(完整版)行测数量关系知识点汇总

合集下载

行测数量关系公式大全

行测数量关系公式大全

行测数量关系公式大全一、比例关系公式:1.同比例的两个量之积等于它们的一平方。

(a/b=c/d=>a*d=b*c)2.两个量成反比例,其乘积等于常数。

(a/b=c/d=>a*b=c*d)二、百分数关系公式:1.百分数x%等于小数x/100。

(x%=x/100)2.数x占总数y的百分比等于数x与y之比乘以100%。

(x/y×100%)3.两个百分比相加、相减等于数与数相加、相减。

三、平均数关系公式:1.平均数=和/个数。

2.和=平均数×个数。

四、利率、利息和本金关系公式:1.简单利息=本金×年利率×时间。

2.平均利率=总利息/总本金五、速度、时间和距离关系公式:1.速度=距离/时间。

2.时间=距离/速度。

3.距离=速度×时间。

六、面积和体积关系公式:1.长方形面积=长×宽。

2.正方形面积=边长×边长。

3.圆面积=π×半径的平方。

4.圆柱体体积=底面积×高。

5.球体体积=4/3×π×半径的立方。

6.锥体体积=1/3×底面积×高。

七、等差数列关系公式:1.第n项=首项+(n-1)×公差。

2.前n项和=(首项+末项)×n/2八、等比数列关系公式:1.第n项=首项×公比的(n-1)次方。

2.前n项和=(首项×(公比的n次方-1))/(公比-1)。

2023公务员行测复习数量关系知识点公式

2023公务员行测复习数量关系知识点公式

2023公务员行测复习数量关系知识点公式公务员行测复习数量关系知识点公式一、五大方法1.代入法:代入法时行测第一大法,优先考虑。

2.赋值法:对于有些问题,若能根据其具体情况,合理巧妙地对某些元素赋值,特别是赋予确定的特殊值,往往能使问题获得简捷有效的解决。

题干中有分数,比例,或者倍数关系时一般采用赋值法简化计算,赋值法经常应用在如工程问题,行程问题,费用问题等题目中。

3.倍数比例法:若a : b=m : n(m、n互质),则说明: a占m份,是m的倍数;b占n份,是n的倍数;a+b占m+n份,是m+n的倍数;a-b占m-n份,是m-n的倍数。

4.奇偶特性法:两个奇数之和/差为偶数,两个偶数之和/差为偶数,一奇一偶之和/差为奇数;两个数的和/差为奇数,则它们奇偶相反,两个数的和/差为偶数,则它们奇偶相同;两个数的和为奇数,则其差也为奇数,两个数的和为偶数,则其差也为偶数 5.方程法:很多数学运算题目都可以采用列方程进行求解。

方程法注意事项:未知数要便于列方程;未知数可以用字母表示,也可以用“份数”,还可以用汉字进行替代。

二、六大题型1.工程问题:工作量=工作效率×工作时间工程问题一般采用赋值法解题。

赋值法有2种应用情况,第一种是题干中已知每个人完成工作的时间,这时我们假设工作量为工作时间的最小公倍数,进而得到每个人的工作效率,从而快速求解;第二种是题干中已知的是每个人工作效率的等量关系,这时我们通过直接赋效率为具体值进行快速求解。

2.行程问题:路程=速度×时间行程问题一般要通过数形结合进行快速求解,常见的解法包括列方程,比例法等。

常考的题型包括相遇问题和追及问题。

相遇问题:路程和=速度和×时间追及问题:路程差=速度差×时间3.溶液问题:浓度=溶质÷溶液溶液问题常见的有两种,一种是溶液的混合,这种问题用公式解决;另外一种是单一溶液的蒸发或稀释,这种题目一般用比例法解决,即利用溶质不变进行求解。

行测数量关系知识点汇总2024

行测数量关系知识点汇总2024

行测数量关系知识点汇总2024一、数字推理。

1. 等差数列。

- 定义:如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。

- 通项公式:a_n=a_1+(n - 1)d,其中a_n是第n项的值,a_1是首项,n是项数。

- 求和公式:S_n=frac{n(a_1+a_n)}{2}=na_1+(n(n - 1))/(2)d。

- 示例:数列1,3,5,7,9·s是一个首项a_1=1,公差d = 2的等差数列。

2. 等比数列。

- 定义:如果一个数列从第二项起,每一项与它的前一项的比值等于同一个常数,这个数列就叫做等比数列,这个常数叫做等比数列的公比,通常用字母q表示(q≠0)。

- 通项公式:a_n=a_1q^n - 1。

- 求和公式:当q≠1时,S_n=frac{a_1(1 - q^n)}{1 - q};当q = 1时,S_n=na_1。

- 示例:数列2,4,8,16,32·s是一个首项a_1=2,公比q = 2的等比数列。

3. 和数列。

- 定义:通过相邻项相加得到下一项的数列。

- 类型:- 两项和数列:如1,2,3,5,8,13·s,其中a_n=a_n - 1+a_n - 2(n≥3)。

- 三项和数列:例如1,1,2,4,7,13,24·s,a_n=a_n - 1+a_n - 2+a_n - 3(n≥4)。

4. 积数列。

- 定义:通过相邻项相乘得到下一项的数列。

- 类型:- 两项积数列:如2,3,6,18,108·s,其中a_n=a_n - 1× a_n - 2(n≥3)。

- 三项积数列:例如1,2,3,6,36,648·s,a_n=a_n - 1× a_n - 2× a_n - 3(n≥4)。

5. 多次方数列。

- 类型:- 平方数列:1,4,9,16,25·s,通项公式为a_n=n^2。

公务员考试行测常见基础公式汇总

公务员考试行测常见基础公式汇总

公务员考试行测常见基础公式汇总公务员考试中,行政职业能力测验(简称行测)是重要的组成部分。

其中涉及到众多的知识点和公式,掌握这些基础公式对于提高解题效率和准确性至关重要。

下面为大家汇总了一些行测常见的基础公式。

一、数量关系1、等差数列通项公式:$a_n = a_1 +(n 1)d$,其中$a_n$表示第$n$项的值,$a_1$表示首项,$d$表示公差。

例如,已知一个等差数列的首项为 3,公差为 2,求第 10 项的值。

则$a_{10} = 3 +(10 1)×2 = 21$等差数列求和公式:$S_n =\frac{n(a_1 + a_n)}{2}$,其中$S_n$表示前$n$项的和。

例如,求上述等差数列前 10 项的和,$a_{10} = 21$,则$S_{10}=\frac{10×(3 + 21)}{2} = 120$2、等比数列通项公式:$a_n = a_1×q^{n 1}$,其中$q$为公比。

例如,一个等比数列的首项为 2,公比为 3,求第 5 项的值。

则$a_{5} = 2×3^{5 1} = 162$等比数列求和公式:$S_n =\frac{a_1(1 q^n)}{1 q}$($q ≠1$)3、行程问题相遇问题:$S =(v_1 + v_2)×t$,其中$S$表示路程,$v_1$、$v_2$表示两个物体的速度,$t$表示相遇时间。

例如,甲、乙两人分别以 5 米/秒和 3 米/秒的速度相向而行,经过10 秒相遇,求他们最初的距离。

则$S =(5 + 3)×10 = 80$米追及问题:$S =(v_1 v_2)×t$例如,甲以 8 米/秒的速度追赶以 5 米/秒速度前行的乙,经过 10 秒追上,求他们最初的距离差。

则$S =(8 5)×10 = 30$米4、工程问题工作总量=工作效率×工作时间例如,一项工程,甲单独完成需要 10 天,乙单独完成需要 15 天,两人合作需要的时间为:$1÷(\frac{1}{10} +\frac{1}{15})=6$天5、利润问题利润=售价成本利润率=利润÷成本×100%例如,一件商品成本为 80 元,售价为 100 元,则利润为$100 80 =20$元,利润率为$20÷80×100\%= 25\%$二、资料分析1、增长率增长率=(现期量基期量)÷基期量×100%例如,某地区去年的 GDP 为 100 亿元,今年为 120 亿元,则增长率为$(120 100)÷100×100\%= 20\%$2、平均数平均数=总数÷个数例如,某班级 5 名学生的成绩分别为 80、90、85、95、70 分,平均成绩为$(80 + 90 + 85 + 95 + 70)÷5 = 84$分3、比重比重=部分÷整体×100%例如,某公司总人数为 500 人,其中男性 250 人,则男性所占比重为$250÷500×100\%= 50\%$三、判断推理1、集合推理“所有的 S 都是P”可以推出“有的 S 是P”“某个 S 是P”可以推出“有的 S 是P”2、翻译推理“如果……那么……”:前推后“只有……才……”:后推前3、逻辑论证加强论证:增加论据、建立联系、补充前提削弱论证:削弱论据、切断联系、否定前提四、言语理解与表达虽然言语理解与表达部分没有像数量关系和资料分析那样有明确的公式,但一些解题技巧和规律还是需要掌握的。

(完整版)行测数量关系知识点汇总

(完整版)行测数量关系知识点汇总

行测常用数学公式一、工程问题工作量=工作效率×工作时间;工作效率=工作量÷工作时间;工作时间=工作量÷工作效率;总工作量=各分工作量之和;注:在解决实质问题时,常设总工作量为 1 或最小公倍数二、几何边端问题( 1)方阵问题:1.实心方阵:方阵总人数=(最外层每边人数)2=(外圈人数÷ 4+1)2=N2最外层人数=(最外层每边人数- 1)× 42.空心方阵:方阵总人数=(最外层每边人数)2- (最外层每边人数 - 2×层数)2=(最外层每边人数 - 层数)×层数× 4=中空方阵的人数。

★不论是方阵仍是长方阵:相邻两圈的人数都知足:外圈比内圈多8 人。

3.N 边行每边有 a 人,则一共有 N(a-1) 人。

4.实心长方阵:总人数 =M×N 外圈人数 =2M+2N-45.方阵:总人数 =N2N 排 N 列外圈人数 =4N-4例:有一个 3 层的中空方阵,最外层有 10 人,问全阵有多少人?解:(10 -3 )×3 ×4 =84(人)(2)排队型:假定队伍有 N 人, A 排在第 M位;则其前方有( M-1)人,后边有( N-M)人(3) 爬楼型:从地面爬到第 N 层楼要爬( N-1)楼,从第 N 层爬到第 M层要爬 M N 层。

三、植树问题线型棵数 =总长 / 间隔 +1环型棵数=总长/间隔楼间棵数=总长/间隔-1(1)单边线形植树:棵数=总长间隔+1;总长=(棵数-1)×间隔(2)单边环形植树:棵数=总长间隔;总长=棵数×间隔(3)单边楼间植树:棵数=总长间隔-1;总长=(棵数+1)×间隔(4)双边植树:相应单边植树问题所需棵数的 2 倍。

N(5)剪绳问题:对折 N次,从中剪 M刀,则被剪成了( 2×M+1)段四、行程问题⑴ 行程=速度×时间;均匀速度=总行程÷总时间均匀速度型:均匀速度=2v1v2v1 v2(2)相遇追及型:相遇问题:相遇距离 =(大速度 +小速度)×相遇时间追及问题:追击距离 =(大速度—小速度)×追实时间背叛问题:背叛距离 =(大速度 +小速度)×背叛时间(3)流水行船型:顺流速度=船速+水速;逆水速度=船速-水速。

行测知识点数量关系汇总【精编】.pdf

行测知识点数量关系汇总【精编】.pdf

数量关系一、数量思维1.选项关联:不是填空题注意观察选项之间的倍数关系。

2.代入排除:应用范围:多位数范围、不定方程问题、同余问题、年龄问题、周期问题、复杂行程问题和差倍比问题,优先代入整数选项。

3.整除思想:必须将题目式子转化成 A =B ×C 两两相乘的形式整除判定法则:①拆分法517=470+47;②因式分解 6=2×3 ;③常用的 2、3、5、7、11和13 整除判定法则。

4.特值思想:数字特值:题目没具体数字,只有相互比例关系等,常用于计算题、浓度问题、工程问题或行程问题。

数字特值计算题优先考虑-1,0,1,工程与行程等问题优先考虑最小公倍。

图形特值:比如特殊的长方形——正方形。

5.奇偶特性:题目中出现平均、总和、差,尤其是不定方程的时候 奇偶判定:①加减运算:同奇同偶比得偶,一奇一偶只能奇;②乘除运算:一偶就是偶,双奇才是奇。

二、基础代数公式和方法1.基础代数公式:完全平方:(a ±b)2=a 2±2ab +b 2平方差: a 2-b 2=(a +b )×(a -b ) 完全立方:(a ±b)3=a 3±3a 2b +3ab 2±b3立方和差: a 3±b 3=(a ±b)(a 2ab +b 2)阶乘: a m×a n=am +na m ÷a n =a m -n (a m )n =a mn (ab)n =a n ×b n2.常用方法:公式法(记住常用的公式) 因子法(整除特性结合)放缩法(用于判定计算的整数部分)n1-n 32=1n!)(⨯⋯⨯⨯⨯构造法 特值法三、等差数列1.n 为项数,a 1为首项,a n 为末项,d 为公差,s n 为等差数列前n 项的和 通项公式:a n =a 1+(n -1)d求和公式:s n = =na 1+ n(n-1)d项数公式:n = +1等差中项:2A =a +b (若a 、A 、b 成等差数列) 2.若m+n =k+i ,则:a m +a n =a k +a i3.前n 个奇数:1,3,5,7,9,…(2n —1)之和为n 2四、等比数列1.n 为项数,a 1为首项,a n 为末项,q 为公比,s n 为等差数列前n 项的和 通项公式:a n =a 1qn -1求和公式:s n = (q ≠1)等比公式:G 2=ab (若a 、G 、b 成等比数列)2.若m+n =p+q ,则:a m ×a n =a p ×a q3.a m -a n =(m-n)d =q(m-n)五、周期问题一周7天,5个工作日。

公务员行测数量关系知识点整理

公务员行测数量关系知识点整理

公务员行测数量关系知识点整理公务员考试中,行测的数量关系部分一直是众多考生的难点和重点。

数量关系涉及的知识点繁多,题型复杂,需要我们系统地学习和掌握。

下面就为大家整理一下常见的数量关系知识点。

一、数学运算1、整数特性整数特性是数量关系中的基础知识点。

包括整除特性、奇偶性、质数与合数等。

整除特性:若整数 a 除以非零整数 b,商为整数,且余数为零,我们就说 a 能被 b 整除。

比如,能被 2 整除的数的特征是个位是偶数;能被 3 整除的数,其各位数字之和能被 3 整除。

奇偶性:奇数±奇数=偶数,偶数±偶数=偶数,奇数±偶数=奇数。

质数与合数:质数是指在大于 1 的自然数中,除了 1 和它本身以外不再有其他因数的自然数。

合数是指自然数中除了能被 1 和本身整除外,还能被其他数(0 除外)整除的数。

2、方程与不等式方程是解决数量关系问题的常用工具。

通过设未知数,根据题目中的等量关系列出方程,然后求解。

一元一次方程:形如 ax + b = 0(a≠0)的方程。

二元一次方程组:由两个未知数,且未知数的次数都是 1 的方程组成。

不等式:用不等号(大于>、小于<、大于等于≥、小于等于≤)连接两个代数式的式子。

3、比例问题比例是指两个比相等的式子。

常见的有工程问题中的效率比、行程问题中的速度比等。

若 a:b = c:d,则 ad = bc。

4、行程问题行程问题是数量关系中的重点和难点。

基本公式:路程=速度×时间。

相遇问题:路程和=速度和×相遇时间。

追及问题:路程差=速度差×追及时间。

5、工程问题工程问题的核心是工作总量=工作效率×工作时间。

经常通过设工作总量为 1 或工作总量的最小公倍数来解题。

6、利润问题涉及成本、售价、利润、利润率等概念。

利润=售价成本,利润率=利润÷成本×100% 。

7、几何问题包括平面几何和立体几何。

行测数量关系知识点总结大全

行测数量关系知识点总结大全

行测数量关系知识点总结大全
嘿呀!行测数量关系这部分可太重要啦!今天咱们就来好好唠唠这行测数量关系的知识点总结大全!
首先呢,咱们来说说行程问题。

哎呀呀,这可是个常见的类型!比如说相遇问题,当两个人相向而行的时候,路程之和就等于速度之和乘以相遇时间,哇,是不是很关键?还有追及问题,一个人追另一个人,路程之差等于速度之差乘以追及时间呢!
再讲讲工程问题呀!工作总量等于工作效率乘以工作时间,这可是基础中的基础!不管是合作还是单独工作,都离不开这个公式呀!
还有利润问题呢!成本、售价、利润、利润率,这些概念得搞清楚呀!售价减去成本就是利润,利润除以成本就是利润率,懂了这些,计算起来就容易多啦!
接着说说排列组合问题!这可有点复杂啦。

排列是有顺序的,组合是没顺序的,千万别搞混啦!计算方法也有好多,什么加法原理、乘法原理,得好好琢磨琢磨!
还有几何问题呀!三角形、圆形、矩形的各种面积、周长公式,都得牢记在心呢!
容斥原理也不能落下!两集合、三集合的容斥公式,一定要熟练运用!
数学运算中的整除特性,有时候能帮我们快速排除错误选项,节省好多时间呢!
数列问题也是常见的,等差数列、等比数列的通项公式、求和公
式,是不是得掌握呀?
哇塞!行测数量关系的知识点可真是不少呢!要想在考试中取得好成绩,这些知识点都得熟练掌握,多做练习呀!加油加油!。

行测数量关系知识点

行测数量关系知识点

数量关系知识点代入排除法1.选出答案而非算出答案2.最值代入、就简代入3.特定题型:年龄问题、余数问题、多位数问题、不定方程等选项特征:多选项特征、最值特征等知识点:质数:2,3,5,7,11,13,17,192 是唯一的偶质数;0 和 1 非质非合;多位数颠倒规律:(n 是对调的两个数字之差)个位与十位对调,差 9n十位与百位对调,差 90n个位和百位对调,差 99n不定方程:未知数的个数多于等式的个数数字特性法1.奇偶特性(1)加、减法:基础性质:奇数±奇数=偶数、偶数±偶数=偶数、奇数±偶数=奇数推论:①同性为偶,异性为奇a,两数的和或差为偶数,则两数同奇同偶b,两数的和或差为奇数,则两数一奇一偶②两个数的和与差奇偶性相同两数和为偶数,差也为偶数;两数和为奇数,差也为奇数两数差为偶数,和也为偶数;两数差为奇数,和也为奇数(2)乘法:基础性质:奇数×奇数=奇数、奇数×偶数=偶数、偶数×偶数=偶数推论:①两个数中只要有一个为偶数,乘积就为偶数②两个数的乘积为奇数,则两个数都为奇数(3)应用:①不定方程;②知和求差、知差求和2.整除特性(整除的判定)2 或 5 的判定:末一位4(2²)或 25(5²)的判定:末两位8(2³)的判定:末三位3 或 9 的判定:各位数字之和6(2×3)的判定:既能被 2 整除又能被 3 整除10(2×5)的判定:末一位为 07 的判定:直接除以 7 验证应用:y=ax,y=ax+b3.倍数特性若 a:b=m:n(m、n 互质),则 a 是 m 的倍数、b 是 n 的倍数、a±b 是m±n 的倍数m、n 互质:m/n 是最简整数比变形:若 a=(m/n)b,(m/n 是最简分数),则 a 是 m 的倍数,b 是 n 的倍数,a±b 是 m±n 的倍数题型特征:题干中出现比例、分数、小数、倍数、百分数4.因子特性型如:ax+by=c若其中两项都含有某因子,则剩余的一项必有该因子若其中一项含有某因子,另一项不含有该因子,则剩余的一项也不含有该因子常用因子:2,3,4,5方程法1.巧设未知数:①问什么设什么;(量<3)②设中间变量(是、比、为);(量≥3)③设 nx(比例未知数)简化计算2.快速列方程:寻找等量关系(深度挖掘题干)①A 比 B 多/少……②A 是 B 的……倍③共……和、差、相同、相等、相当于、共计④隐含的不变量:如果……如果;若……若3.精确解方程:一元一次方程→移项法二元一次方程→消元法二、不定方程(组)未知数个数多于等式个数 ax+by=c;1.不定方程:两个未知数一个等式代入排除法求解数字特性法辅助(奇偶特性、因子特性)2.不定方程组:三个未知数两个等式消元法→不定方程枚举归纳法有序的枚举一、枚举所有可能(直接得到答案)二、枚举寻找规律(推导得出答案)方法:直接枚举、列表枚举、画图枚举规律类型:循环周期规律、等差规律、递推和规律、多级差规律等赋值法1.核心:赋某个量为具体值2.应用题型:工程问题、经济利润问题、行程问题、溶液问题、几何问题等题型共性:解题公式:A=B×C 型总量=时间×效率;路程=速度×时间;总额=单价×销量;总利=单利×销量;溶质=溶液×浓度;总数=平均数×个数。

公务员考试行测数量关系整理全集

公务员考试行测数量关系整理全集

第1讲计算问题主要题型:①尾数法、估算法、公式法、②乘方尾数问题、裂项相消、重复项计算、③新定义符号运算、符号运算、数学概念例1:破:①底数留个位;②指数除以4,恰好整除取4。

例2:破:用(最小数的分之一减最大数的分之一)乘以原来的分子/两数之差例3:破:把目标算式转化成已经给定的算式、特殊值带入第2讲多位数问题主要方法:带入排除,多步推理题型:①多位数求值、②多位数构造、③多位数个数统计、④多位数判定位置、⑤多位数乘法拆分、⑥多位数加法拆分、⑦复杂多位数问题例1:破:按给定条件一步步推理例2:破:多位数个数统计--位数固定:按数位来考虑,此时第一位可以是0。

破:多位数个数统计—位数不固定:按位数划分,如果是一位数,两位数,三位数。

首位不能是0。

例3:破:多位数加法拆分问题,分5步,①求总和;②确定问题对其他影响;③写下确定的情况;④剩下的总和求平均,对应中位数,写下这种情况;⑤对此情况调整修正。

第3讲平均数问题题型:①总和与平均数、②轮换平均数、③混合平均数、④不规则平均数、⑤分析性平均数、⑥调和平均数:三个数,它们的倒数成等差数列,则这三个数构成调和平均数。

例1:破:轮换平均数,写出各自表达式最后求和例2:破:混合平均数:已知各自平均数,又知混合后平均数,用十字交叉法求人数比例,再带入。

例3:破:不规则平均数:混合的不均匀,有两两求平均,有三三求平均。

设未知数带入求解。

例4:破:调和平均数题型的突破口是每次的增量成等差(最常见是相等),知道是调和平均数,直接带入求解。

第4讲工程问题总量不变,效率和时间成反比。

可赋值总量为一常数。

题型:①基本工程问题(等式列方程);②分阶段工程问题(按阶段解题);③两项工程型问题;④合作问题;⑤时效转化问题。

例1:破:典型的分阶段工程问题,赋值总量,然后按步骤写出。

效率与时间成反比。

第5讲浓度问题浓度问题的破题之道就是要在变化的过程中抓住不变量。

题型:①重复稀释:多次加溶剂稀释,加的过程有变化,有时是不等量、有时先倒出再加。

行测数量关系知识点汇总

行测数量关系知识点汇总

行测数量关系知识点汇总一、数字推理。

1. 基础数列。

- 等差数列:相邻两项的差值相等,例如:1,3,5,7,9,…,公差为2。

- 等比数列:相邻两项的比值相等,例如:2,4,8,16,32,…,公比为2。

- 质数数列:由质数组成的数列,如2,3,5,7,11,13,…- 合数数列:由合数组成的数列,如4,6,8,9,10,12,…- 周期数列:数列中的数字按照一定的周期重复出现,例如:1,2,1,2,1,2,…- 简单递推数列。

- 递推和数列:如1,2,3,5,8,13,…,从第三项起,每一项等于前两项之和。

- 递推差数列:如5,3,2,1,1,0,…,从第三项起,每一项等于前两项之差。

- 递推积数列:如1,2,2,4,8,32,…,从第三项起,每一项等于前两项之积。

- 递推商数列:如100,50,2,25,1/12.5,…,从第三项起,每一项等于前两项之商。

2. 多级数列。

- 做差多级数列。

- 对于数列不具有明显规律时,可先尝试做差。

例如数列:5,7,10,14,19,…,相邻两项做差得到2,3,4,5,…,是一个公差为1的等差数列。

- 做商多级数列。

- 当数列各项之间有明显的倍数关系时,可尝试做商。

如数列:2,4,12,48,240,…,相邻两项做商得到2,3,4,5,…,是一个公差为1的等差数列。

- 做和多级数列。

- 有些数列做和后会呈现出规律。

例如数列:1,2,3,4,7,11,…,相邻两项做和得到3,5,7,11,18,…,得到的新数列可能是质数数列或者其他有规律的数列。

- 做积多级数列。

- 数列中相邻项之间有乘积关系时适用。

比如数列:1,2,2,4,8,32,…,相邻两项做积得到2,4,8,32,256,…,做积后得到的数列可能有自身规律。

3. 幂次数列。

- 基础幂次数列。

- 要牢记常见的幂次数:1^2 = 1,2^2=4,3^2 = 9,4^2=16,5^2 = 25,6^2=36,7^2 = 49,8^2=64,9^2 = 81,10^2 = 100;1^3=1,2^3 = 8,3^3=27,4^3 = 64,5^3=125,6^3 = 216,7^3=343,8^3 = 512,9^3 = 729,10^3=1000等。

公务员行测数量关系十大知识要点

公务员行测数量关系十大知识要点

数量关系十大知识要点一、行程问题1.核心公式:S二V x T,路程二速度x时间2.平均速度二总路程一总时间3.若物体前一半时间以速度VI运动,后一半时间以速度V2V1+V2运动,则全程平均速度为一^4•若物体前一半路程以VI运动,后一半路程以V2运动,则全程平均速度为2V1V2V1+V25.相遇时间二相遇路程一速度和6.追及时间二追及路程一速度差7.直线多次相遇问题:从两地同时出发的直线多次相遇问题中,第n次相遇时,每个人走的路程等于他第一次所走的路程的(2n-l)倍8.环形相遇问题:环形相遇问题中每次相遇所走的路程之和是一圈。

如果最初从同一点出发,那么第n次相遇时,每个人所走的总路程等于第一次相遇时他所走路程的n倍9.流水问题:顺水速度=船速+水速;逆水速度=船速-水速船速二(顺水速度+逆水速度)一2;水速二(顺水速度-逆水速度)一210•火车过桥问题:火车速度X时间二车长+桥长完全在桥上时间二(桥长-车长)一火车速度二、几何问题札占扌absir<-yj:<ir9-l-EcMn上正方廉-1□-S-a5[C"2(i*£■!L翠行OHA需AZ7S"BH©知irF・+=(f番方体GI S=^(»*bc44c}V-a&cIE方体0V-a15»4IT P1ff]讯糧捧&5Jnf*2zrfti廿・Sh*r+(S列戛戟[£%?A(S炖卫独為1.极限理论平面图形:周长一定,趋近于圆,面积越大面积一定,趋近于圆,周长越小立体图形:表面积一定,越趋近于球,体积越大体积一定,越趋近于球,表面积越小2.三角形常见考点两边之和大于第三边,两边之差小于第三边较小的角对应的边也较小3.内角和:N边形的内角和为(N-2)180°4.几何图形的缩放:对于常见的几何图形,若将其边长变为原来的n倍,则其周长变为原来的n倍,面积变为原来的汩倍,体积变为原来的用倍三、十字交叉Aa+Bb={A+B)x匚整理变形后可得" (a>c>b)A c-i用图示可简单表示为其中c为平均值十字交叉法使用时要注意几点:1.用来解决两者之间的比例关系问题2.得出的比例关系是基数的比例关系3.总均值放中央,对角线上,大数减小数,结果放对角线上四、利润问题进价:商品进货的价格定价:商家根据进价定出的商品出售价格售价:商品实际的出售价格利润:售价与进价的差利润率:利润与进价的百分比折扣:售价与定价之比五、方阵问题1.方阵每层总人数=每边人数*4-42.方阵相邻两层人数相差8,实心方阵最外层每边人数为奇数时,从内到外每层人数依次是1,8,16,24……3.在方阵中,若去掉一行一列,去掉的人数=原来每行人数*2-1若去掉两行两列,去掉的人数=原来每行人数*4-2*24.实心方阵总人数二最外层每边人数N的平方5.空心方阵总人数=最外层每边人数的平方-(最内层每边人数-2)的平方或者利用等差数列求和公式,首项为最外层总人数,公差为-8的等差数列六、浓度问题溶液=溶质+溶剂浓度二溶质三溶液高浓度溶液A 与低浓度溶液B 混合,得到溶液C,那么C 的浓度介于 A 和B 之间。

行测数量关系公式大全

行测数量关系公式大全

行测数量关系公式大全
行测中的数量关系是指通过对事物数量的分析和计算来解决问题的方法。

在行测中,关于数量关系的问题非常常见,因此掌握相关的公式和解题方法非常重要。

下面是行测中常用的数量关系公式:
一、基本数量关系公式:
1.两个数的比例关系:两个数a和b的比例关系表示为a:b,可以用分数形式a/b或者百分数形式a%表示。

2.百分数与小数的关系:100%=1或者1%=0.01
3.百分数、小数和分数的转化关系:百分数转化为小数除以100,小数转化为百分数乘以100,分数转化为百分数分子除以分母再乘以100或者分子除以分母再乘以100%。

4. 两个数的倍数关系:如果一个数a是另一个数b的倍数,可以表示成a = nb,其中n是整数。

二、增长和减少关系公式:
1.增长率的公式:增长率=(增长的数量/原来的数量)*100%。

2.减少率的公式:减少率=(减少的数量/原来的数量)*100%。

3.点数和百分数的关系:点数表示的是增长或减少的比例,1个点
=1%。

三、综合数量关系公式:
1.一对一关系:两个集合A和B中的元素一一对应,集合A中的元素个数等于集合B中的元素个数。

即,集合A和集合B的元数相等。

2.多对一关系:集合A中的一个元素对应集合B中的多个元素,集合B中的元素个数小于集合A中的元素个数。

3.多对多关系:集合A中的一个元素对应集合B中的多个元素,而集合B中的一个元素又对应集合A中的多个元素。

集合A和集合B的元素个数都可以不相等。

公考行测——数量关系——知识点整理

公考行测——数量关系——知识点整理

公考行测——数量关系——知识点整理1. 数量关系题型介绍
- 数量关系题是公务员考试行测中的一种常见题型。

- 主要考查数量大小、比例关系、代数运算等方面的能力。

2. 数量大小比较
- 直接数量比较
- 利用已知条件推理数量大小关系
3. 比例与占比
- 比例概念及计算
- 百分比、千分比等占比问题
- 利率计算
4. 代数运算
- 四则运算
- 方程式求解
- 函数运算
5. 数列规律
- 等差数列
- 等比数列
- 找规律推理
6. 几何计算
- 平面图形面积、周长计算
- 立体图形表面积、体积计算
7. 逻辑推理
- 利用已知条件进行逻辑推理
- 排除无关选项
- 验证选项正确性
8. 题型技巧
- 注意题干中的限制条件
- 关注数据单位及换算
- 利用选项互斥性进行排除
- 审题细致,避免粗心错误
以上是公考行测数量关系部分的主要知识点整理,建议多加练习,熟练掌握解题思路和方法。

公务员考试行测数量关系:数学运算基础知识

公务员考试行测数量关系:数学运算基础知识
5.2、4、8整除及余数判定基本法则
①一个数能被2(或5)整除,当且仅当其末一位数能被2(或5)整除。
②一个数能被4(或25)整除,当且仅当其末两位数能被4(或25)整除。
③一个数能被8(或125)整除,当且仅当其末三位数能被8(或125)整除。
④一个数被2(或5)除得的余数,就是其末一位数被2(或5)除得的余数。
④一个数被9除得的余数,就是其各位数字和被9除得的余数。
7.标准质因数分解
①如果质数b是a的因数,则称b是a的质因数。
②将一个数写成它的质因数的乘积的形式,称为质因数分解。
③将这些质因数按照从小到大‘排列,称为标准(质因数)分解。
8.公倍数、公因数、最小公倍数、最大公因数及互质
①能同时整除一组数中的每一个数的数,称为这组数的公因数
②通分:将分数的分母化为相同;
③有理化:通过将分数的分子与分母同时乘以一个不为O的数(算式)的方法,将分母中的无理数(式)化成有理数(式)的方法,称为分数(式)的分母有理化。
4.整除基本知识点
①往下研究整除、倍数、因数(约数)、余数及其相关特性时,仅限于在整数范围内讨论(某些性质需要在正整数范围内讨论),不再重复说明;
②如果存在整数c,使整数a、b满足a=bc,则称b能整除a,a能被b整除。此时也称a为b的倍数,b为a的因数(也称b是a的约数);
③1是任何整数的因数,0是任何非零整数的倍数;
④在正整数中,除了1之外,只有l和它本身两个(正)因数的数称为质数,除了1和它本身之外,还有其他(正)因数的数称为合数。1既不是质数,也不是合数。
1.基本运算律
①加法交换律:a+b=b+a
②加法结合律:(a+b)+c=a+(b+c)

行测数量关系学习知识资料点汇总情况

行测数量关系学习知识资料点汇总情况

⾏测数量关系学习知识资料点汇总情况⾏测常⽤数学公式⼯作效率=⼯作量÷⼯作时间;⼯作时间=⼯作量÷⼯作效率;总⼯作量=各分⼯作量之和;设总⼯作量为1或最⼩公倍数1.实⼼⽅阵:⽅阵总⼈数=(最外层每边⼈数)2=(外圈⼈数÷4+1)2=N 2 最外层⼈数=(最外层每边⼈数-1)×42.空⼼⽅阵:⽅阵总⼈数=(最外层每边⼈数)2-(最外层每边⼈数-2×层数)2=(最外层每边⼈数-层数)×层数×4=中空⽅阵的⼈数。

★⽆论是⽅阵还是长⽅阵:相邻两圈的⼈数都满⾜:外圈⽐内圈多8⼈。

3.N 边⾏每边有a ⼈,则⼀共有N(a-1)⼈。

4.实⼼长⽅阵:总⼈数=M ×N 外圈⼈数=2M+2N-4 5.⽅阵:总⼈数=N 2 N 排N 列外圈⼈数=4N-4例:有⼀个3层的中空⽅阵,最外层有10⼈,问全阵有多少⼈?解:(10-3)×3×4=84(⼈) (2)排队型:假设队伍有N ⼈,A 排在第M 位;则其前⾯有(M-1)⼈,后⾯有(N-M )⼈ (3)爬楼型:从地⾯爬到第N 层楼要爬(N-1)楼,从第N 层爬到第M 层要爬N M -层。

总长/间隔+1 环型棵数=总长/间隔楼间棵数=总长/间隔-1 (1)单边线形植树:棵数=总长÷间隔+1;总长=(棵数-1)×间隔(2)单边环形植树:棵数=总长÷间隔;总长=棵数×间隔(3)单边楼间植树:棵数=总长÷间隔-1;总长=(棵数+1)×间隔(4)双边植树:相应单边植树问题所需棵数的2倍。

:对折N 次,从中剪M ⼑,则被剪成了(2N ×M +1)段平均速度=总路程÷总时间平均速度型:平均速度=21212v v v v + (2)相遇追及型:相遇问题:相遇距离=(⼤速度+⼩速度)×相遇时间追及问题:追击距离=(⼤速度—⼩速度)×追及时间背离问题:背离距离=(⼤速度+⼩速度)×背离时间(3)流⽔⾏船型:顺⽔速度=船速+⽔速;逆⽔速度=船速-⽔速。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

行测常用数学公式工作效率=工作量÷工作时间; 工作时间=工作量÷工作效率; 总工作量=各分工作量之和; 设总工作量为1或最小公倍数1.实心方阵:方阵总人数=(最外层每边人数)2=(外圈人数÷4+1)2=N 2 最外层人数=(最外层每边人数-1)×42.空心方阵:方阵总人数=(最外层每边人数)2-(最外层每边人数-2×层数)2=(最外层每边人数-层数)×层数×4=中空方阵的人数。

★无论是方阵还是长方阵:相邻两圈的人数都满足:外圈比内圈多8人。

3.N 边行每边有a 人,则一共有N(a-1)人。

4.实心长方阵:总人数=M ×N 外圈人数=2M+2N-4 5.方阵:总人数=N 2 N 排N 列外圈人数=4N-4例:有一个3层的中空方阵,最外层有10人,问全阵有多少人? 解:(10-3)×3×4=84(人) (2)排队型:假设队伍有N 人,A 排在第M 位;则其前面有(M-1)人,后面有(N-M )人 (3)爬楼型:从地面爬到第N 层楼要爬(N-1)楼,从第N 层爬到第M 层要爬N M -层。

总长/间隔+1 环型棵数=总长/间隔 楼间棵数=总长/间隔-1 (1)单边线形植树:棵数=总长÷间隔+1;总长=(棵数-1)×间隔 (2)单边环形植树:棵数=总长÷间隔; 总长=棵数×间隔(3)单边楼间植树:棵数=总长÷间隔-1;总长=(棵数+1)×间隔 (4)双边植树:相应单边植树问题所需棵数的2倍。

:对折N 次,从中剪M 刀,则被剪成了(2N ×M +1)段平均速度=总路程÷总时间 平均速度型:平均速度=21212v v v v + (2)相遇追及型:相遇问题:相遇距离=(大速度+小速度)×相遇时间 追及问题:追击距离=(大速度—小速度)×追及时间 背离问题:背离距离=(大速度+小速度)×背离时间 (3)流水行船型:顺水速度=船速+水速; 逆水速度=船速-水速。

顺流行程=顺流速度×顺流时间=(船速+水速)×顺流时间 逆流行程=逆流速度×逆流时间=(船速—水速)×逆流时间 (4)火车过桥型:列车在桥上的时间=(桥长-车长)÷列车速度列车从开始上桥到完全下桥所用的时间=(桥长+车长)÷列车速度 列车速度=(桥长+车长)÷过桥时间(5)环形运动型:反向运动:环形周长=(大速度+小速度)×相遇时间 同向运动:环形周长=(大速度—小速度)×相遇时间(6)扶梯上下型:扶梯总长=人走的阶数×(1±人梯u u ),(顺行用加、逆行用减) 顺行:速度之和×时间=扶梯总长 逆行:速度之差×时间=扶梯总长(7)队伍行进型:对头→队尾:队伍长度=(u 人+u 队)×时间 队尾→对头:队伍长度=(u 人-u 队)×时间 (8)典型行程模型:等距离平均速度:21212u u u u u +=(U 1、U 2分别代表往、返速度) 等发车前后过车:核心公式:21212t t t t T +=,1212t t t t u u -+=人车 等间距同向反向:2121u u u u t t -+=反同 不间歇多次相遇:单岸型:2321s s s += 两岸型:213s s s -= (s 表示两岸距离)无动力顺水漂流:漂流所需时间=顺逆顺逆t t t t -2(其中t 顺和t 逆分别代表船顺溜所需时间和逆流所需时间) 五、溶液问题⑴ 溶液=溶质+溶剂 浓度=溶质÷溶液 溶质=溶液×浓度 溶液=溶质÷浓度 ⑵ 浓度分别为a%、b%的溶液,质量分别为M 、N ,交换质量L 后浓度都变成c%,则⑶ 混合稀释型等溶质增减溶质核心公式:313122r r r r r += (其中r 1、r 2、r 3分别代表连续变化的浓度) 六、利润问题(1)利润=销售价(卖出价)-成本; 利润率=成本利润=成本销售价-成本=成本销售价-1;(2)销售价=成本×(1+利润率); 成本=+利润率销售价1。

(3)利息=本金×利率×时期; 本金=本利和÷(1+利率×时期)。

本利和=本金+利息=本金×(1+利率×时期)=期限利率)(本金+⨯1;月利率=年利率÷12; 月利率×12=年利率。

例:某人存款2400元,存期3年,月利率为10.2‰(即月利1分零2毫),三年到期后,本利和共是多少元?”∴2400×(1+10.2%×36) =2400×1.3672 =3281.28(元);①几年后年龄=大小年龄差÷倍数差-小年龄 ②几年前年龄=小年龄-大小年龄差÷倍数差A 的个数+满足条件B 的个数—两者都满足的个数=总个数—两者都不满足的个数⑵三集合标准型:A+B+C-(AB+BC+AC )+ABC=总个数-都不满足的个数,即 满足条件A 的个数+满足条件B 的个数+满足条件C 的个数-三者都不满足的情况数C B A =C B A C A C B B A C B A +---++⑶三集和整体重复型:假设满足三个条件的元素分别为ABC ,而至少满足三个条件之一的元素的总量为W 。

其中:满足一个条件的元素数量为x ,满足两个条件的元素数量为y ,满足三个条件的元素数量为z ,可以得以下等式:①W=x+y+z ②A+B+C=x+2y+3z⑷三集和图标标数型:利用图形配合,标数解答 ①特别注意“满足条件”和“不满足条件”的区别②特别注意有没有“三个条件都不满足”的情形—x)T原有草量=(牛数-每天长草量)×天数,其中:一般设每天长草量为X注意:如果草场面积有区别,如“M 头牛吃W 亩草时”,N 用WM代入,此时N 代表单位面积上A 倍,那么N 个周期后就是最开始的A N 倍,一个周期前应该是当时的A1。

调和平均数公式:21212a a a a a +=等价钱平均价格核心公式:21212p p p p p +=(P 1、P 2分别代表之前两种东西的价格 ) 等溶质增减溶质核心公式:313122r r r r r += (其中r 1、r 2、r 3分别代表连续变化的浓度)核心公式: 2121a a a a a +=注意:n 的取值范围为整数,既可以是负值,也可以取零值。

2月有29日,平年(不能被4整除)的2月有28日,记口诀:一年就是1,润日再加★星期推断:一年加1注意:星期每7:ax 2+bx+c=a(x-x 1)(x-x 2)其中:x 1=a ac b b 242-+-;x 2=aacb b 242---(b 2-4ac ≥0)根与系数的关系:x 1+x 2=-a b ,x 1·x 2=a c(2)ab b a 2≥+ ab b a ≥+2)2( ab b a 222≥+ abc c b a ≥++3)3( (3)abc c b a 3222≥++ abc c b a 33≥++ 推广:n n n x x x n x x x x ......21321≥++++(4)一阶导为零法:连续可导函数,在其内部取得最大值或最小值时,其导数为零。

(5)两项分母列项公式:)(a m m b +=(m 1—a m +1)×ab(6)三项分母裂项公式:)2)((a m a m m b ++=[)(1a m m +—)2)((1a m a m ++]×ab 2十六、排列组合(1)排列公式:P m n =n (n -1)(n -2)…(n -m +1),(m≤n)。

56737⨯⨯=A (2)组合公式:C m n =P m n ÷P m m=(规定0n C =1)。

12334535⨯⨯⨯⨯=c(3)错位排列(装错信封)问题:D 1=0,D 2=1,D 3=2,D 4=9,D 5=44,D 6=265,(4)N 人排成一圈有N N A /N 种; N 枚珍珠串成一串有NN A /2种。

十七、等差数列 (1)s n =2)(1n a a n +⨯=na 1+21n(n-1)d ; (2)a n =a 1+(n -1)d ; (3)项数n =d a a n 1-+1;(4)若a,A,b 成等差数列,则:2A =a+b ; (5)若m+n=k+i ,则:a m +a n =a k +a i ;(6)前n 个奇数:1,3,5,7,9,…(2n —1)之和为n 2 (其中:n 为项数,a 1为首项,a n 为末项,d 为公差,s n 为等差数列前n 项的和) 十八、等比数列(1)a n =a 1q n -1; (2)s n =qq a n -11 ·1)-((q ≠1) (3)若a,G,b 成等比数列,则:G 2=ab ;(4)若m+n=k+i ,则:a m ·a n =a k ·a i ; (5)a m -a n =(m-n)d (6)nm a a =q(m-n)(其中:n 为项数,a 1为首项,a n 为末项,q 为公比,s n 为等比数列前n 项的和)十九、典型数列前N 项和4.24.34.7★1既不是质数也不是合数1.200以内质数 2 3 5 7 101 103 10911 13 17 19 23 29 113 127 131 137 31 37 41 43 47 53 59 139 149 151 157 163 167 61 67 71 73 79 83 89 97 173 179 181 191 193 197 199 ①数字0的变换:)0(00≠=N N②数字1的变换:)0()1(1120≠-===a a N N③特殊数字变换:244216== 23684264=== 249381== 281642256=== 3982512== 6233279729=== 251032421024=== ④个位幂次数字:12424== 13828== 12939==22.面积公式:正方形=2a 长方形= b a ⨯ 三角形=c ab ah sin 2121= 梯形=h b a )(21+圆形=πR 2平行四边形=ah 扇形=0360n πR 2 3.表面积:正方体=62a 长方体=)(2ac bc ab ++⨯ 圆柱体=2πr 2+2πrh 球的表面积=4πR 24.体积公式正方体=3a 长方体=abc 圆柱体=Sh =πr 2h 圆锥=31πr 2h 球=334R π5.若圆锥的底面半径为r ,母线长为l ,则它的侧面积:S 侧=πr l ;6.图形等比缩放型:一个几何图形,若其尺度变为原来的m 倍,则:1.所有对应角度不发生变化;2.所有对应长度变为原来的m 倍;3.所有对应面积变为原来的m 2倍;4.所有对应体积变为原来的m 3倍。

相关文档
最新文档