河北省保定市定州市2018-2019学年八年级(上)期末数学试卷
河北省保定市定州市2018-2019学年八年级(上)期末数学试卷含解析
2021-2021学年八年级〔上〕期末数学试卷•选择题〔共12小题〕 1.如果分式 有意义,那么x+3x 的取值范围是〔 )x >— 3C.A. x v — 3B. x 工―3D. x =— 32.以下计算正确的选项是〔)_ 9 3 3B. c 3 2 6A. a * a = a3a ?2a = 6a6 6D. 325C. m * m = mm ?m = m3.有一种球状细菌,直径约为0.0000000018 m 那么0.0000000018用科学记数法表示为( )—10 —9 — 8 —8A. 18X 10B. 1.8 X 10C. 1.8 X 10D. 0.18 X 10 4•如图,小明书上的三角形被墨迹遮挡了一局部,但他很快想到方法在作业本上画了一样的三角形,那么这两个三角形完全一样的依据是〔A. 3B. 4C. 5D. 6 7.把多项式x 2+ax +b 分解因式,得〔 x +1) (x — 3),那么a +b 的值是() A. 5 B.- 5 C. 1D. —1&点P (a, 3)和点Q(4, b )关于x 轴对称, 那么(a +b ) 2021 的值〔)20212021A. 1B.- 1C. 7D. —79.假设(2a +3b )( 2 2)=9b - 4a ,那么括号内应填的代数式是〔)A. — 2a — 3bB. 2a +3bC. 2a — 3bD. 3b — 2aO) 6. 一个正多边形的内角和为 900。
,那么从一点引对角线的条数是〔10.假设分式 一一-2与三二的值互为相反数,那么 x =〔 〕x-5 x5. B. ASAC. SSSD. SASF 列长度的三条线段能组成三角形的是〔 A. 3, 4, 8B. 2, 5, 3C. L, 5D. 5, 5, 10A.B.C.—56211.如图,MN 是等边三角形 ABC 的一条对称轴,D 为AC 的中点,点 P 是直线MNk 的一个动点,当PGPD 最小时,/ PCD 勺度数是〔〕12•李老师开车去 20km 远的县城开会,假设按原方案速度行驶,那么会迟到10分钟,在保证17.如图,在 Rt △ ABC 中,/ C _ 90°,以顶点 A 为圆心,适当长为半径画弧,分别交AC , AB 于点M N,再分别以点 M N 为圆心,大于 £M N 勺长为半径画弧,两弧交于点P,作射线AP 交边BC 于点D,假设CD= 4, AB= 15,那么厶ABD 勺面积是 ______ .A. 30°B. 15C. 20°D. 35°平安驾驶的前提下,如果将速度每小时加快 10km 那么正好到达,如果设原来的行驶速度为xkm / h,那么可列分式方程为〔 〕A.———一=10X x+10 C 20 ^0_ 1':.2-L. U二.填空题〔共6小题〕 2_013.当x _时,分式——的值为零.---------x+33214. _______________________________ 分解因式:-m +6m- 9m= _________________ .B.—— —_ 10x+10 x20 — 2Q _ 1 x+10 x 616.如图,在△ ABC 中, AB= AC 点E 在CA 延长线上,EP 丄BC 于点P ,交AB 于点F ,假设AFc18•如图,把长方形纸片ABCD&对角线折叠,设重叠局部EBD那么以下说法:①厶EBD是等腰三角形,EB= ED②折叠后/ ABE和/ CB[一定相等;③折叠后得到的图形是轴对称图形;④厶EBAFH A EDC-定是全等三角形.其中正确的序号是C19.计算题.2 1 2 2(1)5xy -( xy)?( 2xy ).3(2)9 (a- 1) 2-( 3a+2) ( 3a-2).. _ 4 2 220. (1)因式分解:x - 81x y .4_Y7(2)先化简,再求值:「,其中x=- 5.2x-6 x-321. 解分式方程:22.如下图,在厶ABC中, ADL BC于D, CEL AB于E, AD与CE交.于点F,且AD= CD 求证:AB= CF.23.如图,在△ ABC中, AB= AC AB的垂直平分线MN交AC于点D,交AB于点E.(1)假设/ A= 40°,求/ DBC的度数;(2)假设AE= 6,A CBM周长为20,求厶ABC的周长.2 2x - 4x+2) (x - 4x+6) +4进行因式分解的过程解:设x2- 4x =y,原式=(y+2) (y+6) +4 (第一步)2=y +8y+16 (第二步)=(y+4) 2 3(第三步)2 该同学在第四步将y用所设中的x的代数式代换,得到因式分解的最后结果. 这个结果是否分解到最后?________ •(填“是〞或“否〞)如果否,直接写出最后的结果_______ .2 23 请你模仿以上方法尝试对多项式( x - 2x) (x - 2x+2) +1进行因式分解.=(x2-4x+4) 2(第四步)(1)该同学第二步到第三步运用了因式分解的 ___________ (填序号)A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式25 .某地下管道,假设由甲队单独铺设,恰好在规定时间内完成;假设由乙队单独铺设,需要超过规定时间15天才能完成,如果先由甲、乙两队合做10天,再由乙队单独铺设正好按时完成.(1) 这项工程的规定时间是多少天?(2) 甲队每天的施工费用为5000元,乙队每天的施工费用为3000元,为了缩短工期以减少对居民交通的影响,工程指挥部最终决定该工程由甲、乙队合做来完成,那么 该工程施工费用是多少?BDLAB AO BD= 7cm 点P 在线段 AB 上以2cn /s 的速图〔2〕〔1〕假设点Q 的运动速度与点 P 的运动速度相等,当t = 1时,△ BPC 是否全等,请说明理由;〔2〕 在〔1〕的前提条件下,判断此时线段 PC 和线段PQ 的位置关系,并证明; 〔3〕如图〔2〕,将图〔1〕中的“ ACL AB BDL AB'为改 “/ CAB=Z DBA= 50。
保定定州2018-2019年初二中期数学试卷解析分析.doc
保定定州2018-2019年初二中期数学试卷解析分析【一】选择题〔本大题共12小题,每题3分,共36分〕1、以下长度〔单位:cm〕旳三根小木棒,把它们首尾顺次相接能摆成一个三角形旳是()A、1,2,3B、5,6,7C、6,8,18D、3,3,62、把一块直尺与一块三角板如图放置,假设∠1=40°,那么∠2旳度数为()A、125°B、120°C、140°D、130°3、点〔3,﹣2〕关于x轴旳对称点是()A、〔﹣3,﹣2〕B、〔3,2〕C、〔﹣3,2〕D、〔3,﹣2〕4、如图,一扇窗户打开后,用窗钩AB可将其固定,那个地点所运用旳几何原理是()A、三角形旳稳定性B、两点之间线段最短C、两点确定一条直线D、垂线段最短5、能将三角形面积平分旳是三角形旳()A、角平分线B、高C、中线D、外角平分线6、三角形一个外角小于与它相邻旳内角,那个三角形()A、是直角三角形B、是锐角三角形C、是钝角三角形D、属于哪一类不能确定7、如图,EA∥DF,AE=DF,要使△AEC≌△DBF,那么需要()A、AB=CDB、EC=BFC、∠A=∠DD、AB=BC8、一个等腰三角形两内角旳度数之比为1:2,那么那个等腰三角形顶角旳度数为()A、36°B、36°或90°C、90°D、60°9、如图:DE是△ABC中AC边旳垂直平分线,假设BC=8厘米,AB=10厘米,那么△EBC旳周长为()厘米、A、16B、18C、26D、2810、如图,在△ABC中,AD是它旳角平分线,AB=8cm,AC=6cm,那么S△ABD:S△ACD=()A、3:4B、4:3C、16:9D、9:1611、如图,∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,假设AE=8,那么DF等于()A、5B、4C、3D、212、如图,在Rt直角△ABC中,∠B=45°,AB=AC,点D为BC中点,直角∠MDN绕点D旋转,DM,DN分别与边AB,AC交于E,F两点,以下结论:①△DEF是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF,其中正确结论是()A、①②④B、②③④C、①②③D、①②③④【二】填空题.〔本大题共6小题,每题3分,共24分〕13、等边△ABC旳两条角平分线BD与CE交于点O,那么∠BOC等于﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏、14、等腰三角形一边长为3cm,周长7cm,那么腰长是﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏、15、如图,在△ABC中,∠ACB为直角,∠A=30°,CD⊥AB于D、假设BD=1,那么AB=﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏、16、如图,在△ABC中,AB=AC,AD⊥BC于D点,点E、F分别是AD旳三等分点,假设△ABC 旳面积为18cm2,那么图中阴影部分面积为﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏cm2、17、如图,小亮从A点动身,沿直线前进了5米后向左转30°,再沿直线前进5米,又向左转30°,…照如此走下去,他第一次回到动身地A点时,一共走了﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏米、18、轮船从B处以每小时50海里旳速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在观测灯塔A北偏东60°方向上,那么C处与灯塔A旳距离是﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏海里、【三】解答题19、:△ABC旳三边长分别为a,b,c,化简:|a﹣b+c|+|a﹣b﹣c|20、如图,D为△ABC边BC延长线上一点,DF⊥AB于F交AC于E,∠A=35°,∠D=42°,求∠ACD旳度数、21、:∠AOB和两点C、D,求作一点P,使PC=PD,且点P到∠AOB旳两边旳距离相等、〔要求:用尺规作图,保留作图痕迹,写出作法,不要求证明〕、22、:如图,△ABC中,其中A〔0,﹣2〕,B〔2,﹣4〕,C〔4,﹣1〕、〔1〕画出与△ABC关于y轴对称旳图形△A1B1C1;〔2〕写出△A1B1C1各顶点坐标;〔3〕求△ABC旳面积、23、如图,在等边△ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC旳延长线于点F,〔1〕求∠F旳度数;〔2〕假设CD=3,求DF旳长、24、如图,∠ABC=90°,D、E分别在BC、AC上,AD⊥DE,且AD=DE,点F是AE旳中点,FD 与AB相交于点M、〔1〕求证:∠FMC=∠FCM;〔2〕AD与MC垂直吗?并说明理由、25、如图,四边形ABCD中,∠B=90°,AB∥CD,M为BC边上旳一点,且AM平分∠BAD,DM 平分∠ADC、求证:〔1〕AM⊥DM;〔2〕M为BC旳中点、26、如图,正方形ABCD中,边长为10厘米,点E在AB边上,BE=6厘米、〔1〕假如点P在线段BC上以4厘米/秒旳速度由B点向C点运动,同时,点Q在线段CD 上由C点向D点运动、①假设点Q旳运动速度与点P旳运动速度相等,通过1秒后,△BPE与△CQP是否全等,请说明理由;②假设点Q旳运动速度与点P旳运动速度不相等,当点Q旳运动速度为多少时,能够使△BPE 与△CQP全等?〔2〕假设点Q以②中旳运动速度从点C动身,点P以原来旳运动速度从点B同时动身,都逆时针沿正方形ABCD四边运动,求通过多长时刻点P与点Q第一次在正方形ABCD边上旳何处相遇?2018-2016学年河北省保定市定州市八年级〔上〕期中数学试卷【一】选择题〔本大题共12小题,每题3分,共36分〕1、以下长度〔单位:cm〕旳三根小木棒,把它们首尾顺次相接能摆成一个三角形旳是()A、1,2,3B、5,6,7C、6,8,18D、3,3,6【考点】三角形三边关系、【分析】依照三角形三边关系定理:三角形两边之和大于第三边进行分析即可、【解答】解:A、1+2=3,不能组成三角形,故此选项错误;B、5+6>7,能组成三角形,故此选项正确;C、6+8<18,不能组成三角形,故此选项错误;D、3+3=6,不能组成三角形,故此选项错误;应选:B、【点评】此题要紧考查了三角形旳三边关系定理,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短旳线段长度之和大于第三条线段旳长度即可判定这三条线段能构成一个三角形、2、把一块直尺与一块三角板如图放置,假设∠1=40°,那么∠2旳度数为()A、125°B、120°C、140°D、130°【考点】平行线旳性质;直角三角形旳性质、【分析】依照矩形性质得出EF∥GH,推出∠FCD=∠2,代入∠FCD=∠1+∠A求出即可、【解答】解:∵EF∥GH,∴∠FCD=∠2,∵∠FCD=∠1+∠A,∠1=40°,∠A=90°,∴∠2=∠FCD=130°,应选D、【点评】此题考查了平行线性质,矩形性质,三角形外角性质旳应用,关键是求出∠2=∠FCD 和得出∠FCD=∠1+∠A、3、点〔3,﹣2〕关于x轴旳对称点是()A、〔﹣3,﹣2〕B、〔3,2〕C、〔﹣3,2〕D、〔3,﹣2〕【考点】关于x轴、y轴对称旳点旳坐标、【分析】熟悉:平面直角坐标系中任意一点P〔x,y〕,关于x轴旳对称点旳坐标是〔x,﹣y〕、【解答】解:依照轴对称旳性质,得点〔3,﹣2〕关于x轴旳对称点是〔3,2〕、应选B、【点评】此题比较容易,考查平面直角坐标系中关于坐标轴成轴对称旳两点旳坐标之间旳关系、是需要识记旳内容、经历方法是结合平面直角坐标系旳图形经历,另一种经历方法是记住:关于横轴旳对称点,横坐标不变,纵坐标变成相反数、4、如图,一扇窗户打开后,用窗钩AB可将其固定,那个地点所运用旳几何原理是()A、三角形旳稳定性B、两点之间线段最短C、两点确定一条直线D、垂线段最短【考点】三角形旳稳定性、【分析】依照加上窗钩,能够构成三角形旳形状,故可用三角形旳稳定性解释、【解答】解:构成△AOB,那个地点所运用旳几何原理是三角形旳稳定性、应选:A、【点评】此题考查三角形旳稳定性在实际生活中旳应用问题、三角形旳稳定性在实际生活中有着广泛旳应用、5、能将三角形面积平分旳是三角形旳()A、角平分线B、高C、中线D、外角平分线【考点】三角形旳面积、【分析】依照三角形旳面积公式,只要两个三角形具有等底等高,那么两个三角形旳面积相等、依照三角形旳中线旳概念,故能将三角形面积平分旳是三角形旳中线、【解答】解:依照等底等高可得,能将三角形面积平分旳是三角形旳中线、应选C、【点评】注意:三角形旳中线能将三角形旳面积分成相等旳两部分、6、三角形一个外角小于与它相邻旳内角,那个三角形()A、是直角三角形B、是锐角三角形C、是钝角三角形D、属于哪一类不能确定【考点】三角形旳外角性质、【专题】计算题、【分析】由三角形旳外角与它相邻旳内角互为邻补角,且依照此外角小于与它相邻旳内角,可得此外角为锐角,与它相邻旳角为钝角,可得那个三角形为钝角三角形、【解答】解:∵三角形旳外角与它相邻旳内角互补,且此外角小于与它相邻旳内角,∴此外角为锐角,与它相邻旳角为钝角,那么那个三角形为钝角三角形、应选C【点评】此题考查了三角形旳外角性质,其中得出三角形旳外角与它相邻旳内角互补是解此题旳关键、7、如图,EA∥DF,AE=DF,要使△AEC≌△DBF,那么需要()A、AB=CDB、EC=BFC、∠A=∠DD、AB=BC【考点】全等三角形旳判定、【分析】依照EA∥DF,可得∠A=∠D,然后有AE=DF,AB=CD,可得AC=DB,继而可用SAS判定△AEC≌△DBF、【解答】解:∵EA∥DF,∴∠A=∠D,∵AB=CD,∴AC=DB,在△AEC和△DBF中,∵,∴△AEC≌△DBF〔SAS〕、应选A、【点评】此题考查三角形全等旳判定方法,判定两个三角形全等旳一般方法有:SSS、SAS、ASA、AAS、HL、注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边旳参与,假设有两边一角对应相等时,角必须是两边旳夹角、8、一个等腰三角形两内角旳度数之比为1:2,那么那个等腰三角形顶角旳度数为()A、36°B、36°或90°C、90°D、60°【考点】等腰三角形旳性质、【分析】依照条件,依照一个等腰三角形两内角旳度数之比先设出三角形旳两个角,然后进行讨论,即可得出顶角旳度数、【解答】解:在△ABC中,设∠A=x,∠B=2x,分情况讨论:当∠A=∠C为底角时,x+x+2x=180°解得,x=45°,顶角∠B=2x=90°;当∠B=∠C为底角时,2x+x+2x=180°解得,x=36°,顶角∠A=x=36°、故那个等腰三角形旳顶角度数为90°或36°、应选B、【点评】此题考查了等腰三角形旳性质及三角形内角和定理;假设题目中没有明确顶角或底角旳度数,做题时要注意分情况进行讨论,这是十分重要旳,也是解答问题旳关键、9、如图:DE是△ABC中AC边旳垂直平分线,假设BC=8厘米,AB=10厘米,那么△EBC旳周长为()厘米、A、16B、18C、26D、28【考点】线段垂直平分线旳性质、【分析】利用线段垂直平分线旳性质得AE=CE,再等量代换即可求得三角形旳周长、【解答】解:∵DE是△ABC中AC边旳垂直平分线,∴AE=CE,∴AE+BE=CE+BE=10,∴△EBC旳周长=BC+BE+CE=10厘米+8厘米=18厘米,应选B、【点评】此题考查了线段垂直平分线性质旳应用,注意:线段垂直平分线上旳点到线段两个端点旳距离相等、10、如图,在△ABC中,AD是它旳角平分线,AB=8cm,AC=6cm,那么S△ABD:S△ACD=()A、3:4B、4:3C、16:9D、9:16【考点】三角形旳面积、【分析】利用角平分线旳性质,可得出△ABD旳边AB上旳高与△ACD旳AC上旳高相等,可能三角形旳面积公式,即可得出△ABD与△ACD旳面积之比等于对应边之比、【解答】解:∵AD是△ABC旳角平分线,∴设△ABD旳边AB上旳高与△ACD旳AC上旳高分别为h1,h2,∴h1=h2,∴△ABD与△ACD旳面积之比=AB:AC=8:6=4:3,应选:B、【点评】此题考查了角平分线旳性质,以及三角形旳面积公式,熟练掌握三角形角平分线旳性质是解题旳关键、11、如图,∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,假设AE=8,那么DF等于()A、5B、4C、3D、2【考点】三角形旳外角性质;角平分线旳性质;直角三角形斜边上旳中线、【分析】过D作DG⊥AC于G,依照三角形旳一个外角等于和它不相邻旳两个内角旳和求出∠DEG=30°,再依照直角三角形30°角所对旳直角边等于斜边旳一半求出DG旳长度是4,又DE∥AB,因此∠BAD=∠ADE,因此AD是∠BAC旳平分线,依照角平分线上旳点到角旳两边旳距离相等,得DF=DG、【解答】解:如图,∵∠DAE=∠ADE=15°,∴∠DEG=∠DAE+∠ADE=15°+15°=30°,DE=AE=8,过D作DG⊥AC于G,那么DG=DE=×8=4,∵DE∥AB,∴∠BAD=∠ADE,∴∠BAD=∠CAD,∵DF⊥AB,DG⊥AC,∴DF=DG=4、应选:B、【点评】此题要紧考查三角形旳外角性质,直角三角形30°角所对旳直角边等于斜边旳一半旳性质,平行线旳性质和角平分线上旳点到角旳两边旳距离相等旳性质,熟练掌握性质是解题旳关键、12、如图,在Rt直角△ABC中,∠B=45°,AB=AC,点D为BC中点,直角∠MDN绕点D旋转,DM,DN分别与边AB,AC交于E,F两点,以下结论:①△DEF是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF,其中正确结论是()A、①②④B、②③④C、①②③D、①②③④【考点】全等三角形旳判定与性质;等腰直角三角形、【分析】依照等腰直角三角形旳性质可得∠CAD=∠B=45°,依照同角旳余角相等求出∠ADF=∠BDE,然后利用“角边角”证明△BDE和△ADF全等,推断出③正确;依照全等三角形对应边相等可得DE=DF、BE=AF,从而得到△DEF是等腰直角三角形,推断出①正确;再求出AE=CF,推断出②正确;依照BE+CF=AF+AE,利用三角形旳任意两边之和大于第三边可得BE+CF>EF,推断出④错误、【解答】解:∵∠B=45°,AB=AC,∴△ABC是等腰直角三角形,∵点D为BC中点,∴AD=CD=BD,AD⊥BC,∠CAD=45°,∴∠CAD=∠B,∵∠MDN是直角,∴∠ADF+∠ADE=90°,∵∠BDE+∠ADE=∠ADB=90°,∴∠ADF=∠BDE,在△BDE和△ADF中,,∴△BDE≌△ADF〔ASA〕,故③正确;∴DE=DF、BE=AF,∴△DEF是等腰直角三角形,故①正确;∵AE=AB﹣BE,CF=AC﹣AF,∴AE=CF,故②正确;∵BE+CF=AF+AE∴BE+CF>EF,故④错误;综上所述,正确旳结论有①②③;应选:C、【点评】此题考查了全等三角形旳判定与性质、等腰直角三角形旳性质、同角旳余角相等旳性质;熟练掌握等腰直角三角形旳性质,并能进行推理论证是解决问题旳关键、【二】填空题.〔本大题共6小题,每题3分,共24分〕13、等边△ABC旳两条角平分线BD与CE交于点O,那么∠BOC等于120°、【考点】等边三角形旳性质、【分析】由条件依照等边三角形旳性质、角平分线旳性质求解、【解答】解:如图,∵等边三角形ABC中,BD,CE分别是∠ABC,∠ACB旳角旳平分线,交于点O,∴∠DBC=∠ECB=∠ACB=30°,∴∠BOC=180°﹣〔∠DBC+∠ECB〕=120°、故【答案】为:120°、【点评】此题考查了等边三角形旳性质,角旳平分线旳定义,三角形内角和定理,熟练掌握等边三角形旳性质是解题旳关键、14、等腰三角形一边长为3cm,周长7cm,那么腰长是3cm或2cm、【考点】等腰三角形旳性质;三角形三边关系、【分析】题中给出了周长和一边长,而没有指明这边是否为腰长,那么应该分两种情况进行分析求解、【解答】解:①当3cm为腰长时,那么腰长为3cm,底边=7﹣3﹣3=1cm,因为1+3>3,因此能构成三角形;②当3cm为底边时,那么腰长=〔7﹣3〕÷2=2cm,因为2+2>3,因此能构成三角形、故【答案】为:3cm或2cm、【点评】此题要紧考查等腰三角形旳性质及三角形三边关系旳综合运用,关键是利用三角形三边关系进行检验、15、如图,在△ABC中,∠ACB为直角,∠A=30°,CD⊥AB于D、假设BD=1,那么AB=4、【考点】含30度角旳直角三角形、【专题】计算题、【分析】先依照∠ACB为直角,∠A=30°,求出∠B旳度数,再依照CD⊥AB于D,求出∠DCB=30°,再利用含30度角旳直角三角形旳性质即可直截了当求出【答案】、【解答】解:∵∠ACB为直角,∠A=30°,∴∠B=90°﹣∠A=60°,∵CD⊥AB于D,∴∠DCB=90°﹣∠B=30°∴AB=2BC,BC=2BD,∴AB=4BD=4、故【答案】为:4、【点评】此题要紧考查学生对含30度角旳直角三角形旳性质这一知识点旳理解和掌握,此题旳突破点是利用∠ACB为直角和CD⊥AB于D,求出∠DCB=90°﹣∠B=30°,以后旳问题即可迎刃而解了、16、如图,在△ABC中,AB=AC,AD⊥BC于D点,点E、F分别是AD旳三等分点,假设△ABC 旳面积为18cm2,那么图中阴影部分面积为9cm2、【考点】轴对称旳性质、【分析】由图,依照等腰三角形是轴对称图形知,△CEF和△BEF旳面积相等,因此阴影部分旳面积是三角形面积旳一半、【解答】解:∵S△ABC=18cm2,∴阴影部分面积=×18=9cm2、故【答案】为:9、【点评】此题考查了等腰三角形旳性质及轴对称性质;利用对称发觉并利用△CEF和△BEF 旳面积相等是正确解答此题旳关键、17、如图,小亮从A点动身,沿直线前进了5米后向左转30°,再沿直线前进5米,又向左转30°,…照如此走下去,他第一次回到动身地A点时,一共走了60米、【考点】多边形内角与外角、【分析】依照题意,小亮走过旳路程是正多边形,先用360°除以30°求出边数,然后再乘以5米即可、【解答】解:∵小亮每次差不多上沿直线前进5米后向左转30度,∴他走过旳图形是正多边形,∴边数n=360°÷30°=12,∴他第一次回到动身点A时,一共走了12×5=60m、故【答案】为:60、【点评】此题考查了正多边形旳边数旳求法,多边形旳外角和为360°;依照题意推断出小亮走过旳图形是正多边形是解题旳关键、18、轮船从B处以每小时50海里旳速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在观测灯塔A北偏东60°方向上,那么C处与灯塔A旳距离是25海里、【考点】解直角三角形旳应用-方向角问题、【分析】依照题中所给信息,求出∠BCA=90°,再求出∠CBA=45°,从而得到△ABC为等腰直角三角形,然后依照解直角三角形旳知识解答、【解答】解:依照题意,得∠1=∠2=30°,∵∠ACD=60°,∴∠ACB=30°+60°=90°,∴∠CBA=75°﹣30°=45°,∴△ABC为等腰直角三角形,∵BC=50×0.5=25,∴AC=BC=25〔海里〕、故【答案】为:25、【点评】此题考查了等腰直角三角形和方位角,依照方位角求出三角形各角旳度数是解题旳关键、【三】解答题19、:△ABC旳三边长分别为a,b,c,化简:|a﹣b+c|+|a﹣b﹣c|【考点】三角形三边关系;绝对值;整式旳加减、【分析】三角形三边满足旳条件是,两边和大于第三边,两边旳差小于第三边,依照此来确定绝对值内旳式子旳正负,从而化简计算即可、【解答】解:∵△ABC旳三边长分别是a、b、c,∴必须满足两边之和大于第三边,两边旳差小于第三边,那么a﹣b+c>0,a﹣b﹣c<0,∴|a﹣b+c|+|a﹣b﹣c|=a﹣b+c﹣a+b+c=2C、【点评】此题考查了三角形三边关系,此题旳关键是先依照三角形三边旳关系来判定绝对值内式子旳正负、20、如图,D为△ABC边BC延长线上一点,DF⊥AB于F交AC于E,∠A=35°,∠D=42°,求∠ACD旳度数、【考点】三角形旳外角性质;三角形内角和定理、【分析】依照三角形外角与内角旳关系及三角形内角和定理解答、【解答】解:∵∠AFE=90°,∴∠AEF=90°﹣∠A=90°﹣35°=55°,∴∠CED=∠AEF=55°,∴∠ACD=180°﹣∠CED﹣∠D=180°﹣55°﹣42°=83°、答:∠ACD旳度数为83°、【点评】三角形外角与内角旳关系:三角形旳一个外角等于和它不相邻旳两个内角旳和、三角形内角和定理:三角形旳三个内角和为180°、21、:∠AOB和两点C、D,求作一点P,使PC=PD,且点P到∠AOB旳两边旳距离相等、〔要求:用尺规作图,保留作图痕迹,写出作法,不要求证明〕、【考点】作图—复杂作图;角平分线旳性质;线段垂直平分线旳性质、【专题】作图题、【分析】由所求旳点P满足PC=PD,利用线段垂直平分线定理得到P点在线段CD旳垂直平分线上,再由点P到∠AOB旳两边旳距离相等,利用角平分线定理得到P在∠AOB旳角平分线上,故作出线段CD旳垂直平分线,作出∠AOB旳角平分线,两线交点即为所求旳P点、【解答】解:如下图:作法:〔1〕以O为圆心,任意长为半径画弧,与OA、OB分别交于两点;〔2〕分别以这两交点为圆心,大于两交点距离旳一半长为半径,在角内部画弧,两弧交于一点;〔3〕以O为端点,过角内部旳交点画一条射线;〔4〕连接CD,分别为C、D为圆心,大于CD长为半径画弧,分别交于两点;〔5〕过两交点画一条直线;〔6〕此直线与前面画旳射线交于点P,∴点P为所求旳点、【点评】此题考查了作图﹣复杂作图,涉及旳知识有:角平分线性质,以及线段垂直平分线性质,熟练掌握性质是解此题旳关键、22、:如图,△ABC中,其中A〔0,﹣2〕,B〔2,﹣4〕,C〔4,﹣1〕、〔1〕画出与△ABC关于y轴对称旳图形△A1B1C1;〔2〕写出△A1B1C1各顶点坐标;〔3〕求△ABC旳面积、【考点】作图-轴对称变换、【分析】〔1〕依照轴对称变换旳性质作图;〔2〕依照关于y轴对称旳点旳坐标特点解答;〔3〕依照矩形旳面积公式和三角形旳面积公式计算、【解答】解:〔1〕所作图形如下图;〔2〕A1〔0,﹣2〕,B1〔﹣2,﹣4〕,C1〔﹣4,﹣1〕;〔3〕S△ABC=3×4﹣×2×3﹣×4×1﹣×2×2=12﹣3﹣2﹣2=5、【点评】此题考查旳是轴对称变换旳性质,掌握轴对称变换中坐标旳变化特点是解题旳关键,注意坐标系中不规那么图形旳面积旳求法、23、如图,在等边△ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC旳延长线于点F,〔1〕求∠F旳度数;〔2〕假设CD=3,求DF旳长、【考点】等边三角形旳判定与性质、【分析】〔1〕依照平行线旳性质可得∠EDC=∠B=60°,依照三角形内角和定理即可求解;〔2〕易证△EDC是等边三角形,再依照直角三角形旳性质即可求解、【解答】解:〔1〕∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;〔2〕∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形、∴ED=DC=3,∵∠DEF=90°,∠F=30°,∴DF=2DE=6、【点评】此题考查了等边三角形旳判定与性质,以及直角三角形旳性质,30度旳锐角所对旳直角边等于斜边旳一半、24、如图,∠ABC=90°,D、E分别在BC、AC上,AD⊥DE,且AD=DE,点F是AE旳中点,FD 与AB相交于点M、〔1〕求证:∠FMC=∠FCM;〔2〕AD与MC垂直吗?并说明理由、【考点】全等三角形旳判定与性质;等腰直角三角形、【专题】几何综合题、【分析】〔1〕依照等腰直角三角形旳性质得出DF⊥AE,DF=AF=EF,进而利用全等三角形旳判定得出△DFC≌△AFM〔AAS〕,即可得出【答案】;〔2〕由〔1〕知,∠MFC=90°,FD=EF,FM=FC,即可得出∠FDE=∠FMC=45°,即可理由平行线旳判定得出【答案】、【解答】〔1〕证明:∵△ADE是等腰直角三角形,F是AE中点,∴DF⊥AE,DF=AF=EF,又∵∠ABC=90°,∠DCF,∠AMF都与∠MAC互余,∴∠DCF=∠AMF,在△DFC和△AFM中,,∴△DFC≌△AFM〔AAS〕,∴CF=MF,∴∠FMC=∠FCM;〔2〕AD⊥MC,理由:由〔1〕知,∠MFC=90°,FD=FA=FE,FM=FC,∴∠FDE=∠FMC=45°,∴DE∥CM,∴AD⊥MC、【点评】此题要紧考查了全等三角形旳判定与性质以及等腰直角三角形旳性质,得出∠DCF=∠AMF是解题关键、25、如图,四边形ABCD中,∠B=90°,AB∥CD,M为BC边上旳一点,且AM平分∠BAD,DM 平分∠ADC、求证:〔1〕AM⊥DM;〔2〕M为BC旳中点、【考点】角平分线旳性质、【专题】证明题、【分析】〔1〕依照平行线旳性质得到∠BAD+∠ADC=180°,依照角平分线旳定义得到∠MAD+∠ADM=90°,依照垂直旳定义得到【答案】;〔2〕作NM⊥AD,依照角平分线旳性质得到BM=MN,MN=CM,等量代换得到【答案】、【解答】解:〔1〕∵AB∥CD,∴∠BAD+∠ADC=180°,∵AM平分∠BAD,DM平分∠ADC,∴2∠MAD+2∠ADM=180°,∴∠MAD+∠ADM=90°,∴∠AMD=90°,即AM⊥DM;〔2〕作NM⊥AD交AD于N,∵∠B=90°,AB∥CD,∴BM⊥AB,CM⊥CD,∵AM平分∠BAD,DM平分∠ADC,∴BM=MN,MN=CM,∴BM=CM,即M为BC旳中点、【点评】此题考查旳是角平分线旳性质,掌握平行线旳性质和角旳平分线上旳点到角旳两边旳距离相等是解题旳关键、26、如图,正方形ABCD中,边长为10厘米,点E在AB边上,BE=6厘米、〔1〕假如点P在线段BC上以4厘米/秒旳速度由B点向C点运动,同时,点Q在线段CD 上由C点向D点运动、①假设点Q旳运动速度与点P旳运动速度相等,通过1秒后,△BPE与△CQP是否全等,请说明理由;②假设点Q旳运动速度与点P旳运动速度不相等,当点Q旳运动速度为多少时,能够使△BPE 与△CQP全等?〔2〕假设点Q以②中旳运动速度从点C动身,点P以原来旳运动速度从点B同时动身,都逆时针沿正方形ABCD四边运动,求通过多长时刻点P与点Q第一次在正方形ABCD边上旳何处相遇?【考点】正方形旳性质;全等三角形旳判定与性质、【专题】动点型、【分析】正方形旳四边相等,四个角差不多上直角、〔1〕①速度相等,运动旳时刻相等,因此距离相等,依照全等三角形旳判定定理可证明、②因为运动时刻一样,运动速度不相等,因此BP≠CQ,只有BP=CP时才相等,依照此可求解、〔2〕明白速度,明白距离,这实际上是个追及问题,可依照追及问题旳等量关系求解、【解答】解:〔1〕①∵t=1秒,∴BP=CQ=4×1=4厘米,∵正方形ABCD中,边长为10厘米∴PC=BE=6厘米,又∵正方形ABCD,∴∠B=∠C,∴△BPE≌△CQP②∵V P≠V Q,∴BP≠CQ,又∵△BPE≌△CQP,∠B=∠C,那么BP=PC,而BP=4t,CP=10﹣4t,∴4t=10﹣4t∴点P,点Q运动旳时刻秒,∴厘米/秒、〔2〕设通过x秒后点P与点Q第一次相遇,由题意,得4.8x﹣4x=30,解得秒、∴点P共运动了厘米∴点P、点Q在A点相遇,∴通过秒点P与点Q第一次在A点相遇、【点评】此题考查正方形旳性质,四个边相等,四个角差不多上直角以及全等三角形旳判定和性质、。
初中数学河北省保定市定州市八年级上期末数学考试卷
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx 题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.试题2:若使分式有意义,则x的取值范围是()A.x≠2 B.x≠﹣2 C.x≠﹣1 D.x=2试题3:下列运算中,正确的是()A.x3•x3=x6 B.3x2 +2x3=5x5C.(x2)3=x5 D.(ab)3=a3b试题4:评卷人得分下列由左到右的变形,属于因式分解的是()A.(x+2)(x﹣2)=x2﹣4B.x2﹣4=(x+2)(x﹣2)C.x2﹣4+3x=(x+2)(x﹣2)+3xD.x2+4x﹣2=x(x+4)﹣2试题5:解分式方程+=3时,去分母后变形为()A.2+(x+2)=3(x﹣1) B.2﹣x+2=3(x﹣1)C.2﹣(x+2)=3(1﹣x) D.2﹣(x+2)=3(x﹣1)试题6:如图,BD∥CE,∠1=85°,∠2=37°,则∠A的度数是()A.15度 B.37度 C.48度 D.53度试题7:如图,在△ABC中,∠ACB为直角,∠A=30°,CD⊥AB于D,若BD=1,则AD的长度是()A.4 B.3C.2 D.1试题8:用一条长为16cm的细绳围成一个等腰三角形,若其中有一边的长为4cm,则该等腰三角形的腰长为()A.4cm B.6cm C.4cm或6cm D.4cm或8cm试题9:若a+b=﹣3,ab=1,则a2+b2=()A.﹣11 B.11 C.﹣7 D.7试题10:图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A.2ab B.(a+b)2 C.(a﹣b)2 D.a2﹣b2试题11:如图,已知△ABC的面积为12,BP平分∠ABC,且AP⊥BP于点P,则△BPC的面积是()A.10 B.8 C .6 D.4试题12:甲乙两地相距420千米,新修的高速公路开通后,在甲、乙两地行驶的长途客运车平均速度是原来的1.5倍,进而从甲地到乙地的时间缩短了2小时.设原来的平均速度为x千米/时,可列方程为()A. +=2 B.﹣=2C. += D.﹣=试题13:一粒芝麻约有0.000002千克,0.000002用科学记数法表示为千克.试题14:若x2﹣2ax+16是完全平方式,则a= .试题15:如图,有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD 交于点F,与CB延长线交于点E.则四边形AECF的面积是.试题16:如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=2,则EF= .试题17:在平面直角坐标系中,点A(2,0),B(0,4),求点C,使以点B、O、C为顶点的三角形与△ABO全等,则点C的坐标为.试题18:如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA1=2,则△A5B5A6的边长为.试题19:计算:x(4x+3y)﹣(2x+y)(2x﹣y)试题20:因式分解﹣3x3+6x2y﹣3xy2试题21:先化简,再求值(1+)÷,其中x=3试题22:解方程:试题23:为(3,1).(1)在图中画出△ABC关于y轴对称的△A′B′C′(不写画法),并写出点A′,B′,C′的坐标.(2)求△ABC的面积.试题24:(1)求作:过点A,B分别作OM,ON的垂线,两条垂线的交点记作点D(保留作图痕迹,不写作法);(2)连接OD,若∠MON=50°,则∠ODB= °.试题25:作EF⊥DE,交BC的延长线于点F,(1)求∠F的度数;(2)若CD=3,求DF的长.试题26:阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”.而假分数都可化为带分数,如: ==2+=2.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如:,这样的分式就是假分式;再如:,这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式).如: ==1﹣;再如: ===x+1+.解决下列问题:(1)分式是分式(填“真分式”或“假分式”);(2)假分式可化为带分式的形式;(3)如果分式的值为整数,那么x的整数值为.试题27:需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲,乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲,乙两队合做3天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.试题28:在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE= 度;(2)如图2,当点D在线段BC上,如果∠BAC=60°,则∠BCE= 度;(3)设∠BAC=α,∠BCE=β①如图3,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,请直接写出α,β之样的数量关系,不用证明.试题1答案:A解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.试题2答案:A解:∵分式有意义,∴x的取值范围是:x﹣2≠0,解得:x≠2.试题3答案:A解:A、x3•x3=x6,正确;B、3x2+2x3,无法计算,故此选项错误;C、(x2)3=x6,故此选项错误;D、(ab)3=a3b3,故此选项错误;试题4答案:B解:A、是整式的乘法,故A错误;B、把一个多项式转化成几个整式积的形式,故B正确;C、没把一个多项式转化成几个整式积的形式,故C错误;D、没把一个多项式转化成几个整式积的形式,故D错误;试题5答案:D解:方程两边都乘以x﹣1,得:2﹣(x+2)=3(x﹣1).试题6答案:C解:∵BD∥CE,∠1=85°,∴∠BDC=∠1=85°,又∵∠BDC是△ABD的外角,∴∠A=∠BDC﹣∠2=85°﹣37°=48°,试题7答案:B解:∵∠ACB为直角,∠A=30°,∴∠B=90°﹣∠A=60°,∵CD⊥AB于D,∴∠DCB=90°﹣∠B=30°∴BC=2BD=2,AB=2BC=4,∴AD=4﹣1=3.试题8答案:BD解:4cm是腰长时,底边为16﹣4×2=8,∵4+4=8,∴4cm、4cm、8cm不能组成三角形;4cm是底边时,腰长为(16﹣4)=6cm,4cm、6cm、6cm能够组成三角形;综上所述,它的腰长为6cm.试题9答案:D解:当a+b=﹣3,ab=1时,a2+b2=(a+b)2﹣2ab=9﹣2=7.试题10答案:C解:中间部分的四边形是正方形,边长是a+b﹣2b=a﹣b,则面积是(a﹣b)2.试题11答案:C解:延长AP交BC于E,∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,在△ABP和△EBP中,,∴△ABP≌△EBP(ASA),∴AP=PE,∴S△ABP=S△EBP,S△ACP=S△ECP,∴S△PBC=S△ABC=×12=6,试题12答案:B解:设原来的平均速度为x千米/时,由题意得,﹣=2.试题13答案:2×10﹣6千克.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000002用科学记数法表示为 2×10﹣6千克,试题14答案:±4 .【分析】完全平方公式:(a±b)2=a2±2ab+b2,这里首末两项是x和4这两个数的平方,那么中间一项为加上或减去x 和4积的2倍.【解答】解:∵x2﹣2ax+16是完全平方式,∴﹣2ax=±2×x×4∴a=±4.试题15答案:16 .【解答】解:∵四边形ABCD为正方形,∴∠D=∠ABC=90°,AD=AB,∴∠ABE=∠D=90°,∵∠EAF=90°,∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,∴∠DAF=∠BAE,在△AEB和△AFD中,∵,∴△AEB≌△AFD(ASA),∴S△AEB=S△AFD,∴它们都加上四边形ABCF的面积,可得到四边形AECF的面积=正方形的面积=16.试题16答案:4 .解:作EG⊥OA于G,如图所示:∵EF∥OB,∠AOE=∠BOE=15°∴∠OEF=∠COE=15°,EG=CE=2,∵∠AOE=15°,∴∠EFG=15°+15°=30°,∴EF=2EG=4.故答案为:4.试题17答案:(﹣2,0)或(2,4)或(﹣2,4).【分析】由条件可知BO为两三角形的公共边,且△ABO为直角三角形,当△ABO和△BCO全等时,则可知△BCO为直角三角形,且有CO=AO可BC=AO,可得出C点的坐标.【解答】解:∵点A(2,0),B(0,4),∴AO=2,且△ABO为直角三角形,当△ABO和△BCO全等时,则可知△BCO为直角三角形,且有公共边BO,∴CO=AO或BC=AO,当CO=AO时,则C点坐标为(﹣2,0);当BC=AO时,则BC=2,且BC⊥OB,∴C点坐标为(2,4)或(﹣2,4);综上可知点C的坐为(﹣2,0)或(2,4)或(﹣2,4),试题18答案:32 .【解答】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=2,∴A2B1=2,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:A6B6=32B1A2=32.故答案是:32.试题19答案:x(4x+3y)﹣(2x+y)(2x﹣y)=4x2+3xy﹣4x2+y2=3xy+y2;试题20答案:﹣3x3+6x2y﹣3xy2=﹣3x(x2﹣2xy+y2)=﹣3x(x﹣y)2.试题21答案:原式=(+)÷=•=,当x=3时,原式==;试题22答案:方程两边都乘以(x﹣2),得:x﹣3+x﹣2=﹣3,解得:x=1,检验:x=1时,x﹣2=﹣1≠0,∴x=1是原分式方程的解.试题23答案:【解答】解:(1)如图,A′(﹣2,4),B′(3,﹣2),C′(﹣3,1);(2)S△ABC=6×6﹣×5×6﹣×6×3﹣×1×3,=36﹣15﹣9﹣1,=10.试题24答案:解:(1)如图,DA,DB即为所求垂线;(2)连接OD,∵DB⊥ON,DA⊥OM,∴∠OBD=∠OAD=90°,∠MON=50°,∴∠ADB=180°﹣50°=130°.在Rt△OBD与Rt△OAD中,∵,∴Rt△OBD≌Rt△OAD(HL),∴∠ODB=∠ADB=65°.故答案为:65.试题25答案:解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=3,∵∠DEF=90°,∠F=30°,∴DF=2DE=6.试题26答案:解:(1)分式是真分式;(2)==1﹣;(3)==2﹣为整数,则x的可能整数值为 0,﹣2,2,﹣4.故答案为:(1)真;(2)1﹣;(3)0,﹣2,2,﹣4 试题27答案:解:设规定日期为x天.由题意得+=1,3(x+6)+x2=x(x+6),3x=18,解之得:x=6.经检验:x=6是原方程的根.方案(1):1.2×6=7.2(万元);方案(2)比规定日期多用6天,显然不符合要求;方案(3):1.2×3+0.5×6=6.6(万元).∵7.2>6.6,∴在不耽误工期的前提下,选第三种施工方案最节省工程款.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.试题28答案:解:(1)∵∠BAC=90°,∴∠DAE=∠BAC=90°,∵AB=AC,AD=AE,∴∠B=∠ACB=45°,∠ADE=∠AED=45°,∵∠DAE=∠BAC,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴∠ACE=∠B=45°,∴∠BCE=∠ACB+∠ACE=90°,故答案为:90°;(2)∵∠BAC=60°,∴∠DAE=∠BAC=60°,∵AB=AC,AD=AE,∴∠B=∠ACB=60°,∠ADE=∠AED=60°,由(1)得,∠ACE=∠B=60°,∴∠BCE=∠ACB+∠ACE=120°,故答案为:120°;(3)①α+β=180°,理由如下:∵∠BAC=α,∴∠B=∠ACB=,由(1)得,∠ACE=∠B=,∴β=∠BCE=∠ACB+∠ACE=180°﹣α,∴α+β=180°;②如图4,当点D在BC的延长线上时,α+β=180°,证明方法同①;如图5,当点D在CB的延长线上时,α=β,理由如下:由(1)得,△BAD≌△CAE,∴∠AEC=∠ADB,∴A,D,E,C四点共圆,∴∠BCE=∠DAE=∠BAC,即α=β.。
2017-2018学年河北省保定市定州市八年级(下)期末数学试卷(解析版)
25. (8 分)在平面直角坐标系中,一次函数 y=﹣ x+2 的图象交 x 轴、y 轴分别于 A、B 两点,交直线 y=kx 于 P.
21. (8 分)如图,O 是矩形 ABCD 的对角线 AC 的中点,M 是 AD 的中点,若 AB=5,AD =12,求四边形 ABOM 的周长.
22. (8 分)小李从甲地前往乙地,到达乙地休息了半个小时后,又按原路返回甲地,他与 甲地的距离 y(千米)和所用的时间 x(小时)之间的函数关系如图所示. (1)小李从乙地返回甲地用了多少小时? (2)求小李出发 5 小时后距离甲地多远?
24. (8 分)某校学生会向全校 1900 名学生发起了爱心捐款活动,为了解捐款情况,学生会 随机调查了部分学生的捐款金额, 并用得到的数据绘制了如下统计图 1 和图 2, 请根据相 关信息,解答下列问题: (1)本次接受随机抽样调查的学生人数为 (2)补全图 2 的统计图. (3)求本次调查获取的样本数据的平均数、众数和中位数; (4)根据样本数据,估计该校本次活动捐款金额为 10 元的学生人数. 人,图 1 中 m 的值是 .
A.x≥
B.x≤3
C.x≤
D.x≥3
11. (3 分)如图坐标系,四边形 ABCD 是菱形,顶点 A、B 在 x 轴上,AB=5,点 C 在第一 象限,且菱形 ABCD 的面积为 20,A 坐标为(﹣2,0) ,则顶点 C 的坐标为( )
第 2 页(共 23 页)
A. (4,3)
B. (5,4)
C. (6,4)
2017-2018 学年河北省保定市定州市八年级(下)期末数学试卷
一、选择题(本大题共 12 个小题;每小题 3 分,共 36 分在每小题给出的四个选项中,只 有一项是符合题目要求的) 1. (3 分) A.±4 2. (3 分)函数 y= A.x>﹣3 等于( B.4 ) C.﹣4 ) D.x≤﹣3 ) D.第四象限 D.±2
保定市定州市八级上期末数学试卷(含答案解析)
2017-2018学年河北省保定市定州市八年级(上)期末数学试卷一、选择题(本大题共1个小题;每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.(3分)若使分式有意义,则x的取值范围是()A.x≠2B.x≠﹣2C.x≠﹣1D.x=23.(3分)下列运算中,正确的是()A.x3•x3=x6B.3x2+2x3=5x5C.(x2)3=x5D.(ab)3=a3b4.(3分)下列由左到右的变形,属于因式分解的是()A.(x+2)(x﹣2)=x2﹣4B.x2﹣4=(x+2)(x﹣2)C.x2﹣4+3x=(x+2)(x﹣2)+3xD.x2+4x﹣2=x(x+4)﹣25.(3分)解分式方程+=3时,去分母后变形为()A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1)C.2﹣(x+2)=3(1﹣x)D.2﹣(x+2)=3(x﹣1)6.(3分)如图,BD∥CE,∠1=85°,∠2=37°,则∠A的度数是()A.15度B.37度C.48度D.53度7.(3分)如图,在△ABC中,∠ACB为直角,∠A=30°,CD⊥AB于D,若BD=1,则AD的长度是()A.4B.3C.2D.18.(3分)用一条长为16cm的细绳围成一个等腰三角形,若其中有一边的长为4cm,则该等腰三角形的腰长为()A.4cm B.6cm C.4cm或6cm D.4cm或8cm9.(3分)若a+b=﹣3,ab=1,则a2+b2=()A.﹣11B.11C.﹣7D.710.(3分)图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A.2ab B.(a+b)2C.(a﹣b)2D.a2﹣b211.(3分)如图,已知△ABC的面积为12,BP平分∠ABC,且AP⊥BP于点P,则△BPC的面积是()A.10B.8C.6D.412.(3分)甲乙两地相距420千米,新修的高速公路开通后,在甲、乙两地行驶的长途客运车平均速度是原来的1.5倍,进而从甲地到乙地的时间缩短了2小时.设原来的平均速度为x千米/时,可列方程为()A. +=2B.﹣=2C. +=D.﹣=二、填空题(本大题共6个小题;每小题3分,共18分.把答案写在题中横线上)13.(3分)一粒芝麻约有0.000002千克,0.000002用科学记数法表示为千克.14.(3分)若x2﹣2ax+16是完全平方式,则a=.15.(3分)如图,有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,与CB延长线交于点E.则四边形AECF的面积是.16.(3分)如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=2,则EF=.17.(3分)在平面直角坐标系中,点A(2,0),B(0,4),求点C,使以点B、O、C为顶点的三角形与△ABO全等,则点C的坐标为.18.(3分)如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA1=2,则△A5B5A6的边长为.三、解答下列各题(本题有8个小题,共66分)19.(8分)解答题.(1)计算:x(4x+3y)﹣(2x+y)(2x﹣y)(2)因式分解﹣3x3+6x2y﹣3xy220.(8分)解答题(1)先化简,再求值(1+)÷,其中x=3(2)解方程:21.(6分)如图,△ABC中,A点坐标为(2,4),B点坐标为(﹣3,﹣2),C点坐标为(3,1).(1)在图中画出△ABC关于y轴对称的△A′B′C′(不写画法),并写出点A′,B′,C′的坐标.(2)求△ABC的面积.22.(8分)如图,已知∠MON ,点A ,B 分别在OM ,ON 边上,且OA=OB .(1)求作:过点A ,B 分别作OM ,ON 的垂线,两条垂线的交点记作点D (保留作图痕迹,不写作法);(2)连接OD ,若∠MON=50°,则∠ODB= °.23.(8分)如图,在等边△ABC 中,点D ,E 分别在边BC ,AC 上,且DE ∥AB ,过点E 作EF ⊥DE ,交BC 的延长线于点F , (1)求∠F 的度数; (2)若CD=3,求DF 的长.24.(8分)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”.而假分数都可化为带分数,如:==2+=2.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如:,这样的分式就是假分式;再如:,这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式).如: ==1﹣;再如:===x +1+.解决下列问题:(1)分式是分式(填“真分式”或“假分式”);(2)假分式可化为带分式的形式;(3)如果分式的值为整数,那么x的整数值为.25.(10分)某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲,乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲,乙两队合做3天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.26.(10分)在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=度;(2)如图2,当点D在线段BC上,如果∠BAC=60°,则∠BCE=度;(3)设∠BAC=α,∠BCE=β①如图3,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,请直接写出α,β之样的数量关系,不用证明.2017-2018学年河北省保定市定州市八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共1个小题;每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.【点评】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(3分)若使分式有意义,则x的取值范围是()A.x≠2B.x≠﹣2C.x≠﹣1D.x=2【分析】直接利用分式有意义则其分母不为零,进而得出答案.【解答】解:∵分式有意义,∴x的取值范围是:x﹣2≠0,解得:x≠2.故选:A.【点评】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.3.(3分)下列运算中,正确的是()A.x3•x3=x6B.3x2+2x3=5x5C.(x2)3=x5D.(ab)3=a3b【分析】直接利用幂的乘方与积的乘方法则以及合并同类项、同底数幂的乘法运算法则进而得出答案.【解答】解:A、x3•x3=x6,正确;B、3x2+2x3,无法计算,故此选项错误;C、(x2)3=x6,故此选项错误;D、(ab)3=a3b3,故此选项错误;故选:A.【点评】此题主要考查了幂的乘方与积的乘方以及合并同类项、同底数幂的乘法运算等知识,正确掌握运算法则是解题关键.4.(3分)下列由左到右的变形,属于因式分解的是()A.(x+2)(x﹣2)=x2﹣4B.x2﹣4=(x+2)(x﹣2)C.x2﹣4+3x=(x+2)(x﹣2)+3xD.x2+4x﹣2=x(x+4)﹣2【分析】根据因式分解的意义,可得答案.【解答】解:A、是整式的乘法,故A错误;B、把一个多项式转化成几个整式积的形式,故B正确;C、没把一个多项式转化成几个整式积的形式,故C错误;D、没把一个多项式转化成几个整式积的形式,故D错误;故选:B.【点评】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.5.(3分)解分式方程+=3时,去分母后变形为()A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1)C.2﹣(x+2)=3(1﹣x)D.2﹣(x+2)=3(x﹣1)【分析】本题考查对一个分式确定最简公分母,去分母得能力.观察式子x﹣1和1﹣x互为相反数,可得1﹣x=﹣(x﹣1),所以可得最简公分母为x﹣1,因为去分母时式子不能漏乘,所以方程中式子每一项都要乘最简公分母.【解答】解:方程两边都乘以x﹣1,得:2﹣(x+2)=3(x﹣1).故选:D.【点评】考查了解分式方程,对一个分式方程而言,确定最简公分母后要注意不要漏乘,这正是本题考查点所在.切忌避免出现去分母后:2﹣(x+2)=3形式的出现.6.(3分)如图,BD∥CE,∠1=85°,∠2=37°,则∠A的度数是()A.15度B.37度C.48度D.53度【分析】根据平行线的性质,得出∠BDC=∠1=85°,再根据三角形外角性质,得出∠A=∠BDC﹣∠2=85°﹣37°=48°即可.【解答】解:∵BD∥CE,∠1=85°,∴∠BDC=∠1=85°,又∵∠BDC是△ABD的外角,∴∠A=∠BDC﹣∠2=85°﹣37°=48°,故选:C.【点评】本题主要考查了平行线的性质以及三角形外角性质的运用,解决问题的关键是掌握:三角形的一个外角等于和它不相邻的两个内角的和.7.(3分)如图,在△ABC中,∠ACB为直角,∠A=30°,CD⊥AB于D,若BD=1,则AD的长度是()A.4B.3C.2D.1【分析】先根据∠ACB为直角,∠A=30°,求出∠B的度数,再根据CD⊥AB于D,求出∠DCB=30°,再利用含30度角的直角三角形的性质即可直接求出答案.【解答】解:∵∠ACB为直角,∠A=30°,∴∠B=90°﹣∠A=60°,∵CD⊥AB于D,∴∠DCB=90°﹣∠B=30°∴BC=2BD=2,AB=2BC=4,∴AD=4﹣1=3.故选:B.【点评】此题主要考查学生对含30度角的直角三角形的性质这一知识点的理解和掌握,此题的突破点是利用直角和三角形的内角和定理,求出∠DCB=90°﹣∠B=30°,以后的问题即可迎刃而解了.8.(3分)用一条长为16cm的细绳围成一个等腰三角形,若其中有一边的长为4cm,则该等腰三角形的腰长为()A.4cm B.6cm C.4cm或6cm D.4cm或8cm【分析】分已知边4cm是腰长和底边两种情况讨论求解.【解答】解:4cm是腰长时,底边为16﹣4×2=8,∵4+4=8,∴4cm、4cm、8cm不能组成三角形;4cm是底边时,腰长为(16﹣4)=6cm,4cm、6cm、6cm能够组成三角形;综上所述,它的腰长为6cm.故选:B.【点评】本题考查了等腰三角形的性质,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.9.(3分)若a+b=﹣3,ab=1,则a2+b2=()A.﹣11B.11C.﹣7D.7【分析】根据a2+b2=(a+b)2﹣2ab,直接代入求值即可.【解答】解:当a+b=﹣3,ab=1时,a2+b2=(a+b)2﹣2ab=9﹣2=7.故选:D.【点评】本题要熟记有关完全平方的几个变形公式,本题考查对完全平方公式的变形应用能力.10.(3分)图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A.2ab B.(a+b)2C.(a﹣b)2D.a2﹣b2【分析】中间部分的四边形是正方形,表示出边长,则面积可以求得.【解答】解:中间部分的四边形是正方形,边长是a +b ﹣2b=a ﹣b , 则面积是(a ﹣b )2. 故选:C .【点评】本题考查了列代数式,正确表示出小正方形的边长是关键.11.(3分)如图,已知△ABC 的面积为12,BP 平分∠ABC ,且AP ⊥BP 于点P ,则△BPC 的面积是( )A .10B .8C .6D .4【分析】延长AP 交BC 于E ,根据已知条件证得△ABP ≌△EBP ,根据全等三角形的性质得到AP=PE ,得出S △ABP =S △EBP ,S △ACP =S △ECP ,推出S △PBC =S △ABC ; 【解答】解:延长AP 交BC 于E ,∵BP 平分∠ABC , ∴∠ABP=∠EBP , ∵AP ⊥BP ,∴∠APB=∠EPB=90°, 在△ABP 和△EBP 中,,∴△ABP ≌△EBP (ASA ), ∴AP=PE ,∴S △ABP =S △EBP ,S △ACP =S △ECP ,∴S △PBC =S △ABC =×12=6, 故选:C .【点评】本题考查了等腰三角形的判定与性质,三角形的面积,主要利用了等底等高的三角形的面积相等,作辅助线构造出等腰三角形是解题的关键.12.(3分)甲乙两地相距420千米,新修的高速公路开通后,在甲、乙两地行驶的长途客运车平均速度是原来的1.5倍,进而从甲地到乙地的时间缩短了2小时.设原来的平均速度为x千米/时,可列方程为()A. +=2B.﹣=2C. +=D.﹣=【分析】设原来的平均速度为x千米/时,高速公路开通后平均速度为1.5x千米/时,根据走过相同的距离时间缩短了2小时,列方程即可.【解答】解:设原来的平均速度为x千米/时,由题意得,﹣=2.故选:B.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.二、填空题(本大题共6个小题;每小题3分,共18分.把答案写在题中横线上)13.(3分)一粒芝麻约有0.000002千克,0.000002用科学记数法表示为2×10﹣6千克.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000002用科学记数法表示为2×10﹣6千克,故答案为:2×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.(3分)若x2﹣2ax+16是完全平方式,则a=±4.【分析】完全平方公式:(a±b)2=a2±2ab+b2,这里首末两项是x和4这两个数的平方,那么中间一项为加上或减去x和4积的2倍.【解答】解:∵x2﹣2ax+16是完全平方式,∴﹣2ax=±2×x×4∴a=±4.【点评】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.15.(3分)如图,有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,与CB延长线交于点E.则四边形AECF的面积是16.【分析】由四边形ABCD为正方形可以得到∠D=∠B=90°,AD=AB,又∠ABE=∠D=90°,而∠EAF=90°由此可以推出∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,进一步得到∠DAF=∠BAE,所以可以证明△AEB =S△AFD,那么它们都加上四边形ABCF的面积,即可四边形AECF的面积=正方≌△AFD,所以S△AEB形的面积,从而求出其面积.【解答】解:∵四边形ABCD为正方形,∴∠D=∠ABC=90°,AD=AB,∴∠ABE=∠D=90°,∵∠EAF=90°,∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,∴∠DAF=∠BAE,在△AEB和△AFD中,∵,∴△AEB≌△AFD(ASA),=S△AFD,∴S△AEB∴它们都加上四边形ABCF的面积,可得到四边形AECF的面积=正方形的面积=16.故答案为:16.【点评】本题主要考查全等三角形的判定和性质、正方形的面积公式,正方形的性质,关键在于求证△AEB≌△AFD.16.(3分)如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=2,则EF=4.【分析】作EG⊥OA于F,根据角平分线的性质得到EG的长度,再根据平行线的性质得到∠OEF=∠COE=15°,然后利用三角形的外角和内角的关系求出∠EFG=30°,利用30°角所对的直角边是斜边的一半解题.【解答】解:作EG⊥OA于G,如图所示:∵EF∥OB,∠AOE=∠BOE=15°∴∠OEF=∠COE=15°,EG=CE=2,∵∠AOE=15°,∴∠EFG=15°+15°=30°,∴EF=2EG=4.故答案为:4.【点评】本题考查了角平分线的性质、平行线的性质、含30°角的直角三角形的性质;熟练掌握角平分线的性质,证出∠EFG=30°是解决问题的关键.17.(3分)在平面直角坐标系中,点A(2,0),B(0,4),求点C,使以点B、O、C为顶点的三角形与△ABO全等,则点C的坐标为(﹣2,0)或(2,4)或(﹣2,4).【分析】由条件可知BO为两三角形的公共边,且△ABO为直角三角形,当△ABO和△BCO全等时,则可知△BCO为直角三角形,且有CO=AO可BC=AO,可得出C点的坐标.【解答】解:∵点A(2,0),B(0,4),∴AO=2,且△ABO为直角三角形,当△ABO和△BCO全等时,则可知△BCO为直角三角形,且有公共边BO,∴CO=AO或BC=AO,当CO=AO时,则C点坐标为(﹣2,0);当BC=AO时,则BC=2,且BC⊥OB,∴C点坐标为(2,4)或(﹣2,4);综上可知点C的坐为(﹣2,0)或(2,4)或(﹣2,4),故答案为:(﹣2,0)或(2,4)或(﹣2,4).【点评】本题主要考查全等三形角的判定和性质,由条件得到AO=CO或AO=BC是解题的关键.18.(3分)如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA1=2,则△A5B5A6的边长为32.【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.【解答】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=2,∴A2B1=2,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:A6B6=32B1A2=32.故答案是:32.【点评】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.三、解答下列各题(本题有8个小题,共66分)19.(8分)解答题.(1)计算:x(4x+3y)﹣(2x+y)(2x﹣y)(2)因式分解﹣3x3+6x2y﹣3xy2【分析】(1)直接利用单项式乘以多项式以及平方差公式化简,进而合并得出答案;(2)首先提取公因式﹣3x,再利用完全平方公式分解因式即可.【解答】解:(1)x(4x+3y)﹣(2x+y)(2x﹣y)=4x2+3xy﹣4x2+y2=3xy+y2;(2)﹣3x3+6x2y﹣3xy2=﹣3x(x2﹣2xy+y2)=﹣3x(x﹣y)2.【点评】此题主要考查了整式的乘法以及提取公因式法、公式法分解因式,正确应用公式是解题关键.20.(8分)解答题(1)先化简,再求值(1+)÷,其中x=3(2)解方程:【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)方程两边都乘以(x﹣2)化分式方程为整式方程,解之求得x的值,检验后可得方程的解.【解答】解:(1)原式=(+)÷=•=,当x=3时,原式==;(2)方程两边都乘以(x﹣2),得:x﹣3+x﹣2=﹣3,解得:x=1,检验:x=1时,x﹣2=﹣1≠0,∴x=1是原分式方程的解.【点评】本题主要考查分式的化简求值和解分式方程,解题的关键是熟练掌握分式的混合运算顺序和运算法则及解分式方程的步骤.21.(6分)如图,△ABC中,A点坐标为(2,4),B点坐标为(﹣3,﹣2),C点坐标为(3,1).(1)在图中画出△ABC关于y轴对称的△A′B′C′(不写画法),并写出点A′,B′,C′的坐标.(2)求△ABC的面积.【分析】(1)根据网格结构找出点A′、B′、C′的位置,然后顺次连接即可;(2)利用三角形所在的矩形的面积减去四周三个小直角三角形的面积,然后列式计算即可得解.【解答】解:(1)如图,A′(﹣2,4),B′(3,﹣2),C′(﹣3,1);=6×6﹣×5×6﹣×6×3﹣×1×3,(2)S△ABC=36﹣15﹣9﹣1,=10.【点评】本题考查了利用轴对称变换作图,三角形的面积的求解,熟练掌握网格结构准确找出对应点的位置是解题的关键.22.(8分)如图,已知∠MON,点A,B分别在OM,ON边上,且OA=OB.(1)求作:过点A,B分别作OM,ON的垂线,两条垂线的交点记作点D(保留作图痕迹,不写作法);(2)连接OD,若∠MON=50°,则∠ODB=65°.【分析】(1)根据过直线上一点作直线垂线的方法作出垂线即可;(2)利用全等三角形的判定与性质结合四边形内角和定理得出答案.【解答】解:(1)如图,DA,DB即为所求垂线;(2)连接OD,∵DB⊥ON,DA⊥OM,∴∠OBD=∠OAD=90°,∠MON=50°,∴∠ADB=180°﹣50°=130°.在Rt△OBD与Rt△OAD中,∵,∴Rt△OBD≌Rt△OAD(HL),∴∠ODB=∠ADB=65°.故答案为:65.【点评】此题主要考查了基本作图以及全等三角形的判定与性质,正确得出Rt△OBD≌Rt△OAD是解题关键.23.(8分)如图,在等边△ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,(1)求∠F的度数;(2)若CD=3,求DF的长.【分析】(1)根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求解;(2)易证△EDC是等边三角形,再根据直角三角形的性质即可求解.【解答】解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=3,∵∠DEF=90°,∠F=30°,∴DF=2DE=6.【点评】本题考查了等边三角形的判定与性质,以及直角三角形的性质,30度的锐角所对的直角边等于斜边的一半.24.(8分)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”.而假分数都可化为带分数,如:==2+=2.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如:,这样的分式就是假分式;再如:,这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式).如: ==1﹣;再如:===x +1+.解决下列问题:(1)分式是 真 分式(填“真分式”或“假分式”);(2)假分式可化为带分式 1﹣的形式;(3)如果分式的值为整数,那么x 的整数值为 0,﹣2,2,﹣4 .【分析】(1)根据阅读材料中真分式与假分式的定义判断即可; (2)原式变形,化为带分式即可;(3)分式化为带分式后,即可确定出x 的整数值.【解答】解:(1)分式是真分式;(2)==1﹣;(3)==2﹣为整数,则x 的可能整数值为 0,﹣2,2,﹣4.故答案为:(1)真;(2)1﹣;(3)0,﹣2,2,﹣4【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.25.(10分)某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲,乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲,乙两队合做3天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.【分析】方案(1)、(3)不耽误工期,符合要求,求出费用即可判断,方案(2)显然不符合要求.【解答】解:设规定日期为x天.由题意得+=1,3(x+6)+x2=x(x+6),3x=18,解之得:x=6.经检验:x=6是原方程的根.方案(1):1.2×6=7.2(万元);方案(2)比规定日期多用6天,显然不符合要求;方案(3):1.2×3+0.5×6=6.6(万元).∵7.2>6.6,∴在不耽误工期的前提下,选第三种施工方案最节省工程款.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.26.(10分)在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=90度;(2)如图2,当点D在线段BC上,如果∠BAC=60°,则∠BCE=120度;(3)设∠BAC=α,∠BCE=β①如图3,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,请直接写出α,β之样的数量关系,不用证明.【分析】(1)证明△BAD≌△CAE,根据全等三角形的性质得到∠ACE=∠B,得到答案;(2)根据全等三角形的性质得到∠ACE=∠B=60°,计算即可;(3)①根据三角形内角和定理得到∠B=∠ACB=,根据(1)的结论得到∠ACE=∠B,计算;②分点D在BC的延长线上,点D在CB的延长线上两种情况,仿照①的作法解答.【解答】解:(1)∵∠BAC=90°,∴∠DAE=∠BAC=90°,∵AB=AC,AD=AE,∴∠B=∠ACB=45°,∠ADE=∠AED=45°,∵∠DAE=∠BAC,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴∠ACE=∠B=45°,∴∠BCE=∠ACB+∠ACE=90°,故答案为:90°;(2)∵∠BAC=60°,∴∠DAE=∠BAC=60°,∵AB=AC,AD=AE,∴∠B=∠ACB=60°,∠ADE=∠AED=60°,由(1)得,∠ACE=∠B=60°,∴∠BCE=∠ACB+∠ACE=120°,故答案为:120°;(3)①α+β=180°,理由如下:∵∠BAC=α,∴∠B=∠ACB=,由(1)得,∠ACE=∠B=,∴β=∠BCE=∠ACB+∠ACE=180°﹣α,∴α+β=180°;②如图4,当点D在BC的延长线上时,α+β=180°,证明方法同①;如图5,当点D在CB的延长线上时,α=β,理由如下:由(1)得,△BAD≌△CAE,∴∠AEC=∠ADB,∴A,D,E,C四点共圆,∴∠BCE=∠DAE=∠BAC,即α=β.【点评】本题考查的是全等三角形的判定和性质,三角形内角和定理,等腰三角形的性质,掌握全等三角形的判定定理和性质定理是解题的关键.。
2018-2019学年度八年级上数学期末试卷(解析版)
2018-2019学年联考八年级(上)期末数学试卷一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣16.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣28.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a29.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.2011.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.712.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.24.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A 作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DA E交BC于F,探究线段BD,DF,FC之间的数量关系,并证明;(3)在(2)的条件下,若BD=3,CF=4,求AD的长.2018-2019学年河北省石家庄市八校联考八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位【分析】确定近似数精确到哪一位,就是看这个数的最后一位是什么位即可.【解答】解:近似数0.13是精确到百分位,故选:B.【点评】此题考查了近似数,用到的知识点是精确度,一个数最后一位所在的位置就是这个数的精确度.2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.【分析】左旋转180°后还是和原来一样的图形是中心对称图形,根据中心对称图形的定义解答即可.【解答】解:左旋转180°后还是和原来一样的是只有C.故选:C.【点评】本题主要考查了中心对称图形的定义,是需要熟记的内容.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根【分析】根据算术平方根与平方根的定义即可求出答案.【解答】解:是2的算术平方根,故选:D.【点评】本题考查平方根,解题的关键是熟练运用平方根的定义,本题属于基础题型.4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.【分析】直接利用轴对称图形的定义判断得出即可.【解答】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、不是轴对称图形,符合题意;故选:D.【点评】此题主要考查了轴对称图形的定义,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣1【分析】所选取的a的值符合题设,则不满足结论即作为反例.【解答】解:当a=﹣1时,满足|a﹣1|>1,但满足a>2,所以a=﹣1可作为证明命题“若|a﹣1|>1,则a>2”是假命题的反例.故选:D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角【分析】观察图象可知已知线段AB,α,β,由此即可判断.【解答】解:观察图象可知:已知线段AB,∠CAB=α,∠CBA=β,故选:C.【点评】本题考查作图﹣复杂作图,解题的关键是理解题意,属于中考常考题型.7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣2【分析】根据分式的分母不等于0且二次根式的被开方数是非负数得出x的范围,据此可得答案.【解答】解:由题意知,x﹣3≠0且x﹣3≥0,解得:x>3,故选:A.【点评】本题主要考查二次根式有意义的条件,解题的关键是掌握分式的分母不等于0且二次根式的被开方数是非负数.8.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a2【分析】直接利用分式的基本性质分别代入判断得出答案.【解答】解:如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W中可以是:b.故选:B.【点评】此题主要考查了分式的基本性质,正确掌握分式的基本性质是解题关键.9.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.【分析】先表示出图形中各个部分的面积,再判断即可.【解答】解:A、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、根据图形不能证明勾股定理,故本选项符合题意;故选:D.【点评】本题考查了勾股定理的证明,能根据图形中各个部分的面积列出等式是解此题的关键.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.20【分析】根据二次根式的运算法则即可求出答案.【解答】解:+=3+=b当a=20时,∴=2,∴b=5,符合题意,故选:D.【点评】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.11.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.7【分析】只要证明△ABF≌△CDE,可得AF=CE=4,BF=DE=3,推出AD=AF+DF =4+(3﹣2)=5;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE(AAS),∴AF=CE=4,BF=DE=3,∵EF=2,∴AD=AF+DF=4+(3﹣2)=5,故选:B.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.12.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②【分析】通过反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;理顺证明过程即可.【解答】解:由反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;所以题目中“已知:△ABC中,AB=AC,求证:∠B<90°”.用反证法证明这个命题过程中的四个推理步骤:应该为:假设∠B≥90°;那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,;所以因此假设不成立.∴∠B<90°;原题正确顺序为:③④①②.故选:A.【点评】本题考查反证法证明步骤,考查基本知识的应用,逻辑推理能力.13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣【分析】将x的值代入原式,再利用完全平方公式和平方差公式计算可得.【解答】解:当x=时,原式=(7+4)(2﹣)2+(2+)(2﹣)+=(7+4)(7﹣4)+4﹣3+=49﹣48+1+=2+,故选:C.【点评】本题主要考查二次根式的化简求值,解题的关键是熟练掌握完全平方公式、平方差公式及二次根式的运算法则.14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或【分析】先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.【解答】解:①如图:因为CD==2,点D是斜边AB的中点,所以AB=2CD=4,②如图:因为CE==5,点E是斜边AB的中点,所以AB=2CE=10,原直角三角形纸片的斜边长是10或,故选:C.【点评】此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=﹣.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵﹣的立方为﹣,∴﹣的立方根为﹣,故答案为﹣.【点评】此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=36°.【分析】根据三角形内角和定理求出∠A,根据线段垂直平分线的性质得到EA=EC,根据等腰三角形的性质解答.【解答】解:设∠A=x,则∠B=∠ACB=2x,则x+2x+2x=180°,解得,x=36°,∴∠B=∠ACB=72°,∵DE是AC的垂直平分线,∴EA=EC,∴∠ECD=∠A=36°,故答案为:36°.【点评】本题考查的是线段的垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为4.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC为x,可知AB=2BC=2x,再由作法可知BC=CD=x,CE是线段BD的垂直平分线,故CD是斜边AB 的中线,据此可得出BD=x,进而可得出结论.【解答】解:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,设BC=x,∴AB=2BC=2x.∵作法可知BC=CD=x,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=x,∴BF=DF=x,∴AF=AD+DF=x+x=6.解得:x=4.故答案为:4【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法和直角三角形的性质是解答此题的关键.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.【分析】(1)根据勾股定理求出OB的长度,再根据圆的半径定义得到OA,求出A;(2)根据A所代表的数,直接比较与﹣2.5的大小;【解答】解:(1)OB=,∵OB=OA=∴A所代表的数字为﹣\sqrt{5}$;(2)A点表示的数为﹣$\sqrt{5}$≈﹣2.235∴A点表示的数大于﹣2.5【点评】本题运用了勾股定理、数轴上负数大小比较的方法;19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.【分析】(1)根据题目中的例子可以写出例4;(2)根据(1)中特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子化简,即可得到等号右边的式子,从而可以解答本题.【解答】解:(1)由例子可得,④为:,⑤,故答案为,,(2)如果n为正整数,用含n的式子表示这个运算规律:,故答案为:,(3)证明:∵n是正整数,∴.即.故答案为:∵n是正整数,∴.即.【点评】本题考查二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.【分析】根据等腰三角形的性质得到AD=8,AD⊥AC,根据直角三角形的性质求出AB,根据勾股定理计算即可.【解答】解:∵AB=BC,BD是∠ABC的平分线,∴AD=DC=AC=8,AD⊥AC,∴∠ADB=90°,又E为AB的中点,∴AB=2DE=10,由勾股定理得,BD==6.【点评】本题考查的是角平分线的定义、等腰三角形的性质、直角三角形的性质,掌握等腰三角形的三线合一是解题的关键.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.【分析】先根据点E在BC的垂直平分线上可求出BE=CE,再根据点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC可求出EF=EG,再由HL定理可求出Rt△EFB≌Rt△EGC,由全等三角形的性质即可得出结论.【解答】解:BF=CG;理由如下:因为点E在BC的垂直平分线上,所以BE=CE.因为点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC,所以EF=EG,在Rt△EFB和Rt△EGC中,因为BE=CE,EF=EG,所以Rt△EFB≌Rt△EGC(HL).所以BF=CG.【点评】本题涉及到角平分线的性质、线段垂直平分线的性质、直角三角形全等的判定定理及全等三角形的性质,涉及面较广,难度适中.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)假设分式的值等于﹣1,根据化简结果列出关于x的方程,解方程求出x的值,依据分式有意义的条件作出判断.【解答】解:(1)原式=(﹣)÷=•=,当x=﹣3时,原式==﹣2;(2)若原式的值为﹣1,则=﹣1,解得:x=﹣1,而当x =﹣1时,原式分母为0,无意义;所以原式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.【分析】设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据这两种糖混合前后质量相同列出方程,解方程即可.【解答】解:设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据题意得+=,解得:x =36.经检验,x =36是原方程的解.答:杂拌糖的单价为36元.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.24.如图,在△ABC 中,∠BAC =90°,AB =AC ,点D 是BC 上一动点,连接AD ,过点A 作AE ⊥AD ,并且始终保持AE =AD ,连接CE .(1)求证:△ABD ≌△ACE ;(2)若AF 平分∠DAE 交BC 于F ,探究线段BD ,DF ,FC 之间的数量关系,并证明;(3)在(2)的条件下,若BD =3,CF =4,求AD 的长.【分析】(1)根据SAS ,只要证明∠1=∠2即可解决问题;(2)结论:BD 2+FC 2=DF 2.连接FE ,想办法证明∠ECF =90°,EF =DF ,利用勾股定理即可解决问题;(3)过点A 作AG ⊥BC 于G ,在Rt △ADG 中,想办法求出AG 、DG 即可解决问题;【解答】(1)证明:∵AE ⊥AD ,∴∠DAE=∠DAC+∠2=90°,又∵∠BAC=∠DAC+∠1=90°,∴∠1=∠2,在△ABD和△ACE中,∴△ABD≌△ACE.(2)解:结论:BD2+FC2=DF2.理由如下:连接FE,∵∠BAC=90°,AB=AC,∴∠B=∠3=45°由(1)知△ABD≌△ACE∴∠4=∠B=45°,BD=CE∴∠ECF=∠3+∠4=90°,∴CE2+CF2=EF2,∴BD2+FC2=EF2,∵AF平分∠DAE,∴∠DAF=∠EAF,在△DAF和△EAF中,∴△DAF≌△EAF∴DF=EF∴BD2+FC2=DF2.(3)解:过点A作AG⊥BC于G,由(2)知DF2=BD2+FC2=32+42=25∴DF=5,∴BC=BD+DF+FC=3+5+4=12,∵AB=AC,AG⊥BC,∴BG=AG=BC=6,∴DG=BG﹣BD=6﹣3=3,∴在Rt△ADG中,AD===3.【点评】本题考查三角形综合题、等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
模拟卷:2018-2019学年八年级数学上学期期末原创卷B卷(河北)
数学试题 第1页(共6页) 数学试题 第2页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________绝密★启用前2018-2019学年上学期期末原创卷B 卷(河北)八年级数学(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:冀教版八上全册。
第Ⅰ卷一、选择题(本大题共16小题,共42分,1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列图形中,是轴对称图形,但不是中心对称图形的是( )A .B .C .D .2.16的算术平方根是( ) A .4B .±4C .±2D .23.在实数|-3|,-2,0,π中,最小的数是( ) A .|-3|B .-2C .0D .π4.要使得代数式12x x --在实数范围内有意义,则x 的取值范围是( ) A .2x ≥ B .1x ≥ C .2x ≠D .1x ≥且2x ≠5.如果132x y x +=,那么yx的值为( ) A .12 B .23 C .13D .256.下列运算错误的是( ) A .532-=B .632÷=C .6332⨯=D .2333-=7.已知a 、b 、c 是三角形的三边长,如果满足2(6)8|10|0a b c -+-+-=,则三角形的形状是( ) A .底与边不相等的等腰三角形B .等边三角形C .钝角三角形D .直角三角形8.下列命题中,真命题的是( )A .相等的两个角是对顶角B .若a >b ,则|a |>|b |C .两条直线被第三条直线所截,内错角相等D .等腰三角形的两个底角相等9.如图,在△ABC 中,AB =AC ,∠A =40°,AB 的垂直平分线交AB 于点D ,交AC 于点E ,连接BE ,则 ∠CBE 的度数为( )A .80°B .70°C .40°D .30°10.如图,一架云梯长25米,斜靠在一面墙上,梯子底端离墙7米,如果梯子的顶端下滑4米,那么梯子的底部在水平方向上滑动了( )A .4米B .6米C .8米D .10米11.数学课上,小丽用尺规这样作图:(1)以点O 为圆心,任意长为半径作弧,交OA ,OB 于D ,E 两点;(2)分别以点D ,E 为圆心,大于12DE 的长为半径作弧,两弧交于点C ;(3)作射线OC 并连数学试题第3页(共6页)数学试题第4页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封………………○………………外………………○………………装………………○………………订………………○………………线………………○………………接CD,CE,下列结论不正确的是()A.∠1=∠2 B.S△OCE=S△OCD C.OD=CD D.OC垂直平分DE12.如图,△ABC中,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则下列结论不正确的是()A.BF=DF B.∠1=∠EFD C.BF>EF D.FD∥BC13.已知:如果二次根式28n是整数,那么正整数n的最小值是()A.1 B.4 C.7 D.2814.如图,∠AOB=30º,∠AOB内有一定点P,且OP=12,在OA上有一动点Q,OB上有一动点R.若△PQR 周长最小,则最小周长是()A.6 B.12 C.16 D.2015.若关于x的方程2222x mx x++=--的解为正数,则m的取值范围是()A.m<6 B.m>6 C.m<6且m≠0D.m>6且m≠816.在△ABC中,AB=BC,将△ABC绕点B顺时针旋转α度,得到△A1BC1,A1B交AC于E,A1C1分别交AC、BC于点D、F,下列结论:①∠CDF=α,②A1E=CF,③DF=FC,④AD=CE,⑤A1F=CE.其中一定正确的有()A.①②④B.②③④C.①②⑤D.③④⑤第Ⅱ卷二、填空题(本大题共3小题,共12分.17~18小题各3分;19小题有两个空,每空3分)17.同学们都知道,蜜蜂建造的蜂房既坚固又省料.那你知道蜂房蜂巢的厚度吗?事实上,蜂房的蜂巢厚度仅仅约为0.000073m.此数据用科学记数法表示为__________.18.已知:如图,在△AOB中,∠AOB=90°,AO=3 cm,BO=4 cm.将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D=__________cm.19.在方格纸中,选择标有序号的一个小正方形涂黑,与图中阴影构成中心对称图形,涂黑的小正方形序号为__________;若与图中阴影构成轴对称图形,涂黑的小正方形序号为__________.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.(本小题满分8分)计算下列各题:(1)03816(21)-++-;(2)211(3)||292----+-.21.(本小题满分9分)如图,某公路上A,B两点的正南方有D,C两村庄,现要在公路AB上建一个车站E,使C,D两村到E站的距离相等,已知AB=50 km,DA=20 km,CB=10 km,请你设计出E站的位置,并计算车站E距A点多远?数学试题 第5页(共6页) 数学试题 第6页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________22.(本小题满分9分)如图,△ABC 中,AB 的垂直平分线分别交AB ,BC 于D ,E ,AC 的垂直平分线分别交AC ,BC 于F ,G .(1)若△AEG 的周长为10,求线段BC 的长. (2)若∠BAC =128°,求∠EAG 的度数.23.(本小题满分9分)如图,在△ABC 中,∠BAC =90°,AC =AB ,点D 为BC 边上的一个动点(点D 不与B ,C 重合),以AD 为边作等腰直角△ADE ,∠DAE =90°,连接CE . (1)求证:△ABD ≌△ACE .(2)试猜想线段BD ,CD ,DE 之间的等量关系,并证明你的猜想.24.(本小题满分10分)某地下管道,若由甲队单独铺设,恰好在规定时间内完成;若由乙队单独铺设,需要超过规定时间15天才能完成,如果先由甲、乙两队合做10天,再由乙队单独铺设正好按时完成. (1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为5000元,乙队每天的施工费用为3000元,为了缩短工期以减少对居民交通的影响,工程指挥部最终决定该工程由甲、乙两队合做来完成,那么该工程施工费用是多少? 25.(本小题满分10分)如图,在△ABC 中,AB =AC ,D ,E ,F 分别在三边上,且BE =CD ,BD =CF ,G为EF 的中点.(1)若∠A =40°,求∠B 的度数; (2)试说明:DG 垂直平分EF .26.(本小题满分11分)如图1,△ABC 中,CD ⊥AB 于D ,且BD ∶AD ∶CD =2∶3∶4,(1)试说明△ABC 是等腰三角形;(2)已知S △ABC =40 cm 2,如图2,动点M 从点B 出发以每秒1 cm 的速度沿线段BA 向点A 运动,同时动点N 从点A 出发以相同速度沿线段AC 向点C 运动,当其中一点到达终点时整个运动都停止.设点M 运动的时间为t (秒),①若△DMN 的边与BC 平行,求t 的值;②若点E 是边AC 的中点,问在点M 运动的过程中,△MDE 能否成为等腰三角形?若能,求出t 的值;若不能,请说明理由.。
河北省保定市定州市2018-2019学年八年级(上)期中数学试卷(含解析)
2018-2019学年八年级(上)期中数学试卷一、选择题(本大题共12个小题;每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.若一个多边形的内角和为1080°,则这个多边形的边数为()A.6 B.7 C.8 D.93.平面直角坐标系中,与点(﹣5,8)关于y轴对称的点的坐标是()A.(5,﹣8)B.(﹣5,﹣8)C.(5,8)D.(8,﹣5)4.下列各图中,正确画出AC边上的高的是()A.B.C.D.5.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带()A.第1块B.第2块C.第3块D.第4块6.如图,△ABE≌△ACF.若AB=5,AE=2,BE=4,则BF的长度是()A.4 B.3 C.5 D.67.将一副常规的直角三角尺(分别含30°和45°角)按如图方式放置,则图中∠AOB的度数为()A.75°B.95°C.105°D.120°8.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=()A.90°B.120°C.135°D.150°9.如图:△ABC中,AC=BC,∠C=90°,AD平分∠CAB交BC于D,DE⊥AB于E,且AC=6cm,则DE+BD等于()A.5cm B.4cm C.6cm D.7cm10.如图,在△ABC中,BC=8,AB的中垂线交BC于D,AC的中垂线交BC于E,则△ADE 的周长等于()A.8 B.4 C.12 D.1611.如图,已知Rt△OAB,∠OAB=60°,∠AOB=90°,O点与坐标系原点重合,若点P在x轴上,且△APB是等腰三角形,则点P的坐标可能有()个.A.1个B.2个C.3个D.4个12.已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为()秒时.△ABP和△DCE全等.A.1 B.1或3 C.1或7 D.3或7二、填空题(共6小题,每小题3分,满分18分)13.等腰三角形的两条边长分别为3,6,那么它的周长为.14.如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为度.15.如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处.若∠A=26°,则∠CDE=.16.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm2,则S阴影=cm2.17.如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(﹣2,0),点A的坐标为(﹣6,3),则B点的坐标是.18.如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:①∠ABC=∠ADC;②AC与BD相互平分;③AC与BD相互垂直;④四边形ABCD的面积S=AC•BD.正确的是(填写所有正确结论的序号)三、解答下列各题(本题有8个小题,共66分)19.如图,△ABC中,AB=AC,∠A=40°,DE是腰AB的垂直平分线,求∠DBC的度数.20.如图:小亮从A点出发,沿直线前进10米后向左转30度,再沿直线前进10米,又向左转30度,…照这样走下去,他第一次回到出发点A点时,一共走了多少米?21.已知:如图,AB=AC,D是AB上一点,DE⊥BC于点E,ED的延长线交CA的延长线于点F.求证:△ADF是等腰三角形.22.已知如下图,四边形ABCD中,AB=BC,AD=CD,求证:∠A=∠C.23.如图,在直角坐标系中,△ABC各顶点的横、纵坐标都是整数,(1)作出△ABC关于x轴对称的图形△A1B1C1;(2)写出△A1B1C1的各顶点关于y轴对称点A2B2C2的坐标.24.已知,如图,△ABC中,∠A=90°,AB=AC,D是BC边上的中点,E、F分别是AB、AC上的点,且∠EDF=90°,求证:BE=AF.25.如图,△ABC中,∠ACB=90°,∠B=30°,AD平分∠CAB,延长AC至E,使CE=AC.(1)求证:DE=DB;(2)连接BE,试证明△ABE为等边三角形.26.(1)如图(1)所示,A,E,F,C在一条直线上,AE=CF,过E,F分别作DE⊥AC,BF ⊥AC,且AB=CD,求证:EG=FG;(2)若将△DEC的边EC沿AC方向移动,变为图(2)时,其余条件不变,则EG=FG是否仍然成立?请说明理由.参考答案与试题解析一.选择题(共12小题)1.下列图形中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的定义判断即可.【解答】解:A、是轴对称图形,不符合题意;B、不是轴对称图形,符合题意;C、是轴对称图形,不符合题意;D、是轴对称图形,不符合题意;故选:B.2.若一个多边形的内角和为1080°,则这个多边形的边数为()A.6 B.7 C.8 D.9【分析】首先设这个多边形的边数为n,由n边形的内角和等于180°(n﹣2),即可得方程180(n﹣2)=1080,解此方程即可求得答案.【解答】解:设这个多边形的边数为n,根据题意得:180(n﹣2)=1080,解得:n=8.故选:C.3.平面直角坐标系中,与点(﹣5,8)关于y轴对称的点的坐标是()A.(5,﹣8)B.(﹣5,﹣8)C.(5,8)D.(8,﹣5)【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【解答】解:与点(﹣5,8)关于y轴对称的点的坐标是(5,8),故选:C.4.下列各图中,正确画出AC边上的高的是()A.B.C.D.【分析】根据三角形高的定义,过点B与AC边垂直,且垂足在边AC上,然后结合各选项图形解答.【解答】解:正确画出AC边上的高的是D选项,故选:D.5.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带()A.第1块B.第2块C.第3块D.第4块【分析】本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选:B.6.如图,△ABE≌△ACF.若AB=5,AE=2,BE=4,则BF的长度是()A.4 B.3 C.5 D.6【分析】由全等三角形的性质可求AE=AF=2,即可求解.【解答】解:∵△ABE≌△ACF,∴AE=AF=2,∴BF=AB﹣AF=3,故选:B.7.将一副常规的直角三角尺(分别含30°和45°角)按如图方式放置,则图中∠AOB的度数为()A.75°B.95°C.105°D.120°【分析】根据题意求出∠ACO,根据三角形的外角的性质计算即可.【解答】解:由题意得,∠ACO=∠ACD﹣∠BCD=15°,∴∠AOB=∠A+∠ACO=105°,故选:C.8.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=()A.90°B.120°C.135°D.150°【分析】标注字母,利用“边角边”判断出△ABC和△DEA全等,根据全等三角形对应角相等可得∠1=∠4,然后求出∠1+∠3=90°,再判断出∠2=45°,然后计算即可得解.【解答】解:如图,在△ABC和△DEA中,,∴△ABC≌△DEA(SAS),∴∠1=∠4,∵∠3+∠4=90°,∴∠1+∠3=90°,又∵∠2=45°,∴∠1+∠2+∠3=90°+45°=135°.故选:C.9.如图:△ABC中,AC=BC,∠C=90°,AD平分∠CAB交BC于D,DE⊥AB于E,且AC=6cm,则DE+BD等于()A.5cm B.4cm C.6cm D.7cm【分析】根据角平分线上的点到角的两边距离相等可得CD=DE,然后求出DE+BD=AC.【解答】解:∵∠C=90°,AD平分∠CAB交BC于D,DE⊥AB,∴CD=DE,∴DE+BD=CD+BD=BC,∵AC=BC,∴DE+BD=AC=6cm.故选:C.10.如图,在△ABC中,BC=8,AB的中垂线交BC于D,AC的中垂线交BC于E,则△ADE 的周长等于()A.8 B.4 C.12 D.16【分析】根据线段的垂直平分线的性质得到DA=DB,EA=EC,根据三角形的周长公式计算即可.【解答】解:∵AB的中垂线交BC于D,AC的中垂线交BC于E,∴DA=DB,EA=EC,则△ADE的周长=AD+DE+AE=BD+DE+EC=BC=8,故选:A.11.如图,已知Rt△OAB,∠OAB=60°,∠AOB=90°,O点与坐标系原点重合,若点P在x轴上,且△APB是等腰三角形,则点P的坐标可能有()个.A.1个B.2个C.3个D.4个【分析】只要是x轴上的点且满足△APB为等腰三角形即可.【解答】解:如图,则在x轴上共有4个这样的P点.故选:D.12.已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为()秒时.△ABP和△DCE全等.A.1 B.1或3 C.1或7 D.3或7【分析】分两种情况进行讨论,根据题意得出BP=2t=2和AP=16﹣2t=2即可求得.【解答】解:因为AB=CD,若∠ABP=∠DCE=90°,BP=CE=2,根据SAS证得△ABP≌△DCE,由题意得:BP=2t=2,所以t=1,因为AB=CD,若∠BAP=∠DCE=90°,AP=CE=2,根据SAS证得△BAP≌△DCE,由题意得:AP=16﹣2t=2,解得t=7.所以,当t的值为1或7秒时.△ABP和△DCE全等.故选:C.二.填空题(共6小题)13.等腰三角形的两条边长分别为3,6,那么它的周长为15 .【分析】分3是腰长与底边两种情况讨论求解.【解答】解:①3是腰长时,三角形的三边分别为3、3、6,∵3+3=6,∴不能组成三角形,②3是底边时,三角形的三边分别为3、6、6,能组成三角形,周长=3+6+6=15,综上所述,它的周长为15.故答案为:15.14.如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为37 度.【分析】根据等腰三角形的性质以及三角形内角和定理在△ABC中可求得∠ACB=∠ABC =74°,根据等腰三角形的性质以及三角形外角的性质在△BCD中可求得∠CDB=∠CBD =∠ACB=37°.【解答】解:∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°,又∵BC=DC,∴∠CDB=∠CBD=∠ACB=37°.故答案为:37.15.如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处.若∠A=26°,则∠CDE=71°.【分析】根据三角形内角和定理求出∠B,根据折叠求出∠ECD和∠CED,根据三角形内角和定理求出即可.【解答】解:∵在Rt△ABC中,∠ACB=90°,∠A=26°,∴∠B=64°,∵将△CBD沿CD折叠,使点B恰好落在AC边上的点E处,∠ACB=90°,∴∠BCD=∠ECD=45°,∠CED=∠B=64°,∴∠CDE=180°﹣∠ECD﹣∠CED=71°,故答案为:71°.16.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm2,则S阴影= 1 cm2.【分析】根据三角形的面积公式,知△BCE的面积是△ABC的面积的一半,进一步求得阴影部分的面积是△BEC的面积的一半.【解答】解:∵点E是AD的中点,∴△BDE的面积是△ABD的面积的一半,△CDE的面积是△ACD的面积的一半.则△BCE的面积是△ABC的面积的一半,即为2cm2.∵点F是CE的中点,∴阴影部分的面积是△BCE的面积的一半,即为1cm2.17.如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(﹣2,0),点A的坐标为(﹣6,3),则B点的坐标是(1,4).【分析】过A和B分别作AD⊥OC于D,BE⊥OC于E,利用已知条件可证明△ADC≌△CEB,再有全等三角形的性质和已知数据即可求出B点的坐标.【解答】解:过A和B分别作AD⊥OC于D,BE⊥OC于E,∵∠ACB=90°,∴∠ACD+∠CAD=90°∠ACD+∠BCE=90°,∴∠CAD=∠BCE,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS),∴DC=BE,AD=CE,∵点C的坐标为(﹣2,0),点A的坐标为(﹣6,3),∴OC=2,AD=CE=3,OD=6,∴CD=OD﹣OC=4,OE=CE﹣OC=3﹣2=1,∴BE=4,∴则B点的坐标是(1,4),故答案为:(1,4).18.如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:①∠ABC=∠ADC;②AC与BD相互平分;③AC与BD相互垂直;④四边形ABCD的面积S=AC•BD.正确的是①③④(填写所有正确结论的序号)【分析】由“SSS”可证△ABC≌△ADC,可得∠ABC=∠ADC,由线段垂直平分线的性质可判断②③,由面积和差关系可判断④.【解答】解:∵AB=AD,CB=CD,AC=AC,∴△ABC≌△ADC(SSS),∴∠ABC=∠ADC,故①正确,∵AB=AD,CB=CD,∴AC垂直平分BD,∴②错误,③正确,∵AC垂直平分BD,∴BO=DO,∵四边形ABCD的面积S=S△ABC+S△ADC=AC×BO+AC×DO=AC×BD,故④正确,故答案为:①③④三.解答题(共8小题)19.如图,△ABC中,AB=AC,∠A=40°,DE是腰AB的垂直平分线,求∠DBC的度数.【分析】已知∠A=40°,AB=AC可得∠ABC=∠ACB,再由线段垂直平分线的性质可求出∠ABC=∠A,易求∠DBC.【解答】解:∵∠A=40°,AB=AC,∴∠ABC=∠ACB=70°,又∵DE垂直平分AB,∴DB=AD∴∠ABD=∠A=40°,∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°.故答案为:30°.20.如图:小亮从A点出发,沿直线前进10米后向左转30度,再沿直线前进10米,又向左转30度,…照这样走下去,他第一次回到出发点A点时,一共走了多少米?【分析】根据题意,小亮走过的路程是正多边形,先用360°除以30°求出边数,然后再乘以10米即可.【解答】解:∵小亮每次都是沿直线前进10米后向左转30度,∴他走过的图形是正多边形,∴边数n=360°÷30°=12,∴他第一次回到出发点A时,一共走了12×10=120(米).故他一共走了120米.21.已知:如图,AB=AC,D是AB上一点,DE⊥BC于点E,ED的延长线交CA的延长线于点F.求证:△ADF是等腰三角形.【分析】先根据等腰三角形的性质得出∠B=∠C,再由等角的余角相等得出∠EFC=∠EDB,进而可得出∠EFC=∠ADF,由此可得出结论.【解答】解:∵AB=AC,∴∠B=∠C(等边对等角).∵DE⊥BC于E,∴∠FEB=∠FEC=90°,∴∠B+∠EDB=∠C+∠EFC=90°,∴∠EFC=∠EDB(等角的余角相等).∵∠EDB=∠ADF(对顶角相等),∴∠EFC=∠ADF.∴△ADF是等腰三角形.22.已知如下图,四边形ABCD中,AB=BC,AD=CD,求证:∠A=∠C.【分析】连接BD,已知两边对应相等,加之一个公共边BD,则可利用SSS判定△ABD≌△CBD,根据全等三角形的对应角相等即可证得.【解答】证明:连接BD,∵AB=CB,BD=BD,AD=CD,∴△ABD≌△CBD(SSS).∴∠A=∠C.23.如图,在直角坐标系中,△ABC各顶点的横、纵坐标都是整数,(1)作出△ABC关于x轴对称的图形△A1B1C1;(2)写出△A1B1C1的各顶点关于y轴对称点A2B2C2的坐标.【分析】(1)首先确定A、B、C三点关于x轴对称的对称点的位置,再连接即可;(2)首先写出A1、B1、C1三点坐标,再确定A2、B2、C2三点坐标即可.【解答】解:(1)如图所示:△A1B1C1即为所求;(2)A2(﹣4,0),B2(1,﹣4),C2(3,1).24.已知,如图,△ABC中,∠A=90°,AB=AC,D是BC边上的中点,E、F分别是AB、AC上的点,且∠EDF=90°,求证:BE=AF.【分析】根据等腰三角形性质,三角形内角和定理,直角三角形斜边上中线,等腰三角形性质求出AD⊥BC,∠B=∠C=45°,∠BAD=∠FAD=45°,AD=BD=DC,求出∠ADB =90°,∠EDB=∠FDA,根据ASA证出△ADF≌△BDE即可.【解答】证明:∵△ABC中,∠A=90°,AB=AC,D是BC边上的中点,∴AD⊥BC,∠B=∠C=45°,∠BAD=∠FAD=45°,AD=BD=DC,∴∠ADB=90°,∴∠EDB=∠FDA=90°﹣∠ADE,在△ADF和△BDE中∴△ADF≌△BDE(ASA),∴BE=AF.25.如图,△ABC中,∠ACB=90°,∠B=30°,AD平分∠CAB,延长AC至E,使CE=AC.(1)求证:DE=DB;(2)连接BE,试证明△ABE为等边三角形.【分析】(1)由直角三角形的性质可得∠CAB=60°,AB=2AC,可得AB=AE,由“'SAS”可证△ADE≌△ADB,可得DE=DB;(2)由等边三角形的判定△ABE为等边三角形.【解答】证明:(1)∵∠ACB=90°,∠ABC=30°,∴∠CAB=60°,AB=2AC,∵AD平分∠CAB,∴∠DAB=∠DAC=30°=∠ABC,∵CE=AC,∴AE=2AC=AB,且∠DAC=∠DAB,AD=AD,∴△ADE≌△ADB(SAS),∴DE=DB,(2)连接BE,∵BA=BE,∠CAB=60°,∴△ABE是等边三角形.26.(1)如图(1)所示,A,E,F,C在一条直线上,AE=CF,过E,F分别作DE⊥AC,BF ⊥AC,且AB=CD,求证:EG=FG;(2)若将△DEC的边EC沿AC方向移动,变为图(2)时,其余条件不变,则EG=FG是否仍然成立?请说明理由.【分析】(1)先利用HL判定Rt△ABF≌Rt△CDE,得出BF=DE;再利用AAS判定△BFG ≌△DEG,从而得出GE=GF;(2)结论仍然成立,同理可以证明得到.【解答】证明:(1)∵DE⊥AC,BF⊥AC,∴∠DEF=∠BFE=90°.∵AE=CF,AE+EF=CF+EF.即AF=CE.在Rt△ABF和Rt△CDE中,,∴Rt△ABF≌Rt△CDE(HL),∴BF=DE.在△BFG和△DEG中,∵,∴△BFG≌△DGE(AAS),∴GE=GF;(2)结论依然成立.理由:∵DE⊥AC,BF⊥AC,∴∠BFA=∠DEC=90°∵AE=CF∴AE﹣EF=CF﹣EF,即AF=CE,在Rt△ABF和Rt△CDE中,,∴Rt△ABF≌Rt△CDE(HL),∴DE=BF在△BFG和△DEG中,∵,∴△BFG≌△DGE(AAS),∴GE=GF.。
2018-2019学年河北省八年级(上)期末数学试卷
以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;
再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;
再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…
这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=__.
26.问题背景:
如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.
小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;
则正确的配对是( )
A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣Ⅰ
C.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ
14.已知:a2﹣3a+1=0,则a+ ﹣2的值为( )
A. B. 1C.﹣1D.﹣5
15.如图在△ABC中,AB=AC,AD,CE是△ABC的两条中线,P是AD上的一个动点,则下列线段的长等于BP+EP最小值的是( )
A.∠A=∠DB. AB=FDC. AC=EDD. AF=CD
5.下列根式中能与 合并的二次根式为( )
A. B. C. D.
6.如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为( )
A.30°B.45°C.50°D.75°
7.关于 的叙述,错误的是( )
A. B. C. D.
最新精选精选保定市定州市八年级数学上册期末试卷((含答案))(已纠错)
2019-2019学年河北省保定市定州市八年级(上)期末数学试卷一、选择题(本大题共1个小题;每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.(3分)若使分式有意义,则x的取值范围是()A.x≠2B.x≠﹣2C.x≠﹣1D.x=23.(3分)下列运算中,正确的是()A.x3•x3=x6B.3x2+2x3=5x5C.(x2)3=x5D.(ab)3=a3b4.(3分)下列由左到右的变形,属于因式分解的是()A.(x+2)(x﹣2)=x2﹣4B.x2﹣4=(x+2)(x﹣2)C.x2﹣4+3x=(x+2)(x﹣2)+3xD.x2+4x﹣2=x(x+4)﹣25.(3分)解分式方程+=3时,去分母后变形为()A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1)C.2﹣(x+2)=3(1﹣x)D.2﹣(x+2)=3(x﹣1)6.(3分)如图,BD∥CE,∠1=85°,∠2=37°,则∠A的度数是()A.15度B.37度C.48度D.53度7.(3分)如图,在△ABC中,∠ACB为直角,∠A=30°,CD⊥AB于D,若BD=1,则AD的长度是()A.4B.3C.2D.18.(3分)用一条长为16cm的细绳围成一个等腰三角形,若其中有一边的长为4cm,则该等腰三角形的腰长为()A.4cm B.6cm C.4cm或6cm D.4cm或8cm9.(3分)若a+b=﹣3,ab=1,则a2+b2=()A.﹣11B.11C.﹣7D.710.(3分)图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A.2ab B.(a+b)2C.(a﹣b)2D.a2﹣b211.(3分)如图,已知△ABC的面积为12,BP平分∠ABC,且AP⊥BP于点P,则△BPC的面积是()A.10B.8C.6D.412.(3分)甲乙两地相距420千米,新修的高速公路开通后,在甲、乙两地行驶的长途客运车平均速度是原来的1.5倍,进而从甲地到乙地的时间缩短了2小时.设原来的平均速度为x千米/时,可列方程为()A. +=2B.﹣=2C. +=D.﹣=二、填空题(本大题共6个小题;每小题3分,共18分.把答案写在题中横线上)13.(3分)一粒芝麻约有0.000002千克,0.000002用科学记数法表示为千克.14.(3分)若x2﹣2ax+16是完全平方式,则a=.15.(3分)如图,有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,与CB延长线交于点E.则四边形AECF 的面积是.16.(3分)如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=2,则EF=.17.(3分)在平面直角坐标系中,点A(2,0),B(0,4),求点C,使以点B、O、C为顶点的三角形与△ABO全等,则点C的坐标为.18.(3分)如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA1=2,则△A5B5A6的边长为.三、解答下列各题(本题有8个小题,共66分)19.(8分)解答题.(1)计算:x(4x+3y)﹣(2x+y)(2x﹣y)(2)因式分解﹣3x3+6x2y﹣3xy220.(8分)解答题(1)先化简,再求值(1+)÷,其中x=3(2)解方程:21.(6分)如图,△ABC中,A点坐标为(2,4),B点坐标为(﹣3,﹣2),C点坐标为(3,1).(1)在图中画出△ABC关于y轴对称的△A′B′C′(不写画法),并写出点A′,B′,C′的坐标.(2)求△ABC的面积.22.(8分)如图,已知∠MON,点A,B分别在OM,ON边上,且OA=OB.(1)求作:过点A,B分别作OM,ON的垂线,两条垂线的交点记作点D(保留作图痕迹,不写作法);(2)连接OD,若∠MON=50°,则∠ODB=°.23.(8分)如图,在等边△ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF ⊥DE,交BC的延长线于点F,(1)求∠F的度数;(2)若CD=3,求DF的长.24.(8分)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”.而假分数都可化为带分数,如:==2+=2.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如:,这样的分式就是假分式;再如:,这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式).如:==1﹣;再如:===x+1+.解决下列问题:(1)分式是分式(填“真分式”或“假分式”);(2)假分式可化为带分式的形式;(3)如果分式的值为整数,那么x的整数值为.25.(10分)某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲,乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲,乙两队合做3天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.26.(10分)在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=度;(2)如图2,当点D在线段BC上,如果∠BAC=60°,则∠BCE=度;(3)设∠BAC=α,∠BCE=β①如图3,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,请直接写出α,β之样的数量关系,不用证明.2019-2019学年河北省保定市定州市八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共1个小题;每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.【点评】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(3分)若使分式有意义,则x的取值范围是()A.x≠2B.x≠﹣2C.x≠﹣1D.x=2【分析】直接利用分式有意义则其分母不为零,进而得出答案.【解答】解:∵分式有意义,∴x的取值范围是:x﹣2≠0,解得:x≠2.故选:A.【点评】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.3.(3分)下列运算中,正确的是()A.x3•x3=x6B.3x2+2x3=5x5C.(x2)3=x5D.(ab)3=a3b【分析】直接利用幂的乘方与积的乘方法则以及合并同类项、同底数幂的乘法运算法则进而得出答案.【解答】解:A、x3•x3=x6,正确;B、3x2+2x3,无法计算,故此选项错误;C、(x2)3=x6,故此选项错误;D、(ab)3=a3b3,故此选项错误;故选:A.【点评】此题主要考查了幂的乘方与积的乘方以及合并同类项、同底数幂的乘法运算等知识,正确掌握运算法则是解题关键.4.(3分)下列由左到右的变形,属于因式分解的是()A.(x+2)(x﹣2)=x2﹣4B.x2﹣4=(x+2)(x﹣2)C.x2﹣4+3x=(x+2)(x﹣2)+3xD.x2+4x﹣2=x(x+4)﹣2【分析】根据因式分解的意义,可得答案.【解答】解:A、是整式的乘法,故A错误;B、把一个多项式转化成几个整式积的形式,故B正确;C、没把一个多项式转化成几个整式积的形式,故C错误;D、没把一个多项式转化成几个整式积的形式,故D错误;故选:B.【点评】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.5.(3分)解分式方程+=3时,去分母后变形为()A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1)C.2﹣(x+2)=3(1﹣x)D.2﹣(x+2)=3(x﹣1)【分析】本题考查对一个分式确定最简公分母,去分母得能力.观察式子x﹣1和1﹣x互为相反数,可得1﹣x=﹣(x﹣1),所以可得最简公分母为x﹣1,因为去分母时式子不能漏乘,所以方程中式子每一项都要乘最简公分母.【解答】解:方程两边都乘以x﹣1,得:2﹣(x+2)=3(x﹣1).故选:D.【点评】考查了解分式方程,对一个分式方程而言,确定最简公分母后要注意不要漏乘,这正是本题考查点所在.切忌避免出现去分母后:2﹣(x+2)=3形式的出现.6.(3分)如图,BD∥CE,∠1=85°,∠2=37°,则∠A的度数是()A.15度B.37度C.48度D.53度【分析】根据平行线的性质,得出∠BDC=∠1=85°,再根据三角形外角性质,得出∠A=∠BDC ﹣∠2=85°﹣37°=48°即可.【解答】解:∵BD∥CE,∠1=85°,∴∠BDC=∠1=85°,又∵∠BDC是△ABD的外角,∴∠A=∠BDC﹣∠2=85°﹣37°=48°,故选:C.【点评】本题主要考查了平行线的性质以及三角形外角性质的运用,解决问题的关键是掌握:三角形的一个外角等于和它不相邻的两个内角的和.7.(3分)如图,在△ABC中,∠ACB为直角,∠A=30°,CD⊥AB于D,若BD=1,则AD的长度是()A.4B.3C.2D.1【分析】先根据∠ACB为直角,∠A=30°,求出∠B的度数,再根据CD⊥AB于D,求出∠DCB=30°,再利用含30度角的直角三角形的性质即可直接求出答案.【解答】解:∵∠ACB为直角,∠A=30°,∴∠B=90°﹣∠A=60°,∵CD⊥AB于D,∴∠DCB=90°﹣∠B=30°∴BC=2BD=2,AB=2BC=4,∴AD=4﹣1=3.故选:B.【点评】此题主要考查学生对含30度角的直角三角形的性质这一知识点的理解和掌握,此题的突破点是利用直角和三角形的内角和定理,求出∠DCB=90°﹣∠B=30°,以后的问题即可迎刃而解了.8.(3分)用一条长为16cm的细绳围成一个等腰三角形,若其中有一边的长为4cm,则该等腰三角形的腰长为()A.4cm B.6cm C.4cm或6cm D.4cm或8cm【分析】分已知边4cm是腰长和底边两种情况讨论求解.【解答】解:4cm是腰长时,底边为16﹣4×2=8,∵4+4=8,∴4cm、4cm、8cm不能组成三角形;4cm是底边时,腰长为(16﹣4)=6cm,4cm、6cm、6cm能够组成三角形;综上所述,它的腰长为6cm.故选:B.【点评】本题考查了等腰三角形的性质,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.9.(3分)若a+b=﹣3,ab=1,则a2+b2=()A.﹣11B.11C.﹣7D.7【分析】根据a2+b2=(a+b)2﹣2ab,直接代入求值即可.【解答】解:当a+b=﹣3,ab=1时,a2+b2=(a+b)2﹣2ab=9﹣2=7.故选:D.【点评】本题要熟记有关完全平方的几个变形公式,本题考查对完全平方公式的变形应用能力.10.(3分)图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A.2ab B.(a+b)2C.(a﹣b)2D.a2﹣b2【分析】中间部分的四边形是正方形,表示出边长,则面积可以求得.【解答】解:中间部分的四边形是正方形,边长是a+b﹣2b=a﹣b,则面积是(a﹣b)2.故选:C.【点评】本题考查了列代数式,正确表示出小正方形的边长是关键.11.(3分)如图,已知△ABC的面积为12,BP平分∠ABC,且AP⊥BP于点P,则△BPC的面积是()A.10B.8C.6D.4【分析】延长AP交BC于E,根据已知条件证得△ABP≌△EBP,根据全等三角形的性质得到AP=PE,得出S△ABP=S△EBP,S△ACP=S△ECP,推出S△PBC=S△ABC;【解答】解:延长AP交BC于E,∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,在△ABP和△EBP中,,∴△ABP≌△EBP(ASA),∴AP=PE,=S△EBP,S△ACP=S△ECP,∴S△ABP=S△ABC=×12=6,∴S△PBC故选:C.【点评】本题考查了等腰三角形的判定与性质,三角形的面积,主要利用了等底等高的三角形的面积相等,作辅助线构造出等腰三角形是解题的关键.12.(3分)甲乙两地相距420千米,新修的高速公路开通后,在甲、乙两地行驶的长途客运车平均速度是原来的1.5倍,进而从甲地到乙地的时间缩短了2小时.设原来的平均速度为x千米/时,可列方程为()A. +=2B.﹣=2C. +=D.﹣=【分析】设原来的平均速度为x千米/时,高速公路开通后平均速度为1.5x千米/时,根据走过相同的距离时间缩短了2小时,列方程即可.【解答】解:设原来的平均速度为x千米/时,由题意得,﹣=2.故选:B.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.二、填空题(本大题共6个小题;每小题3分,共18分.把答案写在题中横线上)13.(3分)一粒芝麻约有0.000002千克,0.000002用科学记数法表示为2×10﹣6千克.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000002用科学记数法表示为2×10﹣6千克,故答案为:2×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.(3分)若x2﹣2ax+16是完全平方式,则a=±4.【分析】完全平方公式:(a±b)2=a2±2ab+b2,这里首末两项是x和4这两个数的平方,那么中间一项为加上或减去x和4积的2倍.【解答】解:∵x2﹣2ax+16是完全平方式,∴﹣2ax=±2×x×4∴a=±4.【点评】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.15.(3分)如图,有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,与CB延长线交于点E.则四边形AECF 的面积是16.【分析】由四边形ABCD为正方形可以得到∠D=∠B=90°,AD=AB,又∠ABE=∠D=90°,而∠EAF=90°由此可以推出∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,进一步得到∠DAF=∠BAE,所=S△AFD,那么它们都加上四边形ABCF的面积,即可四以可以证明△AEB≌△AFD,所以S△AEB边形AECF的面积=正方形的面积,从而求出其面积.【解答】解:∵四边形ABCD为正方形,∴∠D=∠ABC=90°,AD=AB,∴∠ABE=∠D=90°,∵∠EAF=90°,∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,∴∠DAF=∠BAE,在△AEB和△AFD中,∵,∴△AEB≌△AFD(ASA),=S△AFD,∴S△AEB∴它们都加上四边形ABCF的面积,可得到四边形AECF的面积=正方形的面积=16.故答案为:16.【点评】本题主要考查全等三角形的判定和性质、正方形的面积公式,正方形的性质,关键在于求证△AEB≌△AFD.16.(3分)如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=2,则EF=4.【分析】作EG⊥OA于F,根据角平分线的性质得到EG的长度,再根据平行线的性质得到∠OEF=∠COE=15°,然后利用三角形的外角和内角的关系求出∠EFG=30°,利用30°角所对的直角边是斜边的一半解题.【解答】解:作EG⊥OA于G,如图所示:∵EF∥OB,∠AOE=∠BOE=15°∴∠OEF=∠COE=15°,EG=CE=2,∵∠AOE=15°,∴∠EFG=15°+15°=30°,∴EF=2EG=4.故答案为:4.【点评】本题考查了角平分线的性质、平行线的性质、含30°角的直角三角形的性质;熟练掌握角平分线的性质,证出∠EFG=30°是解决问题的关键.17.(3分)在平面直角坐标系中,点A(2,0),B(0,4),求点C,使以点B、O、C为顶点的三角形与△ABO全等,则点C的坐标为(﹣2,0)或(2,4)或(﹣2,4).【分析】由条件可知BO为两三角形的公共边,且△ABO为直角三角形,当△ABO和△BCO全等时,则可知△BCO为直角三角形,且有CO=AO可BC=AO,可得出C点的坐标.【解答】解:∵点A(2,0),B(0,4),∴AO=2,且△ABO为直角三角形,当△ABO和△BCO全等时,则可知△BCO为直角三角形,且有公共边BO,∴CO=AO或BC=AO,当CO=AO时,则C点坐标为(﹣2,0);当BC=AO时,则BC=2,且BC⊥OB,∴C点坐标为(2,4)或(﹣2,4);综上可知点C的坐为(﹣2,0)或(2,4)或(﹣2,4),故答案为:(﹣2,0)或(2,4)或(﹣2,4).【点评】本题主要考查全等三形角的判定和性质,由条件得到AO=CO或AO=BC是解题的关键.18.(3分)如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA1=2,则△A5B5A6的边长为32.【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.【解答】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=2,∴A2B1=2,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:A6B6=32B1A2=32.故答案是:32.【点评】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.三、解答下列各题(本题有8个小题,共66分)19.(8分)解答题.(1)计算:x(4x+3y)﹣(2x+y)(2x﹣y)(2)因式分解﹣3x3+6x2y﹣3xy2【分析】(1)直接利用单项式乘以多项式以及平方差公式化简,进而合并得出答案;(2)首先提取公因式﹣3x,再利用完全平方公式分解因式即可.【解答】解:(1)x(4x+3y)﹣(2x+y)(2x﹣y)=4x2+3xy﹣4x2+y2=3xy+y2;(2)﹣3x3+6x2y﹣3xy2=﹣3x(x2﹣2xy+y2)=﹣3x(x﹣y)2.【点评】此题主要考查了整式的乘法以及提取公因式法、公式法分解因式,正确应用公式是解题关键.20.(8分)解答题(1)先化简,再求值(1+)÷,其中x=3(2)解方程:【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)方程两边都乘以(x﹣2)化分式方程为整式方程,解之求得x的值,检验后可得方程的解.【解答】解:(1)原式=(+)÷=•=,当x=3时,原式==;(2)方程两边都乘以(x ﹣2),得:x ﹣3+x ﹣2=﹣3, 解得:x=1,检验:x=1时,x ﹣2=﹣1≠0, ∴x=1是原分式方程的解.【点评】本题主要考查分式的化简求值和解分式方程,解题的关键是熟练掌握分式的混合运算顺序和运算法则及解分式方程的步骤.21.(6分)如图,△ABC 中,A 点坐标为(2,4),B 点坐标为(﹣3,﹣2),C 点坐标为(3,1).(1)在图中画出△ABC 关于y 轴对称的△A′B′C′(不写画法),并写出点A′,B′,C′的坐标. (2)求△ABC 的面积.【分析】(1)根据网格结构找出点A′、B′、C′的位置,然后顺次连接即可;(2)利用三角形所在的矩形的面积减去四周三个小直角三角形的面积,然后列式计算即可得解.【解答】解:(1)如图,A′(﹣2,4),B′(3,﹣2),C′(﹣3,1);(2)S △ABC =6×6﹣×5×6﹣×6×3﹣×1×3,=36﹣15﹣9﹣1,=10.【点评】本题考查了利用轴对称变换作图,三角形的面积的求解,熟练掌握网格结构准确找出对应点的位置是解题的关键.22.(8分)如图,已知∠MON,点A,B分别在OM,ON边上,且OA=OB.(1)求作:过点A,B分别作OM,ON的垂线,两条垂线的交点记作点D(保留作图痕迹,不写作法);(2)连接OD,若∠MON=50°,则∠ODB=65°.【分析】(1)根据过直线上一点作直线垂线的方法作出垂线即可;(2)利用全等三角形的判定与性质结合四边形内角和定理得出答案.【解答】解:(1)如图,DA,DB即为所求垂线;(2)连接OD,∵DB⊥ON,DA⊥OM,∴∠OBD=∠OAD=90°,∠MON=50°,∴∠ADB=180°﹣50°=130°.在Rt△OBD与Rt△OAD中,∵,∴Rt△OBD≌Rt△OAD(HL),∴∠ODB=∠ADB=65°.故答案为:65.【点评】此题主要考查了基本作图以及全等三角形的判定与性质,正确得出Rt△OBD≌Rt△OAD 是解题关键.23.(8分)如图,在等边△ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF ⊥DE,交BC的延长线于点F,(1)求∠F的度数;(2)若CD=3,求DF的长.【分析】(1)根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求解;(2)易证△EDC是等边三角形,再根据直角三角形的性质即可求解.【解答】解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=3,∵∠DEF=90°,∠F=30°,∴DF=2DE=6.【点评】本题考查了等边三角形的判定与性质,以及直角三角形的性质,30度的锐角所对的直角边等于斜边的一半.24.(8分)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”.而假分数都可化为带分数,如:==2+=2.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如:,这样的分式就是假分式;再如:,这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式).如:==1﹣;再如:===x+1+.解决下列问题:(1)分式是真分式(填“真分式”或“假分式”);(2)假分式可化为带分式1﹣的形式;(3)如果分式的值为整数,那么x的整数值为0,﹣2,2,﹣4.【分析】(1)根据阅读材料中真分式与假分式的定义判断即可;(2)原式变形,化为带分式即可;(3)分式化为带分式后,即可确定出x的整数值.【解答】解:(1)分式是真分式;(2)==1﹣;(3)==2﹣为整数,则x的可能整数值为0,﹣2,2,﹣4.故答案为:(1)真;(2)1﹣;(3)0,﹣2,2,﹣4【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.25.(10分)某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲,乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲,乙两队合做3天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.【分析】方案(1)、(3)不耽误工期,符合要求,求出费用即可判断,方案(2)显然不符合要求.【解答】解:设规定日期为x天.由题意得+=1,3(x+6)+x2=x(x+6),3x=18,解之得:x=6.经检验:x=6是原方程的根.方案(1):1.2×6=7.2(万元);方案(2)比规定日期多用6天,显然不符合要求;方案(3):1.2×3+0.5×6=6.6(万元).∵7.2>6.6,∴在不耽误工期的前提下,选第三种施工方案最节省工程款.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.26.(10分)在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=90度;(2)如图2,当点D在线段BC上,如果∠BAC=60°,则∠BCE=120度;(3)设∠BAC=α,∠BCE=β①如图3,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,请直接写出α,β之样的数量关系,不用证明.【分析】(1)证明△BAD≌△CAE,根据全等三角形的性质得到∠ACE=∠B,得到答案;(2)根据全等三角形的性质得到∠ACE=∠B=60°,计算即可;(3)①根据三角形内角和定理得到∠B=∠ACB=,根据(1)的结论得到∠ACE=∠B,计算;②分点D在BC的延长线上,点D在CB的延长线上两种情况,仿照①的作法解答.【解答】解:(1)∵∠BAC=90°,∴∠DAE=∠BAC=90°,∵AB=AC,AD=AE,∴∠B=∠ACB=45°,∠ADE=∠AED=45°,∵∠DAE=∠BAC,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴∠ACE=∠B=45°,∴∠BCE=∠ACB+∠ACE=90°,故答案为:90°;(2)∵∠BAC=60°,∴∠DAE=∠BAC=60°,∵AB=AC,AD=AE,∴∠B=∠ACB=60°,∠ADE=∠AED=60°,由(1)得,∠ACE=∠B=60°,∴∠BCE=∠ACB+∠ACE=120°,故答案为:120°;(3)①α+β=180°,理由如下:∵∠BAC=α,∴∠B=∠ACB=,由(1)得,∠ACE=∠B=,∴β=∠BCE=∠ACB+∠ACE=180°﹣α,∴α+β=180°;②如图4,当点D在BC的延长线上时,α+β=180°,证明方法同①;如图5,当点D在CB的延长线上时,α=β,理由如下:由(1)得,△BAD≌△CAE,∴∠AEC=∠ADB,∴A,D,E,C四点共圆,∴∠BCE=∠DAE=∠BAC,即α=β.【点评】本题考查的是全等三角形的判定和性质,三角形内角和定理,等腰三角形的性质,掌握全等三角形的判定定理和性质定理是解题的关键.。
人教版2018-2019年八年级上期末数学试卷含答案解析
八年级(上)期末数学试卷一、选择题1.下列各式中计算正确的是()A.B.C.D.2.根据下列表述,能确定具体位置的是()A.某电影院2排 B.大桥南路C.北偏东30°D.东经118°,北纬40°3.有一个数值转换器,原理如下:当输入的x=64时,输出的y等于()A.2 B.8 C.D.4.如图,AB∥CD,∠A+∠E=75°,则∠C为()A.60° B.65° C.75° D.80°5.已知正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=kx+k的图象大致是()A.B.C.D.6.下列命题是真命题的是()A.同旁内角互补B.直角三角形的两锐角互余C.三角形的一个外角等于它的两个内角之和D.三角形的一个外角大于内角7.每年的4月23日是“世界读书日”.某中学为了了解八年级学生的读书情况,随机调查了50名学生的册数,统计数据如表所示:册数0 1 2 3 4人数 3 13 16 17 1则这50名学生读数册数的众数、中位数是()A.3,3 B.3,2 C.2,3 D.2,28.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC的形状为()A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对9.对于一次函数y=x+6,下列结论错误的是()A .函数值随自变量增大而增大B .函数图象与x 轴正方向成45°角C .函数图象不经过第四象限D .函数图象与x 轴交点坐标是(0,6)10.如果方程组的解与方程组的解相同,则a+b 的值为( )A .﹣1B .2C .1D .011.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a 和b ,那么(a+b )2的值为( )A .49B .25C .13D .112.早餐店里,李明妈妈买了5个馒头,3个包子,老板少要1元,只要10元;王红爸爸买了8个馒头,6个包子,老板九折优惠,只要18元.若馒头每个x 元,包子每个y 元,则所列二元一次方程组正确的是( )A .B .C .D .13.如图,以两条直线l 1,l 2的交点坐标为解的方程组是( )A.B.C.D.14.“黄金1号”玉米种子的价格为5元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打6折,设购买种子数量为x千克,付款金额为y元,则y与x的函数关系的图象大致是()A. B. C. D.15.如图,AB∥EF,∠C=90°,则α、β、γ的关系为()A.β=α+γ B.α+β+γ=180°C.β+γ﹣α=90°D.α+β﹣γ=90°二、填空题16.若点A(﹣2,b)在第三象限,则点B(﹣b,4)在第象限.17.一组数据1,3,2,5,x的平均数为3,那么这组数据的方差是.18.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P,若∠BPC=40°,则∠BAC的度数是.19.如图,已知一次函数y=ax+b的图象为直线,则关于x的方程ax+b=1的解x= .20.△ABC中,AB=15,AC=13,BC边上的高AD=12,则BC的长为.21.如图①,在△AOB中,∠AOB=90°,OA=3,OB=4.将△AOB沿x轴依次以点A、B、O为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为.三、解答题22.(1)计算:(2)解方程组:.23.(1)如图1,一住宅楼发生火灾,消防车立即赶到准备在距大厦6米处升起云梯到火灾窗口展开营救,已知云梯AB长15米,云梯底部B距地面2米,此时消防队员能否成功救下等候在距离地面约14米窗口的受困人群?说说你的理由.(2)如图所示,点B、E分别在AC、DF上,BD、CE均与AF相交,∠1=∠2,∠C=∠D,求证:∠A=∠F.24.某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:测试项目测试成绩/分甲乙丙笔试75 80 90面试93 70 68根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如图所示,每得一票记作1分.(1)请算出三人的民主评议得分;(2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用;(精确到0.01)(3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按4:3:3的比例确定个人成绩,那么谁将被录用?25.如图,直线y=2x+3与x轴相交于点A,与y轴相交于点B.(1)求A,B两点的坐标;(2)过B点作直线与x轴交于点P,若△ABP的面积为,试求点P的坐标.26.已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.27.小明从家骑自行车出发,沿一条直路到相距2400m的邮局办事,小明出发的同时,他的爸爸以96m/min 速度从邮局同一条道路步行回家,小明在邮局停留2min后沿原路以原速返回,设他们出发后经过t min时,小明与家之间的距离为s1m,小明爸爸与家之间的距离为s2m,图中折线OABD、线段EF分别表示s1、s2与t之间的函数关系的图象.(1)求s2与t之间的函数关系式;(2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?28.平面内的两条直线有相交和平行两种位置关系,下面我们就来研究其中的几种位置关系中角所存在的几种数量关系.(1)问题探究1:如图①,若AB∥CD,点P在AB、CD外部,则有∠D=∠BOD,又因为∠BOD是△POB的外角,故∠BOD=∠BPD+∠B,得∠BPD=∠D﹣∠B.将点P移到AB、CD内部,如图②,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)问题探究2:在图②中,将直线AB绕点B逆时针方向旋转一定角度交直线CD延长线于点Q,如图③,则∠BPD﹑∠B﹑∠PDQ﹑∠BQD之间有何数量关系?请证明你的结论;(3)根据(2)的结论直接写出图④中∠A+∠B+∠C+∠D+∠E+∠F的度数.八年级(上)期末数学试卷参考答案与试题解析一、选择题1.下列各式中计算正确的是()A.B.C.D.【考点】立方根;算术平方根.【分析】根据算术平方根和立方根的概念计算即可求解.【解答】解:A、=9,故选项错误;B、=5,故选项错误;C、=﹣1,故选项正确;D、(﹣)2=2,故选项错误.故选:C.【点评】本题考查了算术平方根和立方根的概念.算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0.2.根据下列表述,能确定具体位置的是()A.某电影院2排 B.大桥南路C.北偏东30°D.东经118°,北纬40°【考点】坐标确定位置.【分析】根据坐标的定义,确定位置需要两个数据对各选项分析判断利用排除法求解.【解答】解:A、某电影院2排,不能确定具体位置,故本选项错误;B、大桥南路,不能确定具体位置,故本选项错误;C、北偏东30°,不能确定具体位置,故本选项错误;D、东经118°,北纬40°,能确定具体位置,故本选项正确.故选D.【点评】本题考查了坐标确定位置,理解确定坐标的两个数是解题的关键.3.有一个数值转换器,原理如下:当输入的x=64时,输出的y等于()A.2 B.8 C.D.【考点】算术平方根.【专题】压轴题;图表型.【分析】根据图中的步骤,把64输入,可得其算术平方根为8,8再输入得其算术平方根是,是无理数则输出.【解答】解:由图表得,64的算术平方根是8,8的算术平方根是;故选D.【点评】本题考查了算术平方根的定义,看懂图表的原理是正确解答的关键.4.如图,AB∥CD,∠A+∠E=75°,则∠C为()A.60° B.65° C.75° D.80°【考点】平行线的性质.【分析】根据三角形外角性质求出∠EOB,根据平行线性质得出∠C=∠EOB,代入即可得出答案.【解答】解:∵∠A+∠E=75°,∴∠EOB=∠A+∠E=75°,∵AB∥CD,∴∠C=∠EOB=75°,故选C.【点评】本题考查了平行线性质和三角形外角性质的应用,关键是得出∠C=∠EOB和求出∠EOB的度数.5.已知正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=kx+k的图象大致是()A.B.C.D.【考点】一次函数的图象;正比例函数的性质.【分析】先根据正比例函数y=kx的函数值y随x的增大而增大判断出k的符号,再根据一次函数的性质即可得出结论.【解答】解:∵正比例函数y=kx的函数值y随x的增大而增大,∴k>0,∵b=k>0,∴一次函数y=kx+k的图象经过一、二、三象限.故选A.【点评】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k>0,b>0时函数的图象在一、二、三象限.6.下列命题是真命题的是()A.同旁内角互补B.直角三角形的两锐角互余C.三角形的一个外角等于它的两个内角之和D.三角形的一个外角大于内角【考点】命题与定理.【分析】分别根据平行线的性质、直角三角形的性质、三角形的外角分别对每一项进行分析即可.【解答】解:A.两直线平行,同旁内角互补,故本选项错误,是假命题,B.直角三角形的两锐角互余,正确,是真命题,C.三角形的一个外角等于与它不相邻的两个内角之和,故本选项错误,是假命题,D.三角形的一个外角大于与它不相邻的内角,故本选项错误,是假命题,故选:B.【点评】此题考查了命题与定理,用到的知识点是平行线的性质、直角三角形的性质、三角形的外角,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.每年的4月23日是“世界读书日”.某中学为了了解八年级学生的读书情况,随机调查了50名学生的册数,统计数据如表所示:册数0 1 2 3 4人数 3 13 16 17 1则这50名学生读数册数的众数、中位数是()A.3,3 B.3,2 C.2,3 D.2,2【考点】众数;中位数.【分析】在这组样本数据中,3出现的次数最多,所以求出了众数,将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,从而求出中位数是2;【解答】解:∵这组样本数据中,3出现了17次,出现的次数最多,∴这组数据的众数是3.∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,有=2,∴这组数据的中位数为2;故选B.【点评】本题考查的知识点有:用样本估计总体、众数以及中位数的知识,解题的关键是牢记概念及公式.8.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC的形状为()A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对【考点】勾股定理的逆定理;勾股定理.【专题】网格型.【分析】根据勾股定理求得△ABC各边的长,再利用勾股定理的逆定理进行判定,从而不难得到其形状.【解答】解:∵正方形小方格边长为1,∴BC==2,AC==,AB==,在△ABC中,∵BC2+AC2=52+13=65,AB2=65,∴BC2+AC2=AB2,∴△ABC是直角三角形.故选:A.【点评】考查了勾股定理的逆定理,解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.9.对于一次函数y=x+6,下列结论错误的是()A.函数值随自变量增大而增大B.函数图象与x轴正方向成45°角C.函数图象不经过第四象限D.函数图象与x轴交点坐标是(0,6)【考点】一次函数的性质.【专题】探究型.【分析】根据一次函数的性质对各选项进行逐一判断即可.【解答】解:A、∵一次函数y=x+6中k=1>0,∴函数值随自变量增大而增大,故A选项正确;B、∵一次函数y=x+6与x、y轴的交点坐标分别为(﹣6,0),(0,6),∴此函数与x轴所成角度的正切值==1,∴函数图象与x轴正方向成45°角,故B选项正确;C、∵一次函数y=x+6中k=1>0,b=6>0,∴函数图象经过一、二、三象限,故C选项正确;D、∵令y=0,则x=﹣6,∴一次函数y=x+6与x、y轴的交点坐标分别为(﹣6,0),故D选项错误.故选:D.【点评】本题考查的是一次函数的性质,熟知一次函数的增减性及与坐标轴的交点坐标是解答此题的关键.10.如果方程组的解与方程组的解相同,则a+b的值为()A.﹣1 B.2 C.1 D.0【考点】二元一次方程组的解.【分析】把代入方程组,即可得到一个关于a,b的方程组,即可求解.【解答】解:把代入方程组,得:,方程左右两边相加,得:7(a+b)=7,则a+b=1.故选C.【点评】本题考查了二元一次方程组的解的定义,理解定义是关键.11.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a和b,那么(a+b)2的值为()A.49 B.25 C.13 D.1【考点】勾股定理.【专题】图表型.【分析】根据正方形的面积公式以及勾股定理,结合图形进行分析发现:大正方形的面积即直角三角形斜边的平方25,也就是两条直角边的平方和是25,四个直角三角形的面积和是大正方形的面积减去小正方形的面积即2ab=24.根据完全平方公式即可求解.【解答】解:由于大正方形的面积25,小正方形的面积是1,则四个直角三角形的面积和是25﹣1=24,即4×ab=24,即2ab=24,a2+b2=25,则(a+b)2=25+24=49.故选:A.【点评】本题考查了勾股定理的应用,解题的关键是注意完全平方公式的展开:(a+b)2=a2+b2+2ab,还要注意图形的面积和a,b之间的关系.12.早餐店里,李明妈妈买了5个馒头,3个包子,老板少要1元,只要10元;王红爸爸买了8个馒头,6个包子,老板九折优惠,只要18元.若馒头每个x元,包子每个y元,则所列二元一次方程组正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】根据题意可得等量关系:①5个馒头的钱+3个包子的钱=10+1元;②(8个馒头的钱+6个包子的钱)×9折=18元,根据等量关系列出方程组即可.【解答】解:若馒头每个x元,包子每个y元,由题意得:,故选:B .【点评】此题主要考查了由实际问题抽象出二元一次方程组的应用,关键是正确理解题意,根据花费列出方程.13.如图,以两条直线l 1,l 2的交点坐标为解的方程组是( )A .B .C .D .【考点】一次函数与二元一次方程(组).【专题】数形结合.【分析】两条直线的交点坐标应该是联立两个一次函数解析式所组方程组的解.因此本题需先根据两直线经过的点的坐标,用待定系数法求出两直线的解析式.然后联立两函数的解析式可得出所求的方程组.【解答】解:直线l 1经过(2,3)、(0,﹣1),易知其函数解析式为y=2x ﹣1;直线l 2经过(2,3)、(0,1),易知其函数解析式为y=x+1;因此以两条直线l 1,l 2的交点坐标为解的方程组是:.故选C.【点评】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.14.“黄金1号”玉米种子的价格为5元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打6折,设购买种子数量为x千克,付款金额为y元,则y与x的函数关系的图象大致是()A. B. C. D.【考点】函数的图象.【分析】根据玉米种子的价格为5元/千克,如果一次购买2千克以上种子,超过2千克的部分的种子的价格打6折,可知2千克以下付款金额为y元随购买种子数量为x千克增大而增大,超过2千克的部分打6折,y仍随x的增大而增大,不过增加的幅度低一点,即可得到答案.【解答】解:可知2千克以下付款金额为y元随购买种子数量为x千克增大而增大,超过2千克的部分打6折,y仍随x的增大而增大,不过增加的幅度低一点,故选:B.【点评】本题主要考查了函数的图象,关键是分析出分两段,每段y都随x的增大而增大,只不过快慢不同.15.如图,AB∥EF,∠C=90°,则α、β、γ的关系为()A.β=α+γ B.α+β+γ=180°C.β+γ﹣α=90°D.α+β﹣γ=90°【考点】平行线的性质;垂线.【专题】探究型.【分析】此题可以构造辅助线,利用三角形的外角的性质以及平行线的性质建立角之间的关系.【解答】解:延长DC交AB与G,延长CD交EF于H.直角△BGC中,∠1=90°﹣α;△EHD中,∠2=β﹣γ,因为AB∥EF,所以∠1=∠2,于是90°﹣α=β﹣γ,故α+β﹣γ=90°.故选D.【点评】此题主要是通过作辅助线,构造了三角形以及由平行线构成的内错角.掌握三角形的外角的性质以及平行线的性质:两条直线平行,内错角相等.二、填空题16.若点A(﹣2,b)在第三象限,则点B(﹣b,4)在第一象限.【考点】点的坐标.【分析】根据第三象限内点的坐标,可得关于b 的不等式,根据不等式的性质,可得b 的相反数的取值范围,根据第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣),可得答案.【解答】解:由点A (﹣2,b )在第三象限,得b <0,两边都除以﹣1,得﹣b >0,4>0,B (﹣b ,4)在第 一象限,故答案为:一.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).17.一组数据1,3,2,5,x 的平均数为3,那么这组数据的方差是 2 .【考点】方差;算术平均数.【专题】计算题.【分析】先由平均数的公式计算出x 的值,再根据方差的公式计算.一般地设n 个数据,x 1,x 2,…x n 的平均数为, =(x 1+x 2+…+x n ),则方差S 2= [(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2].【解答】解:x=5×3﹣1﹣3﹣2﹣5=4,s 2= [(1﹣3)2+(3﹣3)2+(2﹣3)2+(5﹣3)2+(4﹣3)2]=2.故答案为2.【点评】本题考查了方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为, =(x 1+x 2+…+x n ),则方差S 2= [(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.18.如图,△ABC 的外角∠ACD 的平分线CP 与内角∠ABC 平分线BP 交于点P ,若∠BPC=40°,则∠BAC 的度数是 80° .【考点】三角形内角和定理.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC ,∠PCD=∠P+∠PCB ,根据角平分线的定义可得∠PCD=∠ACD ,∠PBC=∠ABC ,然后整理得到∠PCD=∠A ,再代入数据计算即可得解.【解答】解:在△ABC 中,∠ACD=∠A+∠ABC ,在△PBC 中,∠PCD=∠P+∠PBC ,∵PB 、PC 分别是∠ABC 和∠ACD 的平分线,∴∠PCD=∠ACD,∠PBC=∠ABC,∴∠P+∠PCB=(∠A+∠ABC)=∠A+∠ABC=∠A+∠PCB,∴∠PCD=∠A,∴∠BPC=40°,∴∠A=2×40°=80°,即∠BAC=80°.故答案为:80°.【点评】本题考查了三角形内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记定理与性质并求出∠PCD=∠A是解题的关键.19.如图,已知一次函数y=ax+b的图象为直线,则关于x的方程ax+b=1的解x= 4 .【考点】一次函数与一元一次方程.【分析】根据一次函数图象可得一次函数y=ax+b的图象经过(4,1)点,进而得到方程的解.【解答】解:根据图象可得,一次函数y=ax+b的图象经过(4,1)点,因此关于x的方程ax+b=1的解x=4,故答案为:4.【点评】此题主要考查了一次函数与方程,关键是正确利用数形结合的方法从图象中找到正确答案.20.△ABC中,AB=15,AC=13,BC边上的高AD=12,则BC的长为14或4 .【考点】勾股定理.【专题】分类讨论.【分析】分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD,CD,再由图形求出BC,在锐角三角形中,BC=BD+CD,在钝角三角形中,BC=CD﹣BD.【解答】解:(1)如图,锐角△ABC中,AB=15,AC=13,BC边上高AD=12,在Rt△ABD中AB=15,AD=12,由勾股定理得:BD2=AB2﹣AD2=152﹣122=81,∴BD=9,在Rt△ACD中AC=13,AD=12,由勾股定理得CD2=AC2﹣AD2=132﹣122=25,∴CD=5,∴BC的长为BD+DC=9+5=14;(2)钝角△ABC中,AB=15,AC=13,BC边上高AD=12,在Rt△ABD中AB=15,AD=12,由勾股定理得:BD2=AB2﹣AD2=152﹣122=81,∴BD=9,在Rt△ACD中AC=13,AD=12,由勾股定理得:CD2=AC2﹣AD2=132﹣122=25,∴CD=5,∴BC的长为DC﹣BD=9﹣5=4.故答案为14或4.【点评】本题考查了勾股定理,把三角形斜边转化到直角三角形中用勾股定理解答.21.如图①,在△AOB中,∠AOB=90°,OA=3,OB=4.将△AOB沿x轴依次以点A、B、O为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为(36,0).【考点】旋转的性质;坐标与图形性质;勾股定理.【专题】压轴题;规律型.【分析】如图,在△AOB中,∠AOB=90°,OA=3,OB=4,则AB=5,每旋转3次为一循环,则图③、④的直角顶点坐标为(12,0),图⑥、⑦的直角顶点坐标为(24,0),所以,图⑨、⑩10的直角顶点为(36,0).【解答】解:∵在△AOB中,∠AOB=90°,OA=3,OB=4,∴AB=5,∴图③、④的直角顶点坐标为(12,0),∵每旋转3次为一循环,∴图⑥、⑦的直角顶点坐标为(24,0),∴图⑨、⑩的直角顶点为(36,0).故答案为:(36,0).【点评】本题主要考查了旋转的性质、坐标与图形的性质及勾股定理,找出图形旋转的规律“旋转3次为一循环”,是解答本题的关键.三、解答题22.(1)计算:(2)解方程组:.【考点】二次根式的混合运算;解二元一次方程组.【分析】(1)直接利用二次根式混合运算法则化简求出答案;(2)直接利用代入消元法解方程得出答案.【解答】解:(1)=3﹣6﹣3=﹣6;(2),由②得:x=6﹣3y,则2(6﹣3y)+y=5,解得:y=﹣1,则2x﹣1=5,解得:x=3,故方程组的解为:.【点评】此题主要考查了二次根式的混合运算以及二元一次方程组的解法,正确化简二次根式是解题关键.23.(1)如图1,一住宅楼发生火灾,消防车立即赶到准备在距大厦6米处升起云梯到火灾窗口展开营救,已知云梯AB长15米,云梯底部B距地面2米,此时消防队员能否成功救下等候在距离地面约14米窗口的受困人群?说说你的理由.(2)如图所示,点B、E分别在AC、DF上,BD、CE均与AF相交,∠1=∠2,∠C=∠D,求证:∠A=∠F.【考点】勾股定理的应用;平行线的判定与性质.【分析】(1)先根据题意建立直角三角形,然后利用勾股定理求出AB的长度,最后于云梯的长度比较即可得出答案.(2)由已知条件和对顶角相等得出∠1=∠3,证出BD∥CE,由平行线的性质得出∠ABD=∠C,在证出∠ABD=∠D,得出AC∥DF,由平行线的性质即可得出结论.【解答】(1)解:能救下.理由如下:如图所示:由题意得,BC=6米,AC=14﹣2=12米,在RT△ABC中,AB2=AC2+BC2,∴AB2=(14﹣2)2+62=144+36=180,而152=225>180,故能救下.(2)证明:∵∠1=∠2,∠2=∠3,∴∠1=∠3,∴BD∥CE,∴∠ABD=∠C,∵∠C=∠D,∴∠ABD=∠D,∴AC∥DF,∴∠A=∠F.【点评】此题考查了勾股定理的应用、平行线的判定与性质;熟练掌握勾股定理和平行线的判定与性质,在(1)中,根据题意得出AC、BC的长度,利用勾股定理求出AB是解答本题的关键.24.某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:测试项目测试成绩/分甲乙丙笔试75 80 90面试93 70 68根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如图所示,每得一票记作1分.(1)请算出三人的民主评议得分;(2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用;(精确到0.01)(3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按4:3:3的比例确定个人成绩,那么谁将被录用?【考点】加权平均数;统计表;扇形统计图.【分析】(1)根据扇形统计图中的数据即可求得甲、乙、丙的民主评议得分;(2)根据平均数的概念求得甲、乙、丙的平均成绩,进行比较;(3)根据加权成绩分别计算三人的个人成绩,进行比较.【解答】解:(1)甲、乙、丙的民主评议得分分别为:200×25%=50分,200×40%=80分,200×35%=70分;(2)甲的平均成绩为:,乙的平均成绩为:,丙的平均成绩为:.由于76.67>76>72.67,所以候选人乙将被录用;(3)如果将笔试、面试、民主评议三项测试得分按4:3:3的比例确定个人成绩,那么甲的个人成绩为:,乙的个人成绩为:,丙的个人成绩为:.由于丙的个人成绩最高,所以候选人丙将被录用.【点评】本题考查了加权平均数的概念及求法,属于基础题,牢记加权平均数的计算公式是解题的关键.25.如图,直线y=2x+3与x轴相交于点A,与y轴相交于点B.(1)求A,B两点的坐标;(2)过B点作直线与x轴交于点P,若△ABP的面积为,试求点P的坐标.【考点】一次函数图象上点的坐标特征.【分析】(1)把x=0,y=0分别代入函数解析式,即可求得相应的y、x的值,则易得点A、B的坐标;=AP•OB=,则AP=.设(2)由B、A的坐标易求:OB=3,OA=.然后由三角形面积公式得到S△ABP点P的坐标为(m,0),则m﹣(﹣)=或﹣﹣m=,由此可以求得m的值.【解答】解:(1)由x=0得:y=3,即:B(0,3).由y=0得:2x+3=0,解得:x=﹣,即:A(﹣,0);(2)由B(0,3)、A(﹣,0)得:OB=3,OA==AP•OB=∵S△ABP∴AP=,解得:AP=.设点P的坐标为(m,0),则m﹣(﹣)=或﹣﹣m=,解得:m=1或﹣4,∴P点坐标为(1,0)或(﹣4,0).【点评】本题考查了一次函数图象上点的坐标特征.一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.26.已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.【考点】二元一次方程组的应用;二元一次方程的应用.【分析】(1)根据“用2辆A型车和1辆B型车载满货物一次可运货10吨;”“用1辆A型车和2辆B 型车载满货物一次可运货11吨”,分别得出等式方程,组成方程组求出即可;(2)由题意理解出:3a+4b=31,解此二元一次方程,求出其整数解,得到三种租车方案;(3)根据(2)中所求方案,利用A型车每辆需租金100元/次,B型车每辆需租金120元/次,分别求出租车费用即可.【解答】解:(1)设每辆A型车、B型车都装满货物一次可以分别运货x吨、y吨,依题意列方程组得:,解方程组,得:,答:1辆A型车装满货物一次可运3吨,1辆B型车装满货物一次可运4吨.(2)结合题意和(1)得:3a+4b=31,∴a=∵a、b都是正整数∴或或答:有3种租车方案:方案一:A型车9辆,B型车1辆;方案二:A型车5辆,B型车4辆;。
2018-2019学年第一学期八年级期末考试数学试题(有答案和解析)
2018-2019学年八年级(上)期末数学试卷一、选择题(本题共10小题,每小题4分,共40分)1.点A(﹣3,4)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限2.一次函数y=﹣3x﹣2的图象和性质,述正确的是()A.y随x的增大而增大B.在y轴上的截距为2C.与x轴交于点(﹣2,0)D.函数图象不经过第一象限3.一个三角形三个内角的度数之比为3:4:5,这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形4.下列命是真命题的是()A.π是单项式B.三角形的一个外角大于任何一个内角C.两点之间,直线最短D.同位角相等5.等腰三角形的底边长为4,则其腰长x的取值范国是()A.x>4B.x>2C.0<x<2D.2<x<46.已知点A(m,﹣3)和点B(n,3)都在直线y=﹣2x+b上,则m与n的大小关系为()A.m>n B.m<nC.m=n D.大小关系无法确定7.把函数y=3x﹣3的图象沿x轴正方向水平向右平移2个单位后的解析式是()A.y=3x﹣9B.y=3x﹣6C.y=3x﹣5D.y=3x﹣18.一个安装有进出水管的30升容器,水管单位时间内进出的水量是一定的,设从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,得到水量y(升)与时间x(分)之间的函数关系如图所示.根据图象信思给出下列说法,其中错误的是()A.每分钟进水5升B.每分钟放水1.25升C.若12分钟后只放水,不进水,还要8分钟可以把水放完D.若从一开始进出水管同时打开需要24分钟可以将容器灌满9.如图,在△ABC中,点D、E、F分别在边BC、AB、AC上,且BD=BE,CD=CF,∠A=70°,那么∠FDE等于()A.40°B.45°C.55°D.35°10.如图所示,△ABP与△CDP是两个全等的等边三角形,且PA⊥PD,有下列四个结论:①∠PBC =15°,②AD∥BC,③PC⊥AB,④四边形ABCD是轴对称图形,其中正确的个数为()A.1个B.2个C.3个D.4个二、填空(本大共4小,每小题5分,满分20分)11.函数y=中,自变量x的取值范围是.12.若点(a,3)在函数y=2x﹣3的图象上,a的值是.13.已知等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为50°,则此等腰三角形的顶角为.14.如图,CA⊥AB,垂足为点A,AB=24,AC=12,射线BM⊥AB,垂足为点B,一动点E从A 点出发以3厘米/秒沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E经过秒时,△DEB与△BCA全等.三、解答题(本题共2小题,每小题8分,共16分)15.已知一次函数的图象经过A(﹣1,4),B(1,﹣2)两点.(1)求该一次函数的解析式;(2)直接写出函数图象与两坐标轴的交点坐标.16.△ABC在平面直角坐标系中的位置如图所示.(1)在图中画出△ABC与关于y轴对称的图形△A1B1C1,并写出顶点A1、B1、C1的坐标;(2)若将线段A1C1平移后得到线段A2C2,且A2(a,2),C2(﹣2,b),求a+b的值.四、解答题(本大題共2小题,每小题8分,计16分)17.如图,一次函数图象经过点A(0,2),且与正比例函数y=﹣x的图象交于点B,B点的横坐标是﹣1.(1)求该一次函数的解析式:(2)求一次函数图象、正比例函数图象与x轴围成的三角形的面积.18.如图,P,Q是△ABC的边BC上的两点,且BP=PQ=QC=AP=AQ,求∠ABC的度数.五、解答题(20分)19.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是米.(2)小明在书店停留了分钟.(3)本次上学途中,小明一共行驶了米.一共用了分钟.(4)在整个上学的途中(哪个时间段)小明骑车速度最快,最快的速度是米/分.20.如图,在△ABC中,点D在AB上,点E在BC上,BD=BE.(1)请你再添加一个条件,使得△BEA≌△BDC,并给出证明.你添加的条件是.(2)根据你添加的条件,再写出图中的一对全等三角形.(只要求写出一对全等三角形,不再添加其他线段,不再标注或使用其他字母,不必写出证明过程)六、解答题(本大题12分)21.P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连PQ交AC边于D.(1)证明:PD=DQ.(2)如图2,过P作PE⊥AC于E,若AB=6,求DE的长.七、解答题(本大题12分)22.某校运动会需购买A,B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.求出自变量m的取值范围,并确定最少费用W的值.八、解答題(本大题14分23.在平面直角坐标系中,O是坐标原点,A(2,2),B(4,﹣3),P是x轴上的一点(1)若PA+PB的值最小,求P点的坐标;(2)若∠APO=∠BPO,①求此时P点的坐标;②在y轴上是否存在点Q,使得△QAB的面积等于△PAB的面积,若存在,求出Q点坐标;若不存在,说明理由.参考答案与试题解析一、选择题(本题共10小题,每小题4分,共40分)1.【分析】应先判断出所求的点的横纵坐标的符号,进而判断点A所在的象限.【解答】解:因为点A(﹣3,4)的横坐标是负数,纵坐标是正数,符合点在第二象限的条件,所以点A在第二象限.故选B.【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号,第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.【分析】根据一次函数的图象和性质,依次分析各个选项,选出正确的选项即可.【解答】解:A.一次函数y=﹣3x﹣2的图象y随着x的增大而减小,即A项错误,B.把x=0代入y=﹣3x﹣2得:y=﹣2,即在y轴的截距为﹣2,即B项错误,C.把y=0代入y=﹣3x﹣2的:﹣3x﹣2=0,解得:x=﹣,即与x轴交于点(﹣,0),即C项错误,D.函数图象经过第二三四象限,不经过第一象限,即D项正确,故选:D.【点评】本题考查了一次函数图象上点的坐标特征,一次函数的图象,一次函数的性质,正确掌握一次函数图象的增减性和一次函数的性质是解题的关键.3.【分析】由题意知:把这个三角形的内角和180°平均分了12份,最大角占总和的,根据分数乘法的意义求出三角形最大内角即可.【解答】解:因为3+4+5=12,5÷12=,180°×=75°,所以这个三角形里最大的角是锐角,所以另两个角也是锐角,三个角都是锐角的三角形是锐角三角形,所以这个三角形是锐角三角形.故选:A.【点评】此题考查了三角形内角和定理,解题时注意:三个角都是锐角,这个三角形是锐角三角形;有一个角是钝角的三角形是钝角三角形;有一个角是直角的三角形是直角三角形.4.【分析】根据单项式、三角形外角性质、线段公理、平行线性质解答即可.【解答】解:A、π是单项式,是真命题;B、三角形的一个外角大于任何一个与之不相邻的内角,是假命题;C、两点之间,线段最短,是假命题;D、两直线平行,同位角相等,是假命题;故选:A.【点评】本题考查了命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.5.【分析】根据等腰三角形两腰相等和三角形中任意两边之和大于第三边列不等式,求解即可.【解答】解:∵等腰三角形的底边长为4,腰长为x,∴2x>4,∴x>2.故选:B.【点评】本题考查等腰三角形的性质,等腰三角形中两腰相等,以及三角形的三边关系.6.【分析】根据一次函数y=﹣2x+b图象的增减性,结合点A和点B纵坐标的大小关系,即可得到答案.【解答】解:∵一次函数y=﹣2x+b图象上的点y随着x的增大而减小,又∵点A(m,﹣3)和点B(n,3)都在直线y=﹣2x+b上,且﹣3<3,∴m>n,故选:A.【点评】本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.7.【分析】根据平移性质可由已知的解析式写出新的解析式即可.【解答】解:根据题意,直线向右平移2个单位,即对应点的纵坐标不变,横坐标减2,所以得到的解析式是y=3(x﹣2)﹣3=3x﹣9.故选:A.【点评】此题主要考查了一次函数图象与几何变换,能够根据平移迅速由已知的解析式写出新的解析式:y=kx左右平移|a|个单位长度的时候,即直线解析式是y=k(x±|a|);当直线y=kx上下平移|b|个单位长度的时候,则直线解析式是y=kx±|b|.8.【分析】根据前4分钟计算每分钟进水量,结合4到12分钟计算每分钟出水量,可逐一判断.【解答】解:每分钟进水:20÷4=5升,A正确;每分钟出水:(5×12﹣30)÷8=3.75 升;故B错误;12分钟后只放水,不进水,放完水时间:30÷3.75=8分钟,故C正确;30÷(5﹣3.75)=24分钟,故D正确,故选:B.【点评】本题考查函数图象的相关知识.从图象中获取并处理信息是解答关键.9.【分析】首先根据三角形内角和定理,求出∠B+∠C的度数;然后根据等腰三角形的性质,表示出∠BDE+∠CDF的度数,由此可求得∠EDF的度数.【解答】解:△ABC中,∠B+∠C=180°﹣∠A=110°;△BED中,BE=BD,∴∠BDE=(180°﹣∠B);同理,得:∠CDF=(180°﹣∠C);∴∠BDE+∠CDF=180°﹣(∠B+∠C)=180°﹣∠FDE;∴∠FDE=(∠B+∠C)=55°.故选:C.【点评】此题主要考查的是等腰三角形的性质以及三角形内角和定理.有效地进行等角的转移时解答本题的关键.10.【分析】(1)先求出∠BPC的度数是360°﹣60°×2﹣90°=150°,再根据对称性得到△BPC 为等腰三角形,∠PBC即可求出;(2)根据题意:有△APD是等腰直角三角形;△PBC是等腰三角形;结合轴对称图形的定义与判定,可得四边形ABCD是轴对称图形,进而可得②③④正确.【解答】解:根据题意,∠BPC=360°﹣60°×2﹣90°=150°∵BP=PC,∴∠PBC=(180°﹣150°)÷2=15°,①正确;根据题意可得四边形ABCD是轴对称图形,∴②AD∥BC,③PC⊥AB正确;④也正确.所以四个命题都正确.故选:D.【点评】本题考查轴对称图形的定义与判定,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.二、填空(本大共4小,每小题5分,满分20分)11.【分析】由二次根式中被开方数为非负数且分母不等于零求解可得.【解答】解:根据题意,得:,解得:x≤2且x≠﹣2,故答案为:x≤2且x≠﹣2.【点评】本题主要考查函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.【分析】把点(a,3)代入y=2x﹣3得到关于a的一元一次方程,解之即可.【解答】解:把点(a,3)代入y=2x﹣3得:2a﹣3=3,解得:a=3,故答案为:3.【点评】本题考查了一次函数图象上点的坐标特征,正确掌握代入法是解题的关键.13.【分析】由题意可知其为锐角等腰三角形或钝角等腰三角形,不可能是等腰直角三角形,所以应分开来讨论.【解答】解:当为锐角时,如图∵∠ADE=50°,∠AED=90°,∴∠A=40°当为钝角时,如图∠ADE=50°,∠DAE=40°,∴顶角∠BAC=180°﹣40°=140°,故答案为40°或140°.【点评】本题考查了等腰三角形的性质及三角形内角和定理,分类讨论是正确解答本题的关键.14.【分析】设点E经过t秒时,△DEB≌△BCA;由斜边ED=CB,分类讨论BE=AC或BE=AB 或AE=0时的情况,求出t的值即可.【解答】解:设点E经过t秒时,△DEB≌△BCA;此时AE=3t分情况讨论:(1)当点E在点B的左侧时,BE=24﹣3t=12,∴t=4;(2)当点E在点B的右侧时,①BE=AC时,3t=24+12,∴t=12;②BE=AB时,3t=24+24,∴t=16.(3)当点E与A重合时,AE=0,t=0;综上所述,故答案为:0,4,12,16.【点评】本题考查了全等三角形的判定方法;分类讨论各种情况下的三角形全等是解决问题的关键.三、解答题(本题共2小题,每小题8分,共16分)15.【分析】(1)利用待定系数法容易求得一次函数的解析式;(2)分别令x=0和y=0,可求得与两坐标轴的交点坐标.【解答】解:(1)∵图象经过点(﹣1,4),(1,﹣2)两点,∴把两点坐标代入函数解析式可得,解得,∴一次函数解析式为y=﹣3x+1;(2)在y=﹣3x+1中,令y=0,可得﹣3x+1=0,解得x=;令x=0,可得y=1,∴一次函数与x轴的交点坐标为(,0),与y轴的交点坐标为(0,1).【点评】本题主要考查待定系数及函数与坐标轴的交点,掌握待定系数法求函数解析式的步骤是解题的关键.16.【分析】(1)根据轴对称的性质确定出点A1、B1、C1的坐标,然后画出图形即可;(2)由点A1、C1的坐标,根据平移与坐标变化的规律可规定出a、b的值,从而可求得a+b的值.【解答】解:(1)如图所示:A1(2,3)、B1(3,2)、C1(1,1).(2)∵A1(2,3)、C1(1,1),A2(a,2),C2(﹣2,b).∴将线段A1C1向下平移了1个单位,向左平移了3个单位.∴a=﹣1,b=0.∴a+b=﹣1+0=﹣1.【点评】本题主要考查的轴对称变化、坐标变化与平移,根据根据平移与坐标变化的规律确定出a、b的值是解题的关键.四、解答题(本大題共2小题,每小题8分,计16分)17.【分析】(1)根据点B在函数y=﹣x上,点B的横坐标为﹣1,可以求得点B的坐标,再根据一次函数过点A和点B即可求得一次函数的解析式;(2)将y=0代入(1)求得的一次函数的解析式,求得该函数与x轴的交点,即可求得一次函数图象、正比例函数图象与x轴围成的三角形的面积.【解答】解:(1)∵点B在函数y=﹣x上,点B的横坐标为﹣1,∴当x=﹣1时,y=﹣(﹣1)=1,∴点B的坐标为(﹣1,1),∵点A(0,2),点B(﹣1,1)在一次函数y=kx+b的图象上,∴,得,即一次函数的解析式为y=x+2;(2)将y=0代入y=x+2,得x=﹣2,则一次函数图象、正比例函数图象与x轴围成的三角形的面积为:=1.【点评】本题考查两条直线相交或平行问题、待定系数法求一次函数解析式,解答本题的关键是明确题意,利用数形结合的思想解答.18.【分析】根据等边三角形的性质,得∠PAQ=∠APQ=∠AQP=60°,再根据等腰三角形的性质和三角形的外角的性质求得∠ABC=∠BAP=∠CAQ=30°,从而求解.【解答】解:∵BP=PQ=QC=AP=AQ,∴∠PAQ=∠APQ=∠AQP=60°,∠B=∠BAP,∠C=∠CAQ.又∵∠BAP+∠ABP=∠APQ,∠C+∠CAQ=∠AQP,∴∠ABC=∠BAP=∠CAQ=30°.【点评】此题主要考查了运用等边三角形的性质、等腰三角形的性质以及三角形的外角的性质.五、解答题(20分)19.【分析】(1)因为y轴表示路程,起点是家,终点是学校,故小明家到学校的路程是1500米;(2)与x轴平行的线段表示路程没有变化,观察图象分析其对应时间即可.(3)共行驶的路程=小明家到学校的距离+折回书店的路程×2.(4)观察图象分析每一时段所行路程,然后计算出各时段的速度进行比较即可.【解答】解:(1)∵y轴表示路程,起点是家,终点是学校,∴小明家到学校的路程是1500米.(2)由图象可知:小明在书店停留了4分钟.(3)1500+600×2=2700(米)即:本次上学途中,小明一共行驶了2700米.一共用了14分钟.(4)折回之前的速度=1200÷6=200(米/分)折回书店时的速度=(1200﹣600)÷2=300(米/分),从书店到学校的速度=(1500﹣600)÷2=450(米/分)经过比较可知:小明在从书店到学校的时候速度最快即:在整个上学的途中从12分钟到14分钟小明骑车速度最快,最快的速度是450 米/分【点评】本题考查了函数的图象及其应用,解题的关键是理解函数图象中x轴、y轴表示的量及图象上点的坐标的意义.20.【分析】本题是开放题,应先确定选择哪对三角形,再对应三角形全等条件求解.【解答】解:添加条件例举:BA=BC;∠AEB=∠CDB;∠BAC=∠BCA;证明例举(以添加条件∠AEB=∠CDB为例):∵∠AEB=∠CDB,BE=BD,∠B=∠B,∴△BEA≌△BDC.另一对全等三角形是:△ADF≌△CEF或△AEC≌△CDA.故填∠AEB=∠CDB;△ADF≌△CEF或△AEC≌△CDA.【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.六、解答题(本大题12分)21.【分析】(1)过点P作PF∥BC交AC于点F;证出△APF也是等边三角形,得出∠APF=∠BCA=60°,AP=PF=AF=CQ,由AAS证明△PDF≌△QDC,得出对应边相等即可;(2)过P作PF∥BC交AC于F.同(1)由AAS证明△PFD≌△QCD,得出对应边相等FD=CD,证出AE+CD=DE=AC,即可得出结果.【解答】(1)证明:如图1所示,点P作PF∥BC交AC于点F;∵△ABC是等边三角形,∴△APF也是等边三角形,∴∠APF=∠BCA=60°,AP=PF=AF=CQ,∴∠FDP=∠DCQ,∠FDP=∠CDQ,在△PDF和△QDC中,,∴△PDF≌△QDC(AAS),∴PD=DQ;(2)解:如图2所示,过P作PF∥BC交AC于F.∵PF∥BC,△ABC是等边三角形,∴∠PFD=∠QCD,△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ.在△PFD和△QCD中,,∴△PFD≌△QCD(AAS),∴FD=CD,∵AE=EF,∴EF+FD=AE+CD,∴AE+CD=DE=AC,∵AC=6,∴DE=3.【点评】本题考查了等腰三角形的判定与性质、全等三角形的判定与性质、平行线的性质;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.七、解答题(本大题12分)22.【分析】(1)设A奖品的单价是x元,B奖品的单价是y元,根据条件建立方程组求出其解即可;(2)根据总费用=两种奖品的费用之和表示出W与m的关系式,并有条件建立不等式组求出x 的取值范围,由一次函数的性质就可以求出结论.【解答】解(1)设A奖品的单价是x元,B奖品的单价是y元,由题意,得,解得:.答:A奖品的单价是10元,B奖品的单价是15元;(2)由题意,得W=10m+15(100﹣m)=﹣5m+1500∴,解得:70≤m≤75.∵m是整数,∴m=70,71,72,73,74,75.∵W=﹣5m+1500,∴k=﹣5<0,∴W随m的增大而减小,=1125.∴m=75时,W最小∴应买A种奖品75件,B种奖品25件,才能使总费用最少为1125元.【点评】本题考查了一次函数的性质的运用,二元一次方程组的运用,一元一次不等式组的运用,解答时求一次函数的解析式是关键.八、解答題(本大题14分23.【分析】(1)根据题意画坐标系描点,根据两点之间线段最短,求直线AB解析式,与x轴交点即为所求点P.(2)①作点A关于x轴的对称点A',根据轴对称性质有∠APO=∠A'PO,所以此时P、A'、B在同一直线上.求直线A'B解析式,与x轴交点即为所求点P.②法一,根据坐标系里三角形面积等于水平长(右左两顶点的横坐标差)与铅垂高(上下两顶点的纵坐标差)乘积的一半,求得△PAB的面积为12,进而求得△QAP的铅垂高等于6,再得出直线BQ上的点E坐标为(2,8)或(2,﹣4),求出直线BQ,即能求出点Q坐标.法二,根据△QAB与△PAB同以AB为底时,高应相等,所以点Q在平行于直线AB、且与直线AB距离等于P到直线AB距离的直线上.这样的直线有两条,一条即过点P且与AB平行的直线,另一条在AB上方,根据平移距离相等即可求出.所求直线与y轴交点即点Q.【解答】解:(1)∵两点之间线段最短∴当A、P、B在同一直线时,PA+PB=AB最短(如图1)设直线AB的解析式为:y=kx+b∵A(2,2),B(4,﹣3)∴解得:∴直线AB:y=﹣x+7当﹣x+7=0时,得:x=∴P点坐标为(,0)(2)①作点A(2,2)关于x轴的对称点A'(2,﹣2)根据轴对称性质有∠APO=∠A'PO∵∠APO=∠BPO∴∠A'PO=∠BPO∴P 、A '、B 在同一直线上(如图2)设直线A 'B 的解析式为:y =k 'x +b '解得:∴直线A 'B :y =﹣x ﹣1当﹣x ﹣1=0时,得:x =﹣2∴点P 坐标为(﹣2,0)②存在满足条件的点Q法一:设直线AA '交x 轴于点C ,过B 作BD ⊥直线AA '于点D (如图3)∴PC =4,BD =2∴S △PAB =S △PAA '+S △BAA '=设BQ 与直线AA '(即直线x =2)的交点为E (如图4)∵S △QAB =S △PAB则S △QAB ==2AE =12∴AE =6∴E 的坐标为(2,8)或(2,﹣4)设直线BQ 解析式为:y =ax +q或解得: 或∴直线BQ :y =或y =∴Q 点坐标为(0,19)或(0,﹣5)法二:∵S △QAB =S △PAB∴△QAB 与△PAB 以AB 为底时,高相等即点Q 到直线AB 的距离=点P 到直线AB 的距离i )若点Q 在直线AB 下方,则PQ ∥AB设直线PQ :y =x +c ,把点P (﹣2,0)代入解得c =﹣5,y =﹣x ﹣5即Q (0,﹣5)ii )若点Q 在直线AB 上方,∵直线y =﹣x ﹣5向上平移12个单位得直线AB :y =﹣x +7∴把直线AB:y=﹣x+7再向上平移12个单位得直线AB:y=﹣x+19∴Q(0,19)综上所述,y轴上存在点Q使得△QAB的面积等于△PAB的面积,Q的坐标为(0,﹣5)或(0,19)【点评】本题考查了两点之间线段最短,轴对称性质,求直线解析式,求三角形面积,平行线之间距离处处相等.解题关键是根据题意画图描点,直角坐标系里三角形面积的求法()是较典型题,两三角形面积相等且等底时,高相等即第三个顶点在平行于底的直线上.。
八年级数学期末试卷定州
一、选择题(每题3分,共30分)1. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 12. 若a < b,则下列不等式中正确的是()A. a + 2 < b + 2B. a - 2 > b - 2C. a / 2 < b / 2D. a 2 > b 23. 在直角坐标系中,点P(-2,3)关于x轴的对称点坐标是()A. (-2,-3)B. (2,-3)C. (-2,3)D. (2,3)4. 下列函数中,自变量x的取值范围是全体实数的是()A. y = √(x + 1)B. y = 1 / (x - 2)C. y = x^2D. y = 1 / x5. 若一个等腰三角形的底边长为6cm,腰长为8cm,则这个三角形的面积是()A. 24cm²B. 36cm²C. 48cm²D. 60cm²6. 下列图形中,不是轴对称图形的是()A. 正方形B. 等腰三角形C. 长方形D. 非等腰三角形7. 若sin A = 0.5,且A为锐角,则cos A的值是()A. 0.5B. 0.866C. 0.707D. 0.68. 下列代数式中,正确的是()A. (a + b)^2 = a^2 + b^2B. (a - b)^2 = a^2 - b^2C. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^29. 下列函数中,图象为一条直线的是()A. y = x^2B. y = 2x + 1C. y = 1 / xD. y = √x10. 一个正方体的体积是64cm³,则它的棱长是()A. 2cmB. 4cmC. 8cmD. 16cm二、填空题(每题3分,共30分)11. 若a + b = 5,ab = 6,则a² + b² = ______。
2018-2019学年度八年级上数学期末试卷(解析版) (2)
2018-2019学年八年级(上)期末数学试卷一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣16.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣28.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a29.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.2011.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.712.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.24.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A 作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DA E交BC于F,探究线段BD,DF,FC之间的数量关系,并证明;(3)在(2)的条件下,若BD=3,CF=4,求AD的长.2018-2019学年河北省石家庄市八校联考八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位【分析】确定近似数精确到哪一位,就是看这个数的最后一位是什么位即可.【解答】解:近似数0.13是精确到百分位,故选:B.【点评】此题考查了近似数,用到的知识点是精确度,一个数最后一位所在的位置就是这个数的精确度.2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.【分析】左旋转180°后还是和原来一样的图形是中心对称图形,根据中心对称图形的定义解答即可.【解答】解:左旋转180°后还是和原来一样的是只有C.故选:C.【点评】本题主要考查了中心对称图形的定义,是需要熟记的内容.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根【分析】根据算术平方根与平方根的定义即可求出答案.【解答】解:是2的算术平方根,故选:D.【点评】本题考查平方根,解题的关键是熟练运用平方根的定义,本题属于基础题型.4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.【分析】直接利用轴对称图形的定义判断得出即可.【解答】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、不是轴对称图形,符合题意;故选:D.【点评】此题主要考查了轴对称图形的定义,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣1【分析】所选取的a的值符合题设,则不满足结论即作为反例.【解答】解:当a=﹣1时,满足|a﹣1|>1,但满足a>2,所以a=﹣1可作为证明命题“若|a﹣1|>1,则a>2”是假命题的反例.故选:D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角【分析】观察图象可知已知线段AB,α,β,由此即可判断.【解答】解:观察图象可知:已知线段AB,∠CAB=α,∠CBA=β,故选:C.【点评】本题考查作图﹣复杂作图,解题的关键是理解题意,属于中考常考题型.7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣2【分析】根据分式的分母不等于0且二次根式的被开方数是非负数得出x的范围,据此可得答案.【解答】解:由题意知,x﹣3≠0且x﹣3≥0,解得:x>3,故选:A.【点评】本题主要考查二次根式有意义的条件,解题的关键是掌握分式的分母不等于0且二次根式的被开方数是非负数.8.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a2【分析】直接利用分式的基本性质分别代入判断得出答案.【解答】解:如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W中可以是:b.故选:B.【点评】此题主要考查了分式的基本性质,正确掌握分式的基本性质是解题关键.9.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.【分析】先表示出图形中各个部分的面积,再判断即可.【解答】解:A、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、根据图形不能证明勾股定理,故本选项符合题意;故选:D.【点评】本题考查了勾股定理的证明,能根据图形中各个部分的面积列出等式是解此题的关键.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.20【分析】根据二次根式的运算法则即可求出答案.【解答】解:+=3+=b当a=20时,∴=2,∴b=5,符合题意,故选:D.【点评】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.11.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.7【分析】只要证明△ABF≌△CDE,可得AF=CE=4,BF=DE=3,推出AD=AF+DF =4+(3﹣2)=5;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE(AAS),∴AF=CE=4,BF=DE=3,∵EF=2,∴AD=AF+DF=4+(3﹣2)=5,故选:B.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.12.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②【分析】通过反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;理顺证明过程即可.【解答】解:由反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;所以题目中“已知:△ABC中,AB=AC,求证:∠B<90°”.用反证法证明这个命题过程中的四个推理步骤:应该为:假设∠B≥90°;那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,;所以因此假设不成立.∴∠B<90°;原题正确顺序为:③④①②.故选:A.【点评】本题考查反证法证明步骤,考查基本知识的应用,逻辑推理能力.13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣【分析】将x的值代入原式,再利用完全平方公式和平方差公式计算可得.【解答】解:当x=时,原式=(7+4)(2﹣)2+(2+)(2﹣)+=(7+4)(7﹣4)+4﹣3+=49﹣48+1+=2+,故选:C.【点评】本题主要考查二次根式的化简求值,解题的关键是熟练掌握完全平方公式、平方差公式及二次根式的运算法则.14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或【分析】先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.【解答】解:①如图:因为CD==2,点D是斜边AB的中点,所以AB=2CD=4,②如图:因为CE==5,点E是斜边AB的中点,所以AB=2CE=10,原直角三角形纸片的斜边长是10或,故选:C.【点评】此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=﹣.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵﹣的立方为﹣,∴﹣的立方根为﹣,故答案为﹣.【点评】此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=36°.【分析】根据三角形内角和定理求出∠A,根据线段垂直平分线的性质得到EA=EC,根据等腰三角形的性质解答.【解答】解:设∠A=x,则∠B=∠ACB=2x,则x+2x+2x=180°,解得,x=36°,∴∠B=∠ACB=72°,∵DE是AC的垂直平分线,∴EA=EC,∴∠ECD=∠A=36°,故答案为:36°.【点评】本题考查的是线段的垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为4.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC为x,可知AB=2BC=2x,再由作法可知BC=CD=x,CE是线段BD的垂直平分线,故CD是斜边AB 的中线,据此可得出BD=x,进而可得出结论.【解答】解:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,设BC=x,∴AB=2BC=2x.∵作法可知BC=CD=x,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=x,∴BF=DF=x,∴AF=AD+DF=x+x=6.解得:x=4.故答案为:4【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法和直角三角形的性质是解答此题的关键.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.【分析】(1)根据勾股定理求出OB的长度,再根据圆的半径定义得到OA,求出A;(2)根据A所代表的数,直接比较与﹣2.5的大小;【解答】解:(1)OB=,∵OB=OA=∴A所代表的数字为﹣\sqrt{5}$;(2)A点表示的数为﹣$\sqrt{5}$≈﹣2.235∴A点表示的数大于﹣2.5【点评】本题运用了勾股定理、数轴上负数大小比较的方法;19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.【分析】(1)根据题目中的例子可以写出例4;(2)根据(1)中特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子化简,即可得到等号右边的式子,从而可以解答本题.【解答】解:(1)由例子可得,④为:,⑤,故答案为,,(2)如果n为正整数,用含n的式子表示这个运算规律:,故答案为:,(3)证明:∵n是正整数,∴.即.故答案为:∵n是正整数,∴.即.【点评】本题考查二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.【分析】根据等腰三角形的性质得到AD=8,AD⊥AC,根据直角三角形的性质求出AB,根据勾股定理计算即可.【解答】解:∵AB=BC,BD是∠ABC的平分线,∴AD=DC=AC=8,AD⊥AC,∴∠ADB=90°,又E为AB的中点,∴AB=2DE=10,由勾股定理得,BD==6.【点评】本题考查的是角平分线的定义、等腰三角形的性质、直角三角形的性质,掌握等腰三角形的三线合一是解题的关键.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.【分析】先根据点E在BC的垂直平分线上可求出BE=CE,再根据点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC可求出EF=EG,再由HL定理可求出Rt△EFB≌Rt△EGC,由全等三角形的性质即可得出结论.【解答】解:BF=CG;理由如下:因为点E在BC的垂直平分线上,所以BE=CE.因为点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC,所以EF=EG,在Rt△EFB和Rt△EGC中,因为BE=CE,EF=EG,所以Rt△EFB≌Rt△EGC(HL).所以BF=CG.【点评】本题涉及到角平分线的性质、线段垂直平分线的性质、直角三角形全等的判定定理及全等三角形的性质,涉及面较广,难度适中.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)假设分式的值等于﹣1,根据化简结果列出关于x的方程,解方程求出x的值,依据分式有意义的条件作出判断.【解答】解:(1)原式=(﹣)÷=•=,当x=﹣3时,原式==﹣2;(2)若原式的值为﹣1,则=﹣1,解得:x=﹣1,而当x =﹣1时,原式分母为0,无意义; 所以原式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.【分析】设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据这两种糖混合前后质量相同列出方程,解方程即可.【解答】解:设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据题意得+=,解得:x =36.经检验,x =36是原方程的解. 答:杂拌糖的单价为36元.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键. 24.如图,在△ABC 中,∠BAC =90°,AB =AC ,点D 是BC 上一动点,连接AD ,过点A 作AE ⊥AD ,并且始终保持AE =AD ,连接CE . (1)求证:△ABD ≌△ACE ;(2)若AF 平分∠DAE 交BC 于F ,探究线段BD ,DF ,FC 之间的数量关系,并证明; (3)在(2)的条件下,若BD =3,CF =4,求AD 的长.【分析】(1)根据SAS ,只要证明∠1=∠2即可解决问题;(2)结论:BD 2+FC 2=DF 2.连接FE ,想办法证明∠ECF =90°,EF =DF ,利用勾股定理即可解决问题;(3)过点A 作AG ⊥BC 于G ,在Rt △ADG 中,想办法求出AG 、DG 即可解决问题; 【解答】(1)证明:∵AE ⊥AD ,∴∠DAE=∠DAC+∠2=90°,又∵∠BAC=∠DAC+∠1=90°,∴∠1=∠2,在△ABD和△ACE中,∴△ABD≌△ACE.(2)解:结论:BD2+FC2=DF2.理由如下:连接FE,∵∠BAC=90°,AB=AC,∴∠B=∠3=45°由(1)知△ABD≌△ACE∴∠4=∠B=45°,BD=CE∴∠ECF=∠3+∠4=90°,∴CE2+CF2=EF2,∴BD2+FC2=EF2,∵AF平分∠DAE,∴∠DAF=∠EAF,在△DAF和△EAF中,∴△DAF≌△EAF∴DF=EF∴BD2+FC2=DF2.(3)解:过点A作AG⊥BC于G,由(2)知DF2=BD2+FC2=32+42=25∴DF=5,∴BC=BD+DF+FC=3+5+4=12,∵AB=AC,AG⊥BC,∴BG=AG=BC=6,∴DG=BG﹣BD=6﹣3=3,∴在Rt△ADG中,AD===3.【点评】本题考查三角形综合题、等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
河北省定州市2017-2018学年八年级数学下学期期末质量监测试题新人教版
河北省定州市2017-2018学年八年级数学下学期期末质量监测试题八年级数学参考答案及评分标准一、选择题(本大题共12个小题;每小题3分,共36分.)1—6: BBCCAD; 7—12:CCBACC.二、填空题(本大题共6个小题;每小题3分,共18分.13、4;14、y=2x+3;15、16.5;16、2;17、(2,1);18、。
三、解答题19.解:(1)﹣﹣+(+1)0=3﹣﹣+1=+1; ------- 4分(2)(+)2﹣(﹣)2=a+2+b﹣a+2﹣b=4. ------- 8分20.解:(1)∵正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m,2),∴2m=2,m=1. ------- 2分把(1,2)和(﹣2,﹣1)代入y=kx+b,得,解得,则一次函数解析式是y=x+1; ------- 5分(2)令y=0,则x=﹣1.则△AOD的面积=×1×2=1. ------- 8分21. 解:∵O是矩形ABCD的对角线AC的中点,M是AD的中点,∴OM=CD=AB=2.5,∵AB=5,AD=12,∴AC==13, ------- 4分∵O是矩形ABCD的对角线AC的中点,∴BO=AC=6.5,∴四边形ABOM的周长为AB+AM+BO+OM=5+6+6.5+2.5=20.------- 8分22. 解:(1)由题意可得,7.5﹣(3+0.5)=4(小时),答:小李从乙地返回甲地用了4小时; ------- 3分(2)设小李返回时直线解析式为y=kx+b,将(3.5,240)、(7.5,0)分别代入得,,解得,,∴y=﹣60x+450, ------- 6分∴当x=5时,y=﹣60×5+450=150,答:小李出发5小时后距离甲地150千米; ------- 8分23.(1)证明:∵AG∥DC,AD∥BC,∴四边形AGCD是平行四边形,∴AG=DC, ------- 2分∵E、F分别为AG、DC的中点,∴GE=AG,DF=DC,即GE=DF,GE∥DF,∴四边形DEGF是平行四边形; ------- 4分(2)连接DG,∵四边形AGCD是平行四边形,∴AD=CG,∵G为BC中点,∴BG=CG=AD, ------- 6分∵AD∥BG,∴四边形ABGD是平行四边形,∴AB∥DG,∵∠B=90°,∴∠DGC=∠B=90°,∵F为CD中点,∴GF=DF=CF,即GF=DF,∵四边形DEGF是平行四边形,∴四边形DEGF是菱形. ------- 8分24.解:(1)由统计图可得,本次接受随机抽样调查的学生人数为:4÷8%=50,m%=1﹣8%﹣16%﹣20%﹣24%=32%,故答案为:50,32; ------- 2分(2)如图: ------- 4分(3)本次调查获取的样本数据的平均数是: =16(元),本次调查获取的样本数据的众数是10(元);中位数是15(元);---- 6分(4)该校本次活动捐款金额为10元的学生人数为:1900×=608,即该校本次活动捐款金额为10元的学生有608人. ------- 8分25.解:(1)当x=0时,y=﹣x+2=2,∴B(0,2)当y=0时,y=﹣x+2=0,∴x=4,∴A(4,0);------- 2分(2)设P(x,y),因为点P在直线y=﹣x+2,且OP=AP,∴x=2,把x=2代入y=﹣x+2,y=1,所以点P的坐标是(2,1),因为点P在直线y=kx上,所以k=; -------5分(3)设点C(x,﹣ x+2),则D(x, x),E(x,0),因为CD=2DE,所以﹣x+2﹣x=2×x,解得:x=1,则﹣x+2=,所以点C的坐标为(1,). ------- 8分26.解:(1)设购买A种树苗x棵,则购买B种树苗(1000﹣x)棵,由题意,得y=(20+5)x+(30+5)(1000﹣x)=﹣10x+35000。
人教版八年级(上)期末数学试卷(含答案) (5)
河北省保定市定州市八年级(上)期末数学试卷一、选择题(本题共12个小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.要使分式有意义,则x的取值应满足()A.x≠2 B.x≠﹣1 C.x=2 D.x=﹣12.石墨烯目前是世界上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为()A.0.34×10﹣9B.3.4×10﹣9C.3.4×10﹣10D.3.4×10﹣113.分式可变形为()A. B.﹣C. D.﹣4.下列代数运算正确的是()A.(x3)2=x5B.(2x)2=2x2C.(x+1)2=x2+1 D.x3•x2=x55.下列各式中能用平方差公式是()A.(x+y)(y+x)B.(x+y)(y﹣x)C.(x+y)(﹣y﹣x)D.(﹣x+y)(y ﹣x)6.已知y2+10y+m是完全平方式,则m的值是()A.25 B.±25 C.5 D.±57.如图,在△ABC中,∠ACB=90°,CD是高,∠A=30°,AB=4,则下列结论中不正确的是()A.BC=2 B.BD=1 C.AD=3 D.CD=28.已知三角形的两边长分别为4和9,则下列数据中能作为第三边长的是()A.13 B.6 C.5 D.49.如图,在平面直角坐标系中,点P(﹣1,2)关于直线x=1的对称点的坐标为()A.(1,2) B.(2,2) C.(3,2) D.(4,2)10.已知等腰三角形的顶角为140°,那么它一腰上的高与底边的夹角为()A.20°B.40°C.50°D.70°11.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.612.如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,PR=PS,则这四个结论中正确的有()①PA平分∠BAC;②AS=AR;③QP∥AR;④△BRP≌△CSP.A.4个 B.3个 C.2个 D.1个二、填空题(本大题共6小题,每小题3分,共18分)13.分解因式:ab3﹣a3b=.14.如图,在△AOC与△BOC中,若∠1=∠2,加上条件则有△AOC≌△BOC.15.已知:a+b=,ab=1,化简(a﹣2)(b﹣2)的结果是.16.如果一个多边形的内角和为1260°,那么这个多边形的一个顶点有条对角线.17.如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.若∠DBC=33°,∠A的度数为.18.如图,在等边△ABC中,AC=3,点O在AC上,且AO=1.点P是AB上一点,连接OP,以线段OP为一边作正△OPD,且O、P、D三点依次呈逆时针方向,当点D恰好落在边BC上时,则AP的长是.三、解答下列各题(本大题共8小题,共66分)19.(1)计算:(x﹣y)2﹣(y+2x)(y﹣2x);(2)解方程:﹣=0.20.先化简,再求值:÷(1+),其中x=﹣4.21.给出三个多项式:①2x2+4x﹣4;②2x2+12x+4;③2x2﹣4x请你把其中任意两个多项式进行加法运算(写出所有可能的结果),并把每个结果因式分解.22.如图,Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.AF平分∠CAB,交CD于点E,交CB于点F,求证:CE=CF.23.如图,已知A(﹣2,4),B(4,2),C(2,﹣1)(1)作△ABC关于x轴的对称图形△A1B1C1,写出点C关于x轴的对称点C1的坐标;(2)P为x轴上一点,请在图中画出使△PAB的周长最小时的点P并直接写出此时点P的坐标(保留作图痕迹).24.在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:Rt△ABE≌Rt△CBF;(2)若∠CAE=30°,求∠ACF的度数.25.水果店第一次用500元购进某种水果,由于销售状况良好,该店又用1650元购时该品种水果,所购数量是第一次购进数量的3倍,但进货价每千克多了0.5元.(1)第一次所购水果的进货价是每千克多少元?(2)水果店以每千克8元销售这些水果,在销售中,第一次购进的水果有5%的损耗,第二次购进的水果有2%的损耗.该水果店售完这些水果可获利多少元?26.如图1,点P、Q分别是边长为6cm的等边△ABC边AB、BC上的动点,点P 从顶点A,点Q从顶点B同时出发,且它们的速度是1cm/s.(1)连接AQ、CP交于点M,求证:∠CMQ=60°;(2)当运动时间为多少时,△PBQ是直角三角形?(3)如图2,若点P、Q运动到终点B、C后继续在AB、BC的延长线上运动,直线AQ、CP交点为M,求∠CMQ的度数.2017-2018学年河北省保定市定州市八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共12个小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.要使分式有意义,则x的取值应满足()A.x≠2 B.x≠﹣1 C.x=2 D.x=﹣1【考点】分式有意义的条件.【分析】根据分式有意义,分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣2≠0,解得x≠2.故选:A.2.石墨烯目前是世界上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为()A.0.34×10﹣9B.3.4×10﹣9C.3.4×10﹣10D.3.4×10﹣11【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 000 34=3.4×10﹣10;故选C.3.分式可变形为()A. B.﹣C. D.﹣【考点】分式的基本性质.【分析】根据分式的性质,分子分母都乘以﹣1,分式的值不变,可得答案.【解答】解:分式的分子分母都乘以﹣1,得﹣,故选:D.4.下列代数运算正确的是()A.(x3)2=x5B.(2x)2=2x2C.(x+1)2=x2+1 D.x3•x2=x5【考点】幂的乘方与积的乘方;同底数幂的乘法;完全平方公式.【分析】根据幂的乘方、积的乘方、完全平方公式和同底数幂的乘法计算即可.【解答】解:A、(x3)2=x6,错误;B、(2x)2=4x2,错误;C、(x+1)2=x2+2x+1,错误;D、x3•x2=x5,正确;故选D5.下列各式中能用平方差公式是()A.(x+y)(y+x)B.(x+y)(y﹣x)C.(x+y)(﹣y﹣x)D.(﹣x+y)(y ﹣x)【考点】平方差公式.【分析】利用平方差公式的结构特征判断即可得到结果.【解答】解:能用平方差公式是(x+y)(y﹣x)=y2﹣x2,故选B6.已知y2+10y+m是完全平方式,则m的值是()A.25 B.±25 C.5 D.±5【考点】完全平方式.【分析】直接利用完全平方公式求出m的值.【解答】解:∵y2+10y+m是完全平方式,∴y2+10y+m=(y+5)2=y2+10y+25,故选:A.7.如图,在△ABC中,∠ACB=90°,CD是高,∠A=30°,AB=4,则下列结论中不正确的是()A.BC=2 B.BD=1 C.AD=3 D.CD=2【考点】含30度角的直角三角形.【分析】根据直角三角形的性质求出BC,根据垂线段最短的性质判断即可.【解答】解:∵∠ACB=90°,∠A=30°,∴BC=AB=2,∵CD⊥AB,∴CD<AB,即CD<2,则CD=2错误,故选:D.8.已知三角形的两边长分别为4和9,则下列数据中能作为第三边长的是()A.13 B.6 C.5 D.4【考点】三角形三边关系.【分析】首先根据三角形的三边关系定理,求得第三边的取值范围,再进一步找到符合条件的数值.【解答】解:设这个三角形的第三边为x.根据三角形的三边关系定理,得:9﹣4<x<9+4,解得5<x<13.故选:B.9.如图,在平面直角坐标系中,点P(﹣1,2)关于直线x=1的对称点的坐标A.(1,2) B.(2,2) C.(3,2) D.(4,2)【考点】坐标与图形变化﹣对称.【分析】先求出点P到直线x=1的距离,再根据对称性求出对称点P′到直线x=1的距离,从而得到点P′的横坐标,即可得解.【解答】解:∵点P(﹣1,2),∴点P到直线x=1的距离为1﹣(﹣1)=2,∴点P关于直线x=1的对称点P′到直线x=1的距离为2,∴点P′的横坐标为2+1=3,∴对称点P′的坐标为(3,2).故选C.10.已知等腰三角形的顶角为140°,那么它一腰上的高与底边的夹角为()A.20°B.40°C.50°D.70°【考点】等腰三角形的性质.【分析】求出∠ACD、∠ACB,根据∠DCB=∠DCA+∠ACB即可解决问题.【解答】解:如图,AB=AC,∠BAC=140°,CD⊥BA于D.∵∠BAC=140°,∴∠B=∠ACB=20°,∠DAC=180°﹣140°=40°,∴∠DCA=90°﹣∠DAC=50°,∴∠DCB=∠DCA+∠ACB=70°.故选D.11.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.6【考点】角平分线的性质.【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后利用△ABD的面积列式计算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,=AB•DE=×10•DE=15,∴S△ABD解得DE=3.故选A.12.如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,PR=PS,则这四个结论中正确的有()①PA平分∠BAC;②AS=AR;③QP∥AR;④△BRP≌△CSP.A.4个 B.3个 C.2个 D.1个【考点】全等三角形的判定与性质.【分析】根据已知条件利用HL易证△APR≌△APS,再利用全等三角形的性质可得∠PAR=∠PAS,AR=AS,从而可证(1)、(2)正确;由AQ=PQ,利用等边对等角易得∠1=∠APQ,再利用三角形外角的性质可得∠PQC=2∠1,而(1)中PA 是∠BAC的角平分线可得∠BAC=2∠1,等量代换,从而有∠PQC=∠BAC,利用同位角相等两直线平行可得QP∥AR,(3)正确;根据已知条件可知△BRP与△CSP 只有一角、一边对应相等,故不能证明两三角形全等,因此(4)不正确.【解答】解:(1)PA平分∠BAC.∵PR⊥AB,PS⊥AC,PR=PS,AP=AP,∴△APR≌△APS,∴∠PAR=∠PAS,∴PA平分∠BAC;(2)由(1)中的全等也可得AS=AR;(3)∵AQ=PR,∴∠1=∠APQ,∴∠PQS=∠1+∠APQ=2∠1,又∵PA平分∠BAC,∴∠BAC=2∠1,∴∠PQS=∠BAC,∴PQ∥AR;(4)∵PR⊥AB,PS⊥AC,∴∠BRP=∠CSP,∵PR=PS,∴△BRP不一定全等与△CSP(只具备一角一边的两三角形不一定全等).故选B.二、填空题(本大题共6小题,每小题3分,共18分)13.分解因式:ab3﹣a3b=ab(b+a)(b﹣a).【考点】提公因式法与公式法的综合运用.【分析】首先提公因式ab,然后利用平方差公式即可分解.【解答】解:原式=ab(b2﹣a2)=ab(b+a)(b﹣a).故答案是:ab(b+a)(b﹣a).14.如图,在△AOC与△BOC中,若∠1=∠2,加上条件AO=BO则有△AOC ≌△BOC.【考点】全等三角形的判定.【分析】添加条件AO=BO,根据SAS推出即可,此题是一道开放型的题目,答案不唯一,如还可以添加条件∠A=∠B,∠ACO=∠BCO.【解答】解:AO=BO,理由是:在△AOC和△BOC中,,∴△AOC≌△BOC(SAS),故答案为:AO=BO.15.已知:a+b=,ab=1,化简(a﹣2)(b﹣2)的结果是2.【考点】整式的混合运算—化简求值.【分析】根据多项式相乘的法则展开,然后代入数据计算即可.【解答】解:(a﹣2)(b﹣2)=ab﹣2(a+b)+4,当a+b=,ab=1时,原式=1﹣2×+4=2.故答案为:2.16.如果一个多边形的内角和为1260°,那么这个多边形的一个顶点有6条对角线.【考点】多边形内角与外角;多边形的对角线.【分析】首先根据多边形内角和公式可得多边形的边数,再计算出对角线的条数.【解答】解:设此多边形的边数为x,由题意得:(x﹣2)×180=1260,解得;x=9,从这个多边形的一个顶点出发所画的对角线条数:9﹣3=6,故答案为:6.17.如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.若∠DBC=33°,∠A的度数为38°.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】设∠A的度数为x,根据线段的垂直平分线的性质得到AB=AC,用x表示出∠ABC、∠C的度数,根据三角形内角和定理列式计算即可.【解答】解:设∠A的度数为x,∵MN是AB的垂直平分线,∴DB=DA,∴∠DBA=∠A=x,∵AB=AC,∴∠ABC=∠C=33°+x,∴33°+x+33°+x+x=180°,解得x=38°.故答案为:38°.18.如图,在等边△ABC中,AC=3,点O在AC上,且AO=1.点P是AB上一点,连接OP,以线段OP为一边作正△OPD,且O、P、D三点依次呈逆时针方向,当点D恰好落在边BC上时,则AP的长是2.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】如图,通过观察,寻找未知与已知之间的联系.AO=1,则OC=2.证明△AOP≌△COD求解.【解答】解:∵∠C=∠A=∠DOP=60°,OD=OP,∴∠CDO+∠COD=120°,∠COD+∠AOP=120°,∴∠CDO=∠AOP.∴△ODC≌△POA.∴AP=OC.∴AP=OC=AC﹣AO=2.故答案为:2.三、解答下列各题(本大题共8小题,共66分)19.(1)计算:(x﹣y)2﹣(y+2x)(y﹣2x);(2)解方程:﹣=0.【考点】解分式方程;完全平方公式;平方差公式.【分析】(1)原式利用完全平方公式及平方差公式计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=x2﹣2xy+y2﹣y2+4x2=5x2﹣2xy;(2)去分母得:5(x﹣1)﹣(x+3)=0,去括号得:5x﹣5﹣x﹣3=0,解得:x=2,经检验x=2是分式方程的解.20.先化简,再求值:÷(1+),其中x=﹣4.【考点】分式的化简求值.【分析】先把括号内通分,再除法运算化为乘法运算,然后约分得到原式=,再把x的值代入计算即可.【解答】解:原式=÷=•=,当x=﹣4时,原式==﹣.21.给出三个多项式:①2x2+4x﹣4;②2x2+12x+4;③2x2﹣4x请你把其中任意两个多项式进行加法运算(写出所有可能的结果),并把每个结果因式分解.【考点】提公因式法与公式法的综合运用;整式的加减.【分析】求①+②的和,可得4x2+16x,利用提公因式法,即可求得答案;求①+③的和,可得4x2﹣4,先提取公因式4,再根据完全平方差进行二次分解;求②+③的和,可得4x2+8x+4,先提取公因式4,再根据完全平方公式进行二次分解.【解答】解:①+②得:2x2+4x﹣4+2x2+12x+4=4x2+16x=4x(x+4);①+③得:2x2+4x﹣4+2x2﹣4x=4x2﹣4=4(x+1)(x﹣1);②+③得:2x2+12x+4+2x2﹣4x=4x2+8x+4=4(x2+2x+1)=4(x+1)2.22.如图,Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.AF平分∠CAB,交CD 于点E,交CB于点F,求证:CE=CF.【考点】等腰三角形的判定与性质;直角三角形的性质.【分析】根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,根据等腰三角形的判定推出即可.【解答】证明:∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF.23.如图,已知A(﹣2,4),B(4,2),C(2,﹣1)(1)作△ABC关于x轴的对称图形△A1B1C1,写出点C关于x轴的对称点C1的坐标;(2)P为x轴上一点,请在图中画出使△PAB的周长最小时的点P并直接写出此时点P的坐标(保留作图痕迹).【考点】作图﹣轴对称变换;轴对称﹣最短路线问题.【分析】(1)根据关于x轴对称点的坐标特点得到△A1B1C1各顶点的坐标,然后描出各点,然后顺次连接即可;(2)作点A关于x轴的对称点A1,连接A1B交x轴与点P.【解答】解:(1)如图1所示:∵点C与点C1关于x轴对称,∴C1(2,1).(2)如图2所示:根据图形可知点P的坐标为(2,0).24.在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:Rt△ABE≌Rt△CBF;(2)若∠CAE=30°,求∠ACF的度数.【考点】全等三角形的判定与性质.【分析】(1)由AB=CB,∠ABC=90°,AE=CF,即可利用HL证得Rt△ABE≌Rt△CBF;(2)由AB=CB,∠ABC=90°,即可求得∠CAB与∠ACB的度数,即可得∠BAE的度数,又由Rt△ABE≌Rt△CBF,即可求得∠BCF的度数,则由∠ACF=∠BCF+∠ACB即可求得答案.【解答】(1)证明:∵∠ABC=90°,∴∠CBF=∠ABE=90°,在Rt△ABE和Rt△CBF中,,∴Rt△ABE≌Rt△CBF(HL);(2)解:∵AB=BC,∠ABC=90°,∴∠CAB=∠ACB=45°,又∵∠BAE=∠CAB﹣∠CAE=45°﹣30°=15°,由(1)知:Rt△ABE≌Rt△CBF,∴∠BCF=∠BAE=15°,∴∠ACF=∠BCF+∠ACB=45°+15°=60°.25.水果店第一次用500元购进某种水果,由于销售状况良好,该店又用1650元购时该品种水果,所购数量是第一次购进数量的3倍,但进货价每千克多了0.5元.(1)第一次所购水果的进货价是每千克多少元?(2)水果店以每千克8元销售这些水果,在销售中,第一次购进的水果有5%的损耗,第二次购进的水果有2%的损耗.该水果店售完这些水果可获利多少元?【考点】分式方程的应用.【分析】(1)设第一次所购水果的进货价是每千克多少元,由题意可列方程求解.(2)求出两次的购进千克数,根据利润=售价﹣进价,可求出结果.【解答】解:(1)设第一次所购水果的进货价是每千克x元,依题意,得,解得,x=5,经检查,x=5是原方程的解.答:第一次进货价为5元;(2)第一次购进:500÷5=100千克,第二次购进:3×100=300千克,获利:[100×(1﹣5%)×8﹣500]+[300×(1﹣2%)×8﹣1650]=962元.答:第一次所购水果的进货价是每千克5元,该水果店售完这些水果可获利962元.26.如图1,点P、Q分别是边长为6cm的等边△ABC边AB、BC上的动点,点P 从顶点A,点Q从顶点B同时出发,且它们的速度是1cm/s.(1)连接AQ、CP交于点M,求证:∠CMQ=60°;(2)当运动时间为多少时,△PBQ是直角三角形?(3)如图2,若点P、Q运动到终点B、C后继续在AB、BC的延长线上运动,直线AQ、CP交点为M,求∠CMQ的度数.【考点】三角形综合题.【分析】(1)先证明△ABQ≌△CAP,从而得到∠BAQ=∠ACP,然后利用三角形的外角的性质求解即可;(2)设时间为t,则AP=BQ=t,PB=6﹣t,①当∠PQB=90°时,②当∠BPQ=90°时,列方程得到结果;(3)先证明△ACQ≌△CBP,从而得到∠CAQ=∠BCP然后依据∠CAM+∠ACM=∠BCP+∠ACM求解即可.【解答】(1)证明:∵等边三角形中,AB=AC,∠B=∠CAP=60°又由条件得AP=BQ,∴△ABQ≌△CAP(SAS),∴∠BAQ=∠ACP,∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°;(2)解:设时间为t,则AP=BQ=t,PB=6﹣t,①当∠PQB=90°时,∵∠B=60°,∴PB=2BQ,得6﹣t=2t,t=2;②当∠BPQ=90°时,∵∠B=60°,∴BQ=2BP,得t=2(6﹣t),t=4;∴当第2秒或第4秒时,△PBQ为直角三角形;(3)解:∵在等边三角形中,AB=AC,∠B=∠CAP=60°,∴∠PBC=∠ACQ=120°,又由条件得BP=CQ,AC=BC∴△PBC≌△QCA(SAS),∴∠BPC=∠MQC,又∵∠PCB=∠MCQ,∴∠CMQ=∠PBC=180°﹣60°=120°.。
保定定州2018-2019年8年级数学度末试卷(附解析分析).doc
保定定州2018-2019年8年级数学度末试卷(附解析分析)【一】选择题〔本大题共1个小题;每题3分,共36分.在每题给出旳四个选项中,只有一项为哪一项符合题目要求旳〕1、〔3分〕在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形旳是〔〕A、B、C、D、2、〔3分〕假设使分式有意义,那么x旳取值范围是〔〕A、x≠2B、x≠﹣2C、x≠﹣1D、x=23、〔3分〕以下运算中,正确旳选项是〔〕A、x3•x3=x6B、3x2+2x3=5x5C、〔x2〕3=x5D、〔ab〕3=a3b4、〔3分〕以下由左到右旳变形,属于因式分解旳是〔〕A、〔x+2〕〔x﹣2〕=x2﹣4B、x2﹣4=〔x+2〕〔x﹣2〕C、x2﹣4+3x=〔x+2〕〔x﹣2〕+3xD、x2+4x﹣2=x〔x+4〕﹣25、〔3分〕解分式方程+=3时,去分母后变形为〔〕A、2+〔x+2〕=3〔x﹣1〕B、2﹣x+2=3〔x﹣1〕C、2﹣〔x+2〕=3〔1﹣x〕D、2﹣〔x+2〕=3〔x﹣1〕6、〔3分〕如图,BD∥CE,∠1=85°,∠2=37°,那么∠A旳度数是〔〕A、15度B、37度C、48度D、53度7、〔3分〕如图,在△ABC中,∠ACB为直角,∠A=30°,CD⊥AB于D,假设BD=1,那么AD旳长度是〔〕A、4B、3C、2D、18、〔3分〕用一条长为16cm旳细绳围成一个等腰三角形,假设其中有一边旳长为4cm,那么该等腰三角形旳腰长为〔〕A、4cmB、6cmC、4cm或6cmD、4cm或8cm9、〔3分〕假设a+b=﹣3,ab=1,那么a2+b2=〔〕A、﹣11B、11C、﹣7D、710、〔3分〕图〔1〕是一个长为2a,宽为2b〔a>b〕旳长方形,用剪刀沿图中虚线〔对称轴〕剪开,把它分成四块形状和大小都一样旳小长方形,然后按图〔2〕那样拼成一个正方形,那么中间空旳部分旳面积是〔〕A、2abB、〔a+b〕2C、〔a﹣b〕2D、a2﹣b211、〔3分〕如图,△ABC旳面积为12,BP平分∠ABC,且AP⊥BP于点P,那么△BPC旳面积是〔〕A、10B、8C、6D、412、〔3分〕甲乙两地相距420千米,新修旳高速公路开通后,在甲、乙两地行驶旳长途客运车平均速度是原来旳1.5倍,进而从甲地到乙地旳时刻缩短了2小时、设原来旳平均速度为x千米/时,可列方程为〔〕A、+=2B、﹣=2C、+=D、﹣=【二】填空题〔本大题共6个小题;每题3分,共18分.把【答案】写在题中横线上〕13、〔3分〕一粒芝麻约有0.000002千克,0.000002用科学记数法表示为千克、14、〔3分〕假设x2﹣2ax+16是完全平方式,那么a=、15、〔3分〕如图,有一块边长为4旳正方形塑料模板ABCD,将一块足够大旳直角三角板旳直角顶点落在A点,两条直角边分别与CD交于点F,与CB延长线交于点E、那么四边形AECF旳面积是、16、〔3分〕如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,假设EC=2,那么EF=、17、〔3分〕在平面直角坐标系中,点A〔2,0〕,B〔0,4〕,求点C,使以点B、O、C为顶点旳三角形与△ABO全等,那么点C旳坐标为、18、〔3分〕如图,∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,假设OA1=2,那么△A5B5A6旳边长为、【三】解答以下各题〔此题有8个小题,共66分〕19、〔8分〕解答题、〔1〕计算:x〔4x+3y〕﹣〔2x+y〕〔2x﹣y〕〔2〕因式分解﹣3x3+6x2y﹣3xy220、〔8分〕解答题〔1〕先化简,再求值〔1+〕÷,其中x=3〔2〕解方程:21、〔6分〕如图,△ABC中,A点坐标为〔2,4〕,B点坐标为〔﹣3,﹣2〕,C点坐标为〔3,1〕、〔1〕在图中画出△ABC关于y轴对称旳△A′B′C′〔不写画法〕,并写出点A′,B′,C′旳坐标、〔2〕求△ABC旳面积、22、〔8分〕如图,∠MON,点A,B分别在OM,ON边上,且OA=OB、〔1〕求作:过点A,B分别作OM,ON旳垂线,两条垂线旳交点记作点D〔保留作图痕迹,不写作法〕;〔2〕连接OD,假设∠MON=50°,那么∠ODB=°、23、〔8分〕如图,在等边△ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC旳延长线于点F,〔1〕求∠F旳度数;〔2〕假设CD=3,求DF旳长、24、〔8分〕阅读以下材料:通过小学旳学习我们明白,分数可分为“真分数”和“假分数”、而假分数都可化为带分数,如:==2+=2、我们定义:在分式中,关于只含有一个字母旳分式,当分子旳次数大于或等于分母旳次数时,我们称之为“假分式”;当分子旳次数小于分母旳次数时,我们称之为“真分式”、如:,如此旳分式确实是假分式;再如:,如此旳分式确实是真分式、类似旳,假分式也能够化为带分式〔即:整式与真分式旳和旳形式〕、如:==1﹣;再如:===x+1+、解决以下问题:〔1〕分式是分式〔填“真分式”或“假分式”〕;〔2〕假分式可化为带分式旳形式;〔3〕假如分式旳值为整数,那么x旳整数值为、25、〔10分〕某一工程,在工程招标时,接到甲、乙两个工程队旳投标书、施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元、工程领导小组依照甲,乙两队旳投标书测算,有如下方案:〔1〕甲队单独完成这项工程刚好如期完成;〔2〕乙队单独完成这项工程要比规定日期多用6天;〔3〕假设甲,乙两队合做3天,余下旳工程由乙队单独做也正好如期完成、试问:在不耽搁工期旳前提下,你觉得哪一种施工方案最节约工程款?请说明理由、26、〔10分〕在△ABC中,AB=AC,点D是直线BC上一点〔不与B、C重合〕,以AD为一边在AD旳右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE、〔1〕如图1,当点D在线段BC上,假如∠BAC=90°,那么∠BCE=度;〔2〕如图2,当点D在线段BC上,假如∠BAC=60°,那么∠BCE=度;〔3〕设∠BAC=α,∠BCE=β①如图3,当点D在线段BC上移动,那么α,β之间有如何样旳数量关系?请说明理由;②当点D在直线BC上移动,请直截了当写出α,β之样旳数量关系,不用证明、2017-2018学年河北省保定市定州市八年级〔上〕期末数学试卷参考【答案】与试题【解析】【一】选择题〔本大题共1个小题;每题3分,共36分.在每题给出旳四个选项中,只有一项为哪一项符合题目要求旳〕1、〔3分〕在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形旳是〔〕A、B、C、D、【分析】依照轴对称图形旳概念求解、假如一个图形沿着一条直线对折后两部分完全重合,如此旳图形叫做轴对称图形,这条直线叫做对称轴、【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意、应选:A、【点评】此题要紧考查轴对称图形旳知识点、确定轴对称图形旳关键是查找对称轴,图形两部分折叠后可重合、2、〔3分〕假设使分式有意义,那么x旳取值范围是〔〕A、x≠2B、x≠﹣2C、x≠﹣1D、x=2【分析】直截了当利用分式有意义那么其分母不为零,进而得出【答案】、【解答】解:∵分式有意义,∴x旳取值范围是:x﹣2≠0,解得:x≠2、应选:A、【点评】此题要紧考查了分式有意义旳条件,正确把握分式旳定义是解题关键、3、〔3分〕以下运算中,正确旳选项是〔〕A、x3•x3=x6B、3x2+2x3=5x5C、〔x2〕3=x5D、〔ab〕3=a3b【分析】直截了当利用幂旳乘方与积旳乘方法那么以及合并同类项、同底数幂旳乘法运算法那么进而得出【答案】、【解答】解:A、x3•x3=x6,正确;B、3x2+2x3,无法计算,故此选项错误;C、〔x2〕3=x6,故此选项错误;D、〔ab〕3=a3b3,故此选项错误;应选:A、【点评】此题要紧考查了幂旳乘方与积旳乘方以及合并同类项、同底数幂旳乘法运算等知识,正确掌握运算法那么是解题关键、4、〔3分〕以下由左到右旳变形,属于因式分解旳是〔〕A、〔x+2〕〔x﹣2〕=x2﹣4B、x2﹣4=〔x+2〕〔x﹣2〕C、x2﹣4+3x=〔x+2〕〔x﹣2〕+3xD、x2+4x﹣2=x〔x+4〕﹣2【分析】依照因式分解旳意义,可得【答案】、【解答】解:A、是整式旳乘法,故A错误;B、把一个多项式转化成几个整式积旳形式,故B正确;C、没把一个多项式转化成几个整式积旳形式,故C错误;D、没把一个多项式转化成几个整式积旳形式,故D错误;应选:B、【点评】此题考查了因式分解旳意义,因式分解是把一个多项式转化成几个整式积旳形式、5、〔3分〕解分式方程+=3时,去分母后变形为〔〕A、2+〔x+2〕=3〔x﹣1〕B、2﹣x+2=3〔x﹣1〕C、2﹣〔x+2〕=3〔1﹣x〕D、2﹣〔x+2〕=3〔x﹣1〕【分析】此题考查对一个分式确定最简公分母,去分母得能力、观看式子x﹣1和1﹣x 互为相反数,可得1﹣x=﹣〔x﹣1〕,因此可得最简公分母为x﹣1,因为去分母时式子不能漏乘,因此方程中式子每一项都要乘最简公分母、【解答】解:方程两边都乘以x﹣1,得:2﹣〔x+2〕=3〔x﹣1〕、应选:D、【点评】考查了解分式方程,对一个分式方程而言,确定最简公分母后要注意不要漏乘,这正是此题考查点所在、切忌幸免出现去分母后:2﹣〔x+2〕=3形式旳出现、6、〔3分〕如图,BD∥CE,∠1=85°,∠2=37°,那么∠A旳度数是〔〕A、15度B、37度C、48度D、53度【分析】依照平行线旳性质,得出∠BDC=∠1=85°,再依照三角形外角性质,得出∠A=∠BDC﹣∠2=85°﹣37°=48°即可、【解答】解:∵BD∥CE,∠1=85°,∴∠BDC=∠1=85°,又∵∠BDC是△ABD旳外角,∴∠A=∠BDC﹣∠2=85°﹣37°=48°,应选:C、【点评】此题要紧考查了平行线旳性质以及三角形外角性质旳运用,解决问题旳关键是掌握:三角形旳一个外角等于和它不相邻旳两个内角旳和、7、〔3分〕如图,在△ABC中,∠ACB为直角,∠A=30°,CD⊥AB于D,假设BD=1,那么AD旳长度是〔〕A、4B、3C、2D、1【分析】先依照∠ACB为直角,∠A=30°,求出∠B旳度数,再依照CD⊥AB于D,求出∠DCB=30°,再利用含30度角旳直角三角形旳性质即可直截了当求出【答案】、【解答】解:∵∠ACB为直角,∠A=30°,∴∠B=90°﹣∠A=60°,∵CD⊥AB于D,∴∠DCB=90°﹣∠B=30°∴BC=2BD=2,AB=2BC=4,∴AD=4﹣1=3、应选:B、【点评】此题要紧考查学生对含30度角旳直角三角形旳性质这一知识点旳理解和掌握,此题旳突破点是利用直角和三角形旳内角和定理,求出∠DCB=90°﹣∠B=30°,以后旳问题即可迎刃而解了、8、〔3分〕用一条长为16cm旳细绳围成一个等腰三角形,假设其中有一边旳长为4cm,那么该等腰三角形旳腰长为〔〕A、4cmB、6cmC、4cm或6cmD、4cm或8cm【分析】分边4cm是腰长和底边两种情况讨论求解、【解答】解:4cm是腰长时,底边为16﹣4×2=8,∵4+4=8,∴4cm、4cm、8cm不能组成三角形;4cm是底边时,腰长为〔16﹣4〕=6cm,4cm、6cm、6cm能够组成三角形;综上所述,它旳腰长为6cm、应选:B、【点评】此题考查了等腰三角形旳性质,难点在于分情况讨论并利用三角形旳三边关系推断是否能组成三角形、9、〔3分〕假设a+b=﹣3,ab=1,那么a2+b2=〔〕A、﹣11B、11C、﹣7D、7【分析】依照a2+b2=〔a+b〕2﹣2ab,直截了当代入求值即可、【解答】解:当a+b=﹣3,ab=1时,a2+b2=〔a+b〕2﹣2ab=9﹣2=7、应选:D、【点评】此题要熟记有关完全平方旳几个变形公式,此题考查对完全平方公式旳变形应用能力、10、〔3分〕图〔1〕是一个长为2a,宽为2b〔a>b〕旳长方形,用剪刀沿图中虚线〔对称轴〕剪开,把它分成四块形状和大小都一样旳小长方形,然后按图〔2〕那样拼成一个正方形,那么中间空旳部分旳面积是〔〕A 、2abB 、〔a+b 〕2C 、〔a ﹣b 〕2D 、a 2﹣b 2 【分析】中间部分旳四边形是正方形,表示出边长,那么面积能够求得、 【解答】解:中间部分旳四边形是正方形,边长是a+b ﹣2b=a ﹣b , 那么面积是〔a ﹣b 〕2、 应选:C 、【点评】此题考查了列代数式,正确表示出小正方形旳边长是关键、 11、〔3分〕如图,△ABC 旳面积为12,BP 平分∠ABC ,且AP ⊥BP 于点P ,那么△BPC 旳面积是〔〕A 、10B 、8C 、6D 、4【分析】延长AP 交BC 于E ,依照条件证得△ABP ≌△EBP ,依照全等三角形旳性质得到AP=PE ,得出S △ABP =S △EBP ,S △ACP =S △ECP ,推出S △PBC =S △ABC ; 【解答】解:延长AP 交BC 于E ,∵BP 平分∠ABC , ∴∠ABP=∠EBP , ∵AP ⊥BP ,∴∠APB=∠EPB=90°, 在△ABP 和△EBP 中,,∴△ABP ≌△EBP 〔ASA 〕, ∴AP=PE ,∴S △ABP =S △EBP ,S △ACP =S △ECP ,∴S △PBC =S △ABC =×12=6, 应选:C 、【点评】此题考查了等腰三角形旳判定与性质,三角形旳面积,要紧利用了等底等高旳三角形旳面积相等,作辅助线构造出等腰三角形是解题旳关键、12、〔3分〕甲乙两地相距420千米,新修旳高速公路开通后,在甲、乙两地行驶旳长途客运车平均速度是原来旳1.5倍,进而从甲地到乙地旳时刻缩短了2小时、设原来旳平均速度为x千米/时,可列方程为〔〕A、+=2B、﹣=2C、+=D、﹣=【分析】设原来旳平均速度为x千米/时,高速公路开通后平均速度为1.5x千米/时,依照走过相同旳距离时刻缩短了2小时,列方程即可、【解答】解:设原来旳平均速度为x千米/时,由题意得,﹣=2、应选:B、【点评】此题考查了由实际问题抽象出分式方程,解答此题旳关键是读懂题意,设出未知数,找出合适旳等量关系,列方程、【二】填空题〔本大题共6个小题;每题3分,共18分.把【答案】写在题中横线上〕13、〔3分〕一粒芝麻约有0.000002千克,0.000002用科学记数法表示为2×10﹣6千克、【分析】绝对值小于1旳正数也能够利用科学记数法表示,一般形式为a×10﹣n,与较大数旳科学记数法不同旳是其所使用旳是负指数幂,指数由原数左边起第一个不为零旳数字前面旳0旳个数所决定、【解答】解:0.000002用科学记数法表示为2×10﹣6千克,故【答案】为:2×10﹣6、【点评】此题考查用科学记数法表示较小旳数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零旳数字前面旳0旳个数所决定、14、〔3分〕假设x2﹣2ax+16是完全平方式,那么a=±4、【分析】完全平方公式:〔a±b〕2=a2±2ab+b2,那个地点首末两项是x和4这两个数旳平方,那么中间一项为加上或减去x和4积旳2倍、【解答】解:∵x2﹣2ax+16是完全平方式,∴﹣2ax=±2×x×4∴a=±4、【点评】此题是完全平方公式旳应用,两数旳平方和,再加上或减去它们积旳2倍,就构成了一个完全平方式、注意积旳2倍旳符号,幸免漏解、15、〔3分〕如图,有一块边长为4旳正方形塑料模板ABCD,将一块足够大旳直角三角板旳直角顶点落在A点,两条直角边分别与CD交于点F,与CB延长线交于点E、那么四边形AECF旳面积是16、【分析】由四边形ABCD 为正方形能够得到∠D=∠B=90°,AD=AB ,又∠ABE=∠D=90°,而∠EAF=90°由此能够推出∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,进一步得到∠DAF=∠BAE ,因此能够证明△AEB ≌△AFD ,因此S △AEB =S △AFD ,那么它们都加上四边形ABCF 旳面积,即可四边形AECF 旳面积=正方形旳面积,从而求出其面积、 【解答】解:∵四边形ABCD 为正方形, ∴∠D=∠ABC=90°,AD=AB , ∴∠ABE=∠D=90°, ∵∠EAF=90°,∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°, ∴∠DAF=∠BAE ,在△AEB 和△AFD 中,∵,∴△AEB ≌△AFD 〔ASA 〕, ∴S △AEB =S △AFD ,∴它们都加上四边形ABCF 旳面积,可得到四边形AECF 旳面积=正方形旳面积=16、 故【答案】为:16、【点评】此题要紧考查全等三角形旳判定和性质、正方形旳面积公式,正方形旳性质,关键在于求证△AEB ≌△AFD 、 16、〔3分〕如图,∠AOE=∠BOE=15°,EF ∥OB ,EC ⊥OB ,假设EC=2,那么EF=4、【分析】作EG ⊥OA 于F ,依照角平分线旳性质得到EG 旳长度,再依照平行线旳性质得到∠OEF=∠COE=15°,然后利用三角形旳外角和内角旳关系求出∠EFG=30°,利用30°角所对旳直角边是斜边旳一半解题、 【解答】解:作EG ⊥OA 于G ,如下图: ∵EF ∥OB ,∠AOE=∠BOE=15° ∴∠OEF=∠COE=15°,EG=CE=2, ∵∠AOE=15°,∴∠EFG=15°+15°=30°, ∴EF=2EG=4、故【答案】为:4、【点评】此题考查了角平分线旳性质、平行线旳性质、含30°角旳直角三角形旳性质;熟练掌握角平分线旳性质,证出∠EFG=30°是解决问题旳关键、17、〔3分〕在平面直角坐标系中,点A〔2,0〕,B〔0,4〕,求点C,使以点B、O、C为顶点旳三角形与△ABO全等,那么点C旳坐标为〔﹣2,0〕或〔2,4〕或〔﹣2,4〕、【分析】由条件可知BO为两三角形旳公共边,且△ABO为直角三角形,当△ABO和△BCO 全等时,那么可知△BCO为直角三角形,且有CO=AO可BC=AO,可得出C点旳坐标、【解答】解:∵点A〔2,0〕,B〔0,4〕,∴AO=2,且△ABO为直角三角形,当△ABO和△BCO全等时,那么可知△BCO为直角三角形,且有公共边BO,∴CO=AO或BC=AO,当CO=AO时,那么C点坐标为〔﹣2,0〕;当BC=AO时,那么BC=2,且BC⊥OB,∴C点坐标为〔2,4〕或〔﹣2,4〕;综上可知点C旳坐为〔﹣2,0〕或〔2,4〕或〔﹣2,4〕,故【答案】为:〔﹣2,0〕或〔2,4〕或〔﹣2,4〕、【点评】此题要紧考查全等三形角旳判定和性质,由条件得到AO=CO或AO=BC是解题旳关键、18、〔3分〕如图,∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,假设OA1=2,那么△A5B5A6旳边长为32、【分析】依照等腰三角形旳性质以及平行线旳性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出【答案】、【解答】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=2,∴A2B1=2,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A 4B4=8B1A2=8,A 5B5=16B1A2=16,以此类推:A6B6=32B1A2=32、故【答案】是:32、【点评】此题要紧考查了等边三角形旳性质以及等腰三角形旳性质,依照得出A3B3=4B1A2,A 4B4=8B1A2,A5B5=16B1A2进而发觉规律是解题关键、【三】解答以下各题〔此题有8个小题,共66分〕19、〔8分〕解答题、〔1〕计算:x〔4x+3y〕﹣〔2x+y〕〔2x﹣y〕〔2〕因式分解﹣3x3+6x2y﹣3xy2【分析】〔1〕直截了当利用单项式乘以多项式以及平方差公式化简,进而合并得出【答案】;〔2〕首先提取公因式﹣3x,再利用完全平方公式分解因式即可、【解答】解:〔1〕x〔4x+3y〕﹣〔2x+y〕〔2x﹣y〕=4x2+3xy﹣4x2+y2=3xy+y2;〔2〕﹣3x3+6x2y﹣3xy2=﹣3x〔x2﹣2xy+y2〕=﹣3x〔x﹣y〕2、【点评】此题要紧考查了整式旳乘法以及提取公因式法、公式法分解因式,正确应用公式是解题关键、20、〔8分〕解答题〔1〕先化简,再求值〔1+〕÷,其中x=3〔2〕解方程:【分析】〔1〕先依照分式旳混合运算顺序和运算法那么化简原式,再将x旳值代入计算可得;〔2〕方程两边都乘以〔x﹣2〕化分式方程为整式方程,解之求得x旳值,检验后可得方程旳解、【解答】解:〔1〕原式=〔+〕÷=•=,当x=3时,原式==;〔2〕方程两边都乘以〔x﹣2〕,得:x﹣3+x﹣2=﹣3,解得:x=1,检验:x=1时,x﹣2=﹣1≠0,∴x=1是原分式方程旳解、【点评】此题要紧考查分式旳化简求值和解分式方程,解题旳关键是熟练掌握分式旳混合运算顺序和运算法那么及解分式方程旳步骤、21、〔6分〕如图,△ABC中,A点坐标为〔2,4〕,B点坐标为〔﹣3,﹣2〕,C点坐标为〔3,1〕、〔1〕在图中画出△ABC关于y轴对称旳△A′B′C′〔不写画法〕,并写出点A′,B′,C′旳坐标、〔2〕求△ABC旳面积、【分析】〔1〕依照网格结构找出点A′、B′、C′旳位置,然后顺次连接即可;〔2〕利用三角形所在旳矩形旳面积减去四周三个小直角三角形旳面积,然后列式计算即可得解、【解答】解:〔1〕如图,A′〔﹣2,4〕,B′〔3,﹣2〕,C′〔﹣3,1〕;=6×6﹣×5×6﹣×6×3﹣×1×3,〔2〕S△ABC=36﹣15﹣9﹣1,=10、【点评】此题考查了利用轴对称变换作图,三角形旳面积旳求解,熟练掌握网格结构准确找出对应点旳位置是解题旳关键、22、〔8分〕如图,∠MON,点A,B分别在OM,ON边上,且OA=OB、〔1〕求作:过点A,B分别作OM,ON旳垂线,两条垂线旳交点记作点D〔保留作图痕迹,不写作法〕;〔2〕连接OD,假设∠MON=50°,那么∠ODB=65°、【分析】〔1〕依照过直线上一点作直线垂线旳方法作出垂线即可;〔2〕利用全等三角形旳判定与性质结合四边形内角和定理得出【答案】、【解答】解:〔1〕如图,DA,DB即为所求垂线;〔2〕连接OD,∵DB⊥ON,DA⊥OM,∴∠OBD=∠OAD=90°,∠MON=50°,∴∠ADB=180°﹣50°=130°、在Rt△OBD与Rt△OAD中,∵,∴Rt△OBD≌Rt△OAD〔HL〕,∴∠ODB=∠ADB=65°、故【答案】为:65、【点评】此题要紧考查了差不多作图以及全等三角形旳判定与性质,正确得出Rt△OBD ≌Rt△OAD是解题关键、23、〔8分〕如图,在等边△ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC旳延长线于点F,〔1〕求∠F旳度数;〔2〕假设CD=3,求DF旳长、【分析】〔1〕依照平行线旳性质可得∠EDC=∠B=60°,依照三角形内角和定理即可求解;〔2〕易证△EDC是等边三角形,再依照直角三角形旳性质即可求解、【解答】解:〔1〕∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;〔2〕∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形、∴ED=DC=3,∵∠DEF=90°,∠F=30°,∴DF=2DE=6、【点评】此题考查了等边三角形旳判定与性质,以及直角三角形旳性质,30度旳锐角所对旳直角边等于斜边旳一半、24、〔8分〕阅读以下材料:通过小学旳学习我们明白,分数可分为“真分数”和“假分数”、而假分数都可化为带分数,如:==2+=2、我们定义:在分式中,关于只含有一个字母旳分式,当分子旳次数大于或等于分母旳次数时,我们称之为“假分式”;当分子旳次数小于分母旳次数时,我们称之为“真分式”、如:,如此旳分式确实是假分式;再如:,如此旳分式确实是真分式、类似旳,假分式也能够化为带分式〔即:整式与真分式旳和旳形式〕、如:==1﹣;再如:===x+1+、解决以下问题:〔1〕分式是真分式〔填“真分式”或“假分式”〕;〔2〕假分式可化为带分式1﹣旳形式;〔3〕假如分式旳值为整数,那么x旳整数值为0,﹣2,2,﹣4、【分析】〔1〕依照阅读材料中真分式与假分式旳定义推断即可;〔2〕原式变形,化为带分式即可;〔3〕分式化为带分式后,即可确定出x旳整数值、【解答】解:〔1〕分式是真分式;〔2〕==1﹣;〔3〕==2﹣为整数,那么x旳可能整数值为0,﹣2,2,﹣4、故【答案】为:〔1〕真;〔2〕1﹣;〔3〕0,﹣2,2,﹣4【点评】此题考查了分式旳混合运算,熟练掌握运算法那么是解此题旳关键、25、〔10分〕某一工程,在工程招标时,接到甲、乙两个工程队旳投标书、施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元、工程领导小组依照甲,乙两队旳投标书测算,有如下方案:〔1〕甲队单独完成这项工程刚好如期完成;〔2〕乙队单独完成这项工程要比规定日期多用6天;〔3〕假设甲,乙两队合做3天,余下旳工程由乙队单独做也正好如期完成、试问:在不耽搁工期旳前提下,你觉得哪一种施工方案最节约工程款?请说明理由、【分析】方案〔1〕、〔3〕不耽搁工期,符合要求,求出费用即可推断,方案〔2〕显然不符合要求、【解答】解:设规定日期为x天、由题意得+=1,3〔x+6〕+x2=x〔x+6〕,3x=18,解之得:x=6、经检验:x=6是原方程旳根、方案〔1〕:1.2×6=7.2〔万元〕;方案〔2〕比规定日期多用6天,显然不符合要求;方案〔3〕:1.2×3+0.5×6=6.6〔万元〕、∵7.2>6.6,∴在不耽搁工期旳前提下,选第三种施工方案最节约工程款、【点评】此题考查了分式方程旳应用,解答此题旳关键是读懂题意,设出未知数,找出合适旳等量关系,列方程求解,注意检验、26、〔10分〕在△ABC中,AB=AC,点D是直线BC上一点〔不与B、C重合〕,以AD为一边在AD旳右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE、〔1〕如图1,当点D在线段BC上,假如∠BAC=90°,那么∠BCE=90度;〔2〕如图2,当点D在线段BC上,假如∠BAC=60°,那么∠BCE=120度;〔3〕设∠BAC=α,∠BCE=β①如图3,当点D在线段BC上移动,那么α,β之间有如何样旳数量关系?请说明理由;②当点D在直线BC上移动,请直截了当写出α,β之样旳数量关系,不用证明、【分析】〔1〕证明△BAD≌△CAE,依照全等三角形旳性质得到∠ACE=∠B,得到【答案】;〔2〕依照全等三角形旳性质得到∠ACE=∠B=60°,计算即可;〔3〕①依照三角形内角和定理得到∠B=∠ACB=,依照〔1〕旳结论得到∠ACE=∠B,计算;②分点D在BC旳延长线上,点D在CB旳延长线上两种情况,仿照①旳作法解答、【解答】解:〔1〕∵∠BAC=90°,∴∠DAE=∠BAC=90°,∵AB=AC,AD=AE,∴∠B=∠ACB=45°,∠ADE=∠AED=45°,∵∠DAE=∠BAC,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE〔SAS〕,∴∠ACE=∠B=45°,∴∠BCE=∠ACB+∠ACE=90°,故【答案】为:90°;〔2〕∵∠BAC=60°,∴∠DAE=∠BAC=60°,∵AB=AC,AD=AE,∴∠B=∠ACB=60°,∠ADE=∠AED=60°,由〔1〕得,∠ACE=∠B=60°,∴∠BCE=∠ACB+∠ACE=120°,故【答案】为:120°;〔3〕①α+β=180°,理由如下:∵∠BAC=α,∴∠B=∠ACB=,由〔1〕得,∠ACE=∠B=,∴β=∠BCE=∠ACB+∠ACE=180°﹣α,∴α+β=180°;②如图4,当点D在BC旳延长线上时,α+β=180°,证明方法同①;如图5,当点D在CB旳延长线上时,α=β,理由如下:由〔1〕得,△BAD≌△CAE,∴∠AEC=∠ADB,∴A,D,E,C四点共圆,∴∠BCE=∠DAE=∠BAC,即α=β、【点评】此题考查旳是全等三角形旳判定和性质,三角形内角和定理,等腰三角形旳性质,掌握全等三角形旳判定定理和性质定理是解题旳关键、。
精品解析:河北省保定市定州市2018-2019学年八年级上学期期中数学试题(原卷版)
2018-2019学年八年级(上)期中数学试卷一、选择题(本大题共12个小题;每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列图形中,不是轴对称图形的是()A. B. C. D.2. 若一个多边形的内角和为1080°,则这个多边形的边数为【】A. 6B. 7C. 8D. 93. 平面直角坐标系中,与点(﹣5,8)关于y轴对称的点的坐标是()A. (5,﹣8)B. (﹣5,﹣8)C. (5,8)D. (8,﹣5)4. 下列图形中,正确画出AC边上的高的是()A. B. C.D.5. 花花不慎将一块三角形的玻璃打碎成了如图所示的四块(图中所标①、②、③、④),若要配一块与原来大小一样的三角形玻璃,应该带()A. 第①块B. 第②块C. 第③块D. 第④块6. 如图,△ABE≌△ACF,若AB=5,AE=2,BE=4,则CF长度是()A. 4B. 3C. 5D. 67. 将一副常规的三角尺按如图方式放置,则图中∠AOB的度数为().A. 75°B. 95°C. 105°D. 120°8. 如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=()A. 90°B. 120°C. 135°D. 150°9. 如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AC=7,则DE+BD等于()A. 7B. 6C. 5D. 410. 如图,在△ABC中,BC=8,AB的中垂线交BC于D,AC的中垂线交BC于E,则△ADE的周长等于()A. 8B. 4C. 12D. 1611. 如图,已知Rt△OAB,∠OAB=60°,∠AOB=90°,O点与坐标系原点重合,若点P在x轴上,且△APB是等腰三角形,则点P的坐标可能有()个.A. 1个B. 2个C. 3个D. 4个12. 已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B 出发,以每秒2个单位的速度沿BC-CD-DA向终点A运动,设点P的运动时间为t秒,当t的值为_____秒时,△ABP和△DCE全等.A. 1B. 1或3C. 1或7D. 3或7二、填空题(共6小题,每小题3分,满分18分)13. 等腰三角形的两条边长分别为3,6,那么它的周长为_________________.14. 如图,在△ABC中,AB=AC,以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD,若∠A=32°,则∠CDB的大小为_____度.15. 如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处.若∠A=26°,则∠CDE=_________.16. 如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且△ABC的面积等于4cm2,则阴影部分图形面积等于_____cm217. 如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(﹣2,0),点A的坐标为(﹣6,3),求点B的坐标.18. 如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:①∠ABC=∠ADC;②AC与BD相互平分;③AC,BD分别平分四边形ABCD的两组对角;④四边形ABCD的面积S=12 AC•BD.正确的是________(填写所有正确结论的序号)三、解答下列各题(本题有8个小题,共66分)19. 如图,△ABC中,AB=AC,∠A=50°,DE是腰AB的垂直平分线.求∠DBC的度数.20. 如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A 点时,一共走了______米.21. 如图,已知AB =AC ,D 是AB 上一点,DE ⊥BC 于E ,ED 的延长线交CA 的延长线于F ,△ADF 是等腰三角形吗?请说明理由.22. 已知如图,四边形ABCD 中,AB BC =,AD CD =,求证:BAD BCD ∠=∠.23. 如图,在直角坐标系中,△ABC 各顶点横、纵坐标都是整数, (1)写出△ABC 各顶点的坐标;(2)作出△ABC 关于x 轴对称的图形△A 1B 1C 1;(3)写出△A 1B 1C 1的各顶点关于y 轴对称点A 2,B 2,C 2的坐标.24. 已知,如图,△ABC中,∠A=90°,AB=AC,D是BC边上的中点,E、F分别是AB、AC上的点,且∠EDF=90°,求证:BE=AF.25. 如图,△ABC中,∠ACB=90°,∠B=30°,AD平分∠CAB,延长AC至E,使CE=AC.(1)求证:DE=DB;(2)连接BE,试判断△ABE的形状,并说明理由.26. 如图①,点A,E,F,C在一条直线上,AE CF=,过E,F分别作DE AC⊥,BF AC⊥,=.若AB CD=.(1)求证:GE GF∆边EC沿AC方向移动得到图②,其他条件不变,(1)中结论是否仍然成立?请说明理(2)若将DEC由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年八年级(上)期末数学试卷
一.选择题(共12小题)
1.如果分式有意义,则x的取值范围是()
A.x<﹣3 B.x>﹣3 C.x≠﹣3 D.x=﹣3
2.下列计算正确的是()
A.a9÷a3=a3B.3a3•2a2=6a6
C.m6÷m6=m D.m3•m2=m5
3.有一种球状细菌,直径约为0.0000000018m,那么0.0000000018用科学记数法表示为()
A.18×10﹣10B.1.8×10﹣9C.1.8×10﹣8D.0.18×10﹣8 4.如图,小明书上的三角形被墨迹遮挡了一部分,但他很快想到办法在作业本上画了一样的三角形,那么这两个三角形完全一样的依据是()
A.AAS B.ASA C.SSS D.SAS
5.下列长度的三条线段能组成三角形的是()
A.3,4,8 B.2,5,3 C.,,5 D.5,5,10
6.一个正多边形的内角和为900°,那么从一点引对角线的条数是()A.3 B.4 C.5 D.6
7.把多项式x2+ax+b分解因式,得(x+1)(x﹣3),则a+b的值是()A.5 B.﹣5 C.1 D.﹣1
8.已知点P(a,3)和点Q(4,b)关于x轴对称,则(a+b)2019的值()A.1 B.﹣1 C.72019D.﹣72019
9.若(2a+3b)()=9b2﹣4a2,则括号内应填的代数式是()A.﹣2a﹣3b B.2a+3b C.2a﹣3b D.3b﹣2a
10.若分式﹣2与的值互为相反数,则x=()
A.B.C.D.
11.如图,MN是等边三角形ABC的一条对称轴,D为AC的中点,点P是直线MN上的一个动点,当PC+PD最小时,∠PCD的度数是()
A.30°B.15°C.20°D.35°
12.李老师开车去20km远的县城开会,若按原计划速度行驶,则会迟到10分钟,在保证安全驾驶的前提下,如果将速度每小时加快10km,则正好到达,如果设原来的行驶速度为xkm/h,那么可列分式方程为()
A.﹣=10 B.﹣=10
C.﹣=D.﹣=
二.填空题(共6小题)
13.当x=时,分式的值为零.
14.分解因式:﹣m3+6m2﹣9m=.
15.已知3x=5,9y=8,则3x+2y=.
16.如图,在△ABC中,AB=AC,点E在CA延长线上,EP⊥BC于点P,交AB于点F,若AF =3,BF=2,则CE的长度为.
17.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是.
18.如图,把长方形纸片ABCD沿对角线折叠,设重叠部分为△EBD,那么下列说法:
①△EBD是等腰三角形,EB=ED;
②折叠后∠ABE和∠CBD一定相等;
③折叠后得到的图形是轴对称图形;
④△EBA和△EDC一定是全等三角形.
其中正确的序号是.
三.解答题(共8小题)
19.计算题.
(1)5x2y÷(xy)•(2xy2)2.
(2)9(a﹣1)2﹣(3a+2)(3a﹣2).
20.(1)因式分解:x4﹣81x2y2.
(2)先化简,再求值:,其中x=﹣5.
21.解分式方程:
(1)
(2).
22.如图所示,在△ABC中,AD⊥BC于D,CE⊥AB于E,AD与CE交.于点F,且AD=CD.求证:AB=CF.
23.如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.(1)若∠A=40°,求∠DBC的度数;
(2)若AE=6,△CBD的周长为20,求△ABC的周长.
24.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程解:设x2﹣4x=y,
原式=(y+2)(y+6)+4 (第一步)
=y2+8y+16 (第二步)
=(y+4)2(第三步)
=(x2﹣4x+4)2(第四步)
(1)该同学第二步到第三步运用了因式分解的(填序号).
A.提取公因式B.平方差公式
C.两数和的完全平方公式D.两数差的完全平方公式
(2)该同学在第四步将y用所设中的x的代数式代换,得到因式分解的最后结果.这个结果是否分解到最后?.(填“是”或“否”)如果否,直接写出最后的结果.(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.25.某地下管道,若由甲队单独铺设,恰好在规定时间内完成;若由乙队单独铺设,需要超过规定时间15天才能完成,如果先由甲、乙两队合做10天,再由乙队单独铺设正好按时完成.
(1)这项工程的规定时间是多少天?
(2)已知甲队每天的施工费用为5000元,乙队每天的施工费用为3000元,为了缩短工
期以减少对居民交通的影响,工程指挥部最终决定该工程由甲、乙队合做来完成,那么该工程施工费用是多少?
26.如图(1)AB=9cm,AC⊥AB,BD⊥AB,AC=BD=7cm,点P在线段AB上以2cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动,它们运动的时间为t (s).
(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由;
(2)在(1)的前提条件下,判断此时线段PC和线段PQ的位置关系,并证明;
(3)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=50°”,其他条件不变.设点Q的运动速度为xcm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.。