )(11cot cot )1cot cot 3lim .2cot cot 4x x x x x xx x x x x x x x x x x x x x →→→→--=---+--++=-+++++==++122222(9)lim(1)(1)(1)(1)(1)(1)(1)(1)lim 111lim .11nnn x x x x x x x x x x x x x x x+→∞→∞→∞+++<-+++=--==--11211211)(1))(1))(1)11.234!n x n n n n x n n n n x n x x x x x x x n n →--→-→-=++++=++++==⨯⨯⨯⨯ 22223111221113213(11)lim lim lim (1)(1)(1)(1)11(1)(2)(2)lim lim 1.(1)(1)1x x x x x x x x x x x x x x x x x x x x x x x x x →→→→→++-+-⎛⎫==- ⎪-++-++--⎝⎭-+-+===--++++2212211221lim(1)(1)(12)lim01lim(1)1lim .(1)x x x x x x x x x x x x x →→→→--==-+-+-+∴=∞-1log (1)(13)log (1)a x a x x x+=+ 而10lim(1).xx x e →+= 而1limlog log ln a a u eu e a→==0log (1)1lim.ln a x x x a→+∴=(14)令1,xu a =-则log (1),a x u =+当0x →时,0u →.所以00011limlim ln log (1)log (1)lim x x u aa u a u a u x u u→→→-===++(利用(13)题的结果). 1122000336ln(12)ln(12)sin sin 2sin 0lim 6ln(12)6lim limln(12)sin sin 61ln e 6(15)lim(12)lim elim eeee e .x x x x x xx x xxx xx x x xxx x xx x →→→++→→→⋅⋅+⋅⋅+⨯⨯+======(16)令sin x u x =, 则00sin lim lim 1x x xu x→→==而1limln 0u u →= 所以0sin limln0.x xx→=28.对下列数列求lim n n a x →∞=,并对给定的ε确定正整数()N ε,使对所有()n N ε>,有n x a ε-<:1π(1)sin ,0.001; (2)0.0001.2n n n x x n εε====解: (1)lim 0n n a x →∞==,0ε∀>,要使11π0sin2n n x n n ε-=<<,只须1n ε>.取1N ε⎡⎤=⎢⎥⎣⎦,则当n N >时,必有0n x ε-<.当0.001ε=时,110000.001N ⎡⎤==⎢⎥⎣⎦或大于1000的整数. (2)lim 0n n a x →∞==,0ε∀>,要使0n x ε-==<=<1ε>即21n ε>即可.取21N ε⎡⎤=⎢⎥⎣⎦,则当n N >时,有0n x ε-<. 当0.0001ε=时, 821100.0001N ⎡⎤==⎢⎥⎣⎦或大于108的整数.29.设()f x 定义在(-∞,+∞)上,证明:(1) ()()f x f x +-为偶函数; (2)()()f x f x --为奇函数. 证: (1)设()()()F x f x f x =+-,则(,)x ∀∈-∞+∞, 有()()()()F x f x f x F x -=-+= 故()()f x f x +-为偶函数.(2)设()()(),G x f x f x =--则(,)x ∀∈-∞+∞,有()()()[()()]()G x f x f x f x f x G x -=---=---=- 故()()f x f x --为奇函数.30.证明恒等式:222arctan arcsinπ (1).1xx x x +=≥+ 证明:令22()2arctan arcsin 1xf x x x =++,22222222(1)22()1(1)2211x x xf x x x x x +-⋅'=++=-=++ 故()f x C ≡,又因(1)πf =,所以()πf x =,即222arctan arcsinπ.1xx x +=+【参考答案】***试卷处理标记,请不要删除一、解答题 1.无 2.无 3.无 4.无 5.无 6.无 7.无 8.无 9.无10.无11.无12.无13.无14.无15.无16.无17.无18.无19.无20.无21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。

2019最新高等数学(下册)期末考试试题(含答案)MD

2019最新高等数学(下册)期末考试试题(含答案)MD

2019最新高等数学(下册)期末考试试题(含答案)一、解答题1.设(),,()yz xy xF u u F u x=+=为可导函数,证明: .z z xy z xy x y∂∂+=+∂∂ 证明:2()()()()z y y y xF u F u F u y F u x x x ∂⎛⎫''=+⋅+=+-- ⎪∂⎝⎭1()().z x xF u x F u y x∂''=+⋅=+∂ 故[]()()()()()()().z z F u y xy x y x F u F u y x y x xF u xy yF u xy yF u xy xF u xy z xy '∂∂⎡⎤'+=+++-⎢⎥∂∂⎣⎦''=+-++=++=+2.求下列各微分方程的通解:(1)sin y x x ''=+;解:方程两边连续积分两次得213121cos 21sin 6y x x c y x x c x c '=-+=-++(2)e x y x '''=;解:积分得 1e d e e x x x y x x x c ''==-+⎰112212123(e e )d e 2e 1(e 2e )d (3)e 2x x x x xxxy x c x x c x c y x c x c x x c x c x c '=-+=-++=-++=--++⎰⎰ (3)y y x '''=+;解:令p y '=,则原方程变为d d 11,,e e 1e d xx x p p x p p x p c x x x c -⎰⎡⎤⎰''=+-===--+⎣⎦故 21121(e 1)d e 2x x y c x x c x x c =--=--+⎰. 3(4)()y y y ''''=+;解:设y p '=, 则d d p y p y''= 原方程可化为 3d d ppp p y=+ 即 2d (1)0d p p p y ⎡⎤-+=⎢⎥⎣⎦由p =0知y =c ,这是原方程的一个解. 当0p ≠时,22d d 1d d 1p pp y y p=+⇒=+ 1121arctan d ln sin()tan()p y c yx y c c y c ⇒=-'⇒==---⎰2212arcsin(e )(e )c x y c c c '∴=+=1(5);y x ''=解:11d ln y x c x x''==+⎰ 1121211(ln )d ln ln ((1))y c x x x c x c x x x c x c c c x ''=+=-++'=++=-+⎰(6)y ''=;解:1arcsin y x x c '==+112(arcsin )d arcsin .y x c x x x c x c =+=++⎰ (7)0xy y '''+=;解:令y p '=,则得1d d 00p xp p x p x'+=⇒+= 1ln ln ln p x c ⇒+=得 1c p x= 故 112d ln c y x c c x x ==+⎰.3(8)10y y ''-=.解:令p y '=,则d d p y p y''=. 原方程可化为 33d 10,d d d py pp p y y y--==22221112221211211222d d 221().c p y p y c x xc x c c x c c y c x c --⇒=-+⇒=-+⇒=⇒±=⇒±=+⇒=+⇒-=+⎰3.设在半平面x >0中有力()3k F xi yj r=-+构成力场,其中k为常数,r ,证明:在此力场中场力所做的功与所取的路径无关. 证:场力沿路径L 所作的功为. 33d d Lk k W x x y y r r =--⎰ 其中3kx P r =-,3kyQ r=-,则P 、Q 在单连通区域x >0内具有一阶连续偏导数,并且 53(0)P kxy Q x y r x∂∂==>∂∂ 因此以上积分与路径无关,即力场中场力所做的功与路径无关.4.计算对坐标的曲线积分:(1)d Lxyz z ⎰,Γ为x 2+y 2+z 2=1与y =z 相交的圆,方向按曲线依次经过第Ⅰ、Ⅱ、Ⅶ、Ⅷ封限;(2)()()()222222d d d Ly z x z x y x y z -+-+-⎰,Γ为x 2+y 2+z 2=1在第Ⅰ封限部分的边界曲线,方向按曲线依次经过xOy 平面部分,yOz 平面部分和zOx 平面部分. 解:(1)Γ:2221x y z y z ⎧++=⎨=⎩ 即2221x z y z ⎧+=⎨=⎩其参数方程为:cos 2x ty tz t =⎧⎪⎪⎪=⎨⎪⎪=⎪⎩ t :0→2π 故:2π2π2202π202π0d cos d sin cos d sin 2d 1cos 4d 216xyz z t t t t t t t t t t ttΓ===-==⎰⎰(2)如图11-3所示.图11-3Γ=Γ1+Γ2+Γ3.Γ1:cos sin 0x ty t z =⎧⎪=⎨⎪=⎩t :0→π2,故()()()()()1222222π2220π3320π320d d d sin sin cos cos d sincos d 2sin d 24233y z x z x y x y zt t t t t t t tt t Γ-+-+-⎡⎤=--⋅⎣⎦=-+=-=-⋅=-⎰⎰⎰⎰又根据轮换对称性知()()()()()()1222222222222d d d 3d d d 4334y z x z x y x y z y z x z x y x y zΓΓ-+-+-=-+-+-⎛⎫=⨯- ⎪⎝⎭=-⎰⎰5.计算()()d d Lx y x y x y ++-⎰,其中L 是(1)抛物线y 2=x 上从点(1,1)到点(4,2)的一段弧; (2)从点(1,1)到点(4,2)的直线段;(3)先沿直线从(1,1)到点(1,2),然后再沿直线到点(4,2)的折线;(4)曲线x = 2t 2+t +1, y = t 2+1上从点(1,1)到点(4,2)的一段弧. 解:(1)L :2x y y y ⎧=⎨=⎩,y :1→2,故()()()()()2221232124321d d 21d 2d 111232343L x y x y x yy y y y y yy y y yy y y ++-⎡⎤=+⋅+-⋅⎣⎦=++⎡⎤=++⎢⎥⎣⎦=⎰⎰⎰ (2)从(1,1)到(4,2)的直线段方程为x =3y -2,y :1→2 故()()()()()2121221d d 32332d 104d 5411L x y x y x yy y y y y y yy y ++-=-+⋅+-+⎡⎤⎣⎦=-⎡⎤=-⎣⎦=⎰⎰⎰ (3)设从点(1,1) 到点(1,2)的线段为L 1,从点(1,2)到(4,2)的线段为L 2,则L =L 1+L 2.且 L 1:1x y y =⎧⎨=⎩,y :1→2;L 2:2x x y =⎧⎨=⎩,x :1→4;故()()()()()12122211d d 101d 1d 212L x y x y x yy y y y y y y ++-=+⋅+-⎡⎤⎣⎦⎡⎤=-=-⎢⎥⎣⎦=⎰⎰⎰()()()()()()24144211d d 220d 12d 22272L x y x y x yx x x x x x ++-=++-⋅⎡⎤⎣⎦⎡⎤=+=+⎢⎥⎣⎦=⎰⎰⎰从而()()()()()12d d d d 1271422LL L x y x y x yx y x y x y++-=+++-=+=⎰⎰⎰(4)易得起点(1,1)对应的参数t 1=0,终点(4,2)对应的参数t 2=1,故()()()()()()122132014320d d 32412d 10592d 10592432323L x y x y x y t t t tt t tt t t tt t t t ++-⎡⎤=++++--⋅⎣⎦=+++⎡⎤=+++⎢⎥⎣⎦=⎰⎰⎰6.设L 为xOy 面内直线x =a 上的一段,证明:(),d 0LP x y x =⎰其中P (x , y )在L 上连续.证:设L 是直线x =a 上由(a ,b 1)到(a ,b 2)这一段,则 L :12x ab t b y t =⎧≤≤⎨=⎩,始点参数为t =b 1,终点参数为t =b 2故 ()()()221d ,d d 0d 0d b b L b b a P x y x P a,t t P a,t t t ⎛⎫=⋅=⋅= ⎪⎝⎭⎰⎰⎰7.从下列各题中的曲线族里,找出满足所给的初始条件的曲线:220(1),5;x x y C y =-==解:当0x =时,y =5.故C =-25 故所求曲线为:2225y x -=21200(2)()e ,0, 1.x x x y C C x y y =='=+==解: 2212(22)e xy C C C x '=++当x =0时,y =0故有10C =. 又当x =0时,1y '=.故有21C =. 故所求曲线为:2e xy x =.8.计算下列对面积的曲面积分: (1)4d 23s z x y ∑⎛⎫++ ⎪⎝⎭⎰⎰,其中∑为平面1234x y z ++=在第I 卦限中的部分; (2)()2d 22s xy xx z ∑--+⎰⎰,其中∑为平面2x +2y +z =6在第I 卦限中的部分;(3)()d s x y z ∑++⎰⎰,其中∑为球面x 2+y 2+z 2=a 2上z ≥h (0<h <a )的部分; (4)()d s xy yz zx ∑++⎰⎰,其中∑为锥面z =被柱面x 2+y 2=2ax 所截得的有限部分; (5)()222d s R x y ∑--⎰⎰,其中∑为上半球面z =解:(1)4:423z x y ∑=--(如图10-69所示)图10-69d d d s x y x y ==故4d 4d d d d 23331232xy xy D D s x y x y z x y ∑⎛⎫=⋅=++ ⎪⎝⎭=⨯⨯=⎰⎰⎰⎰⎰⎰(2)∑:z =6-2x -2y (如图10-70所示)。

2019最新高等数学(上册)期末考试试题(含答案)HK

2019最新高等数学(上册)期末考试试题(含答案)HK

2019最新高等数学期末考试试题(含答案)一、解答题1.求下列初等函数的边际函数、弹性和增长率: (1) y =ax +b ;(其中a ,b ∈R ,a ≠0) 解:y ′=a 即为边际函数. 弹性为:1Ey axa x Ex axb ax b=⋅⋅=++, 增长率为: y aax bγ=+. (2) y =a e bx ;解:边际函数为:y ′=ab e bx 弹性为:1e ebx bx Ey ab x bx Ex a =⋅⋅=, 增长率为: e ebxy bxab b a γ==. (3) y =x a解:边际函数为:y ′=ax a -1.弹性为:11a a Ey ax x a Ex x-=⋅⋅=, 增长率为: 1.a y a ax ax xγ-==2.将()2132f x x x =++展开成(x +4)的幂级数.解:21113212x x x x =-++++ 而()()()011113411431314413334713nn nn n x x x x x x x ∞=∞+==+-++=-⋅+-+⎛+⎫⎛⎫=-< ⎪⎪⎝⎭⎝⎭+=--<<∑∑()()()0101122411421214412224622nn nn n x x x x x x x ∞=∞+==+-++=-+-+⎛+⎫⎛⎫=-< ⎪⎪⎝⎭⎝⎭+=--<<-∑∑所以()()()()()2110011013244321146223n nn n n n nn n n f x x x x x x x ∞∞++==∞++==++++=-+⎛⎫=-+-<<- ⎪⎝⎭∑∑∑3.判定下列级数的敛散性:(1) 1n ∞=∑;(2)()()11111661111165451n n +++++⋅⋅⋅-+;(3) ()23133222213333nn n --+-++-;(4)155n +++++;解:(1)(11n S n =++++=从而lim n n S →∞=+∞,故级数发散.(2) 1111111115661111165451111551n S n n n ⎛⎫=-+-+-++- ⎪-+⎝⎭⎛⎫=- ⎪+⎝⎭从而1lim 5n n S →∞=,故原级数收敛,其和为15. (3)此级数为23q =-的等比级数,且|q |<1,故级数收敛.(4)∵n U =lim 10n n U →∞=≠,故级数发散.4.设某工厂生产某种产品的固定成本为零,生产x (百台)的边际成本为C ′(x )(万元/百台),边际收入为R ′(x )=7-2x (万元/百台). (1) 求生产量为多少时总利润最大?(2) 在总利润最大的基础上再生产100台,总利润减少多少? 解:(1) 当C ′(x )=R ′(x )时总利润最大. 即2=7-2x ,x=5/2(百台)(2) L ′(x )=R ′(x )-C ′(x )=5-2x .在总利润最大的基础上再多生产100台时,利润的增量为 ΔL (x )=772255222(52)d 51x x x x-=-=-⎰.即此时总利润减少1万元.5.设某企业固定成本为50,边际成本和边际收入分别为 C ′(x )=x 2-14x +111,R ′(x )=100-2x . 试求最大利润. 解: 设利润函数L (x ). 则L (x )=R (x )-C (x )-50由于L ′(x )=R ′(x )-C (x )=(100-2x )-(x 2-14x +111)=-x 2+12x -11 令L ′(x )=0得x =1,x =11.又当x =1时,L ″(x )=-2x+12>0.当x =11时L ″(x )<0,故当x =11时利润取得最大值.且最大利润为 L (11)=1120(1211)d 50x x x -+--⎰311013341[611]50111.333x x x =-+--==6.已知电压u (t )=3sin2t ,求 (1) u (t )在π0,2⎡⎤⎢⎥⎣⎦上的平均值;解: π2026()3sin 2d .ππu t t t ==⎰(2) 电压的均方根值.解:均方根公式为 ()f x =故()u t =====7.求正弦交流电0i I sin t ω=经过半波整流后得到电流0πsin ,0π2π0,I t t i t ωωωω⎧≤≤⎪⎪=⎨⎪≤≤⎪⎩的平均值和有效值。

2019最新高等数学(上册)期末考试试题(含答案)XU

2019最新高等数学(上册)期末考试试题(含答案)XU

2019最新高等数学期末考试试题(含答案)一、解答题1.下列函数在指定区间上是否满足罗尔定理的三个条件?有没有满足定理结论中的ξ?⑴ 2, 01,() [0,1] 0, 1,x x f x x ⎧≤<=⎨=⎩;⑵ ()1, [0,2] f x x =-;⑶ sin , 0π,() [0,π] . 1, 0,x x f x x <≤⎧=⎨=⎩ 解:⑴ ()f x 在[0,1]上不连续,不满足罗尔定理的条件.而()2(01)f x x x '=<<,即在(0,1)内不存在ξ,使()0f ξ'=.罗尔定理的结论不成立.⑵ 1, 12,()1, 0 1.x x f x x x -≤<⎧=⎨-<<⎩ (1)f '不存在,即()f x 在区间(0,2) 内不可导,不满足罗尔定理的条件. 而1, 12,()1, 0 1.x f x x <<⎧'=⎨-<<⎩ 即在(0,2)内不存在ξ,使()0f ξ'=.罗尔定理的结论不成立.⑶ 因(0)1(π)=0f f =≠,且()f x 在区间[0,π] 上不连续,不满足罗尔定理的条件. 而()cos (0π)f x x x '=<<,取π2ξ=,使()0f ξ'=.有满足罗尔定理结论的π2ξ=. 故罗尔定理的三个条件是使结论成立的充分而非必要条件.2.设f (x )是周期为2π的周期函数,它在(-π,π]上的表达式为()32π0,0π.x f x x x -<≤⎧=⎨<≤⎩ 试问f (x )的傅里叶级数在x =-π处收敛于何值?解:所给函数满足狄利克雷定理的条件,x =-π是它的间断点,在x =-π处,f (x )的傅里叶级数收敛于()()[]()33ππ11π22π222f f -+-+-=+=+3.将()2132f x x x =++展开成(x +4)的幂级数. 解:21113212x x x x =-++++ 而()()()010********31314413334713n n n n n x x x x x x x ∞=∞+==+-++=-⋅+-+⎛+⎫⎛⎫=-< ⎪ ⎪⎝⎭⎝⎭+=--<<∑∑ 又()()()010********21214412224622n n n n n x x x x x x x ∞=∞+==+-++=-+-+⎛+⎫⎛⎫=-< ⎪ ⎪⎝⎭⎝⎭+=--<<-∑∑所以()()()()()2110011013244321146223n nn n n n nn n n f x x x x x x x ∞∞++==∞++==++++=-+⎛⎫=-+-<<- ⎪⎝⎭∑∑∑4.若2lim n n n U →∞存在,证明:级数1n n U ∞=∑收敛. 证:∵2lim n n n U →∞存在,∴∃M >0,使|n 2U n |≤M , 即n 2|U n |≤M ,|U n |≤2M n 而21n M n ∞=∑收敛,故1n n U ∞=∑绝对收敛.5.某父母打算连续存钱为孩子攒学费,设建行连续复利为5%(每年),若打算10年后攒够5万元,问每年应以均匀流方式存入多少钱?解:设每年以均匀流方式存入x 万元,则5= 10(10)0.050e d t x t -⎰。

2019最新高等数学(上册)期末考试试题(含答案)YF

2019最新高等数学(上册)期末考试试题(含答案)YF

2019最新高等数学期末考试试题(含答案)一、解答题1.求数列的最大的项.解:令y =y '===令0y '=得x =1000.因为在(0,1000)上0y '>,在(1000,)+∞上0y '<, 所以x =1000为函数y的极大值点,也是最大值点,max (1000)2000y y ==.故数列1000n ⎧⎫⎨⎬+⎩⎭的最大项为1000a =.2.将()2132f x x x =++展开成(x +4)的幂级数. 解:21113212x x x x =-++++ 而()()()011113411431314413334713nn nn n x x x x x x x ∞=∞+==+-++=-⋅+-+⎛+⎫⎛⎫=-< ⎪⎪⎝⎭⎝⎭+=--<<∑∑又()()()0101122411421214412224622nn nn n x x x x x x x ∞=∞+==+-++=-+-+⎛+⎫⎛⎫=-< ⎪⎪⎝⎭⎝⎭+=--<<-∑∑所以()()()()()2110011013244321146223n nn n n n nn n n f x x x x x x x ∞∞++==∞++==++++=-+⎛⎫=-+-<<- ⎪⎝⎭∑∑∑3.将下列函数展开成x 的幂级数,并求展开式成立的区间: (1)f (x ) = ln(2+x ); (2)f (x ) = cos 2x ; (3)f (x )=(1+x )ln(1+x ); (4)()2f x =;(5)()23xf x x =+; (6)()()1e e 2x xf x -=-; 解:(1)()()ln ln 2ln 2ln 11222x x f x x ⎛⎫⎛⎫===++++ ⎪ ⎪⎝⎭⎝⎭由于()()0ln 111nnn x x n ∞==+-+∑,(-1<x ≤1)故()()110ln 11221n nn n x x n +∞+=⎛⎫=+- ⎪⎝⎭+∑,(-2≤x ≤2)因此()()()11ln ln 22121n nn n x x n +∞+==++-+∑,(-2≤x ≤2) (2)()21cos 2cos 2x f x x +==由()()20cos 1!2nnn x x n ∞==-∑,(-∞<x <+∞)得()()()()()220042cos 211!!22n n n nn n n x x x n n ∞∞==⋅==--∑∑ 所以()()22011()cos cos 222114122!2n nn n f x x x x n ∞===+⋅=+-∑,(-∞<x <+∞) (3)f (x ) = (1+x )ln(1+x ) 由()()()1ln 111n nn x x n +∞==+-+∑,(-1≤x ≤1)所以()()()()()()()()()()()()()1120111111111111111111111111111n nn n n nn n n n n nn n n n n n n n n n x f x x n x x n n x x x n n n n x xn n x xn n +∞=++∞∞==++∞∞+==+∞+=-∞+==+-+=+--++=++--+++--=+⋅+-=++∑∑∑∑∑∑∑ (-1≤x ≤1)(4)()22f x x ==()()()21!!2111!!2nnn n x n ∞=-=+-∑ (-1≤x ≤1)故()()()()221!!2111!!2n n n n x f x x n ∞=⎛⎫-+=- ⎪⎝⎭∑ ()()()()2211!!211!!2n n n n x x n ∞+=-=+-∑ (-1≤x ≤1)(5)()()()(220211131313313nn n n nn n x f x x x x x x ∞=+∞+==⋅+⎛⎫=⋅- ⎪⎝⎭=-<∑∑(6)由0e !nxn x n ∞==∑,x ∈(-∞,+∞)得()01e!n nxn x n ∞-=⋅-=∑,x ∈(-∞,+∞)所以()()()()()()0002101e e 2112!!1112!,!21x x n n n n n n n n n n f x x x n n x n x x n -∞∞==∞=+∞==-⎛⎫-=- ⎪⎝⎭=⋅⎡⎤--⎣⎦=∈-∞+∞+∑∑∑∑4.证明,若21n n U ∞=∑收敛,则1nn U n∞=∑绝对收敛. 证:∵222211111222n n n nU U n U U n n n+=⋅≤=+⋅而由21nn U∞=∑收敛,211n n∞=∑收敛,知22111122n n U n ∞=⎛⎫+⋅ ⎪⎝⎭∑收敛,故1n n U n ∞=∑收敛, 因而1nn U n ∞=∑绝对收敛.5.解:1211111R ()()(1)!2(1)!2n n n n n +++=++++=12111111()[1()](1)!222(2)(3)2n n n n n ++++++++122111111()[1()](1)!212(1)2n n n n +<++++++1111()1(1)!212(1)n n n +=+-+11()!(21)2n n n =+从而 111()!(21)2n n R n n +<+6.求下列函数在[-a ,a ]上的平均值:(1)()f x =解:200111π1.arcsin 2422aa a a x y x x a a a a -⎡====+⎢⎣⎰⎰ (2) 2().f x x =解:2223001111d d .233aa a a a y x x x x x a a a -⎡⎤====⎢⎥⎣⎦⎰⎰7.证明:无穷积分敛散性的比较判别法的极限形式,即节第六节定理2. 证明:如果|()|lim0()x f x g x ρ→+∞=≠,那么对于ε(使0ρε->),存在x 0,当0x x ≥时|()|0()f xg x ρερε<-<<+ 即 ()()|()|()()g x f x g x ρερε-<<+ 成立,显然()d ag x x +∞⎰与|()|d af x x +∞⎰同进收敛或发散.如果0ρ=,则有|()|()f x g x ε<, 显然()d ag x x +∞⎰收敛, 则|()|d af x x +∞⎰亦收敛.如果ρ=+∞,则有|()|()()f x g x ρε>-,显然()d ag x x +∞⎰发散,则|()|d af x x +∞⎰亦发散.习题五8.用定义判断下列广义积分的敛散性,若收敛,则求其值:22π11(1)sin d x x x+∞⎰; 解:原式=22ππ1111lim sin d lim cos lim cos1.b bb b b x bx x →+∞→+∞→+∞⎛⎫-=== ⎪⎝⎭⎰ 2d (2);22xx x +∞-∞++⎰解:原式=02200d(1)d(1)arctan(1)arctan(1)(1)1(1)1x x x x x x +∞+∞-∞-∞+++=+++++++⎰⎰πππππ.4242⎛⎫=-+-=- ⎪⎝⎭(3)e d n x x x +∞-⎰(n 为正整数)解:原式=10e d deen x n xn xn x x x x +∞+∞+∞----+-=-⎰⎰100e d !e d !n x x n x x n x n +∞+∞---=+===⎰⎰(4)(0)a a >⎰;解:原式=00000πlim lim arcsin lim arcsin .12a a xa a εεεεεε+++--→→→⎛⎫===- ⎪⎝⎭⎰e1(5)⎰;解:原式=()e e 0110πlim arcsin(ln )lim lim arcsin .ln(e )2x εεεεεε+++--→→→===-⎰1(6)⎰.解:原式=110+⎰2121221111202lim 2lim πππlim lim 2222π.424εεεεεε++-→→→→=+⎛⎫=+=⋅+=- ⎪⎝⎭⎰⎰9.已知201(2),(2)0,()d 12f f f x x '===⎰, 求120(2)d x f x x ''⎰.解:原式=11122000111d (2)2(2)d (2)222x f x xf x x x f x ''='-⎰⎰11100012001111(2)d (2)0(2)d (2)22221111(2)(2)d(2)1()d 1402444f x f x f x x xf x f f x x f t t '=-=-+=-+=-+=-+⨯=⎰⎰⎰⎰10.证明下列等式:2321(1)()d ()d 2aa x f x x xf x x =⎰⎰ (a 为正常数);证明:左222222000111()d()()d ()d 222a a a x t x f x x tf t t xf x x ====⎰⎰⎰ 令右所以,等式成立. (2)若()[,]f x C a b ∈,则ππ220(sin )d (cos )d f x x f x x =⎰⎰.证明:左πππ0222π02(cos )(d )(cos )d (cos )d x tf t t f t t f x x =--==⎰⎰⎰令.所以,等式成立.11.求下列不定积分:221(1)d (1)(1)x x x x ++-⎰; 解:原式=2111111d ln ln 1122122(1)(1)(1)x c x x x x x x ⎛⎫ ⎪-=++++-++ ⎪+++-⎝⎭⎰ 211ln .112c x x =++-+ 33d (2)1x x +⎰;解:原式=22211112d ln ln d 1122111x x x x x x x x x x x -+⎛⎫=-+++-+⎪-++-+⎝⎭⎰⎰c =+. 5438(3)d x x x x x+--⎰; 解:原式=2843d 111x x x x x x ⎛⎫+++-- ⎪+-⎝⎭⎰ 32118ln 4ln 3ln .1132x x x c x x x =+++--++- 26(4)d 1x x x +⎰;解:原式=33321d()1arctan .31()3x x c x =++⎰ sin (5)d 1sin xx x+⎰;解:原式=222sin 1d tan d (sec 1)d sec tan .cos cos x x x x x x x x x c x x -=--=-++⎰⎰⎰ cot (6)d sin cos 1xx x x ++⎰;解:原式22tan 222222212d 1111111d d d 22(1)22211111x t t t t t t t t t t t t t t t t t t =-⋅-++==-+⎛⎫-++⎪+++⎝⎭⎰⎰⎰⎰令1111ln ln tan .tan 222222x x t c c t =-+=-+(7)x ;解:原式=2.c =+(8)x ;解:原式=2d 2ln 21x x x x x ⎛=+-+ ⎝⎰ 又2x2221d 44d 11t t t t t t =+--⎰⎰142ln1t t c c t -''=++=++故原式=1)x c -+.12.用分部积分法求下列不定积分:2(1)sin d x x x ⎰;解:原式=222dcos cos 2cos d cos 2dsin x x x x x x x x x x x -=-+⋅=-+⎰⎰⎰2cos 2sin 2cos .x x x x x c =-+++(2)e d x x x -⎰;解:原式=de e e d e e .x x x x x x x x x c ------=-+=--+⎰⎰(3)ln d x x x ⎰;解:原式=222211111ln d ln d ln 22224x x x x x x x x x c ⋅=-=-+⎰⎰. 2(4)arctan d x x x ⎰;解:原式=3332111arctan d arctan d 3331x x x x x x x =-+⎰⎰ 322111arctan ln(1).366x x x x c =-+++(5)arccos d x x ⎰;解:原式=arccos arccos x x x x x c +=.2(6)tan d x x x ⎰;解:原式=22211(sec 1)d d tan tan tan d 22x x x x x x x x x x x -=-=--⎰⎰⎰ 21tan ln .cos 2x x x c x =+-+(7)e cos d x x x -⎰;解:e cos d e dsin e sin e sin d x x x x x x x x x x ----==⋅+⎰⎰⎰e sin e dcos e sin e cos e cos d x x x x x x x x x x x -----=-=--⎰⎰∴原式=1e (sin cos ).2xx x c --+ (8)sin cos d x x x x ⎰;解:原式=1111sin 2d d cos 2cos 2cos 2d 2444x x x x x x x x x =-=-+⎰⎰⎰11cos 2sin 248x x x c =-++.32(ln )(9)d x x x ⎰;解:原式=332111(ln )d (ln )3(ln )d x x x x x x ⎛⎫⎛⎫-=--⎪ ⎪⎝⎭⎝⎭⎰⎰ 32131(ln )(ln )6ln d x x x x x x ⎛⎫=--- ⎪⎝⎭⎰321366(ln )(ln )ln .x x x c x x x x=----+(10)x .解:原式tan 23sec d .x a ta t t =⎰又 32sec d sec (tan 1)d tan d(sec )sec d t t t t t t t t t =+=+⎰⎰⎰⎰3tan sec sec d ln sec tan t t t t t t =⋅-++⎰所以 311sec d tan sec ln sec tan 22t t t t c t t '=+++⎰故11ln .22x c x =+13.用定积分的几何意义求下列积分值:1(1)2 d x x ⎰;解:由几何意义可知,该定积分的值等于由x 轴、直线x =1、y =2x 所围成的三角形的面积,故原式=1.(2)(0)x R >⎰.解:由几何意义可知,该定积分的值等于以原点为圆心,半径为R 的圆在第一象限内的面积,故原式=21π4R .14.将函数()0arctan d xtF t x t=⎰展开成x 的幂级数. 解:由于()21arctan 121n nn t t n +∞==-+∑所以()()()()()20002212000arctan d d 121d 112121n xx nn n n xnnn n t t F t tx t n t x t n n ∞=+∞∞====-+==--++∑⎰⎰∑∑⎰(|x |≤1)15.在半径为r 的球中内接一正圆柱体,使其体积为最大,求此圆柱体的高.解:设圆柱体的高为h ,,223πππ4V h r h h =⋅=-令0V '=,得.3h =时,其体积为最大.16.已知水渠的横断面为等腰梯形,斜角ϕ=40°,如图所示.当过水断面ABCD 的面积为定值S 0时,求湿周L (L =AB +BC +CD )与水深h 之间的函数关系式,并指明其定义域.图1-1解:011()(2cot )(cot )22S h AD BC h h BC BC h BC h ϕϕ=+=++=+ 从而 0cot S BC h hϕ=-. 000()22cot sin sin 2cos 2cos 40sin sin 40L AB BC CD AB CD S h hBC h h S S h h h h ϕϕϕϕϕ=++==+=+---=+=+由00,cot 0S h BC h hϕ>=->得定义域为.17.设总收入和总成本分别由以下两式给出:2()50.003,()300 1.1R q q q C q q =-=+其中q 为产量,0≤q ≤1000,求:(1)边际成本;(2)获得最大利润时的产量;(3)怎样的生产量能使盈亏平衡? 解:(1) 边际成本为:()(300 1.1) 1.1.C q q ''=+=(2) 利润函数为2()()() 3.90.003300() 3.90.006L q R q C q q q L q q=-=--'=-令()0L q '=,得650q = 即为获得最大利润时的产量. (3) 盈亏平衡时: R (q )=C (q ) 即 3.9q -0.003q 2-300=0 q 2-1300q +100000=0 解得q =1218(舍去),q =82.18.曲线弧y =sin x (0<x <π)上哪一点处的曲率半径最小?求出该点的曲率半径. 解:cos ,sin y x y x '''==- .23/223/2(1cos )1sin ,sin (1cos )x x R k x R x +===+ 显然R 最小就是k 最大, 225/22cos (1sin )(1cos )x x k x +'=+令0k '=,得π2x =为唯一驻点. 在π0,2⎛⎫ ⎪⎝⎭内,0k '>,在π,π2⎛⎫ ⎪⎝⎭内,0k '<.所以π2x =为k 的极大值点,从而也是最大值点,此时最小曲率半径为 23/2π2(1cos )1sin x x R x=+==.19.计算抛物线y =4x -x 2在它的顶点处的曲率. 解:y =-(x -2)2+4,故抛物线顶点为(2,4) 当x =2时, 0,2y y '''==- , 故 23/22.(1)y k y ''=='+20.根据下面所给的值,求函数21y x =+的,d y y ∆及d y y ∆-: ⑴ 当1,0.1x x =∆=时; 解:2222()1(1)2210.10.10.21d 2210.10.2d 0.210.20.01.y x x x x x x y x x y y ∆=+∆+-+=∆+∆=⨯⨯+==⋅∆=⨯⨯=∆-=-=. ⑵ 当1,0.01x x =∆=时. 解:222210.010.010.0201d 2210.010.02d 0.02010.020.0001.y x x x y x x y y ∆=∆+∆=⨯⨯+==⋅∆=⨯⨯=∆-=-=21.已知()f x ''存在,求22d d yx:⑴ 2()y f x =; ⑵ ln ()y f x =. 解:⑴ 22()y xf x ''=222222()22() 2()4()y f x x xf x f x x f x '''''=+⋅'''=+⑵ ()()f x y f x ''=22()()[()]()f x f x f x y f x '''-''=22.求下列函数在指定点的高阶导数:⑴()f x =求(0)f '';⑵ 21()e,x f x -=求(0)f '',(0)f ''';⑶ 6()(10),f x x =+求(5)(0)f ,(6)(0)f .解: ⑴322()(1)f x x -'==- 5223()(1)22f x x x -''=--⋅故(0)0f ''=.⑵ 21()2ex f x -'=2121()4e ()8e x x f x f x --''='''=故4(0)e f ''=,8(0)ef '''=. ⑶ 5()6(10)f x x '=+43(4)2(5)(6)()30(10)()120(10)()360(10)()720(10)()720f x x f x x f x x f x x f x ''=+'''=+=+=+= 故(5)(0)720107200f=⨯=,(6)(0)720f =23.若11()e x x f x+=,求()f x '.解:令1t x=,则 1()e t tf t +=,即1()ex xf x +=121()e(1)x xf x x +'=-24.如果()f x 为偶函数,且(0)f '存在,证明:(0)0.f '= 证明:000()(0)()(0)(0)limlim()(0)lim (0),x x x f x f f x f f x xf x f f x∆→∆→∆→∆--∆-'==∆∆-∆-'=-=--∆故(0)0.f '=25.若()f x 在[,]a b 上连续,12n a x x x b <<<<<,证明:在1[,]n x x 中必有ξ,使12()()()()n f x f x f x f nξ+++=.证: 由题设知()f x 在1[,]n x x 上连续,则()f x 在1[,]n x x 上有最大值M 和最小值m ,于是12()()()n f x f x f x m M n+++≤≤,由介值定理知,必有1[,]n x x ξ∈,使12()()()()n f x f x f x f nξ+++=.习题二26.试证:方程21x x ⋅=至少有一个小于1的正根.证:令()21xf x x =⋅-,则()f x 在[0,1]上连续,且(0)10,(1)10f f =-<=>,由零点定理,(0,1)ξ∃∈使()0f ξ=即210ξξ⋅-= 即方程21x x ⋅=有一个小于1的正根.27.利用重要极限10lim(1)e uu u →+=,求下列极限:2221232cot 00113(1)lim ;(2)lim ;12(3)lim(13tan );(4)lim(cos 2);1(5)lim [ln(2)ln ];(6)lim.ln xx x x xx x x x x x x x x x xx x x x+→∞→∞→→→∞→+⎛⎫⎛⎫+ ⎪ ⎪-⎝⎭⎝⎭+-+-解:1112222111(1)lim lim e 1lim 11x xxx x x x x x →∞→∞→∞⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫====+++ ⎪⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦1022121553555(2)lim lim lim 1112222x x x x x x x x x x x -++→∞→∞→∞⎡⎤+⎛⎫⎛⎫⎛⎫⎛⎫==⋅++⎢⎥ ⎪ ⎪ ⎪+ ⎪---⎝⎭⎝⎭⎝⎭⎢⎥-⎝⎭⎣⎦102551051055lim e 1e .1lim 122x x x x x -→∞→∞⎡⎤⎡⎤⎛⎫⎛⎫=⋅=⋅=+⎢⎥ ⎪+⎢⎥ ⎪-⎝⎭⎣⎦⎢⎥-⎝⎭⎣⎦ 22233112cot323tan 23tan 000(3)lim(13tan )lim e .lim(13tan )(13tan )xx x x x x x x x →→→⎡⎤⎡⎤+===+⎢⎥+⎢⎥⎣⎦⎣⎦[][][]cos 211cos 212221cos 2121cos 2120220333ln ln cos21(cos21)03(cos21)ln 1(cos21)0cos213limlim ln 1(cos21)2sin 3limln lim (4)lim(cos 2)lim e lim elim ee e x x x x x x x x xx x x xx x x x x x x x x x x x x ----→→→→⎧⎫⎪⎪⎨⎬+-⎪⎪⎩⎭→→→-+-→-⋅+--⋅=====[]1cos 212201(cos21)sin 6ln e lim 6116eee .x x x x x -→⎧⎫⎪⎪⎨⎬+-⎪⎪⎩⎭⎛⎫-⋅⋅ ⎪-⨯⨯-⎝⎭===22222(5)lim [ln(2)ln ]lim 2ln lim 2ln 12222lim ln 2ln 1lim 12ln e 2.x x x x xxx x x x x x x x x x x →∞→∞→∞→∞→∞+⎛⎫+-=⋅⋅=+ ⎪⎝⎭⎛⎫⎛⎫⎛⎫==⋅+ ⎪ ⎪+ ⎪ ⎪⎝⎭⎝⎭⎝⎭== (6)令1x t =+,则当1x →时,0t →.1110001111limlim 1.ln ln(1)ln eln lim ln(1)lim(1)x t tt t t x tx t t t →→→→-=-=-=-=-=-+⎡⎤++⎢⎥⎣⎦28.根据数列极限的定义证明:21313(1)lim0;(2)lim ;212(3)1;(4)lim 0.999 1.n n n n n n n n →∞→∞→∞→∞-==+== 个证: (1)0ε∀>,要使22110n n ε=<-,只要n >.取N =,则当n>N 时,恒有210nε<-.故21lim 0n n →∞=. (2) 0ε∀>,要使555313,2(21)4212n n n n n ε-=<<<-++只要5n ε>,取5N ε⎡⎤=⎢⎥⎣⎦,则当n>N 时,恒有313212n n ε-<-+.故313lim212n n n →∞-=+.(3) 0ε∀>,要使2221a n ε=<<,只要n >取n =,则当n>N 时,1ε<-,从而lim 1n n →∞=. (4)因为对于所有的正整数n ,有10.99991n <-个,故0ε∀>,不防设1ε<,要使1,0.999110n n ε=<-个只要ln ,ln10n ε->取ln ,ln10N ε-⎡⎤=⎢⎥⎣⎦则当n N >时,恒有,0.9991n ε<-个故lim 0.9991n n →∞=个.29.下列函数是由哪些基本初等函数复合而成的?5122412(1)(1);(2)sin (12);1(3)(110);(4).1arcsin 2xy x y x y y x-=+=+=+=+解: (1)124(1)y x =+是由124,1y u u x ==+复合而成.(2)2sin (12)y x =+是由2,sin ,12y u u v v x ===+复合而成. (3)512(110)x y -=+是由152,1,10,w y u u v v w x ==+==-复合而成.(4)11arcsin 2y x=+是由1,1,arcsin ,2y u u v v w w x -==+==复合而成.30.试决定曲线y =ax 3+bx 2+cx +d 中的a ,b ,c ,d ,使得x =-2处曲线有水平切线,(1,-10)为拐点,且点(-2,44)在曲线上. 解:令f (x )= ax 3+bx 2+cx +d联立f (-2)=44,f ′(-2)=0,f (1)=-10,f ″(1)=0 可解得a =1,b =-3,c =-24,d =16.【参考答案】***试卷处理标记,请不要删除一、解答题 1.无 2.无3.无4.无5.无6.无7.无8.无9.无10.无11.无12.无13.无14.无15.无16.无17.无18.无19.无20.无21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。

2019年高等数学基础期末考试复习试题及答案

2019年高等数学基础期末考试复习试题及答案

1
D.
e 4
1 A. e x dx de x B sin xdx d (cos x) C. dx d x
2x
D.
ln
xdx
d
(
1 x
)
1
下列等式中正确的是(B
).A.
d
( 1
x2
)
arctan xdx
1 dx
B.
d( )
x
x2
C. d (2 x ln 2) 2 x dx D. d (tan x) cot xdx
D. 单调上升
A 先单调下降再单调上升 B 单调下降 C 先单调上升再单调下降 D 单调上升
. 函数 y x 2 2x 6 在区间 (2 , 5) 内满足(D ).
A. 先单调下降再单调上升
B. 单调下降 C. 先单调上升再单调下降 D. 单调上升
5-1

f
(x)
的一个原函数是
1 x
,则
f
( x)
函数 f (x) 10 x 10x 的图形关于 y 轴 对称。
二、填空题
⒈函数 f ( x) x 2 9 ln(1 x) 的定义域是 (3,+∞)

x3
函数
y
x ln(x
2)
4 x 的定义域是
(2,3) ∪ (3,4 ]
函数 f (x) ln(x 5) 1 的定义域是 2x
(-5,2)
1-⒉设函数 f (x) 的定义域为 (,) ,则函数 f (x) f (x) 的图形关于(C )对称.
A. 坐标原点
B. x 轴
C. y 轴 D. y x
设函数 f (x) 的定义域为 (,) ,则函数 f (x) f (x) 的图形关于(D )对称.

2019最新高等数学(上册)期末考试试题(含答案)ZQ

2019最新高等数学(上册)期末考试试题(含答案)ZQ

2019最新高等数学期末考试试题(含答案)一、解答题1.⑴ 证明:不等式ln(1) (0)1xx x x x<+<>+ 证明:令()ln(1)f x x =+在[0,x]上应用拉格朗日定理,则(0,),x ξ∃∈使得()(0)()(0)f x f f x ξ'-=-即ln(1)1x x ξ+=+,因为0x ξ<<,则11x xx x ξ<<++ 即ln(1) (0)1xx x x x<+<>+ ⑵ 设0, 1.a b n >>>证明: 11()().n n n n nb a b a b na a b ---<-<-证明:令()nf x x =,在[b ,a]上应用拉格朗日定理,则(,).b a ξ∃∈使得1(), (,)n n n a b n a b b a ξξ--=-∈因为b a ξ<<,则111()()()n n n nb a b n a b na a b ξ----<-<-,即11()().n n n n nba b a b na a b ---<-<-⑶ 设0a b >>证明:ln .a b a a ba b b--<< 证明:令()ln f x x =在[b ,a]上应用拉格朗日定理,则(,).b a ξ∃∈使得1ln ln ()a b a b ξ-=-因为b a ξ<<,所以1111, ()a b a b a b a b a bξξ--<<<-<, 即ln a b a a b a b b --<<. ⑷ 设0x >证明:112x +>证明:令()f x =[0,]x x ∈,应用拉格朗日定理,有()(0)()(0), (0,)f x f f x x ξξ'-=-∈ ()()(0)f x f x f ξ'=⋅+112x=+<+即112x +>2.将函数()f x =(x -1)的幂级数.解:因为()()()()()2111111!2!m nm m mm m m x xx x n---+=++++++-<<所以()()[]()()()3221133333331121222222211111!2!!nf x x n x x x n ==+-⎛⎫⎛⎫⎛⎫⎛⎫----+ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=+++++---(-1<x -1<1) 即()()()()()()()()()()()()()2323133131313251111111222!23!2!3152111022!nnn nn n f x x x x x n n x x n ∞=⋅⋅⋅⋅⋅⋅--+--=+++++----⋅⋅⋅⋅⋅⋅--=+-<<⋅∑18.利用函数的幂级数展开式,求下列各数的近似值: (1)ln3(误差不超过0.0001);(2)cos2o (误差不超过0.0001)解:(1)35211ln 213521n x x x x x x n -+⎛⎫=+++++ ⎪--⎝⎭,x ∈(-1,1) 令131x x +=-,可得()11,12x =∈-, 故()35211111112ln3ln 212325222112n n -+⎡⎤+++++==⎢⎥⋅⋅⋅-⎣⎦- 又()()()()()()()()()()2123212121232521242122112222123222212112222123252111222212112211413221n n n n n n n n n n n r n n n n n n n n n n +++++++++-⎡⎤++=⎢⎥⋅⋅++⎣⎦⎡⎤⋅⋅++=+++⎢⎥⋅⋅+++⎣⎦⎛⎫<+++ ⎪⎝⎭+=⋅+-=+故5810.000123112r <≈⨯⨯61010.000033132r <≈⨯⨯.因而取n =6则35111111ln 32 1.098623252112⎛⎫=≈++++⎪⋅⋅⋅⎝⎭(2)()()2420ππππ909090cos 2cos 11902!4!!2nn n ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭==-+-++-∵24π906102!-⎛⎫ ⎪⎝⎭≈⨯;48π90104!-⎛⎫⎪⎝⎭≈ 故2π90cos2110.00060.99942!⎛⎫⎪⎝⎭≈-≈-≈3.利用幂级数的性质,求下列级数的和函数: (1)21n n nx∞+=∑;(2) 2221n n x n +∞=+∑;解:(1)由()321lim n n n x n x nx ++→∞+=知,当|x |=<1时,原级数收敛,而当|x |=1时,21n n nx ∞+=∑的通项不趋于0,从而发散,故级数的收敛域为(-1,1). 记 ()23111n n n n S nxxnxx ∞∞+-====∑∑易知11n n nx∞-=∑的收敛域为(-1,1),记()111n n S nxx ∞-==∑则()1011xn n xS x x x∞===-∑⎰于是()()12111x S x x x'⎛⎫== ⎪-⎝⎭-,所以()()()3211x S x x x =<-(2)由2422221lim 23n n n x n x n x++→∞+=⋅+知,原级数当|x |<1时收敛,而当|x |=1时,原级数发散,故原级数的收敛域为(-1,1),记()2221002121n n n n x x S x x n n ++∞∞====++∑∑,易知级数2121n n x n +∞=+∑收敛域为(-1,1),记()211021n n x S x n +∞==+∑,则()21211nn S x x x ∞='==-∑, 故()1011d ln21xx S x x x +'=-⎰即()()1111ln 021xS S x x +-=-,()100S =,所以()()()11ln 121x x S xS x x x x+==<-4.设某工厂生产某种产品的固定成本为零,生产x (百台)的边际成本为C ′(x )(万元/百台),边际收入为R ′(x )=7-2x (万元/百台). (1) 求生产量为多少时总利润最大?(2) 在总利润最大的基础上再生产100台,总利润减少多少? 解:(1) 当C ′(x )=R ′(x )时总利润最大. 即2=7-2x ,x=5/2(百台)(2) L ′(x )=R ′(x )-C ′(x )=5-2x .在总利润最大的基础上再多生产100台时,利润的增量为 ΔL (x )=772255222(52)d 51x x x x-=-=-⎰.即此时总利润减少1万元.5.求下列函数在[-a ,a ]上的平均值:(1)()f x =解:200111π1.arcsin 2422aa a a x y x x a a a a -⎡====+⎢⎣⎰⎰ (2) 2().f x x =解:2223001111d d .233aa a a a y x x x x x a a a -⎡⎤====⎢⎥⎣⎦⎰⎰6.计算底面是半径为R 的圆,而垂直于底面一固定直径的所有截面都是等边三角形的立体体积.见图17.(17)解:以底面上的固定直径所在直线为x 轴,过该直径的中点且垂直于x 轴的直线为y 轴,建立平面直角坐标系,则底面圆周的方程为:x 2+y 2=R 2.过区间[-R ,R ]上任意一点x ,且垂直于x 轴的平面截立体的截面为一等边三角形,若设与x 对应的圆周上的点为(x ,y ),则该等边三角形的边长为2y ,故其面积等于A ()x =34()2y 2=3y 2=3()R 2-x 2 ()-R ≤x ≤R 从而该立体的体积为 V =⎠⎛-RRA ()x d x =⎠⎛-R R3()R 2-x 2d x =433R 3.7.用定义判断下列广义积分的敛散性,若收敛,则求其值:22π11(1)sin d x x x+∞⎰; 解:原式=22ππ1111lim sin d lim coslim cos1.b bb b b x bx x →+∞→+∞→+∞⎛⎫-=== ⎪⎝⎭⎰ 2d (2);22xx x +∞-∞++⎰解:原式=02200d(1)d(1)arctan(1)arctan(1)(1)1(1)1x x x x x x +∞+∞-∞-∞+++=+++++++⎰⎰πππππ.4242⎛⎫=-+-=- ⎪⎝⎭ 0(3)e d n x x x +∞-⎰(n 为正整数)解:原式=10e d deen x n xn xn x x x x +∞+∞+∞----+-=-⎰⎰100e d !e d !n x x n x x n x n +∞+∞---=+===⎰⎰(4)(0)aa >⎰;解:原式=000πlim lim arcsin lim arcsin .12a a xa a εεεεεε+++--→→→⎛⎫===- ⎪⎝⎭⎰e1(5)⎰;解:原式=()e e 0110πlim arcsin(ln )lim lim arcsin .ln(e )2x εεεεεε+++--→→→===-⎰1(6)⎰.解:原式=1120+⎰2121221111202lim 2lim πππlim lim 2222π.424εεεεεε++-→→→→=+⎛⎫=+=⋅+=- ⎪⎝⎭⎰⎰8.计算下列积分(n 为正整数): (1)1;n x ⎰解:令sin x t =,d cos d x t t =, 当x =0时t =0,当x =1时t=π2, ππ12200sin cos d sin d cos n n n tx t t t t t==⎰⎰⎰由第四章第五节例8知11331π, 24221342, 253n n n n n n x n n n n n --⎧⋅⋅⋅⋅⋅⎪⎪-=⎨--⎪⋅⋅⋅⋅⎪-⎩⎰为偶数, 为奇数.(2)π240tan d .n x x ⎰解:πππ2(1)22(1)22(1)44400π2(1)411tantan d tansec d tan d 1tan d tan 21n n n n n n n I x x x x x x x xx x I I n ------==-=-=--⎰⎰⎰⎰由递推公式 1121n n I I n -+=-可得 111(1)(1)[(1)].43521n nn I n π--=---+-+-9.一平面曲线过点(1,0),且曲线上任一点(x , y )处的切线斜率为2x -2,求该曲线方程.解:依题意知:22y x '=- 两边积分,有22y x x c =-+又x =1时,y =0代入上式得c =1,故所求曲线方程为221y x x =-+.10.利用基本积分公式及性质求下列积分:2(1)5)d x x -;解:原式51732222210d 5d 73x x x x x x c =-=-+⎰⎰. (2)3e d x x x ⎰;解:原式=(3e)(3e)d .ln(3e)xxx c =+⎰23(3)d ;1x x ⎛ +⎝⎰ 解:原式=321d 23arctan 2arcsin .1x x x x c x -=-++⎰ 22(4)d ;1x x x +⎰解:原式=22211d d d arcsin .11x xx x x x c x x +-=-=-+++⎰⎰⎰ 2(5)sin d 2xx ⎰; 解:原式=1cos 1d sin .222x x x x c -=-+⎰21(6);1x x ⎛- ⎝⎰解:原式=357144444d d 4.7x x x x x x c ---=++⎰⎰2d (7);x x⎰解:原式=21d x x c x-=-+⎰.(8);x ⎰解:原式=35222d5x x x c=+⎰.(9)解:原式=25322d3x x x c--=-+⎰.2(10)(32)d;x x x-+⎰解:原式=32132.32x x x c-++422331(11)d;1x xxx+++⎰解:原式=23213d d arctan.1x x x x x cx+=+++⎰⎰3(12)d2e x xx⎛⎫+⎪⎝⎭⎰;解:原式=2e3ln.x x c++(13)e d;1xx x-⎛⎝⎰解:原式=e d e.x xx x c-=-⎰2352(14)d;3x xxx⋅-⋅⎰解:原式=5222d5d2233ln3x xx x x c⎛⎫⎛⎫-=-⋅+⎪ ⎪⎝⎭⎝⎭⎰⎰. (15)sec(sec tan)dx x x x-⎰;解:原式=2sec d sec tan d tan secx x x x x x x c-=-+⎰⎰.1(16)d1cos2xx+⎰;解:原式=22111d sec d tan2cos22x x x x cx==+⎰⎰.cos2(17)dcos sinxxx x-⎰;解:原式=(cos sin)d sin cos.x x x x x c+=-+⎰22cos 2(18)d cos sin xx x x⎰.解:原式=2211d d cot tan .sin cos x x x x c x x -=--+⎰⎰ 11.用定积分的几何意义求下列积分值:1(1)2 d x x ⎰;解:由几何意义可知,该定积分的值等于由x 轴、直线x =1、y =2x 所围成的三角形的面积,故原式=1.(2)(0)x R >⎰.解:由几何意义可知,该定积分的值等于以原点为圆心,半径为R 的圆在第一象限内的面积,故原式=21π4R .12.试决定22(3)y k x =-中的k 的值,使曲线的拐点处的法线通过原点. 解:224(3),12(1)y kx x y k x '''=-=- 令0y ''=,解得x =±1,代入原曲线方程得y =4k , 只要k ≠0,可验证(1,4k ),(-1,4k )是曲线的拐点.18x k y =±'=±,那么拐点处的法线斜率等于18k ,法线方程为18y x k=. 由于(1,4k ),(-1,4k )在此法线上,因此148k k=±, 得22321, 321k k ==-(舍去)故k ==13.问a ,b 为何值时,点(1,3)为曲线y =ax 3+bx 2的拐点? 解:y′=3ax 2+2bx , y″=6ax +2b 依题意有3620a b a b +=⎧⎨+=⎩ 解得 39,22a b =-=.14.将函数f (x ) = x -1(0≤x ≤2)展开成周期为4的余弦级数.解:将f (x )作偶延拓,作周期延拓后函数在(-∞,+∞)上连续,则有b n =0 (n =1,2,3,…)()()220201d 1d 02a f x x x x -==-=⎰⎰()()()222022221ππcos d 1cos d 2224[11]π0,2,4,6,8,1,3,5,πn nn x n xa f x x x xn n n n -==-=--=⎧⎪=⎨-=⎪⎩⎰⎰ 故()()()22121π81cos π221n n x f x n ∞=-=-⋅-∑ (0≤x ≤2)15.试证明:如果函数32y ax bx cx d =+++满足条件230b ac -<,那么这函数没有极值.证明:232y ax bx c '=++,令0y '=,得方程2320ax bx c ++=,由于 22(2)4(3)4(3)0b a c b ac ∆=-=-<,那么0y '=无实数根,不满足必要条件,从而y 无极值.16.已知水渠的横断面为等腰梯形,斜角ϕ=40°,如图所示.当过水断面ABCD 的面积为定值S 0时,求湿周L (L =AB +BC +CD )与水深h 之间的函数关系式,并指明其定义域.图1-1解:011()(2cot )(cot )22S h AD BC h h BC BC h BC h ϕϕ=+=++=+ 从而 0cot S BC h hϕ=-. 000()22cot sin sin 2cos 2cos 40sin sin 40L AB BC CD AB CD S h hBC h h S S h h h h ϕϕϕϕϕ=++==+=+---=+=+由00,cot 0S h BC h hϕ>=->得定义域为.17.如果()f x '在[a ,b ]上连续,在(a ,b )内可导且()0,()0,f a f x '''≥>证明:()()f b f a >.证明:因为()f x '在[a , b ]上连续,在(a ,b )内可导,故在[a ,x ]上应用拉格朗日定理,则(,),()a x a x b ξ∃∈<<,使得()()()0f x f a f x aξ''-''=>-, 于是()()0f x f a ''>≥,故有()()f b f a >18.国民收入的年增长率为7.1%,若人口的增长率为1.2%,则人均收入年增长率为多少?解:人均收入年增长率=国民收入的年增长率-人口增长率=7.1%-1.2%=5.9%.习题三19.设总收入和总成本分别由以下两式给出:2()50.003,()300 1.1R q q q C q q =-=+其中q 为产量,0≤q ≤1000,求:(1)边际成本;(2)获得最大利润时的产量;(3)怎样的生产量能使盈亏平衡?解:(1) 边际成本为:()(300 1.1) 1.1.C q q ''=+=(2) 利润函数为2()()() 3.90.003300() 3.90.006L q R q C q q q L q q=-=--'=- 令()0L q '=,得650q =即为获得最大利润时的产量.(3) 盈亏平衡时: R (q )=C (q )即 3.9q -0.003q 2-300=0q 2-1300q +100000=0解得q =1218(舍去),q =82.20.利用麦克劳林公式,按x 乘幂展开函数23()(31)f x x x =-+.解:因为()f x 是x 的6次多项式,所以 (4)(5)(6)23456(0)(0)(0)(0)(0)()(0)(0).2!3!4!5!6!f f f f f f x f f x x x x x x ''''''=++++++ 计算出:(0)1,(0)9,(0)60,(0)270f f f f ''''''==-==-,(4)(5)(6)(0)720,(0)1080,(0)720.f f f ==-=故23456()193045309.f x x x x x x x =-+-+-+21.求由下列方程确定的隐函数()y y x =的微分d y :⑴ 1e yy x =+; ⑵ 22221x y a b +=; ⑶ 1sin 2y x y =+; ⑷ 2arccos y x y -=. 解:⑴ 对等式两端微分,得d e d d(e )y y y x x =+即d e d e d y yy x x y =+ 于是e d d .1e yyy x x =- ⑵ 对等式两端微分,得22112d 2d 0x x y y a b⋅+⋅= 得22d d .b x y x a y=- ⑶ 对等式两端微分,得1d d cos d 2y x y y =+ 解得2d d .2cos y x y=- ⑷ 对等式两端微分,得2d d y y x y -=解得d .y x =22.根据下面所给的值,求函数21y x =+的,d y y ∆及d y y ∆-:⑴ 当1,0.1x x =∆=时;解: 2222()1(1)2210.10.10.21d 2210.10.2d 0.210.20.01.y x x x x x x y x x y y ∆=+∆+-+=∆+∆=⨯⨯+==⋅∆=⨯⨯=∆-=-=. ⑵ 当1,0.01x x =∆=时.解:222210.010.010.0201d 2210.010.02d 0.02010.020.0001.y x x x y x x y y ∆=∆+∆=⨯⨯+==⋅∆=⨯⨯=∆-=-=23.求由下列参数方程所确定函数的二阶导数22d d y x: ⑴ (sin ),(1cos ),x a t t y a t =-⎧⎨=-⎩(a 为常数); ⑵ (),()(),x f t y tf t f t '=⎧⎨'=-⎩设()f t ''存在且不为零.解:⑴ d d sin sin d d d (1cos )1cos d yy a t t t x x a t tt===-- 2222d d sin d sin 1()()d d d 1cos d 1cos d cos (1-cos )-sin sin 1 =(1-cos )(1cos )1 =.(1cos )y t t xx x t t t tt t t t t a t a t ==⋅--⋅⋅--- ⑵ d d ()()()d d d ()d yy f t tf t f t t t x x f t t''''+-==='' 22d d d 111()()1d d d d ()()d y t t x x x t f t f t t==⋅=⋅=''''.24. 求下列参数方程所确定的函数的导数d d y x : ⑴ cos sin ,sin cos ,x a bt b at y a bt b at =+⎧⎨=-⎩ (a ,b 为常数) 解:d d cos sin d d d sin cos d cos sin cos sin yy ab bt ab at t x x ab bt ab at tbt at at bt+==-++=-⑵ (1sin ),cos .x y θθθθ=-⎧⎨=⎩ 解: d d cos sin cos sin d d d 1sin (cos )1sin cos d yy x x θθθθθθθθθθθθθθ--===-+---25.设12()()()()0n p x f x f x f x =≠,且所有的函数都可导,证明:1212()()()()()()()()n n f x f x f x P x P x f x f x f x ''''=+++ 证明: 1212121212()1[()()()()()()()()()]()()()()() .()()()n n n n n P x f x f x f x f x f x f x f x f x f x P x P x f x f x f x f x f x f x ''''=+++'''=+++26.设()Q Q T =表示重1单位的金属从0C ︒加热到C T ︒所吸收的热量,当金属从C T ︒升温到()C T T +∆︒时,所需热量为()(),Q Q T T Q T ∆=+∆-Q ∆与T ∆之比称为T 到T T +∆的平均比热,试解答如下问题:⑴ 如何定义在C T ︒时,金属的比热;解:0()()lim ()T Q T T Q T Q T Tν∆→+∆-'==∆ ⑵ 当2()Q T aT bT =+(其中a , b 均为常数)时,求比热. 解:()2Q T a bT ν'==+. 27.若lim n n x a →∞=,证明lim n n x a →∞=,并举反例说明反之不一定成立. 证: lim 0n n x →∞=,由极限的定义知,0,0N ε∀>∃>,当n N >时,恒有n x a ε-<. 而 n n x x a a ε-<-<0,0N ε∴∀>∃>,当n N >时,恒有n x a ε-<,由极限的定义知lim .n n x a →∞= 但这个结论的逆不成立.如(1),lim 1,nn n n x x →∞=-=但lim n n x →∞不存在.28.根据数列极限的定义证明:21313(1)lim 0;(2)lim ;212(3)1;(4)lim 0.999 1.n n n n n n n n →∞→∞→∞→∞-==+== 个 证: (1)0ε∀>,要使22110n n ε=<-,只要n >.取N =,则当n>N 时,恒有210nε<-.故21lim 0n n →∞=. (2) 0ε∀>,要使555313,2(21)4212n n n n n ε-=<<<-++只要5n ε>,取5N ε⎡⎤=⎢⎥⎣⎦,则当n>N 时,恒有313212n n ε-<-+.故313lim 212n n n →∞-=+. (3) 0ε∀>,要使2221a n ε=<<,只要n >取n =,则当n>N 时,1ε<-,从而lim 1n n →∞=. (4)因为对于所有的正整数n ,有10.99991n <-个,故0ε∀>,不防设1ε<,要使1,0.999110n n ε=<-个只要ln ,ln10n ε->取ln ,ln10N ε-⎡⎤=⎢⎥⎣⎦则当n N >时,恒有,0.9991n ε<-个故lim 0.9991n n →∞=个.29.对下列数列求lim n n a x →∞=,并对给定的ε确定正整数()N ε,使对所有()n N ε>,有nx a ε-<:1π(1)sin ,0.001; (2)0.0001.2n n n x x n εε==== 解: (1)lim 0n n a x →∞==,0ε∀>,要使11π0sin 2n n x n n ε-=<<,只须1n ε>.取1N ε⎡⎤=⎢⎥⎣⎦,则当n N >时,必有0n x ε-<.当0.001ε=时,110000.001N ⎡⎤==⎢⎥⎣⎦或大于1000的整数. (2)lim 0n n a x →∞==,0ε∀>,要使0n x ε-==<=<1ε>即21nε>即可.取21Nε⎡⎤=⎢⎥⎣⎦,则当n N>时,有0nxε-<.当0.0001ε=时, 821100.0001N⎡⎤==⎢⎥⎣⎦或大于108的整数.30.判定下列曲线的凹凸性:(1) y=4x-x2;解:42,20y x y'''=-=-<,故知曲线在(,)-∞+∞内的图形是凸的. (2) sin(h)y x=;解:cosh,sinh.y x y x'''==由sinh x的图形知,当(0,)x∈+∞时,0y''>,当(,0)x∈-∞时,0y''<,故y=sinh x的曲线图形在(,0]-∞内是凸的,在[0,)+∞内是凹的.1(3) (0)y x xx=+>;解:23121,0y yx x'''=-=>,故曲线图形在(0,)+∞是凹的.(4) y=x arctan x.解:2arctan1xy xx'=++,222(1)yx''=>+故曲线图形在(,)-∞+∞内是凹的.【参考答案】***试卷处理标记,请不要删除一、解答题1.无2.无3.无4.无5.无7.无8.无9.无10.无11.无12.无13.无14.无15.无16.无17.无18.无19.无20.无21.无22.无23.无24.无25.无26.无28.无29.无30.无。

2019年电大高等数学基础期末考试试题及答案

2019年电大高等数学基础期末考试试题及答案

2019年电大高等数学基础期末考试试题及答案一、单项选择题1-1下列各函数对中,( C )中的两个函数相等. A.2)()(x x f =,x x g =)( B. 2)(x x f =,x x g =)(C.3ln )(x x f =,x x g ln 3)(= D. 1)(+=x x f ,11)(2--=x x x g1-⒉设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f -+的图形关于(C )对称.A. 坐标原点B. x 轴C. y 轴D. x y =设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f --的图形关于(D )对称.A. x y =B. x 轴C. y 轴D. 坐标原点 .函数2e e xx y -=-的图形关于( A )对称.(A) 坐标原点 (B) x 轴 (C)y 轴 (D) x y =1-⒊下列函数中为奇函数是( B ).A. )1ln(2x y += B. x x y cos = C. 2xx a a y -+=D.)1ln(x y +=下列函数中为奇函数是(A ). A.x x y -=3 B. x x e e y -+= C. )1ln(+=x y D. x x y sin =下列函数中为偶函数的是( D ).Ax x y sin )1(+= B x x y 2= C x x y cos = D )1ln(2x y +=2-1 下列极限存计算不正确的是( D ).A. 12lim 22=+∞→x x x B. 0)1ln(lim 0=+→x x C. 0sin lim =∞→x x x D. 01sin lim =∞→x x x 2-2当0→x 时,变量( C )是无穷小量.A. xx sin B. x 1 C. x x 1sin D. 2)ln(+x当0→x 时,变量( C )是无穷小量.A x 1 B x x sin C 1e -xD 2xx.当0→x 时,变量(D )是无穷小量.A x 1 B xx sin C x2 D )1ln(+x下列变量中,是无穷小量的为( B )A ()1sin 0x x →B ()()ln 10x x +→C ()1x e x →∞ D.()2224x x x -→-3-1设)(x f 在点x=1处可导,则=--→hf h f h )1()21(lim0( D ).A. )1(f 'B. )1(f '-C. )1(2f 'D. )1(2f '-设)(x f 在0x 可导,则=--→hx f h x f h )()2(lim000(D ).A )(0x f ' B )(20x f ' C )(0x f '- D )(20x f '-设)(x f 在0x 可导,则=--→hx f h x f h 2)()2(lim000( D ).A. )(20x f '-B. )(0x f 'C. )(20x f 'D. )(0x f '-设x x f e )(=,则=∆-∆+→∆x f x f x )1()1(lim( A ) A e B. e 2 C. e 21 D. e 413-2. 下列等式不成立的是(D ). A.x xde dx e= B )(cos sin x d xdx =- C.x d dx x=21D.)1(ln x d xdx =下列等式中正确的是(B ).A.xdx x d arctan )11( 2=+ B.2)1(x dxx d -=C.dx d x x2)2ln 2(= D.xdx x d cot )(tan =4-1函数14)(2-+=x x x f 的单调增加区间是( D ).A. )2,(-∞B. )1,1(-C. ),2(∞+D. ),2(∞+-函数542-+=x x y 在区间)6,6(-内满足(A ).A. 先单调下降再单调上升B. 单调下降C. 先单调上升再单调下降D. 单调上升.函数62--=x x y 在区间(-5,5)内满足( A )A 先单调下降再单调上升B 单调下降C 先单调上升再单调下降D 单调上升. 函数622+-=x x y 在区间)5,2(内满足(D ).A. 先单调下降再单调上升B. 单调下降C. 先单调上升再单调下降D. 单调上升 5-1若)(x f 的一个原函数是x1,则=')(x f (D ). A. x ln B. 21x -C.x1 D.32x.若)(x F 是 )(x f 的一个原函数,则下列等式成立的是( A )。

2019最新高等数学(下册)期末考试试题(含答案)ABC

2019最新高等数学(下册)期末考试试题(含答案)ABC

2019最新高等数学(下册)期末考试试题(含答案)一、解答题1.将函数(,)x f x y y =在(1,1)点展到泰勒公式的二次项.解:(1,1)1,f =(1,1)(1,1)1(1,1)(1,1)ln 0,1,x x x y f y y f xy-====2(1,1)(1,1)1(1,1)(1,1)2(1,1)(1,1)2(ln )0,1ln 1,(1)0,(,)1(1)(1)(1)0().xxx x x xy x yyx f y y xy y y f y f xy x f x y y y x y ρ--==⎛⎫+⋅== ⎪⎝⎭=-===+-+--+2.求下列欧拉方程的通解:2(1)0x y xy y '''+-=解:作变换e t x =,即t =ln x ,原方程变为 (1)0D D y Dy y -+-=即 22d 0d yy t-=特征方程为 210r -=121,1r r =-=故 12121e e t ty c c c c x x-=+=+. 23(2)4x y xy y x '''+-=.解:设e tx =,则原方程化为3(1)4e t D D y Dy y -+-=232d 4e d ty y t-= ① 特征方程为 240r -=122,2r r =-=故①所对应齐次方程的通解为2212e e t t y c c -=+又设*3e t y A =为①的特解,代入①化简得941A A -= 15A =, *31e 5t y = 故 223223121211ee e .55tt t y c c c x c x x --=++=++3.求下列线性微分方程满足所给初始条件的特解:πd 11(1)sin ,1d x y y x y x x x=+== ; 解: 11d d 11sin e sin d [cos ]e d x x x x x y x x c c x x c x x x -⎡⎤⎰⎰⎡⎤==+=-+⎢⎥⎣⎦⎣⎦⎰⎰ 以π,1x y ==代入上式得π1c =-, 故所求特解为 1(π1cos )y x x=--. 2311(2)(23)1,0x y x y y x='+-== . 解:22323d 3ln x x x x c x--=--+⎰ 22223323d 23+3ln d 3ln ee e d e d x xx x x x x xxxy x c x c -------⎰⎡⎤⎰⎡⎤∴==++⎢⎥⎣⎦⎣⎦⎰⎰ 2223311e .e e 22x x x x x c c ----⎛⎫⎛⎫=⋅=++ ⎪ ⎪⎝⎭⎝⎭以x =1,y =0代入上式,得12ec =-. 故所求特解为 2311e 22e x y x -⎛⎫=-⎪⎝⎭.4.计算下列对坐标的曲面积分:(1)22d d x y z x y ∑⎰⎰,其中Σ是球面x 2+y 2+z 2=R 2的下半部分的下侧;(2)d d d d d d z x y x y z y z x ∑++⎰⎰,其中Σ是柱面x 2+y 2=1被平面z =0及z =3所截得的在第Ⅰ封限内的部分的前侧;(3)()()()d d 2d d d d ,,,,,,f x y z f y z x f z x y x y z x y z x y z ∑+++++⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰,其中f (x , y , z )为连续函数,Σ是平面x -y +z =1在第Ⅳ封限部分的上侧; (4)d d d d d d xz x y xy y z yz z x ∑++⎰⎰,其中Σ是平面x =0, y =0, z =0, x +y +z =1所围成的空间区域的整个边界曲面的外侧;(5)()()()d d d d d d y z z x x y y z x y z x ∑++---⎰⎰,其中Σ为曲面z =z = h (h >0)所围成的立体的整个边界曲面,取外侧为正向;(6)()()22d d d d d d +++-⎰⎰y y z x z x x y y xz x z ∑,其中Σ为x =y =z =0,x =y =z =a 所围成的正方体表面,取外侧为正向;解:(1)Σ:z =Σ在xOy 面上的投影区域D xy 为:x 2+y 2≤R 2.((()()()()()()22222π422002π2222222002π2200354*******d d d d d cos sin d 1sin 2d 81d d 1cos421612422π1635xyD RR R xy z x y x y x yr r rR R r r R R R R r R R R r R r ∑θθθθθθθ=-=-=-⎡⎤+--⎣⎦⎡=---⎣=-⋅-+--⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰()72220772π105RR r R ⎡⎤-⎢⎥⎣⎦=(2)Σ如图11-8所示,Σ在xOy 面的投影为一段弧,图11-8故d d 0z x y ∑=⎰⎰,Σ在yOz 面上的投影D yz ={(y ,z )|0≤y ≤1,0≤z ≤3},此时Σ可表示为:x =(y ,z )∈D yz,故30d d d d 3yzD x y z y z z y y∑===⎰⎰⎰⎰⎰⎰⎰Σ在xOz 面上的投影为D xz ={(x ,z )|0≤x ≤1,0≤z ≤3},此时Σ可表示为: y =(x ,z )∈D xz,故3d d d d 3xzD y z x z x z x x∑===⎰⎰⎰⎰⎰⎰⎰因此:d d d d d d 236π643π2z x y x y z y z x x x∑++⎡⎤=⎢⎥⎣⎦==⋅=⎰⎰⎰⎰(3)Σ如图11-9所示,平面x -y +z =1上侧的法向量为 n ={1,-1,1},n 的方向余弦为cos α=,cos β=cos γ=图11-9由两类曲面积分之间的联系可得:()()()()()()()()()d d 2d d d d ,,,,,,cos d (2)cos d ()d d cos cos d d (2)d d ()d d cos cos (2)()d d d d 1d d xyD f x y z f y z x f z x y x y z x y z x y z s f y s f z x yf x x y f y x y f z x y f x f y f z x y f x x yx y z x yx y x y ∑∑∑∑∑αβαβγγ+++++⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦=+++++=+++++=-+++⎡⎤+⎣⎦=-+=+-⎡⎤--⎣⎦⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰d d 111212xyD x y==⨯⨯=⎰⎰⎰⎰(4)如图11-10所示:图11-10Σ=Σ1+Σ2+Σ3+Σ4.其方程分别为Σ1:z =0,Σ2:x =0,Σ3:y =0,Σ4:x +y +z =1, 故()()12344110d d 000d d d d 11d d 124xyD xxz x yxz x yx x yx y x x y x y ∑∑∑∑∑∑-=+++=+++=--==--⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰由积分变元的轮换对称性可知.1d d dzd 24xy y z yz x ∑∑==⎰⎰⎰⎰ 因此.d d dyd d d 113248xz x y xy z yz z x ∑++=⨯=⎰⎰(5)记Σ所围成的立体为Ω,由高斯公式有:()()()()()()d d d d d d d d d 0d d d 0y z z x x yy z x y z x y z x y z x x y z x y z x y z ∑ΩΩ++---∂∂⎛⎫--∂-=++ ⎪∂∂∂⎝⎭==⎰⎰⎰⎰⎰⎰⎰⎰(6)记Σ所围的立方体为Ω, P =y (x -z ),Q =x 2,R =y 2+xz . 由高斯公式有()()()()()220200204d d d d d d d d d d d d d d d d d d 2d 2a aaaaaaay y z x z x x yy xz x z P Q R x y z x y z x y zx y x y z x y x a yx y y a x xy a a x ax a ∑ΩΩ+++-∂∂∂⎛⎫++= ⎪∂∂∂⎝⎭=+=+=+⎡⎤=+⎢⎥⎣⎦⎡⎤=+⎢⎥⎣⎦=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰5.求下列齐次方程的通解:(1)0xy y'-=;解:d d y y x x =令 d d d d y y u u u x x x x=⇒=+ 原方程变为d xx=两端积分得ln(ln ln u x c =+u cxy cx x +==即通解为:2y cx =d (2)ln d y yxy x x =; 解:d ln d y y y x x x= 令y u x =, 则d d d d y uu x x x=+原方程变为d d (ln 1)u xu u x=-积分得 ln(ln 1)ln ln u x c -=+ln 1ln 1u cxycx x-=-= 即方程通解为 1ecx y x +=22(3)()d d 0x y x xy x +-=解:2221d d y y x y x y x xyx⎛⎫+ ⎪+⎝⎭==令y u x =, 则d d d d y uu x x x=+原方程变为 2d 1d u u u x x u++= 即 d 1d ,d d u x xu u x u x == 积分得211ln ln 2u x c =+ 2122ln 2ln y x c x=+故方程通解为 22221ln()()y x cx c c ==332(4)()d 3d 0x y x xy y +-=; 解: 333221d d 33y y x y x x xy y x ⎛⎫+ ⎪+⎝⎭==⎛⎫ ⎪⎝⎭令y u x =, 则d d d d y uu x x x=+原方程变为 32d 1d 3u u u x x u ++= 即 233d d 12u x u u x=- 积分得 311ln(21)ln ln 2u x c --=+ 以yx代替u ,并整理得方程通解为 332y x cx -=. d (5)d y x y x x y+=-; 解:1d d 1yy x yx x +=- 令y u x =, 则d d d d y uu x x x=+原方程变为 d 1d 1u uu x x u++=- 分离变量,得211d d 1u u x u x-=+ 积分得 211arctan ln(1)ln ln 2u u x c -+=+ 以y x 代替u ,并整理得方程通解为到 2arctan 22211e .()yxx y c c c +==(6)y '=解:d d y yx=即d d x x y y =令x v y =, 则d d ,d d x v x yv v y y y ==+, 原方程可变为d d vv yv y+=+即d d vyy=分离变量,得d y y= 积分得ln(ln ln v y c +=-.即y v c+=2222121y v v c y yv c c⎛⎫=+- ⎪⎝⎭-= 以yv x =代入上式,得 222c y c x ⎛⎫=+ ⎪⎝⎭即方程通解为 222y cx c =+.6.从下列各题中的曲线族里,找出满足所给的初始条件的曲线:220(1),5;x x y C y =-==解:当0x =时,y =5.故C =-25 故所求曲线为:2225y x -=21200(2)()e ,0, 1.x x x y C C x y y =='=+==解: 2212(22)e x y C C C x '=++ 当x =0时,y =0故有10C =. 又当x =0时,1y '=.故有21C =. 故所求曲线为:2e xy x =.7.利用斯托克斯公式,计算下列曲线积分: (1)d d d y x z y x z Γ++⎰,其中Γ为圆周x 2+y 2+z 2= a 2,x +y +z = 0,若从x 轴的正向看去,这圆周是取逆时针的方向;(2)()()()222222d d d x y z y z x y z x Γ++---⎰,其中Γ是用平面32x y z ++=截立方体:0≤x ≤1,0≤y ≤1,0≤z ≤1的表面所得的截痕,若从Ox 轴的正向看去,取逆时针方向; (3)23d d d y x xz y yz z Γ++⎰,其中Γ是圆周x 2+y 2 = 2z ,z =2,若从z 轴正向看去,这圆周是取逆时针方向; (4)22d 3d d +-⎰y x x y z z Γ,其中Γ是圆周x 2+y 2+z 2 = 9,z =0,若从z 轴正向看去,这圆周是取逆时针方向.解:(1)取Σ为平面x +y +z =0被Γ所围成部分的上侧,Σ的面积为πa 2(大圆面积),Σ的单位法向量为{}cos ,cos ,cos n αβγ==. 由斯托克斯公式22d d d cos cos cos d d πy x z y x zR Q Q P P R s y z x y z x ss a a Γ∑∑∑αβγ++⎡∂∂∂∂⎤⎛⎫⎛⎫∂∂⎛⎫--=++- ⎪⎢⎥ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭⎣⎦====⎰⎰⎰⎰⎰⎰⎰ (2)记为Σ为平面32x y z ++=被Γ所围成部分的上侧,可求得Σ(是一个边长为2的正六边形); Σ的单位法向量为{}cos ,cos ,cos αβγ==n . 由斯托克斯公式()()()(((()222222d d d2222d22d3d232492x y zy z x yz xy z x y sz xsx y zsΓ∑∑∑++---⎡++----=--⎢⎣=++==⋅=-⎰⎰⎰⎰⎰(3)取Σ:z=2,D xy:x2+y2≤4的上侧,由斯托克斯公式得:()()()2223d d dd d0d d d d3d d35d d5π220π-+=++--+=-+=-=-⨯⨯=-⎰⎰⎰⎰⎰⎰⎰xyDy x xz y yz zy z z x x yzz xx yzx yΓ∑∑(4)圆周x2+y2+z2=9,z=0实际就是xOy面上的圆x2+y2=9,z=0,取Σ:z=0,D xy:x2+y2≤9由斯托克斯公式得:()()()222d3d dd d d d d d000032d dd dπ39π+-=++---===⋅=⎰⎰⎰⎰⎰⎰⎰xyDy x x y z zy z z x x yx yx yΓ∑∑8.设均匀薄片(面密度为常数1)所占闭区域D如下,求指定的转动惯量:(1)D:22221x ya b+≤,求I y;(2)D由抛物线292y x=与直线x=2所围成,求I x和I y;(3)D为矩形闭区域:0≤x≤a, 0≤y≤b,求I x和I y.解:(1)令x=arcosθ ,y=br sinθ,则在此变换下D :22221x y a b+≤变化为D ':r ≤1,即 0≤r ≤1, 0≤θ≤2π, 且(,)(,)x y abr r θ∂=∂, 所以2π12222323032π30d d cos d d cos d d 1(1cos 2)d π.84y DD I x x y a r abr r a b r ra b a b θθθθθθ'====+=⎰⎰⎰⎰⎰⎰⎰(2) 闭区域D 如图10-35所示图10-353222220005222220272d d 2d d d ;3596d d 2d d .7x Dy DI y x y x y y x x I x x y x x y x x ========⎰⎰⎰⎰⎰⎰⎰⎰⎰(3)32220d d d d d ,3a bbx Dab I y x y x y y a y y ====⎰⎰⎰⎰⎰322200d d d d d .3abay Da bI x x y x x y bx x ====⎰⎰⎰⎰⎰9.求锥面z被柱面z 2 = 2x 所割下部分的曲面面积。

2019最新高等数学(上册)期末考试试题(含答案)ALH

2019最新高等数学(上册)期末考试试题(含答案)ALH

2019最新高等数学期末考试试题(含答案)一、解答题1.设()()()f a f c f b ==,且a c b <<,()f x ''在[a ,b ]内存在,证明:在(a ,b )内至少有一点ξ,使()0f ξ''=.证明:()f x ''在[a ,b ]内存在,故()f x 在[a ,b ]上连续,在(a ,b )内可导,且()()()f a f c f b ==,故由罗尔定理知,1(,)a c ξ∃∈,使得1()0f ξ'=,2(,)c b ξ∃∈,使得2()0f ξ'=,又()f x '在12[,]ξξ上连续,在12(,)ξξ内可导,由罗尔定理知,12(,)ξξξ∃∈,使()0f ξ''=,即在(a ,b )内至少有一点ξ,使()0f ξ''=.2.将下列函数f (x )展开为傅里叶级数:(1)()()πππ42x f x x =--<<(2)()()sin 02πf x xx =≤≤ 解:(1) ()ππ0-ππ11ππcos d d ππ422x a f x nx x x -⎛⎫==-= ⎪⎝⎭⎰⎰ []()ππππ-π-πππ1π11cos d cos d x cos d π4242π1sin 001,2,4n x a nx x nx x nx x nx n n--⎛⎫=-=- ⎪⎝⎭=-==⎰⎰⎰ ()ππππ-π-π1π11sin d sin d xsin d π4242π11n n x b nx x nx x nx x n-⎛⎫=-=- ⎪⎝⎭=-⋅⎰⎰⎰故()()1πsin 14n n nx f x n∞==+-∑ (-π<x <π) (2)所给函数拓广为周期函数时处处连续, 因此其傅里叶级数在[0,2π]上收敛于f (x ),注意到f (x )为偶函数,有b n =0,()ππ0πππ011cos0d sin d ππ24sin d ππa f x x x x x x x --====⎰⎰⎰()()()()()()ππ0ππ02222cos d sin cos d ππ1sin 1sin 1d π211π10,1,3,5,4,2,4,6,π1n n a f x nx x x nx x n x n x x n n n n -===+--⎡⎤⎣⎦-⎡⎤=+-⎣⎦-=⎧⎪-=⎨=⎪-⎩⎰⎰⎰所以 ()()2124cos2ππ41n nx f x n ∞=-=+-∑ (0≤x ≤2π)3. 有一等腰梯形闸门,它的两条底边各长10m 和6m ,高为20m ,较长的底边与水面相齐,计算闸门的一侧所受的水压力.解:如图20,建立坐标系,直线AB 的方程为y =-x 10+5. 压力元素为 d F =x ·2y d x =2x ⎝⎛⎭⎫-x 10+5d x 所求压力为F =⎠⎛0202x ⎝⎛⎭⎫-x 10+5d x =⎣⎡⎦⎤5x 2-115x 3200 =1467(吨) =14388(KN)4.把长为10m ,宽为6m ,高为5m 的储水池内盛满的水全部抽出,需做多少功?解:如图19,区间[x ,x +d x ]上的一个薄层水,有微体积d V =10·6·dx(19)设水的比重为1,,则将这薄水层吸出池面所作的微功为d w =x ·60g d x =60gx d x .于是将水全部抽出所作功为w =⎠⎛0560gx d x(20)。

2019最新高等数学(上册)期末考试试题(含答案)UR

2019最新高等数学(上册)期末考试试题(含答案)UR

2019最新高等数学期末考试试题(含答案)一、解答题1.求下列函数的高阶微分:⑴y 2d y ; ⑵ xy x =,求2d y ; ⑶ cos 2y x x =⋅,求10d y ; ⑷ 3ln y x x =⋅,求d ny ;⑸ 2323cos sin 0r a θθ⋅-=(a 为常数),求2d r . 解:⑴d d y x x '==,2d d y x '=3222(1)d .x x -=+⑵ (ln )(ln )(1ln ).xy y y y x x x x '''===+21[(1ln )],x y x x x''=++故 2221d [(1ln )]d (0).x y x x x x x=++> ⑶ 由莱布尼兹公式,得1010(10)10()(10)101001091010d (cos 2)d [C cos 2]d 10π9[2cos(2)102cos(2π)]d 221024(cos 25sin 2)d .ii i i y x x x x x x x x x x x x x x -====++⋅⋅+=-+∑ ⑷ 由莱布尼兹公式,得3()13(1)23(2)33(3)31223124d [(ln )C ()(ln )C ()(ln )C ()(ln )]d (1)!(2)!(1)(3)![(1)3(1)6(1)2(1)(2)( +6(1)6n n n n n n n nnn n n n n n n y x x x x x x x x x n n n n n x n x x x x xn n n n ---------'''=⋅+⋅+⋅'''+⋅----=⋅-⋅+⋅⋅-⋅+⋅⋅----⋅⋅-334)!]d [(1)6(4)!]d .nn n n n x xn x x --=-⋅⋅- ⑸ 223tan r a θ=两端求导,得2222323tan sec 2rr a r θθθ''=⋅⇒= 等式两端再求导得22232223(2tan sec 4tan sec )r rr a θθθθ'''+=⋅+⋅解得24314sin 4cos r a θθ+''=故2224314sin d d .4cos r a θθθ+=2.求下列幂级数的收敛半径及收敛域: (1)x +2x 2+3x 3+…+nx n +…;(2)1!nn x n n ∞=⎛⎫ ⎪⎝⎭∑;(3)21121n n x n -∞=-∑; (4)()2112nn x n n∞=-⋅∑; 解:(1)因为11limlim 1n n n n a n a n ρ+→∞→∞+===,所以收敛半径11R ρ==收敛区间为(-1,1),而当x =±1时,级数变为()11nn n ∞=-∑,由lim(1)0nx nn →-≠知级数1(1)n n n ∞=-∑发散,所以级数的收敛域为(-1,1).(2)因为()()1111!11lim lim lim lim e 1!11nn n n n n n n n na n n n a n n n n ρ-+-+→∞→∞→∞→∞⎡⎤+⎛⎫⎛⎫==⋅===+ ⎪⎢⎥ ⎪+⎝⎭+⎝⎭⎣⎦ 所以收敛半径1e R ρ==,收敛区间为(-e,e).当x =e 时,级数变为1e nnn n n ∞=∑;应用洛必达法则求得()10e e1lim 2xx x x →-+=-,故有111lim 12n n n a n a +→∞⎛⎫-=-< ⎪⎝⎭由拉阿伯判别法知,级数发散;易知x =-e 时,级数也发散,故收敛域为(-e,e).(3)级数缺少偶次幂项.根据比值审敛法求收敛半径.211212221lim lim 2121lim 21n n n n n nn U x n U n x n x n x ++-→∞→∞→∞-=⋅+-=⋅+= 所以当x 2<1即|x |<1时,级数收敛,x 2>1即|x |>1时,级数发散,故收敛半径R =1.当x =1时,级数变为1121n n ∞=-∑,当x =-1时,级数变为1121n n ∞=--∑,由1121lim 012n n n→∞-=>知,1121n n ∞=-∑发散,从而1121n n ∞=--∑也发散,故原级数的收敛域为(-1,1).(4)令t =x -1,则级数变为212n n t n n∞=⋅∑,因为()()2122lim lim 1211n n n n a n na n n ρ+→∞→∞⋅===⋅++ 所以收敛半径为R =1.收敛区间为 -1<x -1<1 即0<x <2.当t =1时,级数3112n n ∞=∑收敛,当t =-1时,级数()31112nn n ∞=-⋅∑为交错级数,由莱布尼茨判别法知其收敛.所以,原级数收敛域为 0≤x ≤2,即[0,2]3.解:1211111R ()()(1)!2(1)!2n n n n n +++=++++=12111111()[1()](1)!222(2)(3)2n n n n n ++++++++122111111()[1()](1)!212(1)2n n n n +<++++++1111()1(1)!212(1)n n n +=+-+11()!(21)2n n n =+从而 111()!(21)2n n R n n +<+4.用比值判别法判别下列级数的敛散性:(1) 213n n n ∞=∑;(2)1!31nn n ∞=+∑; (3)232333331222322nnn +++++⋅⋅⋅⋅;(4) 12!n nn n n ∞=⋅∑ 解:(1) 23n n n U =,()2112311lim lim 133n n n n n n U n U n ++→∞→∞+=⋅=<,由比值审敛法知,级数收敛.(2) ()()111!311lim lim 31!31lim 131n n n n n nn n n U n U n n ++→∞→∞+→∞++=⋅++=⋅++=+∞所以原级数发散.(3) ()()11132lim lim 2313lim 21312n nn n n n n nn U n U n n n +++→∞→∞→∞⋅=⋅⋅+=+=> 所以原级数发散.(4) ()()1112!1lim lim 2!1lim 21122lim 1e 11n nn n nn n nnn n n U n n U n n n n n +++→∞→∞→∞→∞⋅+=⋅⋅+⎛⎫= ⎪+⎝⎭==<⎛⎫+ ⎪⎝⎭故原级数收敛.5.设某工厂生产某种产品的固定成本为零,生产x (百台)的边际成本为C ′(x )(万元/百台),边际收入为R ′(x )=7-2x (万元/百台). (1) 求生产量为多少时总利润最大?(2) 在总利润最大的基础上再生产100台,总利润减少多少? 解:(1) 当C ′(x )=R ′(x )时总利润最大. 即2=7-2x ,x=5/2(百台)(2) L ′(x )=R ′(x )-C ′(x )=5-2x .在总利润最大的基础上再多生产100台时,利润的增量为 ΔL (x )=772255222(52)d 51x x x x-=-=-⎰.即此时总利润减少1万元.6. 把长为10m ,宽为6m ,高为5m 的储水池内盛满的水全部抽出,需做多少功?解:如图19,区间[x ,x +d x ]上的一个薄层水,有微体积d V =10·6·dx(19)设水的比重为1,,则将这薄水层吸出池面所作的微功为 d w =x ·60g d x =60gx d x .于是将水全部抽出所作功为 w =⎠⎛0560gx d x=60g 2x 2⎪⎪50 =750g (KJ) .7.已知()d 1p x x +∞-∞=⎰,其中1,()0,1,x p x x <=≥⎩求C .解:1111()d 0d 0d p x x x x x x +∞-+∞-∞-∞--=⋅++⋅=⎰⎰⎰⎰⎰11001arcsin arcsin π1x x C xC x C --=+=⋅+⋅==⎰⎰所以1πC =.8.已知sin πd 2x x x +∞=⎰,求: 0sin cos (1)d ;x xx x+∞⎰解:(1)原式=001sin(2)1sin πd(2)d .2224x t x t x t +∞+∞==⎰⎰22sin (2) d .x x x+∞⎰解:222002200200020000sin 1cos 2d d 21cos 2d d 22111d cos 2d 2211111d cos 2dcos2222111sin 2cos 2d2222ππ0.22xx x xx x x x x x x x x x xx x x x x xx x xx x x +∞+∞+∞+∞+∞+∞+∞+∞+∞+∞+∞-==-=+=+⋅-⎡⎤=-+⋅+⎢⎥⎣⎦=+=⎰⎰⎰⎰⎰⎰⎰⎰⎰9.计算下列导数:2d (1)d x t x ⎰解:原式2=32d (2)d x x x ⎰解:原式32200d d d d x x x x =-=⎰⎰10.作出下列函数的图形:2(1)()1xf x x=+; 解:函数的定义域为(-∞,+∞),且为奇函数,2222222223121(1)(1)2(3)(1)x x x y x x x x y x +--'==++-''=+令0y '=,可得1x =±, 令0y ''=,得x =0,列表讨论如下:函数有极大值1(1)2f =,极小值1(1)2f -=-,有3个拐点,分别为,⎛ ⎝(0,0),,作图如上所示.(2) f (x )=x -2arctan x解:函数定义域为(-∞,+∞),且为奇函数,2222114(1)y x xy x '=-+''=+ 令y′=0,可得x =±1, 令y″=0,可得x =0.列表讨论如下:又()2limlim(1arctan )1x x f x x x x→∞→∞=-= 且 lim[()]lim (2arctan )πx x f x x x →+∞→+∞-=-=-故πy x =-是斜渐近线,由对称性知πy x =+亦是渐近线.函数有极小值π(1)12y =-,极大值π(1)12y -=-.(0,0)为拐点.作图如上所示. 2(3) ()1x f x x=+;解:函数的定义域为,1x R x ∈≠-.22232(1)(2)(1)(1)(1)2(1)x x x x x y x x x y x +-+'==≠-++''=+令0y '=得x =0,x =-2当(,2]x ∈-∞-时,0,()y f x '>单调增加; 当[2,1)x ∈--时,0,()y f x '<单调减少; 当(1,0]x ∈-时,0,()y f x '<单调减少; 当[0,)x ∈+∞时,0,()y f x '>单调增加, 故函数有极大值f (-2)=-4,有极小值f (0)=0又211lim ()lim1x x x f x x →-→-==∞+,故x =-1为无穷型间断点且为铅直渐近线. 又因()lim 1x f x x →∞=, 且2lim(())lim 11x x x f x x x x →∞→∞⎡⎤-==--⎢⎥+⎣⎦, 故曲线另有一斜渐近线y =x -1. 综上所述,曲线图形为:(4)2(1)e x y --=.解:函数定义域为(-∞,+∞) .22(1)(1)22(1)e e2(241)x x y x y x x ----'=--''=⋅-+令0y '=,得x =1. 令0y ''=,得12x =±当(,1]x ∈-∞时,0,y '>函数单调增加; 当[1,)x ∈+∞时,0,y '<函数单调减少;当2(,1[1,)22x ∈-∞-++∞时,0y ''>,曲线是凹的; 当[1]22x ∈-+时,0y ''<,曲线是凸的, 故函数有极大值f (1)=1,两个拐点:1122(1),(1)A B --,又lim ()0x f x →∞=,故曲线有水平渐近线y =0.图形如下:11.判定下列曲线的凹凸性: (1) y =4x -x 2;解:42,20y x y '''=-=-<,故知曲线在(,)-∞+∞内的图形是凸的. (2) sin(h )y x =;解:cosh ,sinh .y x y x '''==由sinh x 的图形知,当(0,)x ∈+∞时,0y ''>,当(,0)x ∈-∞时,0y ''<, 故y =sinh x 的曲线图形在(,0]-∞内是凸的,在[0,)+∞内是凹的.1(3) (0)y x x x=+> ;解:23121,0y y x x'''=-=>,故曲线图形在(0,)+∞是凹的. (4) y =x arctan x . 解:2arctan 1xy x x'=++,2220(1)y x ''=>+ 故曲线图形在(,)-∞+∞内是凹的.12.在半径为r 的球中内接一正圆柱体,使其体积为最大,求此圆柱体的高.解:设圆柱体的高为h , ,223πππ4V h r h h =⋅=-令0V '=, 得.h =时,其体积为最大.13.证明下列不等式: (1) 当π02x <<时, sin tan 2;x x x +> 证明: 令()sin tan 2,f x x x x =--则22(1cos )(cos cos 1)()cos x x x f x x-++'=, 当π02x <<时, ()0,()f x f x '>为严格单调增加的函数,故()(0)0f x f >=, 即sin 2tan 2.x x x ->(2) 当01x <<时, 2e sin 1.2xx x -+<+ 证明: 令2()=e sin 12xx f x x -+--,则()=e cos xf x x x -'-+-,()=e sin 1e (sin 1)0x x f x x x --''--=-+<,则()f x '为严格单调减少的函数,故()(0)0f x f ''<=,即()f x 为严格单调减少的函数,从而()(0)0f x f <=,即2e sin 1.2xx x -+<+14.设f (x ) = x +1(0≤x ≤π),试分别将f (x )展开为正弦级数和余弦级数. 解:将f (x )作奇延拓,则有a n =0 (n =0,1,2,…)()()()()ππ0022sin d 1sin d ππ111π2πn nb f x nx x x nx xn==+--+=⋅⎰⎰从而()()()1111π2sin πnn f x nx n∞=--+=∑ (0<x <π)若将f (x )作偶延拓,则有b n =0 (n =1,2,…)()()ππ00222cos d 1cos d ππ0,2,4,64,1,3,5,πn a f x nx x x nx x n n n ==+=⎧⎪=-⎨=⎪⎩⎰⎰ ()()ππ0π012d 1d π2ππa f x x x x -==+=+⎰⎰从而()()()21cos 21π242π21n n xf x n ∞=-+=--∑ (0≤x ≤π)15.求下列初等函数的边际函数、弹性和增长率: (1) y =ax +b ;(其中a ,b ∈R ,a ≠0) 解:y ′=a 即为边际函数. 弹性为:1Ey axa x Ex axb ax b=⋅⋅=++, 增长率为: y aax bγ=+. (2) y =a e bx ;解:边际函数为:y ′=ab e bx 弹性为:1e ebx bx Ey ab x bx Ex a =⋅⋅=, 增长率为: e ebxy bxab b a γ==. (3) y =x a解:边际函数为:y ′=ax a -1.弹性为:11a a Ey ax x a Ex x-=⋅⋅=,增长率为: 1.a y a ax ax xγ-==16.判断下列函数在定义域内的有界性及单调性:2(1); (2)ln 1xy y x x x ==++ 解: (1)函数的定义域为(-∞,+∞), 当0x ≤时,有201x x ≤+,当0x >时,有21122x x x x ≤=+,故(,),x ∀∈-∞+∞有12y ≤.即函数21xy x =+有上界. 又因为函数21xy x =+为奇函数,所以函数的图形关于原点对称,由对称性及函数有上界知,函数必有下界,因而函数21xy x =+有界. 又由1212121222221212()(1)11(1)(1)x x x x x x y y x x x x ---=-=++++知,当12x x >且121x x <时,12y y >,而 当12x x >且121x x >时,12y y <. 故函数21xy x=+在定义域内不单调. (2)函数的定义域为(0,+∞),10,0M x ∀>∃>且12;e 0M x M x >∃>>,使2ln x M >.取012max{,}x x x =,则有0012ln ln 2x x x x M M +>+>>, 所以函数ln y x x =+在定义域内是无界的. 又当120x x <<时,有12120,ln ln 0x x x x -<-<故1211221212(ln )(ln )()(ln ln )0y y x x x x x x x x -=+-+=-+-<. 即当120x x <<时,恒有12y y <,所以函数ln y x x =+在(0,)+∞内单调递增.17.设0a >,且b 与n a 相比是很小的量,证明:1.n b a na-≈+11x n≈+,有11(1)n n b b a a n a na-=≈+⋅=+.18.求n 次多项式1101nn n n y a x a xa x a --=++++的n 阶导数.解: 1()()1()()()()0100()()()()=()=!n n n n n n n n n n n ya x a x a x a a x a n --=++++⋅19.用对数求导法求下列函数的导数: ⑴y =解:1(ln )[ln(2)4ln(3)5ln(1)]2y y y y x x x '''=⋅=⋅++--+45(3)145[](1)2(2)31x x x x x -=--++-+ ⑵ cos (sin );xy x =解:2cos (ln )(cos ln sin )1[(sin )ln sin cos cos ]sin cos (sin )(sin ln sin )sin xy y y y x x y x x x x xx x x x x'''==⋅=-+⋅⋅=- ⑶2x y =解:211(ln )[2ln(3)ln(5)ln(4)]22111 ].32(5)2(4)x y y y y x x x x x x x '''==++-+--=+--++-20.试求曲线exy -=在点(0,1)及点(-1,0)处的切线方程和法线方程.解:231e e (1)3xxy x ---'=-⋅+12. 3x x y y ==-''=-=∞故在点(0,1)处的切线方程为:21(0)3y x -=--,即2330x y +-=法线方程为:21(0)3y x -=-,即3220x y -+= 在点(-1,0)处的切线方程为:1x =- 法线方程为:0y =21.设12()()()()0n p x f x f x f x =≠,且所有的函数都可导,证明:1212()()()()()()()()n n f x f x f x P x P x f x f x f x ''''=+++证明:1212121212()1[()()()()()()()()()]()()()()().()()()n n n n n P x f x f x f x f x f x f x f x f x f x P x P x f x f x f x f x f x f x ''''=+++'''=+++22.设物体绕定轴旋转,在时间间隔[0,t ]内,转过角度θ,从而转角θ是t 的函数:()t θθ=.如果旋转是匀速的,那么称tθω=为该物体旋转的角速度.如果旋转是非匀速的,应怎样确定该物体在时刻0t 的角速度?解:设此角速度值为ω,则0000()()lim ()t t t t t tθθωθ∆→+∆-'==∆.23.已知2()max{,3}f x x =,求()f x '.解:23, (),x f x xx ⎧≤⎪=⎨>⎪⎩当x <时,()0f x '=, 当x >时,()2f x x '=,2(((0,x xx f x f-+'===-'==故(f '不存在.又20,(x x x f f x -+'=='==+= 故f '不存在. 综上所述知0, ()2, x f x x x ⎧<⎪'=⎨>⎪⎩24.下列各题中均假定0()f x '存在,按照导数定义观察下列极限,指出A 表示什么.(1) 000()()lim;x f x x f x A x∆→-∆-=∆解:0000000()()()()lim lim ()x x f x x f x f x x f x f x x x ∆→∆→-∆--∆-'=-=-∆-∆故0()A f x '=-(2) 000()()0,lim ;x x f x f x A x x→==- 解:00000()()limlim ()x x x x f x f x f x x x x x →→'=-=---故0()A f x '=- (3) 000()()lim.h f x h f x h A h→+--=解:00000000000000000()()()()()()limlim ()()()()lim lim()()2()h h h h f x h f x h f x h f x f x h f x h h h f x h f x f x h f x h h f x f x f x →→→→+--+---⎡⎤=-⎢⎥⎣⎦+---=+-'''=+= 故02().A f x '=25.利用0sin lim1x xx→=或等价无穷小量求下列极限:002000sin (1)lim ;(2)lim cot ;sin 1cos 2(3)lim ;sin arctan 3(5)lim;(6)lim 2sin ;2x x x x x n n x n mxx x nx x x x x xx →→→→→→∞-22102320020041arctan (7)lim ;(8)lim ;arcsin(12)sin arcsin 2tan sin cos cos (9)lim ;(10)lim ;sin 1cos 4(12)lim 2sin t x x x x x x x x x x x x x x x x xx x x αβ→→→→→→-----+ 222200;an ln cos ln(sin e )(13)lim ;(14)lim .ln cos ln(e )2x x x x x ax x x bx x x→→+-+-解:(1)因为当0x →时,sin ~,sin ~,mx mx nx nx 所以00sin limlim .sin x x mx mx mnx nx n→→==00002000limcos cos (2)lim cot lim cos lim 1.sin sin sin lim1cos 22sin sin (3)lim lim 2lim 2.sin sin x x x x x x x x x x x x x x x xx x xx x x x x x x x→→→→→→→→=⋅===-=== (4)因为当0x →时,2221ln(1e sin )~e sin 1~2x x x x x +,所以22200002e sin sin lim lim 2e lim 2.12x x x x x x x x x x x→→→→⎛⎫==⋅= ⎪⎝⎭ (5)因为当0x →时,arctan3~3,x x 所以00arctan 33limlim 3x x x xxx →→==.sinsin 22(6)lim 2sin lim lim .222n n n n n n n n nx xx x x x x x →∞→∞→∞=⋅==(7)因为当12x →时,arcsin(12)~12x x --,所以22111122224141(21)(21)lim lim lim lim(21) 2.arcsin(12)1212x x x x x x x x x x x x →→→→---+===-+=---- (8)因为当0x →时,22arctan ~,sin~,arcsin ~,22x xx x x x 所以 2200arctan lim lim 2sin arcsin 22x x x x xx x x →→==⋅.(9)因为当0x →时,2331sin ~,1cos ~,sin ~2x x x x x x -,所以 233300001tan sin sin (1cos )2lim lim lim sin sin cos cos 11lim .2cos 2x x x x x x x x x x x x xx x x →→→→⋅--==⋅== (10)因为当0x →时,sin~,sin~2222x x x x αβαβαβαβ++--,所以22002222sinsincos cos 22lim lim 222lim1().2x x x x xx xx x x xx αβαβαβαβαββα→→→+---=+--⋅⋅==-(11)因为当0x →时,~)~,x x --所以000 1.x x x →→→==-=-(12)因为当0x →时,sin ~,sin 2~2,x x x x 所以2222200222200201cos 42sin 2lim lim 2sin tan sin (2sec )2(2)8lim lim (2sec )2sec 84.lim(2sec )x x x x x x x x x x x x x x x x x x xx x →→→→→-=++⋅==++==+ (13)因为ln cos ln[1(cos 1)],ln cos ln[1(cos 1)],ax ax bx bx =+-=+- 而当0x →时,cos 10,cos 10ax bx -→-→故 ln[1(cos 1)]~cos 1,ln[1(cos 1)]~cos 1,ax ax bx bx +--+-- 又当x →0进,2222111cos ~,1cos ~,22ax a x bx b x --所以 22220000221ln cos cos 11cos 2lim lim lim lim .1ln cos cos 11cos 2x x x x a xax ax ax a bx bx bx b b x→→→→--====-- (14)因为当0x →时,222sin 0,0e exx x x →→故 222222sin sin ln ~,ln ~,11e ee e x x xx x xx x ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭ 所以22222222200022222000020sin ln 1ln(sin e )ln(sin e )ln e e lim lim lim ln(e )2ln(e )ln e ln 1e sin sin sin e lim lim e lim e lim e e 1 1.x x xx x x x x x x x x x x x x x x xx x x x x x x x xx x x x x →→→→→→→⎛⎫+ ⎪+-+-⎝⎭==+-+-⎛⎫+ ⎪⎝⎭⎛⎫⎛⎫==⋅=⋅ ⎪ ⎪⎝⎭⎝⎭=⋅=26.解:因为221(1)()(1)11x a x a b x b ax b x x +--++---=++ 由已知211lim 21x x ax b x →∞⎛⎫+=-- ⎪+⎝⎭知,分式的分子与分母的次数相同,且x 项的系数之比为12,于是 10a -= 且()112a b -+= 解得 31,2a b ==-.27.用函数极限定义证明:22222102sin 314(1)lim 0; (2)lim 3; (3)lim 4; 42141(4)lim 2; (5)lim sin 0.21x x x x x x x x x x x x x x x →+∞→∞→-→→---===-++-==+证:(1)0ε∀>,要使1sin sin 0x xx x xε=≤<-, 只须1x ε>,取1X ε>,则当x X >时,必有sin 0xxε<-, 故sin lim0x xx→+∞=.(2)0ε∀>,要使22221313313||44x x x x ε-=<<-++,只须x >取X =X x >时,必有223134x x ε-<-+, 故2231lim 34x x x →∞-=+. (3) 0ε∀>,要使24(4)22x x x ε-=<--++, 只要取δε=,则当02x δ<<+时,必有24(4)2x x ε-<--+,故224lim42x x x →--=-+. (4) 0ε∀>,要使21142221221x x x x ε-==<+-++,只须122x ε<+,取2εδ=,则当102x δ<<+时,必有214221x x ε-<-+故21214lim 221x x x →--=+.(5) 0ε∀>,要使11sin0sin x x x x xε=≤<-, 只要取δε=,则当00x δ<<-时,必有1sin 0x xε<-, 故01lim sin0x x x→=.28.根据数列极限的定义证明:21313(1)lim0;(2)lim ;212(3)1;(4)lim 0.999 1.n n n n n n n n →∞→∞→∞→∞-==+== 个证: (1)0ε∀>,要使22110n n ε=<-,只要n >.取N =,则当n>N 时,恒有210nε<-.故21lim 0n n →∞=. (2) 0ε∀>,要使555313,2(21)4212n n n n n ε-=<<<-++只要5n ε>,取5N ε⎡⎤=⎢⎥⎣⎦,则当n>N 时,恒有313212n n ε-<-+.故313lim212n n n →∞-=+. (3) 0ε∀>,要使2221a n ε=<<,只要n >取n =,则当n>N 时,1ε<-,从而lim 1n n →∞=. (4)因为对于所有的正整数n ,有10.99991n <-个,故0ε∀>,不防设1ε<,要使1,0.999110n n ε=<-个只要ln ,ln10n ε->取ln ,ln10N ε-⎡⎤=⎢⎥⎣⎦则当n N >时,恒有,0.9991n ε<-个故lim 0.9991n n →∞=个.29.对下列数列求lim n n a x →∞=,并对给定的ε确定正整数()N ε,使对所有()n N ε>,有nx a ε-<:1π(1)sin ,0.001; (2)0.0001.2n n n x x n εε====解: (1)lim 0n n a x →∞==,0ε∀>,要使11π0sin2n n x n n ε-=<<,只须1n ε>.取1N ε⎡⎤=⎢⎥⎣⎦,则当n N >时,必有0n x ε-<.当0.001ε=时,110000.001N ⎡⎤==⎢⎥⎣⎦或大于1000的整数. (2)lim 0n n a x →∞==,0ε∀>,要使0n x ε-==<=<1ε>即21nε>即可.取21Nε⎡⎤=⎢⎥⎣⎦,则当n N>时,有0nxε-<.当0.0001ε=时, 821100.0001N⎡⎤==⎢⎥⎣⎦或大于108的整数.30.求下列极限问题中,能使用洛必达法则的有().⑴21sinlimsinxxxx→;⑵lim(1)xxkx→+∞+;⑶sinlimsinxx xx x→∞-+;⑷e elim.e ex xx xx--→+∞-+解:⑴∵200111sin2sin coslim limsin cosx xx xx x xx x→→-=不存在,(因1sinx,1cosx为有界函数)又2001sin1lim lim sin0sinx xxx xx x→→==,故不能使用洛必达法则.⑶∵sin1coslim limsin1cosx xx x xx x x→∞→∞--=++不存在,而sin1sinlim lim 1.sinsin1x xxx x xxx xx→∞→∞--==++故不能使用洛必达法则.⑷∵e e e e e elim lim lime e e e e ex x x x x xx x x x x xx x x------→+∞→+∞→+∞-+-==+-+利用洛必达法则无法求得其极限.而22e e1elim lim1e e1ex x xx x xx x----→+∞→+∞--==++.故答案选(2).【参考答案】***试卷处理标记,请不要删除一、解答题2.无3.无4.无5.无6.无7.无8.无9.无10.无11.无12.无13.无14.无15.无16.无17.无18.无19.无20.无21.无23.无24.无25.无26.无27.无28.无29.无30.无。

2019高数一下学期期末考试及答案

2019高数一下学期期末考试及答案

1. (8分)交换二次积分的次序2121310122(,)(,)(,)y y dy f x y dx dy f x y dx dy f x y dx -++⎰⎰⎰⎰⎰⎰.解 1、画出二重积分的积分区域------绘制每个小区域各1分,合计--------- 3分 2、交换二次积分12(,)(,)x Df x y dxdy dx f x y dy +==⎰⎰⎰原式------------------------------------------------------------8分评分说明没有绘图直接写答案至多只能给5分;第2步,交换二次积分,4个上下限,酌情给分2. (6分)求曲面22z x y =+被平面2z =所截部分的面积.解 1、所截部分在坐标面xOy的投影是一个圆盘:222x y +=;------------------------------------------------------------ 1分2、面积元:dS =;------------------------------------------------------------ 3分3、写出面积公式,并计算二重积分()()32202222200114812114268312133DS d rdrd r r d d ππππθθθθπ===+=+==⎰⎰⎰⎰------------------------------------------------------------ 6分3. (6分)求二重积分Drd σ⎰⎰,其中D 是心脏线(1cos )r a θ=+与圆周r a =()0a >所围的不包含原点的区域.解 1、画图;------------------------------------------------------------ 1分 2、确定极坐标下的积分区域(),,(1cos )22D r a r a ππθθθ⎧⎫=-≤≤≤≤+⎨⎬⎩⎭;------------------------------------------------------------ 2分3、计算d rdrd σθ=(1cos )22a aDrd d r rdr πθπσθ+-=⋅⎰⎰⎰⎰------------------------------------------------------------ 3分()()(1cos )3(1cos )(1cos )322222223332322223232031133(1cos )13cos 3cos cos 3323cos 3cos cos 32123131322322+92a a a a aDard d r rdr rd r d a ad d a d a θπππθθππππππππσθθθθθθθθθθθθθππ+++-----=⋅==⎡⎤=+-=++⎣⎦=++⎛⎫=⋅+⋅⋅+⋅ ⎪⎝⎭⎛=⎝⎰⎰⎰⎰⎰⎰⎰⎰⎰3a ⎫ ⎪⎭------------------------------------------------------------ 6分评分说明1、二次积分,前面的容易(1分),后面的复杂(2分)2、第二个定积分的计算,对称性、递推公式2cos n d πθθ⎰,都是给分点4. (10分)设Γ为柱面222x y y += 与平面y z =的交线,从z 轴正向看为顺时针,计算2I y dx xydy xzdz Γ=++⎰.解(方法一) 1、曲线的参数方程:cos 1sin ,:201sin x y z θθθπθ=⎧⎪=+→⎨⎪=+⎩---------xyz θ各1分-----------------------------4分2、将第二型曲线积分化为定积分计算()()()2022221sin sin cos 1sin cos 1sin I y dx xydy xzdzd πθθθθθθθΓ=++⎡⎤=-+++++⎣⎦⎰⎰--------------------------------------6分()()()()()()()()222022022022202220221sin sin 2cos 1sin 1sin 1sin sin 2cos 1sin 2sin 3sin 2sin 4sin3sin 2sin 4sin 3sin 44sin d d d d d d ππππππθθθθθθθθθθθθθθθθθθθθθθπθθ⎡⎤=+-+⎣⎦⎡⎤=++-⎣⎦=+-++=--++=--++=-+⎰⎰⎰⎰⎰⎰-------------------------------------8分220416sin 1416022d ππθθππ=-+=-+⋅⋅=⎰---------------------10分解(方法二) 圆柱体与平面的截面是一个椭圆,该椭圆记为S ,并取椭圆的下侧,法方向方向余弦为 ---------------------1分())cos ,cos ,cos 0,1,1αβγ=-。

2019最新高等数学(上册)期末考试试题(含答案)QG

2019最新高等数学(上册)期末考试试题(含答案)QG

2019最新高等数学期末考试试题(含答案)一、解答题1.一个水槽长12m ,横截面是等边三角形,其边长为2m ,水以3m 3·min -1的速度注入水槽内,当水深0.5m 时,水面高度上升多快?解:当水深为h 时,横截面为212s h == 体积为22212V sh '====d d 2d d V h h t t=⋅ 当h =0.5m 时,31d 3m min d V t-=⋅. 故有d 320.5d h t =⋅, 得d d 4h t = (m 3·min -1).2.利用幂级数的性质,求下列级数的和函数:(1)21n n nx∞+=∑; (2) 22021n n x n +∞=+∑; 解:(1)由()321lim n n n x n x nx ++→∞+=知,当|x |=<1时,原级数收敛,而当|x |=1时,21n n nx ∞+=∑的通项不趋于0,从而发散,故级数的收敛域为(-1,1).记 ()23111n n n n S nx x nx x ∞∞+-====∑∑易知11n n nx ∞-=∑的收敛域为(-1,1),记()111n n S nx x ∞-==∑ 则()1011x n n x S x x x∞===-∑⎰ 于是()()12111x S x x x '⎛⎫== ⎪-⎝⎭-,所以()()()3211x S x x x =<- (2)由2422221lim 23n n n x n x n x++→∞+=⋅+知,原级数当|x |<1时收敛,而当|x |=1时,原级数发散,故原级数的收敛域为(-1,1),记()2221002121n n n n x x S x x n n ++∞∞====++∑∑,易知级数21021n n x n +∞=+∑收敛域为(-1,1),记()211021n n x S x n +∞==+∑,则()212011n n S x x x ∞='==-∑, 故()1011d ln 21xx S x x x +'=-⎰ 即()()1111ln 021x S S x x+-=-,()100S =,所以()()()11ln 121x x S xS x x x x +==<-3.(1)解:112xn n =∞相当于P 级数中P x = 当1P >时112p n n =∞收敛,1P ≤时,112p n n =∞发散. 从而当1x >时,112x n n =∞收敛,1x ≤时,112x n n =∞发散. 从而112xn n =∞的收敛域为(1,)+∞ 从而111(1)2n x n n +=∞-的收敛域为(0,1)(1,)+∞. (2)解:当1x >时,112x n n =∞收敛,则111(1)2n x n n +=∞-收敛. 当0x ≤时,111(1)2n x n n +=∞-发散,(0)n U当01x <<时,111(1)2n x n n+=∞-收敛.(莱布尼兹型级数)4.某企业投资800万元,年利率5%,按连续复利计算,求投资后20年中企业均匀收入率为200万元/年的收入总现值及该投资的投资回收期.解:投资20年中总收入的现值为205%5%2001200800e d (1e )5%400(1e )2528.4 ()t y t --⋅-==-=-=⎰万元 纯收入现值为 R =y -800=2528.4-800=1728.4(万元)收回投资,即为总收入的现值等于投资, 故有。

电大2332《高等数学基础》开放大学期末考试试题2019年7月(含答案)

电大2332《高等数学基础》开放大学期末考试试题2019年7月(含答案)

hm
11.
解:
sm6x lim .
=lim
x
6 6x
6 工-o 6x
6
=lim -•
=—.
. =—
工 -o sm5x
工 -o sin5x X
工 -o 5
sin5x
5x
5 r咒~s5mx5x
5
12. 解:由微分运算法则和微分基本公式得
dy =d(e'in.r +x3) =d(esin.r) +d(x3)
(供参考)
一、单项选择题(每小题 4 分,共 20 分)
2019 年 7 月
1. D
2. B
3. B
4. A
5. A
二、填空题(每小题 4 分,本题共 20 分)
6. —3
7.e
1_2
8.
9. (0, 十=)
10. sinx + c
三、计算题(每小题 11 分,共 44 分)
sin6x
sin6x
sin6x
= - f sin~d~= cos~+ c
... ···11 分
14. 解:由分部积分法得
『 lnxdx =xlnx• -『 xdClnx)
I
I
I
e
=e-f dx=l
I
四、应用题 (16 分)
..... ·11 分
15. 解:设底边的边长为 x, 高为 h' 用材料为 y, 由已知 .r2h=62.5,h= 62. 5
I ~了 dx = arcsinx + c
f 1) x 2 dx = arctanx + c
690
提醒:电大资源网已将该科目2010年到2020年1月的期末试题

2019最新高等数学(上册)期末考试试题(含答案)KV

2019最新高等数学(上册)期末考试试题(含答案)KV

2019最新高等数学期末考试试题(含答案)一、解答题1.证明恒等式:222arctan arcsinπ (1).1x x x x +=≥+ 证明:令22()2arctan arcsin 1x f x x x =++, 22222222(1)22()1(1)22 011x x x f x x x x x +-⋅'=++=-=++ 故()f x C ≡,又因(1)πf =,所以()πf x =,即222arctan arcsin π.1x x x +=+2.将函数()0arctan d xt F t x t=⎰展开成x 的幂级数. 解:由于()210arctan 121n n n t t n +∞==-+∑ 所以()()()()()20002212000arctan d d 121d 112121n xx n n n n x n n n n t t F t t x t n t x t n n ∞=+∞∞====-+==--++∑⎰⎰∑∑⎰(|x |≤1)3.解:1211111R ()()(1)!2(1)!2n n n n n +++=++++=12111111()[1()](1)!222(2)(3)2n n n n n ++++++++ 122111111()[1()](1)!212(1)2n n n n +<++++++ 1111()1(1)!212(1)n n n +=+-+ 11()!(21)2n n n =+从而 111()!(21)2n n R n n +<+4.判定下列级数的敛散性:(1)1n ∞=∑; (2) ()()11111661111165451n n +++++⋅⋅⋅-+; (3) ()23133222213333n n n --+-++-;(4)155n +++++; 解:(1) (11n S n =++++=从而lim n n S →∞=+∞,故级数发散. (2) 1111111115661111165451111551n S n n n ⎛⎫=-+-+-++- ⎪-+⎝⎭⎛⎫=- ⎪+⎝⎭ 从而1lim 5n n S →∞=,故原级数收敛,其和为15. (3)此级数为23q =-的等比级数,且|q |<1,故级数收敛. (4)∵n U =lim 10n n U →∞=≠,故级数发散.5.设某工厂生产某种产品的固定成本为零,生产x (百台)的边际成本为C ′(x )(万元/百台),边际收入为R ′(x )=7-2x (万元/百台).(1) 求生产量为多少时总利润最大?(2) 在总利润最大的基础上再生产100台,总利润减少多少?解:(1) 当C ′(x )=R ′(x )时总利润最大.即2=7-2x ,x=5/2(百台)(2) L ′(x )=R ′(x )-C ′(x )=5-2x .在总利润最大的基础上再多生产100台时,利润的增量为ΔL (x )= 772255222(52)d 51x x x x -=-=-⎰.即此时总利润减少1万元.。

2019最新高等数学(上册)期末考试试题(含答案)BW

2019最新高等数学(上册)期末考试试题(含答案)BW

2019最新高等数学期末考试试题(含答案)一、解答题1.求下列函数的极值:(1) 223y x x =-+;解: 22y x '=-,令0y '=,得驻点1x =.又因20y ''=>,故1x =为极小值点,且极小值为(1)2y =.(2) 3223y x x =-;解: 266y x x '=-,令0y '=,得驻点120,1x x ==, 126y x ''=-,010,0x x y y ==''''<>,故极大值为(0)0y =,极小值为(1)1y =-.(3) 3226187y x x x =--+;解: 2612186(3)(1)y x x x x '=--=-+,令0y '=,得驻点121,3x x =-=. 1212y x ''=-,130,0x x y y =-=''''<>,故极大值为(1)17y -=,极小值为(3)47y =-.(4) ln(1)y x x =-+;解: 1101y x'=-=+,令0y '=,得驻点0x =. 201,0(1)x y y x =''''=>+,故(0)0y =为极大值. (5) 422y x x =-+;解: 32444(1)y x x x x '=-+=-,令0y '=,得驻点1231,0,1x x x =-==. 210124, 0,0,x x y x y y =±=''''''=-+<>故(1)1y ±=为极大值,(0)0y =为极小值.(6) y x =+解: 1y '=-,令0y '=,得驻点13,4x =且在定义域(,1]-∞内有一不可导点21x =,当34x >时, 0y '<;当34x <时, 0y '>,故134x =为极大值点,且极大值为35()44y =. 因为函数定义域为1x ≤,故1x =不是极值点. (7)y =解:y '=,令0y '=,得驻点125x =.当125x >时, 0y '<;当125x <,0y '>,故极大值为12()5y =(8) 223441x x y x x ++=++; 解: 2131x y x x +=+++,22(2)(1)x x y x x -+'=++, 令0y '=,得驻点122,0x x =-=.2223(22)(1)2(21)(2)(1)x x x x x x y x x --+++++''=++ 200,0x x y y =-=''''><,故极大值为(0)4y =,极小值为8(2)3y -=. (9) e cos x y x =;解: e (cos sin )x y x x '=-,令0y '=,得驻点ππ (0,1,2,)4k x k k =+=±±. 2e sin x y x ''=-,ππ2π(21)π440,0x k x k y y =+=++''''<>,故2π2π 4k x k =+为极大值点,其对应的极大值为π2π42()k k y x +=;21π(21)π 4k x k +=++为极小值点,对应的极小值为π(21)π421()e 2k k y x +++=-. (10) 1xy x =;解: 11211ln (ln )x x x y x x x x x-''==, 令0y '=,得驻点e x =. 当e x >时, 0y '<,当e x <时, 0y '>, 故极大值为1e (e)e y =.。

2019最新高等数学(上册)期末考试试题(含答案)OT

2019最新高等数学(上册)期末考试试题(含答案)OT

2019最新高等数学期末考试试题(含答案)一、解答题1.利用泰勒公式求下列极限:⑴ 30sin lim ;x x x x →- ⑵ tan 0e 1lim ;x x x→- (3) 21lim[ln(1)].x x x x →∞-+ 解:⑴ 34sin 0()3!x x x x =-+ 343300[0()]sin 13!lim lim 6x x x x x x x x x x →→--+-∴== ⑵tan 2e 1tan 0(tan )x x x =++tan 200e 11tan 0(tan )1lim lim 1x x x x x x x→→-++-∴== (3) 令1x t=,当x →∞时,0t →, 2222022011111lim[2ln(1)]lim[ln(1)]lim{[()]}21()1lim().22x t t t t x x t t o t x t t t t o t t →∞→∞→→-+=-+=--+=-=2.用比较审敛法判别下列级数的敛散性. (1)()()111465735n n ++++⋅⋅++; (2)22212131112131n n +++++++++++(3)1πsin 3n n ∞=∑; (4) 1n ∞=; (5)()1101n n a a ∞=>+∑; (6) ()1121n n ∞=-∑. 解:(1)∵ ()()21135n U n n n =<++ 而211n n ∞=∑收敛,由比较审敛法知1n n U ∞=∑收敛.(2)∵221111n n n U n n n n++=≥=++而11n n ∞=∑发散,由比较审敛法知,原级数发散. (3)∵ππsinsin 33lim lim ππ1π33n n n n n n →∞→∞=⋅= 而1π3n n ∞=∑收敛,故1πsin 3n n ∞=∑也收敛. (4)∵321n U n=<= 而3121n n ∞=∑收敛,故1n ∞=收敛.(5)当a >1时,111n n nU a a =<+,而11n n a ∞=∑收敛,故111n n a∞=+∑也收敛. 当a =1时,11lim lim 022n n n U →∞→∞==≠,级数发散. 当0<a <1时,1lim lim 101n nn n U a →∞→∞==≠+,级数发散. 综上所述,当a >1时,原级数收敛,当0<a ≤1时,原级数发散. (6)由021lim ln 2x x x →-=知121lim ln 211n x n →∞-=<而11n n ∞=∑发散,由比较审敛法知()1121n n ∞=-∑发散.3.求下列各曲线所围成图形的公共部分的面积: (1) r =a (1+cos θ)及r =2a cos θ;解:由图11知,两曲线围成图形的公共部分为半径为a 的圆,故D =πa 2.(11)(2) r =2cos θ及r 2=3sin2θ.解:如图12,解方程组⎩⎨⎧r =2cos θr 2=3sin2θ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年高等数学基础期末考试复习试题及答案一、单项选择题1-1下列各函数对中,( C )中的两个函数相等. A.2)()(x x f =,x x g =)( B. 2)(x x f =,x x g =)(C.3ln )(xx f =,x x g ln 3)(= D.1)(+=x x f ,11)(2--=x x x g 1-⒉设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f -+的图形关于(C )对称.A. 坐标原点B.x 轴 C. y 轴 D. x y =设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f --的图形关于(D )对称.A.x y = B. x 轴 C. y 轴 D. 坐标原点.函数2e e xx y -=-的图形关于( A )对称.(A) 坐标原点 (B)x 轴 (C) y 轴 (D) x y =1-⒊下列函数中为奇函数是( B ).A.)1ln(2x y += B. x x y cos = C.2xx a a y -+=D.)1ln(x y +=下列函数中为奇函数是(A ). A.x x y -=3 B. x x e e y -+= C. )1ln(+=x y D. x x y sin =下列函数中为偶函数的是( D ).A x x y sin )1(+=B x x y 2=C x x y cos =D )1ln(2x y +=2-1 下列极限存计算不正确的是( D ).A.12lim 22=+∞→x x x B. 0)1ln(lim 0=+→x x C.0sin lim=∞→x x x D. 01sin lim =∞→x x x2-2当0→x 时,变量( C )是无穷小量.A. xxsin B. x 1 C. x x 1sin D. 2)ln(+x当0→x 时,变量( C )是无穷小量.A x 1 B x x sin C 1e -xD 2xx.当0→x 时,变量(D )是无穷小量.A x 1 B xx sin C x2 D )1ln(+x下列变量中,是无穷小量的为( B )A ()1sin 0x x →B ()()ln 10x x +→C ()1x e x →∞ D.()2224x x x -→-3-1设)(x f 在点x=1处可导,则=--→hf h f h )1()21(lim( D ).A.)1(f ' B. )1(f '- C. )1(2f ' D. )1(2f '-设)(x f 在0x 可导,则=--→hx f h x f h )()2(lim000( D ). A)(0x f ' B )(20x f ' C )(0x f '- D )(20x f '-设)(x f 在0x 可导,则=--→hx f h x f h 2)()2(lim000( D ). A.)(20x f '- B. )(0x f ' C. )(20x f ' D. )(0x f '-设x x f e )(=,则=∆-∆+→∆x f x f x )1()1(lim( A ) A e B. e 2 C. e 21 D. e 413-2. 下列等式不成立的是(D ). A.x xde dx e= B )(cos sin x d xdx =- C.x d dx x=21D.)1(ln x d xdx =下列等式中正确的是(B ).A.xdx x d arctan )11(2=+ B. 2)1(xdxx d -= C.dx d x x2)2ln 2(= D.xdx x d cot )(tan =4-1函数14)(2-+=x x x f 的单调增加区间是( D ).A. )2,(-∞B. )1,1(-C. ),2(∞+D. ),2(∞+-函数542-+=x x y 在区间)6,6(-内满足(A ).A. 先单调下降再单调上升B. 单调下降C. 先单调上升再单调下降D. 单调上升 .函数62--=x x y 在区间(-5,5)内满足( A )A 先单调下降再单调上升B 单调下降C 先单调上升再单调下降D 单调上升. 函数622+-=x x y 在区间)5,2(内满足(D ).A. 先单调下降再单调上升B. 单调下降C. 先单调上升再单调下降D. 单调上升5-1若)(x f 的一个原函数是x1,则=')(x f (D ). A. x ln B.21x -C.x 1 D. 32x.若)(x F 是 )(x f 的一个原函数,则下列等式成立的是( A )。

A )()()(a F x F dx x f xa-=⎰B)()()(a f b f dx x F ba-=⎰C )()(x F x f ='D )()()(a F b F dx x f ba-='⎰5-2若x x f cos )(=,则='⎰x x f d )(( B ).A.c x +sin B. c x +cos C. c x +-sin D. c x +-cos下列等式成立的是(D ).A.)(d )(x f x x f ='⎰ B. )()(d x f x f =⎰C.)(d )(d x f x x f =⎰ D.)(d )(d dx f x x f x =⎰=⎰x x f x x d )(d d 32( B ). A. )(3x f B. )(32x f x C. )(31x f D. )(313x f =⎰x x xf x d )(d d 2( D ) A )(2x xf B x x f d )(21 C )(21x f D x x xf d )(2 ⒌-3若⎰+=c x F x x f )(d )(,则⎰=x x f xd )(1( B ).A.c x F +)( B. c x F +)(2 C. c x F +)2( D. c x F x+)(1补充:⎰=--x e f e x x d )( c e F x+--)(, 无穷积分收敛的是dx x ⎰+∞121 函数x x x f -+=1010)(的图形关于 y 轴 对称。

二、填空题⒈函数)1ln(39)(2x x x x f ++--=的定义域是 (3,+∞) .函数x x xy -+-=4)2ln(的定义域是 (2,3) ∪ (3,4 ]函数xx x f --+=21)5ln()(的定义域是 (-5,2)若函数⎩⎨⎧>≤+=0,20,1)(2x x x x f x,则=)0(f 1 . 2若函数⎪⎩⎪⎨⎧≥+<+=0,0,)1()(1x k x x x x f x ,在0=x 处连续,则=ke ..函数⎪⎩⎪⎨⎧=≠=002sin )(x kx xx x f 在0=x 处连续,则=k 2函数⎩⎨⎧≤>+=0,sin 0,1x x x x y 的间断点是 x=0 .函数3322---=x x x y 的间断点是 x=3 。

函数xe y -=11的间断点是 x=03-⒈曲线1)(+=x x f 在)2,1(处的切线斜率是1/2 .曲线2)(+=x x f 在)2,2(处的切线斜率是 1/4 .曲线1)(+=x e x f 在(0,2)处的切线斜率是 1 . .曲线1)(3+=x x f 在)2,1(处的切线斜率是 3 .3-2 曲线x x f sin )(=在)1,2π(处的切线方程是y = 1 .切线斜率是 0曲线y = sinx 在点 (0,0)处的切线方程为 y = x 切线斜率是 14.函数)1ln(2x y +=的单调减少区间是 (-∞,0 ) .函数2e )(xx f =的单调增加区间是 (0,+∞) ..函数1)1(2++=x y 的单调减少区间是 (-∞,-1 ) . .函数1)(2+=x x f 的单调增加区间是 (0,+∞) .函数2x ey -=的单调减少区间是 (0,+∞) .5-1=⎰-x x d ed2dx e x 2-. .=⎰x x dxd d sin 22sin x . ='⎰x x d )(tan tan x +C .若⎰+=c x x x f 3sin d )(,则=')(x f -9 sin 3x .5-2⎰-=+335d )21(sin x x 3 . =+⎰-11231dx x x 0 . =+⎰edx x dx d 1)1ln( 0 下列积分计算正确的是( B ).A0d )(11=+⎰--x e e xx B 0d )(11=-⎰--x e e xx C 0d 112=⎰-x x D0d ||11=⎰-x x三、计算题(一)、计算极限(1小题,11分)(1)利用极限的四则运算法则,主要是因式分解,消去零因子。

(2)利用连续函数性质:)(0x f 有定义,则极限)()(lim 00x f x f x x =→类型1: 利用重要极限计算1-1求x x x 5sin 6sin lim 0→. 解: 565sin 6sin lim 5sin 6sin lim 00=⋅=→→xx x xx x x x 1-2 求 0tan lim3x x x → 解: =→x x x 3tan lim031131tan lim 310=⨯=→x x x 1-3 求x x x 3tan lim 0→ 解:x x 3tan lim 0→=3313.3tan lim0=⨯=→xx 类型2: 因式分解并利用重要极限 化简计算。

2-1求)1sin(1lim 21+--→x x x . 解: )1sin(1lim 21+--→x x x =2)11(1)1.()1sin()1(lim1-=--⨯=-++-→x x x x2-2()21sin 1lim1x x x →-- 解: 211111)1(1.)1()1sin(lim 1)1sin(lim 121=+⨯=+--=--→→x x x x x x x 2-3)3sin(34lim 23-+-→x x x x 解: 2)1(lim )3sin()1)(3(lim )3sin(34lim3323=-=---=-+-→→→x x x x x x x x x x 类型3:因式分解并消去零因子,再计算极限 3-14586lim 224+-+-→x x x x x 解: 4586lim 224+-+-→x x x x x ==----→)1)(4()2)(4(lim 4x x x x x 3212lim 4=--→x x x 3-2 2236lim 12x x x x x →-+--- ()()()()2233332625lim limlim 123447x x x x x x x x x x x x x →-→-→-+-+--===--+-- 3-3423lim 222-+-→x x x x 解 4121lim )2)(2()1)(2(lim 423lim 22222=+-=+---=-+-→→→x x x x x x x x x x x x 其他:0sin 21lim sin 11lim 2020==-+→→x xx x x x , 221sin lim 11sin lim00==-+→→xx x x x =--++∞→5456lim 22x x x x x 1lim 22=∞→x x x , =--+∞→54362lim 22x x x x x 3232lim 22=∞→x x x(0807考题)计算x x x 4sin 8tan lim 0→. 解: x xx 4sin 8tan lim 0→=248.4sin 8tan lim0==→xx x xx (0801考题. )计算x x x 2sin lim0→. 解 =→x x x 2sin lim 021sin lim 210=→x x x(0707考题.))1sin(32lim 21+---→x x x x =4)31(1)1sin()3).(1(lim1-=--⨯=+-+-→x x x x (二) 求函数的导数和微分(1小题,11分)(1)利用导数的四则运算法则v u v u '±'='±)( v u v u uv '+'=')((2)利用导数基本公式和复合函数求导公式xx 1)(ln =' 1)(-='a a ax x xx e e =')( u e e u u '='.)(xx x x x x 22sec )(tan sin )(cos cos )(sin '='-='='类型1 1-1x x x y e )3(+=解:y '=()332233x xx e x e '⎛⎫⎛⎫'+++ ⎪ ⎪⎝⎭⎝⎭1322332x x x e x e ⎛⎫=++ ⎪⎝⎭1322332x x x e ⎛⎫=++ ⎪⎝⎭1-2x x x y ln cot 2+=解:x x x x x x x x x x x x y ++-='+'+-='+'='ln 2csc )(ln ln )(csc )ln ()(cot 22222 1-3 设x x e y x ln tan -=,求y '.解:xx e x ex e x e x x e y x x x x x 1sec tan 1)(tan tan )()(ln )tan (2-+=-'+'='-'=' 类型22-1 x x y ln sin 2+=,求y ' 解:xx x x x y 1cos 2)(ln )(sin 22+='+'=' 2-2 2sin e cos x y x -=,求'y解:2222cos 2e sin e ).(cos ).(sin )(sin )(cos x x x x e e x e y x x x x x --='-'-='-'='2-3x e x y 55ln -+=,求'y , 解:x x x xe x y 5455e 5ln 5).()(ln ---='+'=' 类型3: x e y x cos 2=,求y ' 。

相关文档
最新文档