最新幂的运算(经典—含单元测试题)

合集下载

七年级数学下册第八章《幂的运算》单元测试卷-苏科版(含答案)

七年级数学下册第八章《幂的运算》单元测试卷-苏科版(含答案)

七年级数学下册第八章《幂的运算》单元测试卷-苏科版(含答案)一.选择题(共7小题,满分21分)1.若a•2•23=26,则a等于()A.4B.8C.16D.322.已知a≠0,下列运算中正确的是()A.a2•a3=a6B.a5﹣a3=a2C.(﹣a3)2=a5D.a•a3=a43.若10m=5,10n=3,求102m﹣3n的值()A.B.C.675D.4.若(2x﹣1)0有意义,则x的取值范围是()A.x=﹣2B.x≠0C.x≠D.x=5.若(x﹣3)0﹣2(2x﹣4)﹣1有意义,则x取值范围是()A.x≠3B.x≠2C.x≠3且x≠﹣2D.x≠3且x≠2 6.“绿水青山就是金山银山”.某地积极响应党中央号召,大力推进农村厕所革命,已经累计投资1.102×108元资金.数据1.102×108用科学记数法可表示为()A.1102亿B.1.102亿C.110.2亿D.11.02亿7.嫦娥五号返回器携带月球样品安全着陆,标志着中国航天业向前又迈出了一大步.嫦娥五号返回器在接近大气层时,飞行1m大约需要0.0000893s.数据0.0000893s用科学记数法表示为()A.8.93×10﹣5B.893×10﹣4C.8.93×10﹣4D.8.93×10﹣7二.填空题(共7小题,满分21分)8.将2x﹣3y(x+y)﹣1表示成只含有正整数指数幂的形式为.9.新型冠状病毒直径约为100nm,计m(用科学记数法表示).10.若有意义,则x的取值范围是.11.若a2n=2(n为正整数),则(4a3n)2÷4a4n的值为.12.目前全国疫情防控形势依旧严峻,我们应该坚持“勤洗手,戴口罩,常通风”.一双没有洗过的手,带有各种细菌约7.5×105个,则科学记数法数据7.5×105的原数为.13.已知x2n=5,则(3x3n)2﹣4(x2)2n的值为.14.已知m x=2,m y=4,则m x+y=.三.解答题(共6小题,满分58分)15.计算:(1)2+(﹣2)×3+(﹣7)0;(2)×12.16.在数学中,我们经常会运用逆向思考的方法来解决一些问题,例如:“若a m=4,a m+n =20,求a n的值.”这道题我们可以这样思考:逆向运用同底数幂的乘法公式,即a m+n =a m•a n,所以20=4•a n,所以a n=5.(1)若a m=2,a2m+n=24,请你也利用逆向思考的方法求出a n的值.(2)下面是小贤用逆向思考的方法完成的一道作业题,请你参考小贤的方法解答下面的问题:小贤的作业计算:89×(﹣0.125)9.解:89×(﹣0.125)9=(﹣8×0.125)9=(﹣1)9=﹣1.①小贤的求解方法逆用了哪一条幂的运算性质,直接写出该逆向运用的公式:.②计算:52023×(﹣0.2)2022.17.(1)若3×27m÷9m=316,求m的值;(2)已知a x=﹣2,a y=3,求a3x﹣2y的值;(3)若n为正整数,且x2n=4,求(3x2n)2﹣4(x2)2n的值.18.我们知道,同底数幂的乘法法则为a m•a n=a m+n(其中a≠0,m、n为正整数),类似地,我们规定关于任意正整数m、n的一种新运算:f(m)•f(n)=f(m+n)(其中m、n为正整数).例如,若f(3)=2,则f(6)=f(3+3)=f(3)•f(3)=2×2=4.f(9)=f(3+3+3)=f(3)•f(3)•f(3)=2×2×2=8.(1)若f(2)=5,①填空:f(6)=;②当f(2n)=25,求n的值;(2)若f(a)=3,化简:f(a)•f(2a)•f(3a)•…•f(10a).19.如表是某河流今年某一周内的水位变化情况,上周末(星期六)的水位已经达到警戒水位33米.(正号表示水位比前一天上升,负号表示水位比前一天下降).(单位:米)星期日一二三四五六水位变化+0.2+0.8﹣0.4+0.2+0.3﹣0.5﹣0.2(1)本周哪一天河流的水位最高?哪一天河流的水位最低?分别是多少?(2)与上周末相比,本周末河流的水位是上升了还是下降了?本周末的水位是多少?(3)若水位每下降1厘米,就有2.5×102吨水蒸发到大气中,请计算这个星期共有多少吨水蒸发到大气中?20.已知10﹣2α=3,,求106α+2β的值.参考答案一.选择题(共7小题,满分21分)1.解:∵a•2•23=26,∴a=26÷24=22=4.故选:A.2.解:A、原式=a5,故不符合题意;B、a5与a3不是同类项,故不能合并,故不符合题意;C、原式=﹣a6,故不符合题意;D、原式=a4,故符合题意.故选:D.3.解:∵10m=5,10n=3,∴102m﹣3n=102m÷103n=.故选:D.4.解:(2x﹣1)0有意义,则2x﹣1≠0,解得:x≠.故选:C.5.解:若(x﹣3)0﹣2(2x﹣4)﹣1有意义,则x﹣3≠0且2x﹣4≠0,解得:x≠3且x≠2.故选:D.6.解:1.102×108=1.102亿.故选:B.7.解:0.0000893=8.93×10﹣5,故选:A.二.填空题(共7小题,满分21分)8.解:原式=•=.故答案为:.9.解:新型冠状病毒的直径约为100nm=100×10﹣9m=1×10﹣7m,故答案为1×10﹣7.10.解:∵有意义,∴0.∴x+2≠0,x﹣2≠0,∴x≠±2.故答案为:x≠±2.11.解:当a2n=2时,(4a3n)2÷4a4n=16(a2n)3÷4(a2n)2=16×23÷(4×22)=16×8÷(4×4)=16×8÷16=8.故答案为:8.12.解:7.5×105=750000,故答案为:750000.13.解:∵x2n=5,∴(3x3n)2﹣4(x2)2n=9x6n﹣4x4n=9(x2n)3﹣4(x2n)2=9×53﹣4×52=1125﹣100=1025.故答案为:1025.14.解:∵m x=2,m y=4,∴m x+y=m x•m y=8,故答案为:8.三.解答题(共6小题,满分58分)15.解:(1)原式=2﹣6+1=﹣3;(2)原式=×12+=5+8﹣1616.解:(1)∵a m=2,∴a2m+n=24,∴a2m×a n=24,(a m)2×a n=24,22×a n=24,∴4a n=24,∴a n=6;(2)①逆用积的乘方,其公式为:a n•b n=(ab)n,故答案为:a n•b n=(ab)n;②52023×(﹣0.2)2022=5×52022×(﹣0.2)2022=5×(﹣0.2×5)2022=5×(﹣1)2022=5×1=5.17.解:(1)∵3×27m÷9m=316,∴3×33m÷32m=316,∴33m+1﹣2m=316,∴3m﹣2m+1=16,解得m=15;(2)∵a x=﹣2,a y=3,∴a3x=﹣8,a2y=9,∴a3x﹣2y=a3x÷a2y=(﹣8)÷9=﹣;(3)∵x2n=4,∴(3x2n)2﹣4(x2)2n=(3x2n)2﹣4(x2n)2=(3×4)2﹣4×42=122﹣4×16=144﹣64=80.18.解:(1)①∵f(2)=5,∴f(6)=f(2+2+2)=f(2)•f(2)•f(2)=125;故答案为:125;②∵25=5×5=f(2)•f(2)=f(2+2),f(2n)=25,∴f(2n)=f(2+2),∴2n=4,∴n=2;(2)∵f(2a)=f(a+a)=f(a)•f(a)=3×3=31+1=32,f(3a)=f(a+a+a)=f(a)•f(a)•f(a)=3×3×3=31+1+1=33,…,f(10a)=310,∴f(a)•f(2a)•f(3a)•…•f(10a)=3×32×33×…×310=31+2+3+…+10=355.19.解:(1)周日:33+0.2=33.2(米),周一:33.2+0.8=34(米),周二:34﹣0.4=33.6(米),周三:33.6+0.2=33.8(米),周四:33.8+0.3=34.1(米),周五:34.1﹣0.5=33.6(米),周六:33.6﹣0.2=33.4(米).答:周四水位最高,最高水位是34.1米,周日水位最低,最低水位是33.2米;(2)33.4﹣33=0.4>0,答:与上周末相比,本周末河流的水位上升了,水位是33.4米;(3)100×(0.4+0.5+0.2)×2.5×102吨=2.75×104(吨),答:这个星期共有2.75×104吨水蒸发到大气中.20.解:∵10﹣2α==3,10﹣β==﹣,∴102α=,10β=﹣5,∴106α+2β=(102α)3•(10β)2,=()3×(﹣5)2,=×25,=.。

(完整版)幂的运算经典习题

(完整版)幂的运算经典习题

一、同底数幂的乘法1、下列各式中,正确的是( ) A .844m m m = B.25552m m m = C.933m m m = D.66y y 122y =2、102·107= 3、()()()345-=-•-y x y x4、若a m =2,a n =3,则a m+n 等于( ) (A)5 (B)6 (C)8 (D)95、()54a a a =•6、在等式a 3·a 2·( )=a 11中,括号里面人代数式应当是( ).(A)a 7 (B)a 8 (C)a 6 (D)a 383a a a a m =••,则m=7、-t 3·(-t)4·(-t)58、已知n 是大于1的自然数,则()c -1-n ()1+-•n c 等于 ( )A. ()12--n c B.nc 2-C.c-n2 D.n c 29、已知x m-n ·x 2n+1=x 11,且y m-1·y 4-n =y 7,则m=____,n=____. 二、幂的乘方 1、()=-42x 2、()()84aa =3、( )2=a 4b 2;4、()21--k x =5、323221⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-z xy =6、计算()734x x •的结果是 ( )A. 12xB. 14xC. x 19D.84x7、()()=-•342a a8、n n 2)(-a 的结果是 9、()[]52x --= 10、若2,x a =则3x a = 三、积的乘方1)、(-5ab)2 2)、-(3x 2y)2 3)、332)311(c ab - 4)、(0.2x 4y 3)2 5)、(-1.1x m y 3m )2 6)、(-0.25)11×411 7)、-81994×(-0.125)1995 四、同底数幂的除法 1、()()=-÷-a a 42、()45a a a =÷3、()()()333b a ab ab =÷4、=÷+22x x n5、()=÷44ab ab .6、下列4个算式: (1)()()-=-÷-24c c 2c(2) ()y -()246y y -=-÷(3)303z z z =÷ (4)44a a a m m =÷ 其中,计算错误的有 ( )A.4个B.3个C.2个D.1个 7、 ÷a 2=a 3。

幂的运算综合测试卷(含答案)

幂的运算综合测试卷(含答案)

第8章 幂的运算 单元综合卷(B)一、选择题。

(每题3分,共21分)1.31m a +可以写成 ( )A .31()m a +B . 3()1m a +C .a ·a3m D .(m a )21m + 2.下列是一名同学做的6道练习题:①0(3)1-=;②336a a a +=;③5()a -÷3()a -=2a -;④4m 2-=214m;⑤2336()xy x y =;⑥225222+=其中做对的题有 ( ) A .1道 B .2道 C .3道 D .4道3.2013年,我国发现“H 7N 9”禽流感,“H 7N 9”是一种新型禽流感,其病毒颗粒呈多形性,其中球形病毒的最大直径为0.00000012 m ,这一直径用科学记数法表示为 ( )A .1.2×109- mB .1.2×108-m C .12 X 108-m D .1.2×107- m 4.若x 、y 为正整数,且2x ·2y =25;,则x 、y 的值有 ( )A .4对B .3对C .2对D .1对5.若x <一1。

则012x x x --、、之间的大小关系是 ( )A .0x > 2x -> 1x -B .2x ->1x ->0xC .0x >1x ->2x -D ..1x ->2x ->0x6.当x =一6,y =16时,20132014x y 的值为 ( ) A .16 B .16- C .6 D .一6 7.如果(m a ·n b ·b )3=915a b ,那么m 、n 的值分别为 ( )A .m =9,n =一4B .m =3,n =4C .m =4,n =3D .m =9,n =6二、填空题。

(每空2分,共16分)8.将(16)1-、(一2) 0、(一3) 2、一︱-10 ︱这四个数按从小到大的顺序排为 · 9.( )2=42a b ;( )×12n -=223n + 10.若35)x (=152×153,则x = .11.如果43(a )÷25(a )=64,且a <0,那么a = .12.若3n =2,35m =,则2313m n +-的值为 .13.已知2m =x ,43m =y ,用含有字母x 的代数式表示y ,则y .14.如果等式(2a 一1)2a +=1,则a 的值为 .三、解答题。

《幂的运算》练习题及答案

《幂的运算》练习题及答案

《幂的运算》练习题及答案幂的运算是数学中一个重要的概念,经常在代数和数论等领域出现。

本文将提供一些幂的练习题,并附上详细的答案,帮助读者加深对幂的运算规则的理解。

一、练习题1. 计算以下幂的结果:a) 2^3b) 5^2c) (-3)^4d) 10^0e) 1^1002. 化简以下幂的表达式:a) (2^3)^2b) 4^0c) (-2)^4d) (3^2)^3e) 5^13. 计算以下幂的结果,并写成最简形式:a) 2^(1/2)b) 10^(2/3)c) 8^(3/2)d) 27^(2/3)e) 16^(-1/2)二、答案解析1. 计算以下幂的结果:a) 2^3 = 2 * 2 * 2 = 8b) 5^2 = 5 * 5 = 25c) (-3)^4 = (-3) * (-3) * (-3) * (-3) = 81d) 10^0 = 1 (任何数的0次幂都等于1)e) 1^100 = 1 (任何数的1次幂都等于自身)2. 化简以下幂的表达式:a) (2^3)^2 = 2^(3*2) = 2^6 = 64b) 4^0 = 1 (任何非零数的0次幂均等于1)c) (-2)^4 = 2^4 = 16d) (3^2)^3 = 3^(2*3) = 3^6e) 5^1 = 5 (任何数的1次幂都等于自身)3. 计算以下幂的结果,并写成最简形式:a) 2^(1/2) = √2b) 10^(2/3) ≈ 4.641 (保留三位小数)c) 8^(3/2) = (√8)^3 = 2^3 = 8d) 27^(2/3) = (∛27)^2 = 3^2 = 9e) 16^(-1/2) = 1/√16 = 1/4上述练习题和答案介绍了幂的运算规则,包括幂的计算、幂的化简和带分数指数的幂运算等内容。

通过对这些问题的分析和解答,读者可以更好地理解幂的性质和规律。

总结:幂的运算是数学中一个重要的概念,掌握幂的运算规则对于数学学习和解题非常重要。

幂的运算专项练习50题(有答案)

幂的运算专项练习50题(有答案)

幂的运算专项练习50题(有答案)1.2. (4ab2)2×(﹣a2b)33.(1);(2)(3x3)2•(﹣x);(3) m2•7mp2÷(﹣7mp);(4)(2a﹣3)(3a+1).4.已知a x=2,a y=3求:a x+y与a2x﹣y的值.5.已知3m=x,3n=y,用x,y表示33m+2n.6.若a=255,b=344,c=433,d=522,试比较a,b,c,d 的大小.7.计算:(﹣2 m2)3+m7÷m.8.计算:(2m2n﹣3)3•(﹣mn﹣2)﹣29.计算:.10.(﹣)2÷(﹣2)﹣3+2×(﹣)0.11.已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.12.若2x+5y﹣3=0,求4x•32y的值.13.已知3×9m×27m=316,求m的值.14.若(a n b m b)3=a9b15,求2m+n的值.15.计算:(x2•x3)2÷x6.16.计算:(a2n)2÷a3n+2•a2.17.若a m=8,a n =,试求a2m﹣3n的值.18.已知9n+1﹣32n=72,求n的值.19.已知x m=3,x n=5,求x2m+n的值.20.已知3m=6,9n=2,求32m﹣4n+1的值.21.(x﹣y)5[(y﹣x)4]3(用幂的形式表示)22.若x m+2n=16,x n=2,(x≠0),求x m+n,x m﹣n的值.23.计算:(5a﹣3b4)2•(a2b)﹣2.24.已知:3m•9m•27m•81m=330,求m的值.25.已知x6﹣b•x2b+1=x11,且y a﹣1•y4﹣b=y5,求a+b的值.26.若2x+3y﹣4=0,求9x﹣1•27y.27.计算:(3a2x4)3﹣(2a3x6)2.28.计算:.29.已知16m=4×22n﹣2,27n=9×3m+3,求(n﹣m)2010的值.30.已知162×43×26=22m﹣2,(102)n=1012.求m+n的值.31.(﹣a)5•(﹣a3)4÷(﹣a)2.32.(a﹣2b﹣1)﹣3•(2ab2)﹣2.33.已知x a+b•x2b﹣a=x9,求(﹣3)b+(﹣3)3的值.34.a4•a4+(a2)4﹣(﹣3x4)235.已知(x5m+n y2m﹣n)3=x6y15,求n m的值.36.已知a m=2,a n=7,求a3m+2n﹣a2n﹣3m的值.37.计算:(﹣3x2n+2y n)3÷[(﹣x3y)2]n38.计算:(x﹣2y﹣3)﹣1•(x2y﹣3)2.39.已知a2m=2,b3n=3,求(a3m)2﹣(b2n)3+a2m•b3n的值40.已知n为正整数,且x3n=7,求(3x2n)3﹣4(x2)3n 的值.41.若n为正整数,且x2n=5,求(3x3n)2﹣34(x2)3n 的值.42.计算:(a2b6)n+5(﹣a n b3n)2﹣3[(﹣ab3)2]n.43..44.计算:a n﹣5(a n+1b3m﹣2)2+(a n﹣1b m﹣2)3(﹣b3m+2)45.已知x a=2,x b=6.(1)求x a﹣b的值.(2)求x2a﹣b 的值.46.已知2a•27b•37c=1998,其中a,b,c为整数,求(a﹣b﹣c)1998的值.47.﹣(﹣0.25)1998×(﹣4)1999.48.(1)(2a+b)2n+1•(2a+b)3•(2a+b)n﹣4(2)(x﹣y)2•(y﹣x)5.49.(1)(3x2y2z﹣1)﹣2•(5xy﹣2z3)2.(2)(4x2yz﹣1)2•(2xyz)﹣4÷(yz3)﹣2.50.计算下列各式,并把结果化为正整数指数幂的形式.(1)a2b3(2a﹣1b3);(2)(a﹣2)﹣3(bc﹣1)3;(3)2(2ab2c﹣3)2÷(ab)﹣2.幂的运算50题参考答案:1.解:原式=4﹣1﹣4=﹣1;2. 原式=16a2b4×(﹣a6b3)=﹣2a8b73.解:(1)原式=(﹣5)×3=﹣15;(2)原式=9x6•(﹣x)=﹣9x7;(3)原式=7m3p2÷(﹣7mp)=﹣m2p;(4)原式=6a2+2a﹣9a﹣3=6a2﹣7a﹣3.故答案为﹣15、﹣9x7、﹣m2p、6a2﹣7a﹣3 4.解:a x+y=a x•a y=2×3=6;a2x﹣y=a2x÷a y=22÷3=5.解:原式=33m×32n,=(3m)3×(3n)2,=x3y26.解:a=(25)11=3211;b=(34)11=8111;c=(43)11=4811;d=(52)11=2511;可见,b>c>a>d7.解:(﹣2m2)3+m7÷m,=(﹣2)3×(m2)3+m6,=﹣8m6+m6,=﹣7m68.解:(2m2n﹣3)3•(﹣mn﹣2)﹣2=8m6n﹣9•m﹣2n4= 9.解:原式=(﹣4)+4×1=010.解:原式=÷(﹣)+2×1=﹣2+2=011.解:∵2x=4y+1,∴2x=22y+2,∴x=2y+2 ①又∵27y=3x﹣1,∴33y=3x﹣1,∴3y=x﹣1②联立①②组成方程组并求解得,∴x﹣y=312.解:4x•32y=22x•25y=22x+5y∵2x+5y﹣3=0,即2x+5y=3,∴原式=23=813.解:∵3×9m×27m,=3×32m×33m,=31+5m,∴31+5m=316,∴1+5m=16,解得m=314.解:∵(a n b m b)3=(a n)3(b m)3b3=a3n b3m+3,∴3n=9,3m+3=15,解得:m=4,n=3,∴2m+n=27=12815.解:原式=(x5)2÷x6=x10÷x6=x10﹣6=x416.解:(a2n)2÷a3n+2•a2=a4n÷a 3n+2•a2=a4n﹣3n﹣2•a2=a n﹣2•a2=a n﹣2+2=a n17.解:a2m﹣3n=(a m)2÷(a n)3,∵a m=8,a n =,∴原式=64÷=512.故答案为51218.解:∵9n+1﹣32n=9n+1﹣9n=9n(9﹣1)=9n×8,而72=9×8,∴当9n+1﹣32n=72时,9n×8=9×8,∴9n=9,∴n=119.解:原式=(x m)2•x n=32×5=9×5=4520.解:由题意得,9n=32n=2,32m=62=36,故32m﹣4n+1=32m×3÷34n=36×3÷4=2721.解:(x﹣y)5[(y﹣x)4]3=(x﹣y)5[(x﹣y)4]3=(x﹣y)5•(x﹣y)12=(x﹣y)1722.解:∵x m+2n=16,x n=2,∴x m+2n÷x n=x m+n=16÷2=8,x m+2n÷x3n=x m﹣n=16÷23=223.解:(5a﹣3b4)2•(a2b)﹣2=25a﹣6b8•a﹣4b﹣2=25a﹣10b6=24.解:由题意知,3m•9m•27m•81m,=3m•32m•33m•34m,=3m+2m+3m+4m,=330,∴m+2m+3m+4m=30,整理,得10m=30,解得m=325.解:∵x6﹣b•x2b+1=x11,且y a﹣1•y4﹣b=y5,∴,解得:,则a+b=1026.解:∵2x+3y﹣4=0,∴2x+3y=4,∴9x﹣1•27y=32x﹣2•33y=32x+3y﹣2=32=927.解:(3a2x4)3﹣(2a3x6)2=27a6x12﹣4a6x12=23a6x12 28.解:原式=•a2b3=29.解:∵16m=4×22n﹣2,∴(24)m=22×22n﹣2,∴24m=22n﹣2+2,∴2n﹣2+2=4m,∴n=2m①,∵(33)n27n=9×3m+3,∴(33)n=32×3m+3,∴33n=3m+5,∴3n=m+5②,由①②得:解得:m=1,n=2,∴(n﹣m)2010=(2﹣1)2010=130.解:∵162×43×26=28×26×26=220=22m﹣2,(102)n=102n=1012.∴2m﹣2=20,2n=12,解得:m=11,n=6,∴m+n=11+6=1731.原式=(﹣a)5•a12÷(﹣a)2=﹣a5+12÷(﹣a)2=﹣a17÷a2=﹣a15.32.解:(a﹣2b﹣1)﹣3•(2ab2)﹣2=(a6b3)•(a﹣2b﹣4)=a4b﹣1=33.解:∵x a+b•x2b﹣a=x9,∴a+b+2b﹣a=9,解得:b=3,∴(﹣3)b+(﹣3)3=(﹣3)3+(﹣3)3=2×(﹣3)3=2×(﹣27)=﹣54 34.解:原式=a8+a8﹣9x8,=2a8﹣9x835.解:(x5m+n y2m﹣n)3=x15m+3n y6m﹣3n,∵(x5m+n y2m﹣n)3=x6y15,∴,解得:,则n m=(﹣9)3=﹣24336.解:∵a m=2,a n=7,∴a3m+2n﹣a2n﹣3m=(a m)3•(a n)2﹣(a n)2÷(a m)3=8×49﹣49÷8=37.解:(﹣3x2n+2y n)3÷[(﹣x3y)2]n,=﹣27x6n+6y3n÷(﹣x3y)2n,=﹣27x6n+6y3n÷x6n y2n,=﹣27x6y n38.解:(x﹣2•y﹣3)﹣1•(x2•y﹣3)2,=x2y3•x4y﹣6,=x6y﹣3,=39.解:(a3m)2﹣(b2n)3+a2m•b3n,=(a2m)3﹣(b3n)2+a2m•b3n,=23﹣32+2×3,=540.解:原式=27x6n﹣4x6n=23x6n=23(x3n)2=23×7×7=112741.解:∵x2n=5,∴(3x3n)2﹣34(x2)3n=9x6n﹣34x6n=﹣25(x2n)3=﹣25×53=﹣312542.解:原式=a2n b6n+5a2n b6n﹣3(a2b6)n=6a2n b6n﹣3a2n b6n=3a2n b6n43.解:原式=()50x50•()50x100=x15044.解:原式=a n﹣5(a2n+2b6m﹣4)+a3n﹣3b3m﹣6(﹣b3m+2),=a3n﹣3b6m﹣4+a3n﹣3(﹣b6m﹣4),=a3n﹣3b6m﹣4﹣a3n﹣3b6m﹣4,=045.解:(1)∵x a=2,x b=6,∴x a﹣b=x a÷x b=2÷6=;=(2)∵x a=2,x b=6,∴x2a﹣b=(x a)2÷x b=22÷6=46.解:∵2a•33b⋅37c=2×33×37,∴a=1,b=1,c=1,∴原式=(1﹣1﹣1)1998=147.解:原式=﹣()1998×(﹣4)1998×(﹣4),=﹣()1998×41998×(﹣4),=﹣(×4)1998×(﹣4),=﹣1×(﹣4),=448.解:(1)原式=(2a+b)(2n+1)+3+(n﹣4)=(2a+b)3n;(2)原式=﹣(x﹣y)2•(x﹣y)5=﹣(x﹣y)749.解:(1)原式=()﹣2•()2=•=;(2)原式=•÷=•y2z6=150.解:(1)a2b3(2a﹣1b3)=2a2﹣1b3+3=2ab6;(2)(a﹣2)﹣3(bc﹣1)3,=a6b3c﹣3,=;(3)2(2ab2c﹣3)2÷(ab)﹣2,=2(4a2b4c﹣6)÷(a﹣2b﹣2),=8a4b6c﹣6,。

初中数学幂的运算专题讲解及典型题练习(含答案)

初中数学幂的运算专题讲解及典型题练习(含答案)

初中数学幂的运算专题讲解及典型题练习【知识点梳理】1.有理数的乘方定义求个相同因数的积的运算,叫做乘方.乘方运算的结果叫幂.n 一般地,,叫做底数,叫做指数,叫做幂。

n n a a a a a ⋅⋅⋅= 个a n n a 读作“的次幂”或读作“的次方”.n a a n a n 【注意】(1)乘方是一种运算,是一种特殊的乘法运算(因数相同的乘法运算),幂是乘方运算的结果.(2)一个数可以看作是这个数本身的一次方,例如5就是,就是,指数是1通常省略15a 1a 不写.2.有理数幂的符号法则(1)正数的任何次幂都是正数.(2)负数的奇数次幂是负数,负数的偶数次幂是正数.(3)特别地,.()11,00n n n ==为正整数【注意】“负幂”与“负数的幂”区别:“负幂”例如表示的相反数,其结果为负数.“负51()2-51()2数的幂”例如,结果要看指数,即负数的奇次幂为负数,负数的偶次幂为正数.1()2n -3.有理数的混合运算一个算式里含有有理数的加、减、乘、除、乘方五种运算中的两种或两种以上的运算,称为有理数的混合运算.【注意】加法、减法、乘法、除法有各自的运算法则,也有各自的运算技巧,减法可以统一成加法,除法可以统一成乘法,加法与乘法还有各自的运算律,乘方是乘法的特例,也有自己的符号法则,同时也要考虑整体的符号关系以及简便算法.4.有理数的混合运算顺序(1)先乘方,再乘除,最后加减.(2)同级运算,从左到右依次进行.(3) 如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.【注意】(1)在加、减、乘、除、乘方这几种运算基本掌握的前提下,学习混含运算,首先应注意的就是运算顺序的问题.(2)通常把六种基本的代数运算分成三级:第一级运算是加和减,第二级运算是乘和除,第三级运算是乘方和开方(以后学习).运算顺序的规定是先算高级运算,再算低级运算,同级运算在一起,按从左到右的顺序计算.对于含有多重括号的运算,一般先算小括号内的,再算中括号内的,最后算大括号内的.(3)括号前带负号,去括号后要将括号内的各项都要变号,即.()(),a b a b a b a b -+=----=-+5.科学记数法把一个数写成(其中,是正整数)的形式,这种记数法称为科学记数10n a ⨯110a <≤n 法.【注意】(1)科学记数法是一种特定的记数方法,应明白其中包含的基本原理及其结构,即要掌握形式的结构特征: ,为正整数,且值等于原数的整数位数减1.10n a ⨯110a <≤n n (2)在把用科学记数法表示的数还原为原数时,根据其基本原理和结构,把的小数点向右a 移动位,中数字不够时,用补足.n a 0【典型例题讲解】【例1】计算:.2007200812()2⨯-【分析】直接进行各自的乘方运算非常困难,但根据乘方的意义可得.共200722222=⨯⨯⨯⋅⋅⋅⨯2007个2相乘,2008200811()()22-=2007112008200722111111111222222222=⨯⨯⋅⋅⋅⨯=⨯⨯⋅⋅⋅⨯⨯=⨯个个()利用乘法交换律和结合律,把2007个2与结合在一起相乘,利用互为倒数即可求出数12值.【解析】2007200812()2⨯-20072008122=⨯().20072007200711111222222=⨯⨯⨯⨯=()()=(2)【方法总结】此题主要应用互为倒数、乘法运算律及乘方的意义进行计算,事实上我们不难发现,当与互为倒数时,其值为1.计算时要注意符号的问题.多加理解与练()m m m a b ab = a b 习,最好能达到一看题目就可以得出结果的程度.【借题发挥】计算:、.2010201115()5⨯-200920102 2.55⎛⎫-⨯ ⎪⎝⎭【解析】.20102010201111115()55555⎡⎤⎛⎫⎛⎫⨯-=⨯-⨯-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.200920092009201020102252552.5 2.5552522⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-⨯=-⨯=-⨯⨯=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦【例2】计算:.22135(13)(2)0.2⎡⎤---+-⨯÷-⎢⎥⎣⎦【分析】根据有理数的混合运算法则进行计算,分清计算的先后顺序,还要注意去括号的时候要注意符号.【解析】22135(13)(2)0.2⎡⎤---+-⨯÷-⎢⎥⎣⎦[]135(13)435(1253)40.04⎡⎤=---+-⨯÷=---+-⨯÷⎢⎥⎣⎦[][]35(175)435(74)4=---+-÷=---+-÷.[]35(18.5)3(23.5)20.5=---+-=---=【借题发挥】计算:()()[]2243225.02115.01--⨯⎪⎭⎫ ⎝⎛-÷-+-【解析】原式=()[]()()2411110.52910.571167554162⎛⎫⎛⎫-+-÷⨯-=-+-÷⨯-=-+⨯⨯= ⎪ ⎪⎝⎭⎝⎭【例3】已知,,求的值.12x =-13y =-432231x y x --【分析】把,的值分别代入要求的式子,按有理数混合运算顺序进行计算.x y 【解析】把,代入,得12x =-13y =-432231x y x -- 原式43211112()3()23()231627111()124⨯--⨯-⨯-⨯-==---11114141789()3893627544-==+⨯=+=【方法总结】此类题一方面代入要准确,即负数或分数代入时一般加上小括号,另一方面代入后计算必须准确,最后结果是分数时一定是最简分数.【借题发挥】求当时,代数式的值.2,1x y =-=-2222222x y x xy y x y x y--+++-【解析】将带入,得2,1x y =-=-2222222x y x xy y x y x y --+++-原式=.()()()()()()()()()()2222221222113114221531521⨯-----⨯-⨯-+--+=+=⨯-+-----【例4】(1)补充完整下表:1323334353637383392781(2)从表中你发现3的方幂的个位数有何规律?(3)3251的个位数是什么数字?为什么?【分析】幂的个位上的数字3、9、7、l 交错重复出现,即每隔四个数,个位数字就重复一次,所以用251除以4所得的余数来确定.【解析】(1)132333435363738339278124372921876561(2)个位上的数字为3、9、7、1交错重复出现.(3)的个位数是7,因为除以4的余数是3.是重复出现时的第三个数.2513251【方法总结】此类题一般都是通过写出一些简单的幂,通过这些幂的结果总结出末位出现数字的种类及循环规律,进一步把指数按循环数进行分解,通过剩余指数求得最后答案.【借题发挥】的个位数是 ,的个位数是 ,253263的个位数是 ,的个位数是 .273283【解析】3,9,7,1.【例5】怎样比较,,的大小呢?553444335【解析】本题如果通过硬算,数字太大,不可能,因此要观察此三个数的特点,经观察,我们发现55、44、33存在着最大公因数11,不妨利用这一点以及乘方的定义来入手解题.具体过程如下:5511115533333(33333)243=⋅⋅⋅=⨯⨯⨯⨯= 个344111144444444(4444)256=⋅⋅⋅=⨯⨯⨯= 个.33111133555555(555)125=⋅⋅⋅=⨯⨯= 个因为,所以256243125>>111111256243125>>即.445533435>>【借题发挥】1.试比较的大小.443322234、、【解析】因为:,则,即()()()111111444113331122211221633274416======,,11111627<.442233243<=2.你能比较和的大小吗?2004200320032004 为了解决这个问题,我们先把它抽象成数学问题,写出它的一般形式,即比较和1n n +(1)n n +的大小(是自然数).然后,我们从分析…这些简单情形人手,从中发现规n 1,2,3,n n n ===律,经过归纳,猜想出结论.(1)通过计算.比较下列各组中两个数的大小(填“>”,“<”或“”).- ①___;②____;③ ;④____;⑤ ;…21123223433454456556 (2)从第(1)题的结果经过归纳,可以猜想出和的大小关系是 .1n n +(1)n n + (3)根据上面归纳猜想后得到的一般结论,试比较下面两个数的大小:.2004200320032004【解析】经计算与分析可推出结论:当时,<;当时,>.3n <1n n +(1)n n +3n ≥1n n +(1)n n +(1)①<;②<;③>;④>;⑤> (2) 当时,<;当时,>3n <1n n +(1)n n +3n ≥1n n +(1)n n +(3)>.(2)【借题发挥】比较下面各对数的大小:___; ; .211243342010200920092010【解析】<;>;>.【例6】比较与的大小.109.99810⨯111.00110⨯【分析】二者是用科学记数法表示的数,一方面可以把它们化成原数,通过比较原数大小来比较这两个数的大小;另一方面也可以把它化为相同指数,通过比较前面数(即)的大小来比a 较二者大小.【解析】解法一:,109.9981099980000000⨯=.111.00110100100000000⨯= 又,100100000000>99980000000.∴10119.99810 1.00110⨯<⨯ 解法二:,1110101.001l01. 0011010 10.0110⨯=⨯⨯=⨯ 又,10.019.998> .∴10119.99810 1.00110⨯<⨯【方法总结】解法一是常规方法,但书写起来很麻烦,易出现错误;方法二较巧妙地转化了,容易比较大小.11101.0011010.0110⨯=⨯【借题发挥】试比较:和.20099.9810⨯20101.0510⨯【解析】.2010200920091.051010.5109.9810⨯=⨯>⨯【例7】 定义“”“”两种运算,对于任意的两个数、,都有,○+○-a b a ○+b 1a b =+-a ○-b 1ab =-.求[()()]的值.4○-3○+5○+6○-2【分解】按规定的“”与“”进行各自的运算,运算时先算士括号里的,再算中括号里的.○+○-【解析】由,,得a ○+b 1a b =+-a ○-b 1ab =-[()()]4○-3○+5○+6○-2[()()]4=○-351+-○+621⨯-()()4=○-7○+114=○-7111+-.4=○-174=⨯171-67=【方法总结】此类题按规定的运算关系进行计算,首先要读懂表达式的含义,会套用公式,计算时注意符号关系及准确性外,还要注意运算的先后顺序.【借题发挥】“△”表示一种新的运算符号,其意义是对于任意,都存在△,如果△△a b a b 2a b =-x (1,则 .3)2=x =【解析】由△,得△△,即,则,所a b 2a b =-x (13)2=()()21312x x ⨯-=-=△△()212x --=以.12x =【例8】若尺布可做件上衣,则尺布能做多少件这样的上衣?619【解析】第题按计算件,但实际情况是只能做件,所以只能舍,不能入;961.5÷=105.【借题发挥】若每条船能载个人,则个人需要几条船?310【解析】按计算,但实际情况是条船不够,需要4条船,所以在这里应该入,取1103=33÷3134.【方法总结】在实际问题中,经常对药对一些数位上的数进行取舍,有的要求进行四舍五入,有的则按生活及生产实际进行取舍,千万不能遇及以上的数就入,遇以下的数就舍.555【随堂练习】1.计算: .2008(1)-=【答案】1.2.计算: .20102010201020104(0.25)(1)1-+-+= 【答案】原式=.201020102010201014()(1)111114-+-+=-++= 3.若,则 .21(2)0a b ++-=20102009()a b a ++=【答案】由题意知 得,代入原式可求结果为:0.1020a b +=⎧⎨-=⎩12a b =-⎧⎨=⎩4.如果那么的值为 .214,,2x y ==222x y -【答案】.222112243122x y -=⨯-=5.现有一根长为1米的木条,第一次截去一半,第二次截去剩下的一半,照此截下去,那么六次后剩下的木条为 米.【答案】第一次截后剩下米,第二次后剩下米,第三次后剩下米,由此推下1221142⎛⎫= ⎪⎝⎭312⎛⎫ ⎪⎝⎭去,第次后剩下米.所以六次后剩下的木条为(米).n 12n ⎛⎫ ⎪⎝⎭611264⎛⎫= ⎪⎝⎭6.计算:(1); (2); (3)321()(1)33-÷-232(3)-⨯-32221(0.2)(1).3(0.3)-⨯÷-【答案】(1);(2)108;(3).290.002-7.(1). (2).451132131511÷⨯⎪⎭⎫ ⎝⎛-⨯()1452515213⨯-÷+-(3). (4).()3432322⎪⎭⎫ ⎝⎛-⨯-÷-()()()3428102-⨯---÷+-(5).()[]2345.0813231325.01-----⨯÷⎪⎭⎫ ⎝⎛---(6).()54436183242113÷⎥⎦⎤⎢⎣⎡-⨯⎪⎭⎫ ⎝⎛-+-【答案】(1) (2) (3) (4) (5) (6)225-347-1111620-11147224-8.利用乘方的有关知识确定的末两位数字.20076【答案】9.已知“三角”表示运算“”,“正方形”表示的运算是“” ,试计a b c -+d f g e -+-算的值.【答案】原式=.()()()199649551996281474116-+⨯-+-=-⨯=-9.计算:.111111111248163264128256512++++++++【答案】原式=11111111111122448816128256256512⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-+-+-+⋅⋅⋅+-+-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.151********-=10.光年是天文学中使用的距离单位,指的是光在真空中经历一年所走的距离,若真空中光的速度为千米/秒,用科学记数法表示l 光年是多少?(1年按天计算)300000365【答案】已知:千米/秒,(秒).300000v =365243600t =⨯⨯ 由(千米).300000365243600s vt ==⨯⨯⨯9460800000000=129.460810=⨯所以,l 光年是千米.129.460810⨯11.阅读下列解题过程:计算:()632113115⨯⎪⎭⎫ ⎝⎛--÷-解:()632113115⨯⎪⎭⎫ ⎝⎛--÷-(第一步)()662515⨯⎪⎭⎫ ⎝⎛-÷-=(第二步)()()2515-÷-=(第三步)53-=回答:(1)上面的解题过程中有两个错误,第一处是第 步,错误的原因是 ;第二处是第 步,错误原因是 .(2)正确的结果是 .【答案】(1)二,乘除为同一等级的计算,没有按照从前往后的顺序求解;(2)三,负数乘以负数得到正数,题中为负数. (2).3215【课堂总结】【课后作业】一、填空题1. .=---3232. .()22533235-⨯-⨯+=3. .()()()()()=-⨯---⨯---⨯++n n n 212211111014. .()()=-÷⎪⎭⎫ ⎝⎛-+-⨯-5214387165. .()()()=-⨯-+⨯-03.716.016.4003.76. .()()=-⨯+-÷-2333227.若、互为倒数,、互为相反数,,则 .a b c d 2=m ()=-+⋅+23m ab ba d c 8.一个数用科学记数法表示为,则它是 位整数.10n a ⨯二、选择题9.下列公式计算正确的是( )A .B .()527527⨯--=⨯--31354453=÷=⨯÷C . D .⎪⎭⎫ ⎝⎛÷÷=÷÷5454354543()932=--10.计算的值是( )()()2007200822-+-A .1 B . C . D .2-20072-2007211.下列各组数中,相等的一组是( ).A .与B .与23-2(3)-2(3)--3(2)-- C .与 D .与3(3)-33-223-⨯332-⨯12.用合理的方法计算:(1) ; (2) ;515635236767---1544 3.87 4.253495-+-+(3) ; (4) ; 1511342461832⎛⎫⎛⎫--+--+ ⎪ ⎪⎝⎭⎝⎭()110.5678111-----+⎡⎤⎣⎦13.计算:(1); (2);63221⨯⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-÷2131521(3); (4).⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛--838712787431⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯1811351121961365514.用科学计数法表示下列计算结果:(1)一昼夜小时是多少秒?24 (2)50251002⨯15.(1)阅读短文《拆项计算》:拆项计算下面带分数的计算申,常把整数部分和分数部分拆开,以简化计算过程,举例如下:5231591736342⎛⎫⎛⎫-+++- ⎪ ⎪⎝⎭⎝⎭()5231591736342523159173634252315917363425213063241235644⎛⎫⎛⎫⎛⎫⎛⎫=-+-+++-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=----++--⎛⎫=--+-+--+- ⎪⎝⎭⎛⎫=-+++ ⎪⎝⎭=-+=-(2)仿照第(1)小题的计算方法计算:5211200620054000116332⎛⎫⎛⎫⎛⎫-+-+-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】1.-11 2.21 3.1 4.2 5.-281.2 6.-7 7.-1 8.1n +9.D 10.D 11.C12.(1) 515655163523325319867676677⎡⎤⎛⎫⎛⎫⎛⎫---=-+-+-=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦(2) 1541451454 3.87 4.253437437495459459-+-+=-+-+=(3) 151153424146183218⎛⎫⎛⎫--+--+=- ⎪ ⎪⎝⎭⎝⎭ (4) ()110.56781110.4321-----+=-⎡⎤⎣⎦13.(1) 121266612323⎛⎫⎛⎫-⨯=⨯+-⨯=- ⎪ ⎪⎝⎭⎝⎭(2) ()2117216853255⎛⎫÷-=⨯-=- ⎪⎝⎭(3) 377733114812888⎛⎫⎛⎫⎛⎫--÷-+-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(4).51111351936361853911366623518633519⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⨯-⨯-÷-=⨯-⨯-⨯-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭14.(1) 一昼夜小时是(秒)244246060864008.6410⨯⨯==⨯(2) =50251002⨯50505010025410010⨯==15.原式=()5211352200620054000110.6332263⎛⎫⎛⎫--+++--++=+-+=- ⎪ ⎪⎝⎭⎝⎭。

幂的运算综合专项练习题(有答案过程)ok

幂的运算综合专项练习题(有答案过程)ok

幂的运算专项练习50题(有答案)1.2 2 2 32.(4ab)×(﹣ab)3.(1);(2)(3x3)2(?﹣x);(3)m2?7mp2÷(﹣7mp);(4)(2a﹣3)(3a+1).4.已知a x=2,a y=3求:a x+y与a2x﹣y的值.6.若a=255,b=344,c=433,d=522,试比较a,b,c,d的大小.2 3 77.计算:(﹣2m)+m÷m.2 ﹣33﹣2)﹣28.计算:(2mn) ?(﹣mn9.计算:.10.(﹣)2÷(﹣2)﹣3+2×(﹣)0.11.已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.12.若2x+5y﹣3=0,求4x?32y的值.mn3m+2n 13.已知3×9m×27m=316,求m的值.5.已知3=x,3=y,用x,y表示3 .nm3915,求2 m+n 14.若(abb ) =ab 的值.2 3 2 615.计算:(x?x )÷x .2n 2 3n+2 216.计算:(a )÷a ?a .17.若a m =8,a n = ,试求a 2m ﹣3n的值.n+1 2n18.已知9 ﹣3=72,求n 的值.m n 2m+n19.已知x=3,x=5,求x 的值.20.已知3m =6,9n =2,求32m ﹣4n+1的值.21.(x ﹣y )5[(y ﹣x )4]3(用幂的形式表示)m m m m 3024.已知:3?9?27?81=3,求m 的值.6﹣b 2b+1 11 a ﹣1 4﹣b 525.已知x ?x =x ,且y ?y =y ,求a+b 的值.x ﹣1 y26.若2x+3y ﹣4=0,求9 ?27.2 43 3 6 227.计算:(3ax )﹣(2ax ).28.计算: .m2n ﹣2 n m+3 2010 的值. 29.已知16=4×2 ,27=9×3 ,求(n ﹣m )30.已知162×43×26=22m ﹣2,(102)n =1012.求m+n 的值.5 3 4 231.(﹣a )(?﹣a )÷(﹣a ).22.若x m+2n =16,x n =2,(x ≠0),求x m+n ,x m ﹣n的值. 32.(a ﹣2b ﹣1)﹣3(?2ab 2)﹣2.﹣3 4 2 2﹣2 a+b 2b ﹣a 9 b 323.计算:(5a b )(?ab ) . 33.已知x ?x =x ,求(﹣3)+(﹣3)的值.2/64 4 2 4 4234.a?a+(a)﹣(﹣3x )5m+n2m﹣n 3 6 15 m 35.已知(x y )=xy,求n的值.m n 3m+2n 2n﹣3m 36.已知a=2,a=7,求a ﹣a 的值.2n+2 n 3 3 2 n 37.计算:(﹣3x y)÷[(﹣xy)]2 6 n n 3n 23 2 n 42.计算:(ab)+5(﹣ab)﹣3[(﹣ab)].43..n﹣5 n+13m﹣2 2 n﹣1 m﹣2 33m+244.计算:a (a b )+(a b )(﹣b )45.已知x a=2,x b=6.(1)求x a﹣b的值.(2)求x2a﹣b 的值.﹣2 ﹣3 ﹣1 2 ﹣3 238.计算:(x y )(?xy ).46.已知2a?27b?37c=1998,其中a,b,c为整数,2m 3n3m 2 2n 3 2m 3n求(a﹣b﹣c)1998的值.39.已知a=2,b =3,求(a)﹣(b)+a?b的值40.已知n为正整数,且x3n=7,求(3x2n)3﹣4(x2)3n47.﹣(﹣0.25)1998×(﹣4)1999.的值.41.若n为正整数,且x2n=5,求(3x3n)2﹣34(x2)3n2n+1 3?(2a+b)n ﹣448.(1)(2a+b)?(2a+b)的值.3/6(2)(x ﹣y )2?(y ﹣x )5. 50.计算下列各式,并把结果化为正整数指数幂的形式.(1)a 2b 3(2a ﹣1b 3);22 ﹣1﹣2 ﹣232 49.(1)(3xyz ) ?(5xy z ).2 ﹣12 ) ﹣43 ﹣2 (2)(4xyz )?(2xyz ÷(yz ) .幂的运算50题参考答案:1.解:原式=4﹣1﹣4=﹣1;2 4 63 8 72.原式=16ab ×(﹣ ab )=﹣2ab3.解:(1)原式=(﹣5)×3=﹣15; (2)原式=9x 6(?﹣x )=﹣9x 7; 3 2 2(3)原式=7mp ÷(﹣7mp )=﹣mp ;2 2( 4)原式=6a+2a ﹣9a ﹣3=6a ﹣7a ﹣3.故答案为﹣15、﹣9x 7、﹣m 2p 、6a 2﹣7a ﹣34.解:a x+y=a x?a y =2×3=6; a 2x ﹣y =a 2x ÷a y =22÷3=3m 2n5.解:原式=3×3,=(3m )3×(3n )2, 3 2 =xy5 11 116.解:a=(2)=32;3 11 11 c=(4)=48; 2 11 11d=(5)=25; 可见,b >c >a >d2 3 77.解:(﹣2m )+m ÷m ,3 2 3 6=(﹣2)×(m )+m ,6 6 =﹣8m+m ,6 =﹣7m2﹣33 ﹣2 ﹣26 ﹣9 ﹣248.解:(2mn )?(﹣mn )=8mn ?mn=9.解:原式=(﹣4)+4×1=010.解:原式= ÷(﹣ )+2×1=﹣2+2 =0﹣2 ﹣3 ﹣1 3(2)(a )(bc );2﹣3 2 ﹣2 (3)2(2abc )÷(ab).11.解:∵2x=4y+1,x2y+2,∴2=2∴x=2y+2①y x﹣1又∵27=3 ,∴33y=3x﹣1,∴3y=x﹣1②联立①②组成方程组并求解得,∴x﹣y=312.解:4x?32y=22x?25y=22x+5y∵2x+5y﹣3=0,即2x+5y=3,∴原式=23=813.解:∵3×9m×27m,2m 3m=3×3×3,=31+5m,1+5m 16∴3=3,∴1+5m=16,解得m=3nm3n3m333n3m+3 14.解:∵(abb)=(a)(b)b=ab ,∴3n=9,3m+3=15,解得:m=4,n=3,∴2m+n=27=12815.解:原式=(x5)2÷x6=x10÷x6=x10﹣6=x416.解:(a2n)2÷a3n+2?a2=a4n÷a3n+2?a24n﹣3n﹣2 2=a ?an﹣22=a ?a=a n﹣2+2n=a17.解:a2m﹣3n=(a m)2÷(a n)3,m n∵a=8,a=,4/6∴原式=64÷ =512.故答案为 51218.解:∵9n+1﹣32n =9n+1﹣9n =9n (9﹣1)=9n×8,而72=9 ×8, ∴当9n+1﹣32n =72时,9n×8=9×8, ∴ 9n=9, ∴n =1 19.解:原式=(x m )2?x n2 =3×5 =9×5 =45 20.解:由题意得, 9n =32n =2,32m =62=36,故 32m ﹣4n+1=32m ×3÷34n=36×3÷4=275 4 3 5 4 321.解:(x ﹣y )[(y ﹣x )]=(x ﹣y )[(x ﹣y )]=( x ﹣y )5(?x ﹣y )12=(x ﹣y )1722.解:∵x m+2n=16,x n=2,m+2nn m+n ∴x ÷x=x =16÷2=8, x m+2n ÷x 3n =x m ﹣n =16÷23=223.解:( ﹣3 4 22﹣2 5a b )?(ab )﹣6 8 ﹣4 ﹣2 =25a b?a b =24.解:由题意知, 3m ?9m ?27m ?81m,m 2m3m 4m =3?3 ?3?3 , m+2m+3m+4m =3 , =330,∴ m +2m+3m+4m=30,整理,得10m=30, 解得m=325.解:∵x 6﹣b ?x 2b+1=x 11,且y a ﹣1?y 4﹣b =y 5, ∴ ,解得: ,则 a+b=1026.解:∵2x+3y ﹣4=0, ∴2x+3y=4, x ﹣1y 2x ﹣23y 2x+3y ﹣22∴9 ?27=3 ?3 =3=3=9 27.解:(3a 2x 4)3﹣(2a 3x 6)2=27a 6x 12﹣4a 6x 12=23a 6x 1228.解:原式= ? a 2b 3=29.解:∵16m =4×22n ﹣2,∴(24)m=22×22n ﹣2,∴24m =22n ﹣2+2,∴ 2n ﹣2+2=4m ,∴n=2m①,∵(33)n27n=9×3m+3,∴(33)n=32×3m+3,∴33n=3m+5,∴3n=m+5②,由①②得:解得:m=1,n=2,2010∴(n﹣m)=(2﹣1)2010=130.解:∵162×43×26=28×26×26=220=22m﹣2,(102)n=102n=1012.∴2m﹣2=20,2n=12,解得:m=11,n=6,∴m+n=11+6=1731.原式=(﹣a)5?a12÷(﹣a)2=﹣a5+12÷(﹣a)2=﹣17 2 15a÷a=﹣a.32.解:(a ﹣2﹣1﹣3 2﹣2 b)?(2ab)=(a6b3)(? a﹣2b﹣4)= a4b﹣1=33.解:∵x a+b?x2b﹣a=x9,∴a+b+2b﹣a=9,解得:b=3,b 3 3 3 3∴(﹣3)+(﹣3)=(﹣3)+(﹣3) =2×(﹣3)=2 ×(﹣27)=﹣5434.解:原式88 8=a+a ﹣9x,=2a8﹣9x835.解:(x5m+n y2m﹣n)3=x15m+3n y6m﹣3n,5m+n2m﹣n 3 6 15∵(xy )=xy ,∴,解得:,则n m=(﹣9)3=﹣24336.解:∵a m=2,a n=7,3m+2n 2n﹣3m m 3 n 2 n 2 m 3 ∴a ﹣a =(a)(?a)﹣(a)÷(a)=8×49﹣49÷8=2n+2 n 3 3 2 n37.解:(﹣3x y)÷[(﹣xy)],=﹣27x6n+6y3n÷(﹣x3y)2n,=﹣27x6n+6y3n÷x6n y2n,=﹣27x6y n38.解:(x﹣2?y﹣3)﹣1(?x2?y﹣3)2,5/6234﹣6=xy?xy ,=39.解:(a3m)2﹣(b2n)3+a2m?b3n,=(a2m)3﹣(b3n)2+a2m?b3n,3 2=2﹣3+2×3,=56n6n40.解:原式=27x﹣4x=23(x3n)2=23×7×7=11272n41.解:∵x=5,∴(3x3n)2﹣34(x2)3n6n6n=9x﹣34x2n3=﹣25(x )3=﹣25×5=﹣312542.解:原式=a2n b6n+5a2n b6n﹣3(a2b6)n =6a2n b6n﹣3a2n b6n=3a2n b6n50 50)50101543.解:原式=()x?(x =x44.解:原式=a n﹣5(a2n+2b6m﹣4)+a3n﹣3b3m﹣6(﹣b3m+2),=a3n﹣3b6m﹣4+a3n﹣3(﹣b6m﹣4),=a3n﹣3b6m﹣4﹣a3n﹣3b6m﹣4,=0a b45.解:(1)∵x=2,x=6,∴x a﹣b=x a÷x b=2÷6=;(2)∵x a=2,x b=6,∴x2a﹣b=(x a)2÷x b=22÷6=46.解:∵2a?33b?37c=2×33×37,∴a=1,b=1,c=1,∴原式=(1﹣1﹣1)1998=147.解:原式=﹣()1998×(﹣4)1998×(﹣4),=﹣()1998×41998×(﹣4),=﹣(×4)1998×(﹣4),=﹣1×(﹣4),=4(2n+1)+3+(n﹣4)48.解:(1)原式=(2a+b)3n =(2a+b);WORD 格式专业资料整理( 2)原式=﹣(x ﹣y )2(?x ﹣y )5=﹣(x ﹣y )749.解:(1)原式=( )﹣2(? )2= ?= ;(2)原式= ? ÷= ?y 2z 6=150.解:(1)a 2b 3(2a ﹣1b 3)=2a 2﹣1b 3+3=2ab 6;( 2)(a ﹣2)﹣3(bc ﹣1)3,=a 6b 3c ﹣3,= ;( 3)2(2ab 2c ﹣3)2÷(ab )﹣2,=2(4a 2b 4c ﹣6)÷(a ﹣2b ﹣2),=8a 4b 6c ﹣6, =6/6。

第八章幂的运算单元基础测试卷(含答案)-精品

第八章幂的运算单元基础测试卷(含答案)-精品

第八章幂的运算单元基础测试卷(含答案)-精品2020-12-12【关键字】问题、发现、基础、关系、解决(60分钟,满分100分)一、填空题(6题,每题3分,共18分)1.计算:(1)x 3·x 4=_______; (2) x n ·x n -1 =_______;(3)(—m )5·(—m )·m 3=_______; (4)(x 2)3÷x 5=_______.2.计算:(1)4()3xy -·(—3x 2y )2=_______; (2)(π-)0+2-2=________.3.氢原子中电子和原子核之间的距离为0.00000000529厘米.用科学记数法表示这个距离为_______厘米.4.若a x =2,则a 3x =_______.5.若3n =2,3m =5,则32m +3n -1=_______.6.计算:2013201252()(2)125-⨯=__________. 二、选择题(6题,每题3分,共18分)7.在下列四个算式:(—a )3·(—a 2)2=—a 7,(—a 3)2=—a 6,(—a 3)3÷a 4=a 2,(—a )6÷(—a )3=—a 3,正确的有 ( )A .1个B .3个C .2个D .4个8.若(a m b n )3=a 9b 15,则m 、n 的值分别为 ( )A .9;5B .3;5C .5;3D .6;129.[—(-x )2]5= ( )A .—x 10B .x 10C .x 7D .—x 710.若a =—0.32,b =—3-2,c =21()3--,d =01()5-,则 ( ) A .a <b <c <dB .b <a <d <cC .a <d <c <bD .c <a <d <b11.已知| x | =1,|y |=12,则(x 20)3—x 3y 2等于 ( ) A .34-或54-B .34或54C .34D .54- 12.如果等式(2a —1)a +2=1成立,则a 的值可能有 ( )A .4个B .1个C .2个D .3个三、解答题(8题,共64分)13.(本题8分)计算:2(x 3)4+x 4(x 4)2+x 5·x 7+x 6(x 3)2.14.(本题8分)计算:(—2×1012)÷(—2×103)3÷(0.5×102)2.15.(本题8分)计算:—10—2—1×3—1×[2—(—3)2].16.(本题8分)已知83=a 9=2b 求222111()()2()5525a b a b b a b -++-+的值. 17.(本题8分)我们知道:因为4<5,所以4n <5n (n 为正整数),用你所学过的知识来比较3108与2144的大小关系?18.(本题6分)厂次数学兴趣小组活动中,同学们做了一个找朋友的游戏:有六个同学A 、B 、C 、D 、E 、F 分别藏在六张大纸牌的后面,如图所示,A 、B 、C 、D 、E 、F 所持的纸牌的前面分别写有六个算式:66;63+63;(63) 3;(2×62)×(3×63);(22×32) 3;(64) 3÷62.游戏规定:所持算式的值相等的两个人是朋友.如果现在由同学A 来找他的朋友,他可以找谁呢?说说你的看法.19.(本题6分)有一句谚语说:“捡了芝麻,丢了西瓜.”意思是说有些人办事只抓一些无关紧要的小事,却忽略了具有重大意义的大事.据测算,5万粒芝麻才200克,你能换算出1粒芝麻有多少克吗?可别“占小便宜吃大亏”噢!(把你的结果用科学记数法表示)20.(本题12分)阅读下列一段话,并解决后面的问题.观察下面一列数:l ,2,4,8,…我们发现,这列数从第二项起,每一项与它前一项的比值都是2.我们把这样的一列数叫做等比数列,这个共同的比值叫做等比数列的公比.(1)等比数列5,一15,45,…的第4项是_______;(2)如果一列数a 1,a 2,a 3,…是等比数列,且公比是q ,那么根据上述规定有21a q a = 32a q a =,43a q a =,…所以a 2=a 1q ,a 3=a 2q =a 1q ·q =a 1q 2,a 4=a 3q =a 1q 2·q =a 1q 3, … 则a n =______;(用a 1与q 的代数式表示)(3)一个等比数列的第2项是10,第3项是20,求它的第1项和第4项.参考答案一、填空题1.(1)x 7 (2)x 2n -1 (3)m 9 (4)x2.(1)—12x5y3(2)5 43.5.29×10-94.8 5.20036.512二、选择题7.C 8.B 9.A 10.B 11.B 12.D 三、解答题13.【解】原式=5x1214.【解】原式=1 1015.原式=1 616.原式=一6417.19.4×10-3(克)20.(1)一135 (2)a l·q n-1(3)第一项是5,第二项是40。

2021-2022学年苏科版七年级数学下册《第8章幂的运算》单元达标测试题(附答案)

2021-2022学年苏科版七年级数学下册《第8章幂的运算》单元达标测试题(附答案)

2021-2022学年苏科版七年级数学下册《第8章幂的运算》单元达标测试题(附答案)一.选择题(共8小题,满分40分)1.数字0.000000006用科学记数法表示为()A.6×10﹣8B.6×10﹣9C.6×10﹣10D.6×10﹣11 2.计算(﹣)2022×(﹣2)2022的结果是()A.﹣1B.0C.1D.20223.下列计算正确的是()A.(﹣2a2b)3=﹣8a6b3B.a6÷a3+a2=2a2C.2a+3b=5ab D.a2•a4=a84.已知10a=20,100b=50,则a+b+的值是()A.2B.C.3D.5.计算:(﹣x2y)3=()A.﹣2x6y3B.C.D.6.已知2a=5,2b=10,2c=50,那么a、b、c之间满足的等量关系是()A.ab=c B.a+b=cC.a:b:c=1:2:10D.a2b2=c27.若8x=21,2y=3,则23x﹣y的值是()A.7B.18C.24D.638.若22=4y﹣1,27y=3x+1,则x﹣y等于()A.﹣5B.3C.﹣1D.1二.填空题(共8小题,满分40分)9.计算:2×103﹣(﹣2)3×102=(把结果用科学记数法表示).10.若9a•27b÷81c=9,则2a+3b﹣4c的值为.11.若2x=3,4y=2,则2x﹣2y的值为.12.若3x﹣5y﹣1=0,则103x÷105y=.13.已知3x+1•5x+1=152x﹣3,则x=.14.若2m+2m+2m+2m=8,则m=.15.计算:=.16.已知(x+3)2﹣x=1,则x的值可能是.三.解答题(共5小题,满分40分)17.(1).(2)如果2m=3,.求23m+2n的值.18.m•(﹣m)2•(﹣m)2•(﹣m)2•(﹣m3)•(﹣m)3.19.(1)已知2m=a,32n=b,m、n为正整数,求23m+10n﹣2的值;(2)已知2a=3,4b=5,8c=7,求8a+c﹣2b的值.20.2(a3)4+a4•(﹣a2)4+a6•(﹣a2)3+(﹣a2)(﹣a5)2.21.某银行去年新增加居民存款10亿元人民币.(结果用科学记数法表示)(1)经测量,100张面值为100元的新版人民币大约厚0.9厘米,如果将10亿元面值为100元的新版人民币摞起来,大约有多高?(2)一台激光点钞机的点钞速度是8×104张/时,按每天点钞5小时计算,如果让点钞机点一遍10亿元面值为100元的新版人民币,点钞机大约要点多少天?参考答案一.选择题(共8小题,满分40分)1.解:0.000000006=6×10﹣9.故选:B.2.解:(﹣)2022×(﹣2)2022=[﹣×(﹣)]2022=12022=1,故选:C.3.解:A、(﹣2a2b)3=﹣8a6b3,故A符合题意;B、a6÷a3+a2=a3+a2,故B不符合题意;C、2a与3b不属于同类项,不能合并,故C不符合题意;D、a2•a4=a6,故D不符合题意;故选:A.4.解:∵10a×100b=10a×102b=10a+2b=20×50=1000=103,∴a+2b=3,∴原式=(a+2b+3)=×(3+3)=3,故选:C.5.解:(﹣x2y)3=﹣x6y3,故选:D.6.解:∵5×10=50,∴2a•2b=2c,∴2a+b=2c,∴a+b=c,故选:B.7.解:∵8x=21,2y=3,∴23x=21,∴23x﹣y=23x÷2y=21÷3=7.故选:A.8.解:∵22=4y﹣1=22y﹣2,27y=33y=3x+1,∴2y﹣2=2,3y=x+1,解得y=2,x=5,∴x﹣y=5﹣2=3.故选:B.二.填空题(共8小题,满分40分)9.解:2×103﹣(﹣2)3×102=2×103+8×102=2000+800=2800=2.8×103.故答案为:2.8×103.10.解:9a•27b÷81c=9,32a•33b÷34c=32,32a+3b﹣4c=32,∴2a+3b﹣4c=2,故答案为:2.11.解:∵2x=3,4y=2,∴22y=2,∴2x﹣2y=2x÷22y=3÷2=,故答案为:.12.解:因为3x﹣5y﹣1=0,所以3x﹣5y=1,所以103x÷105y=103x﹣5y=10.故答案为:10.13.解:∵3x+1•5x+1=152x﹣3,∴(3×5)x+1=152x﹣3,即15x+1=152x﹣3,∴x+1=2x﹣3,解得:x=4.故答案为:4.14.解:∵2m+2m+2m+2m=8,∴4×2m=8,∴22×2m=8,则有:2m+2=23,∴m+2=3,解得:m=1.故答案为:1.15.解:原式=1+﹣1=1+2﹣1=2.故答案为:2.16.解:当x+3=1时,解得:x=﹣2,故(x+3)2﹣x=(﹣2+3)2﹣(﹣2)=14=1;当x+3=﹣1时,解得:x=﹣4,故(x+3)2﹣x=(﹣4+3)6=1;当2﹣x=0时,解得:x=2,故(x+3)2﹣x=(2+3)0=1;综上所述,x的值可能是﹣2或﹣4或2.故答案为:﹣2或﹣4或2.三.解答题(共5小题,满分40分)17.解:(1)=﹣1+1﹣9+(﹣8)=﹣9﹣8=﹣17;(2)当2m=3,时,23m+2n=23m×22n=(2m)3×(2n)2=33×()2=27×=3.18.解:m•(﹣m)2•(﹣m)2•(﹣m)2•(﹣m3)•(﹣m)3=m•m2•m2•m2•(﹣m3)•(﹣m3)=m1+2+2+2+3+3=m13.19.解:(1)∵2m=a,32n=25n=b,m、n为正整数,∴23m+10n﹣2=(2m)3•(25n)2÷22=a3•b2÷4=;(2)∵2a=3,4b=22b=5,8c=23c=7,∴8a+c﹣2b=23a+3c﹣6b=(2a)3•23c÷(22b)3=33×7÷53=27×7÷125=.20.解:原式=2a12+a12﹣a12﹣a12.=a12.21.解:(1)10亿=1 000 000 000=109,∴10亿元的总张数为109÷100=107张,107÷100×0.9=9×104(厘米);(2)107÷(5×8×104),=(1÷40)×(107÷104),=0.025×103=25=2.5×10(天).。

(完整版)幂的运算经典习题(最新整理)

(完整版)幂的运算经典习题(最新整理)

八、数的计算
1、下列计算正确的是 ( )
A. 1 4 3 1 34
B. 5 10 20 1
C. 2 5 2 102
D. 1 2 81 9
2、 1 2 1 0 53 52
3 9
3、 10 3( 2 105)0 - 1 2 10 2
10
4、4-(-2)-2-32÷(3.14-π)0
x10 (x)2 x3 = 五、幂的混合运算 1、a5÷(-a2 )·a=
2、( a 2b ) ab3 2 =
6、 (a b)5m b a 2m b a 7m (m 为偶数,
a b)
7、 y x2 x y+(x y)3+ 2(x y)2 y x
3、(-a3)2·(-a2)3
2、(3x-2)0=1 成立的条件是_________. 3、用科学记数法表示 0.000695 并保留两个有
8、下列运算中与 a 4 a 4 结果相同的是( )
A. a2 a8
B. a 2 4
C. a4 4
D. a2 4 a2 4
*9、32m×9m×27=
效数字为_______. 4、计算(-3-2)3 的结果是_________. 5、若 x2+x-2=5,则 x4+x-4 的值为_________. 6、若 x= 2 -1,则 x+x-1=__________.
(D)9
幂的运算练习
5、
1
xy
2
z
3
2
3
=
2
6、计算 x4 3 x7 的结果是 ( )
A. x12
B. x14
7、 a2 4 a3
C. x 19 D. x84

第八章幂的运算单元测试卷(讲+练)(原卷版)

第八章幂的运算单元测试卷(讲+练)(原卷版)

2022-2023学年第二学期七年级下册第八章单元测试卷姓名 班级 得分一.选择题(共8小题)1.医学研究发现一种病毒的直径约为0.00000012米,则这个数用科学记数法表示为( )A .0.12×10﹣6B .1.2×10﹣7C .1.2×10﹣6D .12×10﹣8 2.下列计算错误的是( )A .x +x +x +x =4xB .x ﹣x ﹣x ﹣x =﹣2xC .x •x •x •x =x 4D .x ÷x ÷x ÷x =1 3.若2a =5,2b =3,则2a﹣b 的值为( ) A .53 B .2 C .4 D .154.计算:(﹣0.25)12×413( )A .﹣1B .1C .4D .﹣45.已知25a •52b =56,4b ÷4c =4,则代数式a 2+ab +3c 值是( )A .3B .6C .7D .8 6.若一个正方体的棱长为2×10﹣2米,则这个正方体的体积为( ) A .6×10﹣6立方米 B .8×10﹣6立方米 C .2×10﹣6立方米D .8×106立方米 7.若a 为正整数,则(a ⋅a ⋅⋯⋅a ︸a 个)2=( )A .a 2aB .2a aC .a aD .a a 28.我们知道,同底数幂的乘法法则为a m •a n =a m +n (其中a ≠0,m 、n 为正整数),类似地我们规定关于任意正整数m 、n 的一种新运算:h (m +n )=h (m )•h (n );比如h (2)=3,则h (4)=h (2+2)=3×3=9,若h (2)=k (k ≠0),那么h (2n )•h (2020)的结果是( )A .2k +2021B .2k +2022C .k n +1010D .2022k二.填空题(共8小题)9.计算:2﹣2﹣(﹣2)0= . 10.0.000000358用科学记数法可表示为 .11.将2x ﹣3y (x +y )﹣1表示成只含有正整数指数幂的形式为 .12.若(a +3)a +1=1,则a 的值是 .13.已知4×8m×16m=29,则m的值是.14.已知2a=3,2b=6,2c=12,则2a+b=;a+c﹣2b=.15.有一个棱长10cm的正方体,在某种物质的作用下,棱长以每秒扩大为原来的102倍的速度膨胀,则3秒后该正方体的体积是立方厘米.16.已知m=154344,n=54340,那么2016m﹣n=.三.解答题(共11小题)17.计算:(1)−12030+|−6|−(π−3.14)0+(−13)−2;(2)x3y(12x−1y3)−2.18.计算:(1)−(512)6×(−4)5×(225)6×0.256;(2)a5•(﹣a)3+(﹣2a2)4.19.若a+b+c=3,求22a﹣1•23b+2•2a+3c的值.20.若a m=a n(a>0且a≠1,m、n是正整数),则m=n.利用上面结论解决下面的问题:(1)如果2÷8x•16x=25,求x的值;(2)如果2x+2+2x+1=24,求x的值;21.若a m=a n(a>0且a≠1,m、n是正整数),则m=n.利用上面结论解决下面的问题:(1)如果2÷8x•16x=2,求x的值;(2)如果2y+2+2y+1=24,求y的值.22.我们知道,同底数幂的乘法法则为a m•a n=a m+n(其中a≠0,m、n为正整数),类似地,我们规定关于任意正整数m、n的一种新运算:f(m)•f(n)=f(m+n)(其中m、n为正整数).例如,若f(3)=2,则f(6)=f(3+3)=f(3)•f(3)=2×2=4.f(9)=f(3+3+3)=f(3)•f(3)•f(3)=2×2×2=8.(1)若f(2)=5,①填空:f(6)=;②当f(2n)=25,求n的值;(2)若f(a)=3,化简:f(a)•f(2a)•f(3a)•…•f(10a).23.若a m=a n(a>0且a≠l,m、n是正整数),则m=n.利用上面结论解决下面的问题:(1)如果8x=25,求x的值;(2)如果2x+2+2x+1=24,求x的值;(3)若x=5m﹣3,y=4﹣25m,用含x的代数式表示y.24.(1)已知a=2﹣4444,b=3﹣3333,c=5﹣2222,请用“<”把它们按从小到大的顺序连接起来,说明理由.(2)请探索使得等式(2x+3)x+2021=1成立的x的值.25.如果x n=y,那么我们规定(x,y)=n.例如:因为32=9,所以(3,9)=2.(1)(理解)根据上述规定,填空:(2,8)=,(2,14)=;(2)(说理)记(4,12)=a,(4,5)=b,(4,60)=c.试说明:a+b=c;(3)(应用)若(m,16)+(m,5)=(m,t),求t的值.26.阅读下列材料:一般地,n个相同的因数a相乘a•a…,记为a n.如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b(即log a b=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).(1)计算以下各对数的值:log24=,log216=,log264=.(2)写出(1)log24、log216、log264之间满足的关系式.(3)由(2)的结果,请你能归纳出一个一般性的结论:log a M+log a N=(a>0且a≠1,M>0,N>0).(4)设a n=N,a m=M,请根据幂的运算法则以及对数的定义说明上述结论的正确性.27.比较2021﹣2022与2022﹣2021的大小,我们可以采用从“特殊到一般”的思想方法:(1)通过计算比较下列各式中两数的大小:(填“>”,“<”或“=”)①1﹣22﹣1,②2﹣33﹣2,③3﹣44﹣3,4﹣55﹣4.(2)由(1)可以猜测n﹣(n+1)与(n+1)﹣n(n为正整数)的大小关系:当n时,n﹣(n+1)>(n+1)﹣n;当n时,n﹣(n+1)<(n+1)﹣n.(3)根据上面的猜想,则有2021﹣20222022﹣2021(填“>”,“<”或“=”).。

苏科版七年级下册幂的运算单元检测2份1

苏科版七年级下册幂的运算单元检测2份1

第八章幂的运算测试姓名: 得分: ( 总分:100分;时间:100分钟)一、选择题(每小题2分,共16分)1.下列各式中错误的是( )A.()[]()623y x y x -=- B.84216)2(a a =- C.363227131n m n m -=⎪⎭⎫⎝⎛- D.6333)(b a ab -=-2.若2=ma,3=n a ,则n m a +等于 ( )A.5B.6C.8D.9 3.在等式⋅⋅23a a ( )11a =中,括号里填入的代数式应当是 ( )A.7aB.8aC.6aD.3a 4.计算mm 525÷的结果为 ( )A.5B.20C.m 5D.m20 5. 下列4个算式中,计算错误的有 ( )(1)()()-=-÷-24c c 2c (2)336)()(y y y -=-÷-(3)33z z z =÷(4)44a a a m m =÷A.4个B.3个C.2个D.1个6.如果(),990-=a ()11.0--=b ,235-⎪⎭⎫⎝⎛-=c ,那么c b a ,,三数的大小为( )A.c b a >>B.b a c >>C.b c a >>D.a b c >>7.计算3112)(n n x x x +-⋅⋅的结果为( )A.33+n xB.36+n x C.nx12 D.66+n x8.已知 n 是大于1的自然数,则 ()()11+--⋅-n n c c 等于 ( )A.()12--n c B.nc 2- C.nc 2- D.nc2二、填空题(每题3分,共30分)9.最薄的金箔的厚度为 m 000000091.0,用科学记数法表示为 m ;10.()=-⋅⎪⎭⎫⎝⎛n n221 ;=÷-++112n n y y ;=-23])[(m . 11.=+⋅+32)()(a b b a ;=-⋅-23)2()2(m n n m ;(-21)100×2101= 。

完整版)幂的运算经典习题

完整版)幂的运算经典习题

完整版)幂的运算经典习题幂的运算练一、同底数幂的乘法1、下列各式中,正确的是()A.m4m4=m8B.m5m5=2m25C.m3m3=m9D.y6y6=2y12正确答案为A。

2、102·107=10(2+7)=109.3、(x-y)5·(x-y)4=(x-y)9.4、若am=2,an=3,则am+n=2+3=5.5、a4·a=a5.6、在等式a3·a2·()=a11中,括号里面的代数式应当是a6.a·a3·am=a4+m,所以a4+m=a8,解得m=4.7、-t3·(-t)4·(-t)5=-t12.8、已知n是大于1的自然数,则(-c)n-1·(-c)n+1=-c2n。

9、已知xm-n·x2n+1=x11,且ym-1·y4-n=y7,则m=5,n=3.二、幂的乘方1、(-x2)4=x8.2、a4·a4=a8.3、(ab)2=a4b2.4、(-xk-1)2=x2k-2.5、(-xy2z3)5=-x5y10z15.6、计算(x4)3·x7的结果是x19.7、a8·(-a)3=-a5.8、(-an)2n=(-a)2n·n=an·n。

9、[-(-x)2]5=-x10.10、若ax=2,则a3x=23=8.三、积的乘方1)、(-5ab)2=25a2b2;2、-(3x2y)2=-9x4y2;3、-(1/abc3)3=-1/a3b3c9;4、(0.2x4y3)2=0.04x8y6;5、(-1.1xm y3m)2=1.21x2m y6m;6、(-0.25)11×411=-0.2511+4=-0.2515;7、-×(-0.125)1995=.四、同底数幂的除法1、(-a)4÷(-a)=-a3.2、a5÷a=a4.3、(ab)3÷(ab)=a3b3.4、xn+2÷x2=xn。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章 幂 的 运 算知识网络8.1同底数幂的乘法——课内练习『学习目标』1、能说出同底数幂乘法的运算性质,并会用符号表示。

2、会正确地运用同底数幂乘法的运算性质进行计算,并能说出每一步运算的依据。

『例题精选』 1.计算:(1)()1258(8)-⨯-; (2)7x x ⋅; (3)36a a -⋅; (4)321m m a a -⋅(m 是正整数) 思路点拨:关键是判断幂的底数是否相同,利用同底数幂乘法的运算性质进行计算。

1. 一颗卫星绕地球运行的速度是7.9310⨯m/s,求这颗卫星运行1h 的路程。

思路点拨:这是在新情境中同底数幂乘法性质的运用,关键是转化成数学问题。

2. 已知a m =3, a n =21, 求a m+n的值.思路点拨:同底数幂乘法性质的逆运用。

『随堂练习』 1.填空:(1)-23的底数是 ,指数是 ,幂是 .(2) a 5·a 3·a 2= 10·102·104=(3)x 4·x2n-1= x m ·x ·x n-2=(4)(-2) ·(-2)2·(-2)3= (-x)·x 3·(-x)2·x 5=(x-y)·(y-x)2·(x-y)3=(5)若b m ·b n ·x=b m+n+1(b ≠0且b ≠1),则x= .(6) -x ·( )=x 4 x m-3· ( )=x m+n『课堂检测』1.下列运算错误的是 ( )A. (-a)(-a)2=-a3B. –2x2(-3x) = -6x4C. (-a)3 (-a)2=-a5D. (-a)3·(-a)3 =a62.下列运算错误的是()A. 3a5-a5=2a5B. 2m·3n=6m+nC. (a-b)3 (b-a)4=(a-b)D. –a3·(-a)5=a83.a14不可以写成()A.a7+a7B. a2·a3·a4·a5C.(-a)(-a)2·(-a)3·(-a)3D. a5·a94.计算:(1)3x3·x9+x2·x10-2x·x3·x8(2)32×3×27-3×81×38.1同底数幂的乘法——课外作业『基础过关』1.3n·(-9)·3n+2的计算结果是()A.-32n-2 B.-3n+4 C.-32n+4 D.-3n+62.计算(x+y-z)3n·(z-x-y)2n·(x-z+y)5n (n为自然数)的结果是()A.(x+y-z)10nB.-(x+y-z)10nC. ±(x+y-z)10nD.以上均不正确『能力训练』3.计算:(1) (-1)2m·(-1)2m+1 (2)b n+2·b·b2-b n·b2·b3(3)b·(-b)2+(-b)·(-b)2(4)1000×10m×10m-3(5)2x5·x5+(-x)2·x·(-x)7 (6)(n-m)3·(m-n)2 -(m-n)5(7)(a-b)·(a-b)4·(b-a) (8)(-x)4+x·(-x)3+2x·(-x)4-(-x)·x4(9)x m·x m+x p-1·x p-1-x m+1·x m-1 (10)(a+b)(b+a)·(b+a)2+(a+b)2·(-a-b)2『综合应用』4.光的速度约为3×105km/s,太阳光照射到地球上大约需要5×102s,地球离太阳大约多远?5.经济发展和消费需求的增长促进了房地产的销售,2006年前5个月,全国共销售了商品房8.31×107m2,据监测,商品房平均售价为每平方米2.7×103元,前5个月的商品房销售总额是多少元?8.2幂的乘方与积的乘方(1)——课内练习『学习目标』 1、 能说出幂的乘方的运算性质,并会用符号表示; 2、 会运用幂的乘方的运算性质进行运算,并能说出每一步运算的依据。

『例题精选』 1.计算:(1)62(10); (2)4()m a (m 是正整数); (3)32()y -; (4)33()x - 思路点拨:注意运算结果的符号。

2.计算:(1)2432()x x x ⋅+; (2)3343()()a a ⋅思路点拨:(1)注意合并同类项;(2)分清幂的性质的运用。

『随堂练习』1.下面的计算对不对?如果不对,应怎样改正?(1)(a 5)2=a 7; (2)a 5·a 2=a 10;(3)(x 6)3=x 18; (4)(x n+1)2=x 2n +1.2.计算:(1)(103)3; (2)(x 4)3; (3)-(x 3)5;(4)(a 2)3·a 5; (5)(x 2)8·(x 4)4; (6)-(x m )5.『课堂检测』 1.计算:(1)(-x 2)·(x 3)2·x ; (2)[(x-y)3]4; (3)[(103)2]4.2.在括号内填入正确数值:(1)x 3·x ( )=x 6; (2)[x ( )]3=x 6; (3)x 12=x 6·x ( )=x 4·x ( )=(x ( ))4=x 3·x ( ).(4)(x 5)( )=x 20; (5)x 8=x 7·x ( ).8.2幂的乘方与积的乘方(1)——课外作业『基础过关』 1.计算:(1)(a 3)3; (2)(x 6)5; (3)-(y 7)2;(4)-(x 2)3; (5)(a m )3; (6)(x 2n)3m .2.计算:(1)(x 2)3·(x 2)2; (2)(y 3)4·(y 4)3;(3)(a 2)5·(a 4)4; (4)(c 2)n ·c n+1.3.计算:(1)(x 4)2; (2)x 4·x 2;(3)(y 5)5; (4)y 5·y 5.『能力训练』 4.计算:(1)(-c 3)·(c 2)5·c ; (2)[(-1)11x 2]2.『综合应用』5.已知:23105,106,10aba b+==求的值。

8.2幂的乘方与积的乘方(2)——课内练习『学习目标』1、 能说出积的乘方的运算性质,并会用符号表示;2、 会运用积的乘方的运算性质进行运算,并能说出每一步运算的依据。

『例题精选』 1.计算:(1) (-3x)3; (2) (-5ab)2; (3) (x ·y 2)2; (4) (-2x ·y 3z 2)4. 思路点拨:注意运算结果的符号。

2.计算:(1)a 3·a 4·a+(a 2)4+(-2a 4)2; (2)2(x 3)2·x 3-(3x 3)3+(5x)2·x 7. 思路点拨:计算时,分清幂的性质的运用,不能混用。

『随堂练习』 1.计算:(1)(ab)6; (2)(2m)3; (3)(-xy)5;(4)(5ab 2)3; (5)(2×102)2; (6)(-3×103)3.2.计算:(1)(-2x 2y 3)3; (2)(-3a 3b 2c)4.『课堂检测』1.下面的计算对不对?如果不对,应怎样改正?(1)(ab 2)3=ab 6; (2)(3xy)3=9x 3y 3; (3)(-2a 2)2=-4a 4.2.计算:(1)(a 2)3·(a 5)3; (2)(y 3)5·(y 2)5·(y 4)5.3.计算:(1) 3(a 2)4·(a 3)3-(-a)·(a 4)4+(-2a 4)2·(-a)3·(a 2)3.(2) (x 4)2+(x 2)4-x ·(x 2)2·x 3-(-x)3·(-x 2)2·(-x).8.2幂的乘方与积的乘方(2)——课外作业『基础过关』 1.填空:(1) m 4n 6=(m 2n 3)( )=m 2n 2( ). (2) a 4b 12=(a 2·b 6)( )=(ab 3)( )=(a 2b 4)( ). 2.计算:(1)(a 2b)5; (2)(-pq)3; (3)(-a 2b 3)2;(4)-(xy 2z)4; (5)(-2a 2b 4c 4)4; (6)-(-3xy 3)3.3.计算:(1)(-2x 2y 3)+8(x 2)2·(-x)2·(-y)3; (2)(-x 2)·x 3·(-2y)3+(-2xy)2·(-x)3y .4.计算:(1)(a n b 3n)2+(a 2b 6)n ; (2)(-2a)6-(-3a 3)2-[-(2a)2]3.5.计算:(1)2⨯1001001()2 (2)49⨯841()7(3)454240.125⨯⨯-()『能力训练』6.用简便方法计算(1)()5.1)32(2000⨯1999()19991-⨯ (2) )1(1699711111-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛11『综合应用』 7.已知2793⨯⨯m m163=,求m 的值8.3同底数幂的除法(1)——课内练习『学习目标』1、能说出同底数幂除法的运算性质,并会用符号表示;2、会运用同底数幂除法的运算性质进行运算,并能说出每一步运算的依据。

『例题精选』 1.计算:(1)62a a ÷; (2)8()()b b -÷-; (3)42()()ab ab ÷; (4)232m t t +÷(m 是正整数). 思路点拨:关键是判断幂的底数是否相同,指数又如何处理,不能混用性质。

2.计算:(1))()()(24x x x -÷-÷-; (2) 24)72()72(+÷+a a ; (3)[]421245)(a a a •÷. 思路点拨:第(2)题将2a+7看作一个整体,即可用性质。

第(3)题注意运算顺序。

3.光的速度约为8103⨯米/秒,一颗人造地球卫星的速度是3108⨯米/秒,则光的速度是这颗人造地球卫星速度的多少倍?『随堂练习』1.下列运算正确的是( )A .632a a a =÷B .23a a a =÷C .532)(a a =D .4223)3(a a =2.计算:_______)()(310=÷ab ab ;________212=÷+n n a a 。

相关文档
最新文档