高中物理电知识总结7电磁感应现象楞次定律
法拉第电磁感应定律与楞次定律
法拉第电磁感应定律与楞次定律法拉第电磁感应定律和楞次定律是电磁学中两个关键的物理定律,它们描述了电磁感应现象和电磁场的相互作用。
这两个定律的提出和发展对于电磁学的发展产生了深远的影响。
本文将介绍法拉第电磁感应定律和楞次定律的原理、应用以及它们之间的关系。
一、法拉第电磁感应定律法拉第电磁感应定律是由英国物理学家迈克尔·法拉第于1831年提出的。
该定律描述了导体中电磁感应现象的产生。
根据法拉第电磁感应定律,当导体中的磁通量发生变化时,导体中就会产生电动势(即电压),从而产生电流。
具体来说,法拉第电磁感应定律可以用如下公式表示:ε = -dΦ/dt其中,ε表示感应电动势,Φ表示磁通量,t表示时间,d/dt表示对时间的导数。
根据该公式,当磁通量的变化率增大时,感应电动势的大小也会增大。
而当磁通量的变化率减小或保持不变时,感应电动势的大小也会相应减小或保持不变。
法拉第电磁感应定律的应用十分广泛。
例如,感应电动势的产生是电感器、变压器等电子设备工作的基础原理之一。
另外,发电机的工作原理也是基于法拉第电磁感应定律。
当发电机中的导线在磁场中旋转时,磁通量的变化就会引起导线中的感应电动势,进而产生电流,从而实现转化机械能为电能的过程。
二、楞次定律楞次定律是由法国物理学家亨利·楞次于1834年提出的。
该定律描述了电磁感应现象中的一个重要规律,即感应电流的产生会产生一个与产生它的磁场方向相反的磁场。
楞次定律可以简述为:感应电流产生的磁场方向总是尽可能地抵消引起它的磁场的变化。
具体来说,当磁场发生变化时,感应电流将会在闭合回路中产生。
根据楞次定律,这个感应电流会产生一个磁场,其方向与原来的磁场方向相反,从而抵消了原来的磁场变化。
这一定律使得磁场变化时系统能够自我调节,保持了磁场的相对稳定性。
楞次定律的应用也非常广泛。
一个重要的应用是电感器。
当电流通过电感器时,电感器中会产生一个磁场,该磁场会抵消电流产生的磁场变化,从而使电感器的电流保持稳定。
2025年高考物理总复习课件专题十电磁感应第1讲电磁感应现象、楞次定律
高考总复习·物理
核心素养
重要考点
物理观念
(1)理解电磁感应现象、磁通量、自感、涡流 等概念;(2)掌握右手定则、楞次定律、法拉 第电磁感应定律等重要规律
1.电磁感应现象、 磁通量
科学思维
科学探究 科学态度
与责任
综合应用楞次定律、法拉第电磁感应定律分 析问题的能力
通过实验探究影响感应电流方向的因素,习·物理
2.实验步骤 (1)按图连接电路,闭合开关,记录下G中流入电流方 向与灵敏电流计G中指针偏转方向的关系. (2)记下线圈绕向,将线圈和灵敏电流计构成通路. (3)把条形磁铁N极(或S极)向下插入线圈中,并从线圈 中拔出,每次记下电流计中指针偏转方向,然后根据步骤(1)的结论,判 定出感应电流方向,从而可确定感应电流的磁场方向. (4)记录实验现象.
了解电磁感应知识在生活、生产和科学技术 中的应用
2.法拉第电磁感 应定律
3.楞次定律的应 用
4.自感、涡流现 象的分析理解
高考总复习·物理
一、磁通量 1.概念:磁感应强度B与面积S的__乘__积____. 2.公式:Φ=____B_S___.适用条件:匀强磁场;S是__垂__直____磁场的有效面 积. 单位:韦伯(Wb),1 Wb=__1_T_·_m__2_. 3.意义:穿过某一面积的磁感线的___条__数___. 4.标矢性:磁通量是___标__量___,但有正、负.
高考总复习·物理
例1 (2023年广东二模)如图甲所示,驱动线圈通过开关S与电源连接,
发射线圈放在绝缘且内壁光滑的发射导管内.闭合开关S后,在0~t0内驱动 线圈的电流iab随时间t的变化如图乙所示.在这段时间内,下列说法正确的 是( B )
高中物理的电磁感应现象与楞次定律
高中物理的电磁感应现象与楞次定律小编在这里整理了高中物理的电磁感应现象与楞次定律,希望能帮助到大家。
电磁感应现象1.定义当穿过闭合导体回路的磁通量发生变化时,闭合导体回路中有感应电流产生,这种利用磁场产生电流的现象叫做电磁感应。
2.条件(1)条件:穿过闭合电路的磁通量发生变化。
(2)例如:闭合电路的一部分导体在磁场内做切割磁感线的运动。
3.实质产生感应电动势,如果电路闭合,则有感应电流.如果电路不闭合,则只有感应电动势而无感应电流。
3感应电流方向的判定1.楞次定律(1)内容:感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
(2)适用范围:一切电磁感应现象。
2.右手定则(1)内容:如图,伸开右手,使拇指与其余四个手指垂直并且都与手掌在同一平面内,让磁感线从掌心进入,并使拇指指向导线运动的方向,这时四指所指的方向就是感应电流的方向。
(2)适用情况:导线切割磁感线产生感应电流。
用右手定则时应注意①主要用于闭合回路的一部分导体做切割磁感线运动时,产生的感应电动势与感应电流的方向判定。
②右手定则仅在导体切割磁感线时使用,应用时要注意磁场方向、运动方向、感应电流方向三者互相垂直。
③当导体的运动方向与磁场方向不垂直时,拇指应指向切割磁感线的分速度方向。
④若形成闭合回路,四指指向感应电流方向;若未形成闭合回路,四指指向高电势。
⑤“因电而动”用左手定则;“因动而电”用右手定则。
⑥应用时要特别注意:四指指向是电源内部电流的方向(负→正).因而也是电势升高的方向;即:四指指向正极。
楞次定律的理解(1)楞次定律(判断感应电流方向):感应电流具有这样的方向,感应电流的磁场总是阻碍引起感应电流的磁通量的变化。
(感应电流的) 磁场 (总是) 阻碍 (引起感应电流的磁通量的) 变化原因产生结果;结果阻碍原因。
(2)对“阻碍”的理解注意“阻碍”不是阻止,这里是阻而未止。
阻碍磁通量变化指:①磁通量增加时,阻碍增加(感应电流的磁场和原磁场方向相反,起抵消作用);②磁通量减少时,阻碍减少(感应电流的磁场和原磁场方向一致,起补偿作用),简称“增反减同”。
电磁感应中的楞次定律知识点总结
电磁感应中的楞次定律知识点总结电磁感应是电磁学的重要分支之一,研究电场和磁场相互作用的现象。
而楞次定律则是电磁感应中最基本的定律之一,用于描述通过变化的磁场所产生的电动势和感应电流。
本文将对楞次定律的相关知识点进行总结,旨在帮助读者深入理解电磁感应领域的重要定律。
一、楞次定律的基本概念楞次定律由法国科学家楞次(Lenz)于1834年提出,它规定:任何变化的磁场都会诱发一个感应电流,而这个感应电流的方向会使其所产生的磁场抵消原磁场的变化。
楞次定律的基本原理可以用以下几点概括:1. 变化的磁场会诱发感应电流。
2. 感应电流的方向使其所产生的磁场抵消原磁场的变化。
3. 楞次定律遵循能量守恒和动量守恒定律。
二、楞次定律的数学表达楞次定律可以用数学公式表达为:感应电动势E的方向与磁场B的变化方向及感应电流I的方向之间满足右手法则。
即:将右手伸出,使得食指指向磁场方向,中指指向感应电流方向,那么拇指的方向指向感应电动势的方向。
三、楞次定律的应用楞次定律是电磁感应中一个重要而实用的定律,在众多领域都有着广泛的应用。
1. 电磁感应现象当导体中的电磁感应发生变化时,将产生感应电流。
这个现象可以应用在发电机、变压器等电力设备中,通过电磁感应产生电能或实现电能的传递与转化。
2. 感应电动势的计算根据楞次定律和法拉第电磁感应定律,可以计算感应电动势的大小。
当磁通Φ发生变化时,感应电动势E可以通过以下公式计算:E = -dΦ/dt,其中负号表示感应电动势的方向与Φ的变化方向相反。
3. 磁悬浮技术磁悬浮技术是利用电磁感应原理实现的一种悬浮技术,通过利用磁场变化产生的感应电流和磁场相互作用,实现物体的悬浮运动。
4. 感应加热感应加热是利用高频交流电的电磁感应作用产生的热效应来加热物体的技术。
根据楞次定律,感应加热时的感应电流会产生磁场,进而产生热量。
除了上述应用外,楞次定律还有许多其他实际应用,如电磁传感器、电磁炮等。
四、楞次定律的实验验证为了验证楞次定律,科学家们设计了一系列的实验。
高二物理楞次定律知识点
高二物理楞次定律知识点楞次定律是电磁感应中的基本定律之一,描述了磁感应强度与通过闭合回路的磁通量的关系。
它由法国物理学家楞次在1834年提出,是电磁学的重要基石之一。
本文将介绍高二物理楞次定律的相关知识点。
1. 楞次定律的表述楞次定律可以用以下公式表述:ε = -ΔΦ/Δt其中,ε代表感应电动势,ΔΦ代表磁通量变化,Δt代表时间变化。
2. 磁通量的概念磁通量Φ是描述磁场穿过一个平面的数量的物理量。
它的大小与磁场的强度和面积有关,可以用以下公式计算:Φ = B·A·cosθ其中,B代表磁场强度,A代表平面面积,θ代表磁场线与平面法线之间的夹角。
3. 楞次定律的基本原理楞次定律的基本原理是磁场变化引起感应电动势的产生。
当磁通量发生变化时,闭合回路中会产生感应电动势,进而产生感应电流。
4. 楞次定律的应用楞次定律在实际应用中具有广泛的意义,包括以下几个方面:1) 可以解释电磁感应现象,如电磁感应发电机的工作原理。
2) 可以解释变压器的工作原理,即利用楞次定律实现电压的升降。
3) 可以解释电磁铁的工作原理,即通过改变电磁铁中的电流产生磁场,实现吸附和释放物体。
5. 楞次定律的扩展楞次定律还可以扩展到电场变化引起的感应电动势。
当电场发生变化时,也会产生感应电动势。
这一扩展称为法拉第电磁感应定律。
6. 楞次定律的实验验证楞次定律可以通过一系列实验来验证,如改变磁场强度、改变磁场方向以及改变回路形状等。
实验结果与楞次定律的预测一致,进一步验证了该定律的准确性。
总结:高二物理学习中楞次定律是一个重要的知识点,它可以用来解释电磁感应现象,如电磁感应发电机、变压器和电磁铁的工作原理。
楞次定律的实验验证也进一步证明了其准确性。
通过学习楞次定律,我们可以更好地理解电磁学的基本原理和应用,为进一步的物理学习奠定基础。
高中物理【电磁感应现象 楞次定律】知识点、规律总结
三、感应电流方向的判断 1.右手定则:伸开右手,使拇指与其余四个手指__垂__直__,并且都与 手掌在同一个平面内;让磁感线从掌心垂直进入,并使拇指指向 _导__线__运__动___的方向,这时四指所指的方向就是_感__应___电__流__的方向.如图 所示. 2.楞次定律:感应电流具有这样的方向,即感应电流的磁场总要 _阻__碍___引起感应电流的_磁__通__量___的变化.
感应电流的磁场方向 __向__下__ __向__上__
3.实验结论 表述一:当穿过线圈的磁通量增加时,感应电流的磁场与原磁场的方向_相__反___;当 穿过线圈的磁通量减少时,感应电流的磁场与原磁场的方向__相__同__. 表述二:当磁铁靠近线圈时,两者__相__斥__;当磁铁远离线圈时,两者_相__吸___.
四、电磁阻尼与电磁驱动
电磁阻尼
电磁驱动
由于导体在磁场中运动而产生感 由于磁场运动引起磁通量的变化而产
不 成因
应电流,从而使导体受到安培力 生感应电流,从而使导体受到安培力
同
安培力的方向与导体运动方向相 导体受安培力的方向与导体运动方向
点 效果
反,阻碍导体运动
相同,推动导体运动
电磁阻尼
电磁驱动
能量转化
第 1 讲 电磁感应现象 楞次定律
一、磁通量 1.概念:磁感应强度 B 与面积 S 的_乘__积___. 2.计算 (1)公式:Φ=__B_S___. (2)适用条件:①匀强磁场;②S 是_垂__直___磁场的有效面积. (3)单位:韦伯(Wb),1 Wb=___1__T_·_m_2_____. 3.意义:穿过某一面积的磁感线的__条__数__. 4.标矢性:磁通量是_标__量___,但有正、负.
由于电磁感应,磁场能转化为电能,通 导体克服安培力做功,其他形式的
高三第一轮复习-电磁感应现象 楞次定律
电磁感应现象楞次定律1.知道电磁感应现象产生的条件2.理解磁通量及磁通量变化的含义,并能计算.3.掌握楞次定律和右手定则的应用,并能判断感应电流的方向及相关导体的运动方向.考点一电磁感应现象的判断1.磁通量(1)定义:在匀强磁场中,磁感应强度B与垂直于磁场方向的面积的乘积.(2)公式:Φ=BS.适用条件:①匀强磁场.②S为垂直磁场的有效面积.(3)磁通量是标量(填“标量”或“矢量”).(4)磁通量的意义:①磁通量可以理解为穿过某一面积的磁感线的条数.②同一线圈平面,当它跟磁场方向垂直时,磁通量最大;当它跟磁场方向平行时,磁通量为零;当正向穿过线圈平面的磁感线条数和反向穿过的一样多时,磁通量为零.2.电磁感应现象(1)电磁感应现象:当穿过闭合导体回路的磁通量发生变化时,闭合导体回路中有感应电流产生,这种利用磁场产生电流的现象叫做电磁感应.(2)产生感应电流的条件:穿过闭合回路的磁通量发生变化.产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线圈中就有感应电动势产生.(3)电磁感应现象中的能量转化:发生电磁感应现象时,机械能或其他形式的能转化为电能,该过程遵循能量守恒定律.[例题1](2024•房山区一模)某同学用如图所示装置探究影响感应电流方向的因素。
将磁体从线圈中向上匀速抽出时,观察到灵敏电流计指针向右偏转。
关于该实验,下列说法正确的是()A.图中线圈中感应电流的磁场方向向下B.若将磁体向上加速抽出,灵敏电流计指针将向左偏转C.磁体放置在线圈中静止不动,灵敏电流计指针仍向右偏转D.若将磁体的N、S极对调,并将其向下插入线圈,灵敏电流计指针仍向右偏转[例题2](多选)(2024•丰台区二模)“探究影响感应电流方向的因素”的实验示意图如图所示:灵敏电流计和线圈组成闭合回路,通过“插入”、“拔出”条形磁铁,使线圈中产生感应电流。
记录实验过程中的相关信息,分析得出楞次定律。
下列说法正确的是()A.实验时必须保持磁铁运动的速率不变B.该实验需要知道线圈的绕向C.该实验需要记录磁铁的运动方向D.该实验需要判断电流计指针偏转方向与通入电流方向的关系[例题3](2023秋•通州区期末)如图甲所示,某同学在研究电磁感应现象时,将一线圈两端与电流传感器相连,强磁铁从长玻璃管上端由静止下落,电流传感器记录了强磁铁穿过线圈过程中电流随时间变化的图像,t2时刻电流为0,如图乙所示。
高中物理电磁感应知识点汇总
电磁感应磁生电第一部分电磁感应现象楞次定律一、磁通量1.定义:磁感应强度与面积的乘积,叫做穿过这个面的磁通量.2.定义式:Φ=BS.说明:该式只适用于匀强磁场的情况,且式中的S是跟磁场方向垂直的面积;若不垂直,则需取平面在垂直于磁场方向上的投影面积,即Φ=BS⊥=BSsinθ,θ是S与磁场方向B的夹角.3.磁通量Φ是标量,但有正负.Φ的正负意义是:若从一面穿入为正,则从另一面穿入为负.4.单位:韦伯,符号:Wb.5.磁通量的意义:指穿过某个面的磁感线的条数.6.磁通量的变化:ΔΦ=Φ2-Φ1,即末、初磁通量之差.1磁感应强度B不变,有效面积S变化时,则ΔΦ=Φ2-Φ1=B·ΔS.2磁感应强度B变化,磁感线穿过的有效面积S不变时,则ΔΦ=Φ2-Φ1=ΔB·S.3磁感应强度B和有效面积S同时变化时,则ΔΦ=Φ2-Φ1=B2S2-B1S1.二、电磁感应现象1.电磁感应现象:当穿过闭合电路的磁通量发生变化时,电路中有感应电流产生,这种利用磁场产生电流的现象叫做电磁感应.产生的电流叫做感应电流;2.产生感应电流的条件:表述1:闭合电路的一部分导体在磁场内做切割磁感线的运动.表述2:穿过闭合电路的磁通量发生变化,即ΔΦ≠0,闭合电路中就有感应电流产生.3.产生感应电动势的条件:穿过电路的磁通量发生变化;理解:电磁感应的实质是产生感应电动势.如果回路闭合,则有感应电流;回路不闭合,则只有感应电动势而无感应电流.说明:产生感应电动势的那部分导体相当于电源.三、感应电流方向的判断1.右手定则:伸开右手,让大拇指跟其余四指垂直,并且都跟手掌在同一平面内,让磁感线从手心垂直进入,大拇指指向导体运动方向,其余四指所指的方向就是感应电流的方向.2.楞次定律:感应电流具有这样的方向,就是感应电流产生的磁场,总是要阻碍引起感应电流的磁通量的变化.3.判断感应电流方向的思路:用楞次定律判定感应电流方向的基本思路可归结为:“一原、二感、三电流”,如下:根据原磁场Φ原方向及ΔΦ情况确定感应磁场B 感方向判断感应电流I 感方向.重点题型汇总一、磁通量及其变化的计算:由公式Φ=BS 计算磁通量及磁通量的变化应把握好以下几点: 1、此公式只适用于匀强磁场; 2、式中的S 是与磁场垂直的有效面积3、磁通量Φ为双向标量,其正负表示与规定的正方向是相同还是相反4、磁通量的变化量ΔΦ是指穿过磁场中某一面的末态磁通量Φ2与初态磁通量Φ1的差值,即ΔΦ=|Φ2-Φ1|.例面积为S 的矩形线框abcd,处在磁感应强度为B 的匀强磁场中磁场区域足够大,磁场方向与线框平面成θ角,如图9-1-1所示,当线框以ab 为轴顺时针转900过程中,穿过abcd 的磁通量变化量ΔΦ=.解析设开始穿过线圈的磁通量为正,则在线框转过900的过程中,穿过线圈的磁通量是由正向BSsin θ减小到零,再由零增大到负向BScos θ,所以,磁通量的变化量为:ΔΦ=Φ2-Φ1=-BScos θ-BSsin θ=-BScos θ+sin θ答案-BScos θ+sin θ点拨磁通量正负的规定:任何一个面都有正、反两面,若规定磁感线从正面穿入磁通量为正,则磁感线从反面穿入时磁通量为负.穿过某一面积的磁通量一般指合磁通量. 二、感应电流方向的判定:方法一:右手定则部分导体切割磁感线;方法二:楞次定律例某实验小组用如图9-1-3所示的实验装置来验证楞次定律.当条形磁铁自上而下穿过固定的线圈时,通过电流计的感应电流方向是D →→bB.先a →→b,后b →→a C.先b →→aD.先b →→a,后a →→b第二部分法拉第电磁感应定律一、感应电动势:在电磁感应现象中产生的电动势叫感应电动势,产生感应电动势的那部分导体相当于电源,其电阻相当于电源内电阻.电动势是标量,感应电动势的方向就是电源内部电流的方向,由电源的负极指向电源的正极; 二、感应电动势的大小1.法拉第电磁感应定律:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.公式:nt∆ΦE =∆图9-1-3图9-1-1公式理解:①上式适用于回路中磁通量发生变化的情形,回路不一定闭合.②感应电动势E 的大小与磁通量的变化率成正比,而不是与磁通量的变化量成正比,更不是与磁通量成正比.要注意t∆Φ∆与ΔФ和Φ三个量的物理意义各不相同,且无大小上的必然关系.③当∆Φ由磁场变化引起时,t ∆∆Φ常用t B S ∆∆来计算;当∆Φ由回路面积变化引起时,t∆∆Φ常用t S B ∆∆来计算. ④由tnE ∆∆Φ=算出的是时间t ∆内的平均感应电动势,一般并不等于初态与末态电动势的算术平均值. ⑤n 表示线圈的匝数,可以看成n 个单匝线圈串联而成; 2.导体切割磁感线产生的感应电动势公式:θsin Blv E =,对公式的理解如下:①公式只适用于一部分导体在匀强磁场中做切割磁感线运动时产生的感应电动势的计算,其中L 是导体切割磁感线的有效长度,θ是矢量B 和v 方向间的夹角,且L 与磁感线保持垂直实际应用中一般只涉及此种情况.②若θ=900,即B ⊥v 时,公式可简化为E=BL v ,此时,感应电动势最大;若θ=00,即B ∥V 时,导体在磁场中运动不切割磁感线,E=0.③若导体是曲折的,则L 应是导体的有效切割长度,即是导体两端点在B 、v 所决定平面的垂线上的投影长度.④公式E=BL v 中,若v 为一段时间内的平均速度,则E 亦为这段时间内感应电动势的平均值;若v 为瞬时速度,则E 亦为该时刻感应电动势的瞬时值.⑤直导线绕其一端在垂直匀强磁场的平面内转动,产生的感应电动势运用公式E=BL v 计算时,式中v 是导线上各点切割速度的平均值,20L v ω+=,所以ω221Bl v Bl E==-3.反电动势:反电动势对电路中的电流起削弱作用.三、几个总结:重点难点解析一、公式nt∆ΦE =∆和sin Lv θE =B 的比较=n t∆∆Φ求的是回路中Δt 时间内的平均电动势.=BL v sin θ既能求导体做切割磁感线运动的平均电动势,也能求瞬时电动势.v 为平均速度,E 为平均电动势;v 为瞬时速度,E 为瞬时电动势.其中L 为有效长度.1E=BL v 的适用条件:导体棒平动垂直切割磁感线,当速度v 与磁感线不垂直时,要求出垂直于磁感线的速度分量.2122L ωE =B 的适用条件:导体棒绕一个端点垂直于磁感线匀速转动切割磁感线.3E=nBS ωsin ωt 的适用条件:线框绕垂直于匀强磁场方向的一条轴从中性面开始转动,与轴的位置无关.若从与中性面垂直的位置开始计时,则公式变为E=nBS ωcos ωt 3.公式nt∆ΦE =∆和E=BL v sin θ是统一的,前者当Δt →0时,E 为瞬时值,后者v 若代入平均速度v ,则求出的是平均值.一般说来,前者求平均感应电动势更方便,后者求瞬时电动势更方 便.二、Ф、ΔФ、ΔФ/Δt 三者的比较例一个200匝、面积为20cm 2的线圈,放在磁场中,磁场的方向与线圈平面成300角,若磁感应强度在内由增加到,则始末通过线圈的磁通量分别为Wb 和Wb;在此过程中穿过线圈的磁通量的变化量为Wb;磁通量的平均变化率为Wb/s;线圈中的感应电动势的大小为V.解析始、末的磁通量分别为:Φ1=B 1Ssin θ=×20×10-4×1/2Wb=10-4Wb Φ2=B 2Ssin θ=×20X10-4×1/2Wb=5×10-4Wb 磁通量变化量ΔΦ=Φ2-Φ1=4×10-4Wb磁通量变化率05.01044-=∆∆Φx t Wb/s=8×10-3Wb/s感应电动势大小nt∆ΦE =∆=200×8×10-3V=点拨Φ、ΔΦ、ΔΦ/Δt 均与线圈匝数无关,彼此之间也无直接联系;感应电动势Ε的大小取决于ΔΦ/Δt 和线圈匝数n,与Φ和ΔΦ无必然联系. 三、直导体在匀强磁场中转动产生的感应电动势直导体绕其一点在垂直匀强磁场的平面内以角速度ω转动,切割磁感线,产生的感应电动势的大小为:(1)以中点为轴时Ε=02以端点为轴时122L ωE =B 平均速度取中点位置线速度v =ωL/23以任意点为轴时122()122L L ωE =B -与两段的代数和不同第三部分互感和自感涡流一、互感与互感电动势1.互感现象:一个线圈中的电流变化时,所引起的磁场的变化在另一个线圈中产生感应电动势的现象叫做互感现象.2.互感电动势:在互感现象中产生的电动势叫做互感电动势. 二、自感现象1.自感现象:由于导体本身的电流发生变化而产生的电磁感应现象,叫做自感现象.2.自感电动势1.定义:在自感现象中产生的电动势,叫做自感电动势. 2.作用:总是阻碍导体中原电流的变化.3.自感电动势的方向:自感电动势总是阻碍导体中原电流的变化.即当电流增大时,自感电动势阻碍电流增大;当电流减小时,自感电动势阻碍电流减小.4.自感电动势的大小:Lt∆I E =∆,自感电动势的大小与电流的变化率成正比,其中L 为自感系数.3.自感系数:自感系数也叫自感或电感.自感系数L 由线圈本身的特性决定.L 的大小与线圈的长度、线圈的横截面积等因素有关,线圈越长,单位长度的匝数越多,横截面积越大,自感系数L 越大.另外,若线圈中有铁芯,自感系数L 会大很多.4.自感现象与互感现象的区别和联系区别:1互感现象发生在靠近的两个线圈间,而自感现象发生在一个线圈导体内部; 2通过互感可以把能量在线圈间传递,而自感现象中,能量只能在一个线圈中储存或释放. 联系:二者都是电磁感应现象.通电自感和断电自感的比较例如图9-3-6所示,A 、B 是两个完全相同的灯泡,L 是自感系数较大的线圈,其 直流电阻忽略不计.当电键K 闭合时,下列说法正确的是 比B 先亮,然后A 熄灭比A 先亮,然后B 逐渐变暗,A 逐渐变亮 、B 一齐亮,然后A 熄灭、B 一齐亮.然后A 逐渐变亮.B 的亮度不变 正解电键闭合的瞬间,线圈由于自感产生自感电动势,其作用相当于一个电源,这样对整个回路图9-3-6图9-3-7而言相当于两个电源共同作用在同一个回路中.两个电源各自独立产生电流,实际上等于两个电流的叠加.根据上述原理可在电路中标出两个电源各自独立产生的电流的方向.图9-3-7a、b是两电源独立产生电流的流向图,C图是合并在一起的电流流向图.由图可知在A灯处原电流与感应电流反向,故A灯不能立刻亮起来.在B灯处原电流与感应电流同向,实际电流为两者之和,大于原电流,故B灯比正常发光亮因正常发光时电流就是原电流.随着自感的减弱,感应电流减弱,A灯的实际电流增大,B灯实际电流减少,A灯变亮,B灯变暗,直到自感现象消失,两灯以原电流正常发光,应选B.三、三、涡流1.涡流:当线圈的电流随时间变化时,线圈附近的任何导体中都会产生感应电流,电流在导体内形成闭合回路,很像水的漩涡,把它叫做涡电流,简称涡流.特点:整块金属的电阻很小,涡流往往很大.四.电磁阻尼与电磁驱动1电磁阻尼:当导体在磁场中运动时,感应电流会使导体受到安培力,安培力的方向总是阻碍导体的运动,这种现象称为电磁阻尼.(2)电磁驱动:磁场相对于导体转动,在导体中会产生感应电流,感应电流使导体受到安培力,安培力使导体运动,这种作用称为电磁驱动.注意:电磁阻尼与电磁驱动也是一种特殊的电磁感应现象,原理上都可以用楞次定律解释.五、电磁感应中的能量问题1.电磁感应现象中产生感应电流的过程,实质上是能量的转化过程.电磁感应过程中产生的感应电流在磁场中必定受到安培力的作用,因此,要维持感应电流的存在,必须有“外力”克服安培力做功.此过程中,其他形式的能转化为电能.“外力”克服安培力做了多少功,就有多少其他形式的能转化为电能.当感应电流通过用电器时,电能又转化为其他形式的能量.安培力做功的过程,是电能转化为其他形式能的过程.安培力做了多少功,就有多少电能转化为其他形式的能.2.解决这类问题的一般步骤:1用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向2画出等效电路,求出回路中电阻消耗电功率的表达式3分析导体机械能的变化,用动能定理或能量守恒关系,得到机械功率的改变所满足的方程。
高考物理电磁学的知识总结
高考物理电磁学的知识总结高中物理中的电磁学部分是重点也是难点,在高考中占有较大的比重。
下面我们就来对这部分知识进行一个全面的总结。
一、电场1、库仑定律真空中两个静止的点电荷之间的作用力,与它们电荷量的乘积成正比,与它们距离的二次方成反比,作用力的方向在它们的连线上。
其表达式为:$F = k\frac{q_1q_2}{r^2}$,其中$k$为静电力常量,$k = 90×10^9 N·m^2/C^2$。
2、电场强度用来描述电场强弱和方向的物理量。
定义为放入电场中某点的电荷所受的电场力$F$跟它的电荷量$q$的比值,即$E =\frac{F}{q}$。
其单位是牛/库(N/C)。
3、电场线为了形象地描述电场而引入的假想曲线。
电场线从正电荷或无穷远出发,终止于负电荷或无穷远。
电场线的疏密表示电场的强弱,电场线上某点的切线方向表示该点的电场方向。
4、电势和电势能电势是描述电场能的性质的物理量,定义为电荷在电场中某点的电势能与电荷量的比值,即$\varphi =\frac{E_p}{q}$。
电势能是电荷在电场中具有的势能,与电荷的电荷量和所在位置的电势有关,即$E_p = q\varphi$。
5、匀强电场电场强度大小和方向都相同的电场。
在匀强电场中,电场强度与电势差的关系为$E =\frac{U}{d}$,其中$d$为沿电场方向两点间的距离。
二、电容1、电容器两个彼此绝缘又相距很近的导体就组成一个电容器。
电容器的作用是储存电荷。
2、电容电容器所带电荷量$Q$与电容器两极板间的电势差$U$的比值,叫做电容器的电容,即$C =\frac{Q}{U}$。
电容的单位是法拉(F)。
3、平行板电容器的电容平行板电容器的电容与极板的正对面积$S$成正比,与极板间的距离$d$成反比,与极板间介质的介电常数$\varepsilon$成正比,即$C=\frac{\varepsilon S}{4\pi kd}$。
电磁感应中的楞次定律
电磁感应中的楞次定律电磁感应是电与磁相互作用的一种现象,而楞次定律则是描述了电磁感应现象的重要规律。
楞次定律是法国物理学家楞次于1831年提出的,该定律表明当导线中的磁通量发生变化时,会在导线中产生感应电动势,进而产生感应电流。
本文将详细介绍楞次定律的原理、公式以及应用。
一、楞次定律的原理楞次定律是电磁感应现象的基本规律,它可以通过磁力线剪切导线而产生感应电动势。
当导体在磁场中运动或与磁场相对运动时,导体内的自由电荷将受到磁力的作用。
根据法拉第电磁感应定律,导体中的自由电子将受到电磁感应力,从而导致导体内部产生电场。
当导体形成闭合回路,电场将驱动电子沿导体移动,从而产生感应电流。
二、楞次定律的数学表达楞次定律可以用一个简洁的数学表达式来表示,即:ε = -dφ/dt其中,ε表示感应电动势,dφ/dt表示磁通量的变化率。
该公式表明,感应电动势的大小与磁通量的变化率成正比,且方向满足右手法则。
当磁通量增加时,感应电动势的方向与磁场的变化方向相反;当磁通量减小时,感应电动势与磁场的变化方向一致。
三、楞次定律的应用楞次定律在实际应用中具有广泛的意义和价值。
以下是几个典型的应用案例:1. 发电机原理楞次定律是理解发电机原理的基础,发电机利用电磁感应效应将机械能转化为电能。
当发电机的磁场通过线圈时,磁通量随着时间的变化而变化,从而在线圈中产生感应电动势。
通过导线的闭合回路,感应电动势将驱动电子流动,实现了将机械能转化为电能。
2. 变压器原理变压器是利用电磁感应原理来实现电压的变换,楞次定律为变压器的正常运行提供了重要理论依据。
当变压器的初级线圈中的电流发生变化时,导致磁场的变化,从而在副级线圈中感应出电动势。
根据楞次定律,副级线圈中的感应电动势与磁场的变化成正比,因此可以实现电流的变换。
3. 感应加热楞次定律还被应用于感应加热技术中。
感应加热利用变化磁场在导体内引起感应电流,而感应电流在导体内产生焦耳热,从而实现对物体的加热。
高二楞次定律知识点总结
高二楞次定律知识点总结楞次定律(Faraday's Law)是电磁感应的基本定律之一,它描述了磁场变化时导线中感应电动势的产生。
高二学生在学习物理的过程中,需要掌握楞次定律的相关知识点。
本文将对楞次定律的重要概念、公式和应用进行总结。
1. 楞次定律的基本概念楞次定律是由英国物理学家迈克尔·法拉第在1831年提出的。
该定律表明,当一导体中的磁通量发生变化时,产生在导体中的感应电动势的大小与磁通量的变化速率成正比。
楞次定律的表达式为:ε = -dΦ/dt其中,ε表示感应电动势,dΦ表示磁通量的变化量,dt表示时间的变化量。
负号表示感应电动势的方向与磁通量变化的方向相反。
2. 楞次定律的公式楞次定律可以通过两种形式的公式来表达,一种是在闭合回路中的情况,另一种是在开放回路中的情况。
(1)在闭合回路中,根据法拉第电磁感应定律,感应电动势等于导线中的电流乘以闭合回路的环路积分:ε = -dΦ/dt = ∮ B·dl其中,ε表示感应电动势,dΦ表示磁通量的变化量,B表示磁感应强度,dl表示回路中的微小长度元素。
(2)在开放回路中,根据法拉第电磁感应定律,感应电动势等于磁感应强度与导线长度之积的变化率:ε = -dΦ/dt = B·l其中,ε表示感应电动势,dΦ表示磁通量的变化量,B表示磁感应强度,l表示导线长度。
3. 楞次定律的应用楞次定律在电磁感应以及电动机、发电机等方面有着广泛的应用。
(1)电磁感应:根据楞次定律,当一个磁场相对于一个导体发生变化时,会在导体中产生感应电动势,从而产生感应电流。
这是电磁感应的基本原理。
(2)电动机:电动机通过将动磁场与电流的交互作用转化为机械能。
当通电的导体在磁场中运动时,根据楞次定律,感应电动势会使导体受到力的作用,产生电流,从而驱动电机旋转。
(3)发电机:发电机利用楞次定律的原理将机械能转化为电能。
通过机械装置使导体在磁场中产生相对运动,产生感应电动势,从而产生电流。
高中物理楞次定律知识点总结
高中物理楞次定律知识点总结楞次定律(Lenz's law)是一条电磁学的定律,可以用来判断由电磁感应而产生的电动势的方向。
下面是小编给大家带来的高中物理楞次定律知识点,希望对你有帮助。
高中物理楞次定律知识点总结1、1834年德国物理学家楞次通过实验总结出:感应电流的方向总是要使感应电流的磁场阻碍引起感应电流的磁通量的变化。
即磁通量变化感应电流感应电流磁场磁通量变化。
2、当闭合电路中的磁通量发生变化引起感应电流时,用楞次定律判断感应电流的方向。
楞次定律的内容:感应电流的磁场总是阻碍引起感应电流为磁通量变化。
楞次定律是判断感应电动势方向的定律,但它是通过感应电流方向来表述的。
按照这个定律,感应电流只能采取这样一个方向,在这个方向下的感应电流所产生的磁场一定是阻碍引起这个感应电流的那个变化的磁通量的变化。
我们把“引起感应电流的那个变化的磁通量”叫做“原磁道”。
因此楞次定律可以简单表达为:感应电流的磁场总是阻碍原磁通的变化。
所谓阻碍原磁通的变化是指:当原磁通增加时,感应电流的磁场(或磁通)与原磁通方向相反,阻碍它的增加;当原磁通减少时,感应电流的磁场与原磁通方向相同,阻碍它的减少。
从这里可以看出,正确理解感应电流的磁场和原磁通的关系是理解楞次定律的关键。
要注意理解“阻碍”和“变化”这四个字,不能把“阻碍”理解为“阻止”,原磁通如果增加,感应电流的磁场只能阻碍它的增加,而不能阻止它的增加,而原磁通还是要增加的。
更不能感应电流的“磁场”阻碍“原磁通”,尤其不能把阻碍理解为感应电流的磁场和原磁道方向相反。
正确的理解应该是:通过感应电流的磁场方向和原磁通的方向的相同或相反,来达到“阻碍”原磁通的“变化”即减或增。
楞次定律所反映提这样一个物理过程:原磁通变化时( 原变),产生感应电流(I感),这是属于电磁感应的条件问题;感应电流一经产生就在其周围空间激发磁场( 感),这就是电流的磁效应问题;而且I感的方向就决定了感的方向(用安培右手螺旋定则判定); 感阻碍原的变化——这正是楞次定律所解决的问题。
第一课时 电磁感应现象 楞次定律
电磁感应现象楞次定律【知识梳理】1.产生感应电流的条件:穿过闭合电路的磁通量发生变化。
2.电磁感应现象的实质是产生感应电动势,如果电路闭合,则有感应电流,电路不闭合,则只有感应电动势而无感应电流。
产生感应电动势的哪部分导体相当于一个电源。
3..楞次定律感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
4.楞次定律解决的是感应电流的方向问题。
它关系到两个磁场:感应电流的磁场(新产生的磁场)和引起感应电流的磁场(原来就有的磁场)。
前者和后者的关系不是“同向”或“反向”的简单关系,而是前者“阻碍”后者“变化”的关系。
5.在应用楞次定律时一定要注意:“阻碍”不等于“反向”;“阻碍”不是“阻止”。
⑴从“阻碍磁通量变化”的角度来看,无论什么原因,只要使穿过电路的磁通量发生了变化,就一定有感应电动势产生。
⑵从“阻碍相对运动”的角度来看,楞次定律的这个结论可以用能量守恒来解释:既然有感应电流产生,就有其它能转化为电能。
又由于感应电流是由相对运动引起的,所以只能是机械能转化为电能,因此机械能减少。
磁场力对物体做负功,是阻力,表现出的现象就是“阻碍”相对运动。
⑶从“阻碍自身电流变化”的角度来看,就是自感现象。
【名师点拨】例题1.如图所示,O 1O 2是矩形导线框abcd 的对称轴,其左方有垂直于纸面向外的匀强磁场。
以下哪些情况下abcd 中有感应电流产生?方向如何?A.将abcd 向纸外平移B.将abcd 向右平移C.将abcd 以ab 为轴转动60°D.将abcd 以cd 为轴转动60° “思路分析” A 、C 两种情况下穿过abcd 的磁通量没有发生变化,无感应电流产生。
B 、D 两种情况下原磁通向外,减少,感应电流磁场向外,感应电流方向为abcd 。
“解答”:BD“解题回顾”产生感应电流的条件是穿过闭合回路的磁通量发生变化.磁通量变化可能表现为(1)磁感应强度B 发生变化.(2)在垂直于磁场方向上的投影面积发生变化.(3)两者都发生变化 例题2. 如图所示,在匀强磁场中,放着一个平行导轨与大线圈相连接,要使放在D中的A 线圈(A 、D 两线圈共面)各处受到沿半径指向圆心的力,金属棒MN 的运动情况可能是:( )(A)加速向右 (B)加速向左 (C)减速向右 (D)减速向左“思路分析”:解此题的正常思路是一一加以验证。
高中物理楞次定律知识点总结
高中物理楞次定律知识点总结高中物理中,楞次定律是非常重要的一个定律。
它在理解电磁学方面有着重要作用,在实际应用中也可以提供指导。
本文将对楞次定律的知识点进行总结,以帮助读者更好地理解和应用此定律。
一、楞次定律的基本概念楞次定律又称作法拉第电磁感应定律,是一个基本的电磁学定律。
它表明:当磁通量发生变化时,会在导体中产生感生电动势,这个电动势的方向会使感生电流的磁场阻碍这一磁通量变化。
楞次定律描述了电磁感应现象。
当磁场作用于导体时,会引起磁通量的变化,从而产生感生电动势。
这个电动势的大小取决于磁通量的变化率。
在导体中产生的感生电流会通过磁场产生反作用,在一定程度上阻碍磁通量的变化。
二、楞次定律的数学表达式楞次定律表明,在一个闭合线圈中,感生电动势的大小与变化率成正比,与线圈绕向和变化率之间的夹角成正比,即:ε = -dΦ / dt其中,ε为感生电动势,单位为伏特(V);Φ为磁通量,单位为韦伯(Wb);t为时间,单位为秒(s)。
这个负号表明,感生电动势的方向与磁通量变化方向相反。
三、楞次定律的应用楞次定律是电磁场理论的重要基础,广泛应用于电机、变压器、感应加热器等电磁设备的设计和研发中。
1. 电动机原理电动机的工作原理就是利用电磁感应现象。
当通电后,电流在线圈中流动,产生旋转磁场,从而对转子上的导体产生电磁感应作用,产生电动势,使转子受到电磁力的作用,从而转动。
利用楞次定律可以计算出产生的感生电动势的大小。
2. 变压器原理变压器是利用电磁感应原理来实现电压变换的设备。
当一定电压的交流电流通过线圈,会产生交变磁通,从而在另一个线圈中产生感生电动势,进而产生电流。
楞次定律可以用来计算这个感生电动势的大小。
3. 感应加热原理感应加热是利用电磁感应产生的感生电流来加热物体的原理。
当物体置于交变磁场中时,就会在物体中产生感生电流,导致物体内部的电阻发热,从而实现加热。
四、楞次定律的应用示例下面列举一些应用楞次定律的实例。
电磁感应现象 楞次定律
电磁感应现象楞次定律知识点一磁通量1.概念:在磁感应强度为B的匀强磁场中,与磁场方向的面积S与B的乘积.2.公式:Φ=.3.单位:1 Wb=.4.公式的适用条件(1)匀强磁场.(2)磁感线的方向与平面垂直,即B⊥S.5.磁通量的意义磁通量可以理解为穿过某一面积的磁感线的条数.答案:1.垂直 2.BS 3.1 T·m2知识点二电磁感应现象1.电磁感应现象当穿过闭合电路的磁通量时,电路中有产生的现象.2.产生感应电流的条件(1)条件:穿过闭合电路的磁通量.(2)特例:闭合电路的一部分导体在磁场内做运动.3.产生电磁感应现象的实质电磁感应现象的实质是产生,如果回路闭合,则产生;如果回路不闭合,那么只有,而无.答案:1.发生变化感应电流 2.(1)发生变化(2)切割磁感线 3.感应电动势感应电流感应电动势感应电流知识点三感应电流方向的判断1.楞次定律(1)内容:感应电流的磁场总要引起感应电流的的变化.(2)适用情况:所有的电磁感应现象.2.右手定则(1)内容:伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一平面内,让磁感应线从进入,并使拇指指向的方向,这时四指所指的方向就是感应电流的方向.(2)适用情况:产生感应电流答案:1.(1)阻碍磁通量 2.(1)掌心导体运动(2)导体切割磁感线考点 电磁感应现象的判断1.磁通量发生变化的三种常见情况(1)磁场强弱不变,回路面积改变.(2)回路面积不变,磁场强弱改变.(3)线圈在磁场中转动.2.判断电磁感应现象是否发生的流程(1)确定研究的回路.(2)弄清楚回路内的磁场分布,并确定该回路的磁通量Φ.(3)⎩⎨⎧ Φ不变→无感应电流.Φ变化→⎩⎪⎨⎪⎧ 回路闭合,有感应电流;回路不闭合,无感应电流,但有感应电动势.考向1 磁场变化引起的感应电流 [典例1] 现将电池组、滑动变阻器、带铁芯的线圈A 、线圈B 、电流计及开关按如图所示连接.下列说法中正确的是( )A.开关闭合后,线圈A 插入或拔出都会引起电流计指针偏转B.线圈A 插入线圈B 中后,开关闭合和断开的瞬间,电流计指针均不会偏转C.开关闭合后,滑动变阻器的滑片P 匀速滑动,会使电流计指针静止在中央零刻度D.开关闭合后,只有滑动变阻器的滑片P 加速滑动,电流计指针才能偏转[解析] 线圈A 插入或拔出,都将造成线圈B 处磁场的变化,因此线圈B 处的磁通量变化,产生感应电流,故A 正确;开关闭合和断开均能引起线圈B 中磁通量的变化而产生感应电流,故B 错误;开关闭合后,只要移动滑片P ,线圈B 中磁通变化而产生感应电流,故C 、D 错误.[答案] A考向2 “有效”面积变化引起的感应电流[典例2] (多选)如图所示,矩形线框abcd 由静止开始运动,若要使线框中产生感应电流,则线框的运动情况应该是( )A.向右平动(ad边还没有进入磁场)B.向上平动(ab边还没有离开磁场)C.以bc边为轴转动(ad边还没有转入磁场)D.以ab边为轴转动(转角不超过90°)[解题指导] 解答本题时应把握以下两点:(1)产生感应电流的条件是穿过闭合回路的磁通量发生变化.(2)判断线框做各种运动时穿过线框的磁通量是否发生变化.[解析] 选项A和D所描述的情况中,线框在磁场中的有效面积S均发生变化(A情况下S增大,D情况下S减小),穿过线框的磁通量均改变,由产生感应电流的条件知线框中会产生感应电流.而选项B、C所描述的情况中,线框中的磁通量均不改变,不会产生感应电流.[答案] AD考点楞次定律的理解及应用1.楞次定律中“阻碍”的含义2.应用楞次定律判断感应电流方向的步骤考向1 楞次定律的基本应用[典例3] 如图所示,通有恒定电流的导线MN与闭合金属框共面,第一次将金属框由Ⅰ平移到Ⅱ,第二次将金属框绕cd边翻转到Ⅱ,设先后两次通过金属框的磁通量变化量大小分别为ΔΦ1和ΔΦ2,则( )A.ΔΦ1>ΔΦ2,两次运动中线框中均有沿adcba方向电流出现B.ΔΦ1=ΔΦ2,两次运动中线框中均有沿abcda方向电流出现C.ΔΦ1<ΔΦ2,两次运动中线框中均有沿adcba方向电流出现D.ΔΦ1<ΔΦ2,两次运动中线框中均有沿abcda方向电流出现[解析] 设金属框在位置Ⅰ的磁通量为ΦⅠ,金属框在位置Ⅱ的磁通量为ΦⅡ,由题可知:ΔΦ1=|ΦⅡ-ΦⅠ|,ΔΦ2=|-ΦⅡ-ΦⅠ|,所以金属框的磁通量变化量大小ΔΦ1<ΔΦ2,由安培定则知两次磁通量均向里减小,所以由楞次定律知两次运动中线框中均有沿adcba方向的电流,C对.[答案] C考向2 楞次定律的拓展应用——“增反减同”[典例4] 如图所示,线圈两端与电阻相连构成闭合回路,在线圈上方有一竖直放置的条形磁铁,磁铁的S极朝下.在将磁铁的S极插入线圈的过程中( )A.通过电阻的感应电流的方向由a到b,线圈与磁铁相互排斥B.通过电阻的感应电流的方向由b到a,线圈与磁铁相互排斥C.通过电阻的感应电流的方向由a到b,线圈与磁铁相互吸引D.通过电阻的感应电流的方向由b到a,线圈与磁铁相互吸引[解析] 将磁铁的S极插入线圈的过程中,由楞次定律知,通过电阻的感应电流的方向由b到a,线圈与磁铁相互排斥.[答案] B考向3 楞次定律的拓展应用——“来拒去留”[典例5]如图所示,两个相同的轻质铝环套在一根水平光滑绝缘杆上,当一条形磁铁向左运动靠近两环时,两环的运动情况是( )A.同时向左运动,间距增大B.同时向左运动,间距减小C.同时向右运动,间距减小D.同时向右运动,间距增大[解析] 当条形磁铁向左靠近两环时,两环中的磁通量均增加.根据楞次定律,两环的运动都要阻碍磁铁相对环的运动,即阻碍“靠近”,那么两环都向左运动.又由于两环中的感应电流方向相同,两环相互吸引,且磁铁对右环的斥力较大,故右环向左运动的加速度较大,所以两环间距离要减小,故只有选项B正确.[答案] B考向4 楞次定律的拓展应用——“增缩减扩”[典例6](多选)如图所示,光滑固定的金属导轨M、N水平放置,两根导体棒P、Q平行放置在导轨上,形成一个闭合回路,一条形磁铁从高处下落接近回路时( )A.P、Q相互靠拢B.P、Q将相互远离C.磁铁的加速度仍为gD.磁铁的加速度小于g[解析] 根据楞次定律的另一种表述——感应电流的效果,总要反抗产生感应电流的原因.本题中“原因”是回路中磁通量的增加,归根结底是磁铁靠近回路,“效果”便是阻碍磁通量的增加和磁铁的靠近.所以,P 、Q 将互相靠近且磁铁的加速度小于g ,应选A 、D.[答案] AD 考点 “三定则”、“一定律”的综合应用1.三定则、一定律的比较三个定则容易混淆,特别是左、右手易错用,抓住因果关系是关键.(1)因电而生磁(I →B )→安培定则.(2)因动而生电(v 、B →I )→右手定则.(3)因电而受力(I 、B →F 安)→左手定则.3.相互联系(1)应用楞次定律,一般要用到安培定则.(2)研究感应电流受到的安培力,一般先用右手定则确定电流方向,再用左手定则确定安培力的方向,有时也可以直接应用楞次定律的推论(“来拒去留”或“增缩减扩”)确定.[典例7] (多选)如图所示,一端接有定值电阻的平行金属轨道固定在水平面内,通有恒定电流的长直绝缘导线垂直并紧靠轨道固定,导体棒与轨道垂直且接触良好.在向右匀速通过M 、N 两区的过程中,导体棒所受安培力分别用F M 、F N 表示.不计轨道电阻.以下叙述正确的是( )A.F M向右B.F N向左C.F M逐渐增大D.F N逐渐减小[解题指导] (1)利用安培定则判断直线电流产生磁场的方向及强弱分布.(2)利用阻碍相对运动可判断安培力的方向.[解析] 根据安培定则,在轨道内的M区、N区通电长直导线产生的磁场分别垂直轨道平面向外和向里,由此可知,当导体棒运动到M区时,根据右手定则可以判定,在导体棒内产生的感应电流与长直绝缘导线中的电流方向相反,再根据左手定则可知,金属棒在M区时受到的安培力方向向左,A错误;同理可以判定B正确;再根据导体棒在M区匀速靠近长直绝缘导线时对应的磁场越来越大,因此产生的感应电动势越来越大,根据闭合电路的欧姆定律和安培力的公式可知,导体棒所受的安培力F M也逐渐增大,C正确;同理D正确.[答案] BCD[变式](多选)如图所示,金属导轨上的导体棒ab在匀强磁场中沿导轨做下列哪种运动时,铜制线圈c中将有感应电流产生且被螺线管吸引( )A.向右做匀速运动B.向左做减速运动C.向右做减速运动D.向右做加速运动答案:BC 解析:当导体棒向右匀速运动时产生恒定的电流,线圈中的磁通量恒定不变,无感应电流出现,A错;当导体棒向左做减速运动时,由右手定则可判定回路中出现从b→a 的感应电流且减小,由安培定则知螺线管中感应电流的磁场向左在减弱,由楞次定律知c中出现顺时针方向的感应电流(从右向左看)且被螺线管吸引,B对;同理可判定C对,D错.专项精练1.[产生感应电流的条件]在法拉第时代,下列验证“由磁产生电”设想的实验中,能观察到感应电流的是( )A.将绕在磁铁上的线圈与电流表组成一闭合回路,然后观察电流表的变化B.在一通电线圈旁放置一连有电流表的闭合线圈,然后观察电流表的变化C.将一房间内的线圈两端与相邻房间的电流表连接,往线圈中插入条形磁铁后,再到相邻房间去观察电流表的变化D.绕在同一铁环上的两个线圈,分别接电源和电流表,在给线圈通电或断电的瞬间,观察电流表的变化答案:答案:D 解析:只形成闭合回路,回路中的磁通量不变化,不会产生感应电流,选项A、B、C错误;给线圈通电或断电瞬间,通过闭合回路的磁通量变化,会产生感应电流,能观察到电流表的变化,选项D正确.2.[楞次定律的应用]如图所示,在一水平、固定的闭合导体圆环上方,有一条形磁铁(N极朝上,S极朝下)由静止开始下落,磁铁从圆环中穿过且不与圆环接触,关于圆环中感应电流的方向(从上向下看),下列说法正确的是( )A.总是顺时针B.总是逆时针C.先顺时针后逆时针D.先逆时针后顺时针答案:答案:C 解析:由条形磁铁的磁场分布可知,磁铁下落的过程,闭合圆环中的磁通量始终向上,并且先增加后减少,由楞次定律可判断出,从上向下看时,闭合圆环中的感应电流方向先顺时针后逆时针,C正确.3.[右手定则、安培力]如图所示,一个有界匀强磁场区域,磁场方向垂直纸面向外,一个矩形闭合导线框abcd沿纸面由位置1匀速运动到位置2,则( )A.导线框进入磁场时,感应电流方向为a→b→c→d→aB.导线框离开磁场时,感应电流方向为a→d→c→b→aC.导线框离开磁场时,受到的安培力方向水平向右D.导线框进入磁场时,受到的安培力方向水平向左答案:答案:D 解析:导线框进入磁场时,cd边切割磁感线,由右手定可知,电流方向为a→d→c→b→a,这时由左手定则可判断cd边受到的安培力方向水平向左,A错,D对;在导线框离开磁场时,ab边处于磁场中且在做切割磁感线运动,同样用右手定则和左手定则可以判断电流方向为a→b→c→d→a,这时安培力的方向仍然水平向左,B、C错.4.[楞次定律的应用]如图所示,插有铁芯的螺线管固定在水平面上,管右端的铁芯上套着一个可以自由移动的表面绝缘的闭合铜环,螺线管与电源、电键组成电路,不计铜环与铁芯之间的摩擦阻力,下列说法正确的是( )A.闭合电键,螺线管右端为N极B.闭合电键瞬间,铜环会向右运动C.闭合电键瞬间,铜环会向左运动D.闭合电键瞬间,铜环仍保持不动答案:B5.[楞次定律、安培力](多选)AOC是光滑的直角金属导轨,AO沿竖直方向,OC沿水平方向,ab是一根靠立在导轨上的金属直棒(开始时b离O点很近),如图所示.它从静止开始在重力作用下运动,运动过程中a端始终在AO上,b端始终在OC上,直到ab完全落在OC上,整个装置放在一匀强磁场中,磁场方向垂直纸面向里,则ab棒在运动过程中( )A.感应电流方向始终是b→aB.感应电流方向先是b→a,后变为a→bC.所受安培力方向垂直于ab向上D.所受安培力方向先垂直于ab向下,后垂直于ab向上答案:BD 解析:ab棒下滑过程中,穿过闭合回路的磁通量先增大后减小,由楞次定律可知,感应电流方向先由b→a,后变为a→b,B正确;由左手定则可知,ab棒所受安培力方向先垂直于ab向下,后垂直于ab向上,D正确.。
电磁感应现象 楞次定律
第一单元 电磁感应现象 楞次定律一、电磁感应现象1、磁通量:磁感应强度B 与垂直磁场方向的面积S 的乘积叫穿过这个面积的磁通量,Φ=B ·S ,若面积S 与B 不垂直,应以B 乘以S 在垂直磁场方向上的投影面积S ′,即Φ=B ·S ′=B ·S sin α,θ为B 与S 的夹角单位为韦伯,符号为W b 。
1W b =1T ❿m 2=1V ❿s=1kg ❿m 2/(A ❿s 2)。
(1)磁通量的物理意义就是穿过某一面积的磁感线条数.(2)S 是指闭合回路中包含磁场的那部分有效面积如图所示,若闭合电路abcd 和ABCD 所在平面均与匀强磁场B 垂直,面积分别为S 1和S 2,且S 1>S 2,但磁场区域恰好只有ABCD 那么大,穿过S 1和S 2的磁通量是相同的,因此Φ=BS 中的S 应是指闭合回路中包含磁场的那部分有效面积。
(3)磁通量虽然是标量,却有正负之分磁通量如同力做功一样,虽然功是标量,却有正负之分,如果穿过某个面的磁通量为Ф,将该面转过180°,那么穿过该面的磁通量就是-Ф.如图甲所示两个环a 和b ,其面积S a <S b ,它们套在同一磁铁的中央,试比较穿过环a 、b 的磁通量的大小?我们若从上往下看,则穿过环a 、b 的磁感线如图乙所示,磁感线有进 有出相互抵消后,即Φa =Φ出-Φ进,’进‘出ΦΦ=Φb ,得Φa >Φb 由此可知,若有像图乙所示的磁场,在求磁通量时要按代数和的方法求总的磁通量。
(4)磁通量与线圈的匝数无关磁通量与线圈的匝数无关,也就是磁通量大小不受线圈匝数影响。
同理,磁通量的变化量也不受匝数的影响。
2、磁通量的变化磁通量Φ=B ∙S ∙sin α(α是B 与S 的夹角),磁通量的变化ΔΦ=Φ2-Φ1有多种形式,主要有:①S 、α不变,B 改变,这时ΔΦ=ΔB ❿S sin α②B 、α不变,S 改变,这时ΔΦ=ΔS ❿B sin α③B 、S 不变,α改变,这时ΔΦ=BS (sin α2-sin α1)④B 、S 、α中有两个或三个一起变化时,就要分别计算Φ1、Φ2,再求Φ2-Φ1了。
电磁感应和楞次电律
乙丙丁 B.t 丙=t 甲=t 乙=t 丁 D.t 丙=t 甲>t 乙=t 丁
[解析] 图甲中闭合铝管不会被磁铁磁化,但当磁铁穿过铝管的 过程中,铝管可看成很多圈水平放置的铝圈,据楞次定律知,铝 圈将发生电磁感应现象,阻碍磁铁的相对运动;因丙中铝管不闭 合,所以磁铁穿过铝管的过程不发生电磁感应现象,磁铁做自由 落体运动;铁块在乙中铝管和丁中铁管中均做自由落体运动,所 以磁铁和铁块在管中运动时间满足 t 甲>t 丙=t 乙=t 丁.选项 A 正确.
例 2 如图所示,单匝矩形线圈的一半放在具有理想边界的匀强磁 场中,线圈轴线 OO′与磁场边界重合,线圈按图示方向匀速转 动(ab 向纸外,cd 向纸内).若从图示位置开始计时,并规定电流 方向沿 a→b→c→d→a 为正方向,则线圈内感应电流随时间变化 的图象是图中的( )
[答案] A
解析:在第一个14周期内,由图可看出磁场的方向,容易得到感应 电流方向与规定的正方向相反;在第二个14周期内,虽然磁场方 向不变,但线圈平面已经转动,ab 离开磁场,cd 进入磁场,与 第一个14周期相比,磁感线是从线圈的不同“面”进入线圈平 面,由楞次定律可判断电流方向仍与正方向相反;同理,可判 断后半个周期电流的方向与正方向相同.所以选项 A 正确.
(1)对楞次定律中“阻碍”的理解:
(2)楞次定律应用步骤 楞次定律说明的是感应电流的磁场与原磁场方向之间的关 系,即穿过闭合回路的磁通量增大时,两磁场方向相反;磁通量 减小时,两磁场方向相同. 根据楞次定律判断感应电流的方向时,按以下步骤进行:
注意: (1)在穿过线圈的磁通量从某一数值逐渐减小到零,然后再 反向逐渐增大的整个过程中,线圈中感应电流的方向不变. (2)若导体不动,回路中磁通量变化,应该用楞次定律判断 感应电流方向而不能用右手定则;若是回路中一部分导体做切 割磁感线运动产生感应电流,用右手定则判断较为简单,用楞 次定律进行判定也可以,但较为麻烦.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理 电知识总结7
电磁感应现象 楞次定律
知识要点:
一、电磁感应现象:
1、只要穿过闭合回路中的磁通量发生变化,闭合回路中就会产生感应电流,如果电路不闭合只会产生感应电动势。
这种利用磁场产生电流的现象叫电磁感应,是1831年法拉第发现的。
回路中产生感应电动势和感应电流的条件是回路所围面积中的磁通量变化,因此研究磁通量的变化是关键,由磁通量的广义公式中φθ=B S ·sin (θ是B 与S 的夹角)看,磁通量的变化∆φ可由面积的变化∆S 引起;可由磁感应强度B 的变化∆B 引起;可由B 与S 的夹角θ的变化∆θ引起;也可由B 、S 、θ中的两个量的变化,或三个量的同时变化引起。
下列各图中,回路中的磁通量是怎么的变化,我们把回路中磁场方向定为磁通量方向(只是为了叙述方便),则各图中磁通量在原方向是增强还是减弱。
(1)图:由弹簧或导线组成回路,在匀强磁场B 中,先把它撑开,而后放手,到恢复原状的过程中。
(2)图:裸铜线ab 在裸金属导轨上向右匀速运动过程中。
(3)图:条形磁铁插入线圈的过程中。
(4)图:闭合线框远离与它在同一平面内通电直导线的过程中。
(5)图:同一平面内的两个金属环A、B,B中通入电流,电流强度I在逐渐减小的过程中。
(6)图:同一平面内的A、B回路,在接通K的瞬时。
(7)图:同一铁芯上两个线圈,在滑动变阻器的滑键P向右滑动过程中。
(8)图:水平放置的条形磁铁旁有一闭合的水平放置线框从上向下落的过程中。
2、闭合回路中的一部分导体在磁场中作切割磁感线运动时,可以产生感应电动势,感应电流,这是初中学过的,其本质也是闭合回路中磁通量发生变化。
3、产生感应电动势、感应电流的条件:导体在磁场里做切割磁感线运动时,导体内就产生感应电动势;穿过线圈的磁量发生变化时,线圈里就产生感应电动势。
如果导体是闭合电路的一部分,或者线圈是闭合的,就产生感应电流。
从本质上讲,上述两种说法是一致的,所以产生感应电流的条件可归结为:穿过闭合电路的磁通量发生变化。
二、楞次定律:
1、1834年德国物理学家楞次通过实验总结出:感应电流的方向总是要使感应电流的磁场阻碍引起感应电流的磁通量的变化。
即磁通量变化
产生
−→
−−感应电流建立
−→
−−感应电流磁场阻碍
−→
−−磁通量变化。
2、当闭合电路中的磁通量发生变化引起感应电流时,用楞次定律判断感应电流的方向。
楞次定律的内容:感应电流的磁场总是阻碍引起感应电流为磁通量变化。
楞次定律是判断感应电动势方向的定律,但它是通过感应电流方向来表述的。
按照这个定律,感应电流只能采取这样一个方向,在这个方向下的感应电流所产生的磁场一定是阻碍引起这个感应电流的那个变化的磁通量的变化。
我们把“引起感应电流的那个变化的磁通量”叫做“原磁道”。
因此楞次定律可以简单表达为:感应电流的磁场总是阻碍原磁通的变化。
所谓阻碍原磁通的变化是指:当原磁通增加时,感应电流的磁场(或磁通)与原磁通方向相反,阻碍它的增加;当原磁通减少时,感应电流的磁场与原磁通方向相同,阻碍它的减少。
从这里可以看出,正确理解感应电流的磁场和原磁通的关系是理解楞次定律的关键。
要注意
理解“阻碍”和“变化”这四个字,不能把“阻碍”理解为“阻止”,原磁通如果增加,感应电流的磁场只能阻碍它的增加,而不能阻止它的增加,而原磁通还是要增加的。
更不能感应电流的“磁场”阻碍“原磁通”,尤其不能把阻碍理解为感应电流的磁场和原磁道方向相反。
正确的理解应该是:通过感应电流的磁场方向和原磁通的方向的相同或相反,来达到“阻碍”原磁通的“变化”即减或增。
楞次定律所反映提这样一个物理过程:原磁通变化时(φ原变),产生感应电流(I感),这是属于电磁感应的条件问题;感应电流一经产生就在其周围空间激发磁场(φ感),这就是电流的磁效应问题;而且I感的方向就决定了φ感的方向(用安培右手螺旋定则判定);φ感阻碍φ原的变化——这正是楞次定律所解决的问题。
这样一个复杂的过程,可以用图表理顺如下:
楞次定律也可以理解为:感应电流的效果总是要反抗(或阻碍)产生感应电流的原因,即只要有某种可能的过程使磁通量的变化受到阻碍,闭合电路就会努力实现这种过程:(1)阻碍原磁通的变化(原始表速);
(2)阻碍相对运动,可理解为“来拒去留”,具体表现为:若产生感应电流的回路或其某些部分可以自由运动,则它会以它的运动来阻碍穿过路的磁通的变化;若引起原磁通变化为磁体与产生感应电流的可动回路发生相对运动,而回路的面积又不可变,则回路得以它的运动来阻碍磁体与回路的相对运动,而回路将发生与磁体同方向的运动;
(3)使线圈面积有扩大或缩小的趋势;
(4)阻碍原电流的变化(自感现象)。
所示,在O点悬挂一轻质导线环,拿一条形磁铁沿导线环的轴线方向
突然向环内插入,判断在插入过程中导环如何运动。
若按常规方法,应
先由楞次定律判断出环内感应电流的方向,再由安培定则确定环形电
流对应的磁极,由磁极的相互作用确定导线环的运动方向。
若直接从感
应电流的效果来分析:条形磁铁向环内插入过程中,环内磁通量增加,环内感应电流的效果将阻碍磁通量的增加,由磁通量减小的方向运动。
因此环将向右摆动。
显然,用第二种方法判断更简捷。
应用楞次定律判断感应电流方向的具体步骤:
(1)查明原磁场的方向及磁通量的变化情况;
(2)根据楞次定律中的“阻碍”确定感应电流产生的磁场方向;
(3)由感应电流产生的磁场方向用安培表判断出感应电流的方向。
3、当闭合电路中的一部分导体做切割磁感线运动时,用右手定则可判定感应电流的方
向。
定电流方向的右手定则也是楞次定律的特例。
用右手定则能判定的,一定也
能用楞次定律判定,只是不少情况下,不如用右手定则判定的方便简单。
反
过来,用楞次定律能判定的,并不是用右手定则都能判定出来。
如图2所示,
闭合图形导线中的磁场逐渐增强,因为看不到切割,用右手定则就难以判定
感应电流的方向,而用楞次定律就很容易判定。
要注意左手定则与右手定则应用的区别,两个定则的应用可简单总结为:“因电而动”
用右手,“因动而电”用右手,因果关系不可混淆。