不规则图形面积的估算(人教版五上数学)
人教版五年级数学上册第6单元不规则图形的面积的计算附答案

人教版五年级数学上册第6单元12.不规则图形的面积的计算一、每个小方格的面积是1 cm2,估算下面图形的面积。
(每小题4分,共24分)()cm2()cm2二、计算下面各图形的面积。
(单位:cm)(每小题6分,共24分)三、求阴影部分的面积。
(每小题6分,共12分)四、聪明的你,答一答。
(共40分)1.美术手工剪纸课中,乐乐剪了一个大写英文字母“E”,它的面积是多少?(单位:cm)(7分)2.几位“环保大使”用铁板给学校的草地做了一个标语牌(如图),请算出用了多少铁板?(7分)3.下图是一个占地6240平方米的花坛。
花坛两条平行的边分别是88米和42米。
请你算出这两条边的距离。
(6分)4.聪聪将一张长方形纸的一角如图折叠。
聪聪考大家:请求出阴影部分的面积。
(单位:dm)(6分)5.下图是一面墙,中间有一个长2 m,宽1.5 m的窗户,如果砌这面墙平均每平方米用160块砖,一共需要用多少块砖?(7分)6.雯雯家装修需要用下面的木板,木板形状如下图,一共需要多少平方米的木板?(7分)答案一、1.24 2.33 3.15 4.10 5.13 6.26二、1.200(cm2)2.20-9=11(cm)18×9+(18+30)×11÷2=162+264=426(cm2)3.6-2×2=2(cm)6×4-(2+1.5)×2÷2=24-3.5=20.5(cm2)4.11×8÷2+(11+22)×10÷2=209(cm2)三、1.15×10=150(平方厘米)5×(10-5)=25(平方厘米)5×(10-5)÷2=12.5(平方厘米)(15-5-5)×(10-5)÷2=12.5(平方厘米) 150-(25+12.5+12.5)=100(平方厘米) 2.8×8=64(dm2)6×6=36(dm2)(8+6)×6÷2=42(dm2)64+36-42=58(dm2)四、1.20-15=5(cm)15×5×3+25×5=75×3+125=350(cm2)答:它的面积是350 cm2。
《不规则图形面积的估算》(人教版五上数学)

练习: 1.有一块地近似平行四边形,底是43 m, 高是20.1 m。这块地的面积约是多少平方 米?(得数保留整数。)
2.图中每个小方格的面积为1 m2, 请你估计这个池塘的面积。
3.图中每个小方格的面积为1 m2, 请你估计这个池塘的面积。
4.你能像这样估一估手掌的面积吗?
5.图中小方格的边长是1 m,请你估 计涂色部分的面积。
正方形
长方形
平行四边形
梯 形
三角形
它们的面积怎么计算?
长 方 形 的 面 积 = 长 ×宽 正 方 形 的 面 积 = 边长×边长
S=ab S=a2 S=ah S=ah÷2 S=(a+b)h÷2
平行四边形的面积= 底×高
三 角 形 的 面 积 = 底×高÷2
梯 形 的 面 积 = (上底+下底)×高÷2
例5:图中每个小方格的面积是1cm2, 请你估计这片叶子的面积。
方法一:转化法
1cm
例5:图中每个小方格的面积是1cm2, 请你估计这片叶子的面积。
方法一:转化法
1cm
练习 2.图中每个小方格的面积是1 cm2, 计算阴影部分的面积。
“称法”——计算不规则图形的面积的方法
很早以前,世界各国的数学家们都在 思考,如何计算出不规则版图的面积。许 多国家的边界线由于受到自然环境等方面 的影响,如同蚯蚓般地曲折蜿蜒。多年来, 大家一直寻找不到一个标准的计算方法, 一般都是大致估算一下,粗略地取个近似 值。
这枚树叶的面积 怎么求呢?
例5:图中每个小方格的面积是1cm2, 请你估计这片叶子的面积。
1cm
例5:图中每个小方格的面积是1cm2, 请你估计这片叶子的面积。
方法一:数格子法
人教版五年级数学上册 不规则图形的面积教案与教学反思金品1

第6单元多边形的面积第8课时方格图中不规则图形面积估算【教学内容】:教材P100例5及练习二十二第7~11题。
教学目标1.进一步巩固学生对组合图形面积计算方法的理解和掌握,并使其熟练计算组合图形的面积。
2.培养学生的观察能力和解题灵活性。
3.培养学生应用数学知识解决实际问题的意识和习惯。
重点难点重点:熟练计算组合图形的面积。
难点:多角度认识组合图形,用不同方法计算组合图形的面积。
教具学具投影仪。
教学过程一复习上节课我们学习了组合图形的面积。
什么叫组合图形?怎样计算组合图形的面积?二、互动新授1.出示教材第100页情境图中的树叶。
引导思考:这片叶子的形状不规则,怎么计算面积呢?让学生思考,并在小组内交流。
学生可能会想到:可以将树叶放在透明方格纸上来计数。
对学生的回答要给予肯定,并强调还是要用一个统一的标准的方格进行计数。
演示教材第100页情境全图:在树叶上摆放透明的每格1平方厘米方格纸。
引导学生观察情境图,说一说发现了一些什么情况?学生可能会看出:树叶有的在透明的厘米方格纸中,出现了满格、半格,还出现了大于半格和小于半格的情况。
2.自主探索树叶的面积。
明确:为了计算方便,要先在方格纸上描出叶子的轮廓图。
先让学生估一估,这片叶子的面积大约是多少平方厘米。
让学生自主猜测。
再让学生数一下整格的:一共有18格。
引导思考:余下方格的怎么办?小组交流讨论,汇报。
通过讨论,学生可能会想到:可以把少的与多的拼在一起算一格;也可以把大于等于半格的算一格,小于半格的可以舍去不算。
提示:如果把不满一格的都按半格计算,这片叶子的面积大约是多少平方厘米?学生通过数方格可以得出:这片叶子的面积大约是27cm2。
质疑:为什么这里要说树叶的面积是“大约”?学生自主回答:因为有的多算,有的不算,算出的面积不是准确数。
3.让学生拿出树叶及小方格纸,以小组为单位研究树叶面积的计算。
小组合作进行测量、计算,并汇报本组测量的树叶的面积大约是多少。
五年级上册数学教案-8估算不规则图形的面积-人教新课标

五年级上册数学教案-8估算不规则图形的面积-人教新课标一、教学目标1. 让学生掌握估算不规则图形面积的基本方法。
2. 培养学生运用数学知识解决实际问题的能力。
3. 培养学生的观察能力、动手操作能力和团队协作能力。
二、教学内容1. 估算不规则图形面积的方法:数方格法、图形近似法、分割法。
2. 应用估算方法解决实际问题。
三、教学重点与难点1. 教学重点:估算不规则图形面积的方法。
2. 教学难点:如何根据不规则图形的特点选择合适的估算方法。
四、教学过程1. 导入新课利用多媒体展示生活中常见的规则图形和不规则图形,引导学生观察并说出它们的区别。
提出问题:如何估算不规则图形的面积?2. 探究新知(1)数方格法①介绍数方格法的原理:将不规则图形放在一个方格纸上,计算图形所占的方格数,最后乘以每个方格的面积。
②引导学生尝试用数方格法估算不规则图形的面积。
(2)图形近似法①介绍图形近似法的原理:将不规则图形近似为规则图形,计算规则图形的面积,从而估算出不规则图形的面积。
②引导学生尝试用图形近似法估算不规则图形的面积。
(3)分割法①介绍分割法的原理:将不规则图形分割成若干个规则图形,计算每个规则图形的面积,最后求和得到不规则图形的面积。
②引导学生尝试用分割法估算不规则图形的面积。
3. 实践应用(1)出示练习题,让学生独立完成。
(2)小组讨论,分享估算方法及结果。
(3)教师点评,总结估算不规则图形面积的方法。
4. 课堂小结让学生谈谈本节课的收获,教师总结估算不规则图形面积的方法及注意事项。
五、课后作业1. 完成练习册上的相关习题。
2. 观察生活中不规则图形的面积估算问题,尝试用所学方法解决。
六、板书设计1. 数方格法2. 图形近似法3. 分割法七、教学反思本节课通过引导学生观察、探究、实践,使学生掌握了估算不规则图形面积的基本方法。
在教学过程中,要注意关注学生的个体差异,给予每个学生充分的表达和思考空间。
同时,要注重课后作业的布置,让学生将所学知识运用到实际生活中,提高他们的数学素养。
人教版小学数学五5年级上册:第5课时《面积的估算》教学设计

第五课时面积的估算一、学习目标(一)学习内容《义务教育教科书数学》(人教版)五年级上册第100页例题5,是学生在学习了长方形、正方形、平行四边形、三角形、梯形面积及组合图形的面积之后进行教学。
(二)核心能力通过借助数方格的方法和将不规则图形近似地看作可求面积的多边形来求图形的面积,发展空间观念,体会解决问题方法和策略的多样性,提高综合应用的意识和能力。
(三)学习目标1.借助方格纸,在教师引导下能够估算不规则树叶的面积范围并计算面积。
2.通过小组合作交流掌握将不规则的图形转化为学过的图形进行估算,发展空间观念。
3.运用所学到的知识和方法,根据实际问题选择适当方法进行估算面积。
(四)学习重点借助方格纸,体会解决问题的不同策略。
(五)学习难点将不规则图形看作合适的多边形。
(六)配套资源实施资源:《面积的估算》教学课件、印有树叶的方格纸一张二、学习设计(一)课前设计(1)估一估,数学书封面的面积大约是多少,并向父母解释你是怎样估的。
(2)找一片树叶,估一估,它的面积大约是多少?并向父母解释你是怎样估的。
(二)课堂设计1.情境导入师:同学们,咱们已经学会了怎样求简单图形和简单的组合图形面积。
但是生活中还有着各种各样更复杂的平面图形。
就例如咱们学校秋天一到,到处都是飘落的树叶,老师想把这美丽的树叶带入数学课里来研究,咱们应该怎样求出一片叶子的面积呢。
(PPT出示叶子)咱们今天就来研究一下。
(板书课题:不规则图形的面积)。
【设计意图:利用学校落叶的具体情境增加趣味性,增加学生的探索欲望并与已学的知识形成联系。
】2.问题探究(1)方格纸探索树叶的面积。
①探寻估算的参照物师:你能用公式计算这片树叶的面积有多大吗?你有办法估计这片树叶的面积吗?先让学生估一估,这片叶子的面积大约是多少平方厘米。
你的依据是什么?提示:可以找一个合适的参照物。
例如学过指甲盖的面积大约是1cm²。
预设:可以用学具小正方体的一个平面是1cm²。
五年级上册数学教案-第6单元不规则图形的面积-人教版

五年级上册数学教案第6单元不规则图形的面积人教版一、教学内容今天我们要学习的是五年级上册数学的第六单元——不规则图形的面积。
我们将通过实际操作和数学计算来理解不规则图形的面积计算方法。
二、教学目标通过本节课的学习,我希望学生能够理解不规则图形的面积计算方法,并能够运用这个方法来解决实际问题。
三、教学难点与重点重点:不规则图形的面积计算方法。
难点:如何将不规则图形转化为规则图形进行计算。
四、教具与学具准备我已经准备了一些不规则图形和计算工具,比如直尺和圆规,还有练习本和笔。
五、教学过程我会用一个实际情景引入,比如一个不规则形状的花园,我们需要计算它的面积。
我会让学生观察这个花园,并试着用他们已经学过的知识来估算它的面积。
然后,我会让学生利用计算工具和数学公式来计算这个转化后的规则图形的面积,并将结果相加,得到原来不规则图形的面积。
在随堂练习环节,我会给出一些不规则图形的题目,让学生独立完成面积的计算。
我会及时给予反馈和指导。
六、板书设计板书上我会写上不规则图形的面积计算公式,以及如何将不规则图形转化为规则图形的方法。
七、作业设计作业题目:计算下面这个不规则图形的面积。
________/ \/ \/ \/ \/ \/________________\答案:将不规则图形转化为规则图形,比如一个矩形和一个三角形。
计算矩形的面积,再计算三角形的面积,将两个面积相加。
八、课后反思及拓展延伸课后,我会反思这节课的教学效果,看看学生是否掌握了不规则图形的面积计算方法。
同时,我会给学生提供一些拓展延伸的题目,让他们能够更好地应用所学的知识。
重点和难点解析一、实际操作的重要性我相信实践是学习数学的关键。
因此,在引入新知识时,我选择了一个实际操作的情景——计算一个不规则形状的花园的面积。
这个实际情景能够激发学生的兴趣,同时帮助他们理解不规则图形面积计算的实用价值。
通过观察和尝试估算花园的面积,学生能够复习已学的几何知识,并为其后学习不规则图形的面积计算方法打下基础。
五年级上册数学教学反思-不规则图形的面积-人教版

不规则图形的面积教学反思《估算不规则图形的面积》一课是人教版小学数学教科书五年级上册的新增内容。
是估算思想在图形与几何中的应用。
本课旨在通过《估算不规则图形的面积》的教学,培养学生的估算意识和估算能力。
让学生体会解决问题方法和策略的多样性,从而提高综合应用的意识和能力。
那么,怎样教学才能让学生感悟到“估算不规则图形的面积”产生于现实生活的实际,又能在掌握了估算的多种方法之后,灵活运用到解决生活中的实际问题呢?为此,我在教学实践中进行了尝试和探索。
反思本课的教学,有以下几点体会。
一、联系现实生活,让估算教学变“可有可无”为“无处不在”上课伊始,我选用学生熟悉的“雨湖公园”实景图作为新课导入的素材,通过多媒体演示,让学生通过观察“百度地图”上的雨湖公园,发现不规则图形的面积用已有的知识求不出来,从而激发学生去探索、去思考的积极性。
这样教学,能让学生从现实生活中发现数学问题,使引入数学问题生活化。
生动有趣的生活情境能有效引发学生的学习动机。
生活中处处有数学,数学蕴藏在生活的每个角落。
数学教师要善于引领学生观察自然、观察生活,用一双智慧的眼睛发现生活中的数学现象,引导学生从多种角度、各个侧面去思考生活中的数学问题。
从学生周围熟悉的事物入手进行课堂教学,找出生活中不规则图形,如:树叶的上面、鼠标的底面、手掌面、脚面等,让学生感受不规则图形就在自己身边,感受到学习了估算的方法,就可以估算出它们的面积。
让学生从中体会估算不规则图形面积的趣味性和实用性,从而促进学生进行有效的数学学习。
二、挖掘生活素材,让估算方法变“单一估算”为“多样估算”对于不规则图形的面积估计,学生第一次接触,借助学生已有经验对一个新问题产生一种有价值的思考比较有意义。
因此,在本课的教学中,我为学生提供了一片常见的树叶,先引导学生目测,然后提出问题“如何估算一片树叶的面积呢”?让学生在互动中明确估算策略最重要的是要根据要估计的事物找到一个适合的测量标准,然后利用这个测量标准去估计。
《不规则图形的面积》(教案)五年级上册数学人教版

教案:《不规则图形的面积》年级:五年级学科:数学教材版本:人教版教学目标:1. 让学生理解不规则图形的概念,并能识别生活中的不规则图形。
2. 培养学生运用分割、近似等方法计算不规则图形面积的能力。
3. 培养学生的空间想象力和创新意识,提高解决实际问题的能力。
教学重点:1. 不规则图形的概念及其与规则图形的区别。
2. 计算不规则图形面积的方法。
教学难点:1. 如何引导学生运用分割、近似等方法计算不规则图形面积。
2. 如何将不规则图形转化为规则图形进行面积计算。
教学准备:1. 课件、黑板、粉笔等教学工具。
2. 准备一些生活中的不规则图形实例,如地图、树叶等。
教学过程:一、导入1. 利用课件展示一些生活中的不规则图形,如地图、树叶等,引导学生观察并说出这些图形的特点。
2. 提问:这些图形与之前学习的规则图形有什么不同?引导学生总结出不规则图形的概念。
二、新课讲解1. 讲解不规则图形的概念,强调其与规则图形的区别。
2. 介绍计算不规则图形面积的方法,如分割法、近似法等。
3. 示例讲解如何运用分割法、近似法计算不规则图形面积,并强调在计算过程中要注意的问题。
三、课堂练习1. 让学生独立完成教材上的练习题,巩固所学知识。
2. 老师巡回指导,解答学生疑问。
四、课堂小结1. 让学生总结本节课所学的不规则图形的概念及计算方法。
2. 强调在计算不规则图形面积时要注意的问题。
五、作业布置1. 完成教材上的课后习题。
2. 观察生活中的不规则图形,尝试运用所学方法计算其面积。
教学反思:本节课通过生活中的实例引入不规则图形的概念,让学生感受到数学与生活的紧密联系。
在教学过程中,注重培养学生的空间想象力和创新意识,引导他们运用分割、近似等方法计算不规则图形面积。
同时,通过课堂练习和课后作业,让学生巩固所学知识,提高解决实际问题的能力。
在今后的教学中,要注意以下几点:1. 多给学生提供观察、操作、讨论的机会,让他们在实际活动中理解数学知识。
人教版五年级数学上册第六单元《不规则图形面积的估算》教案

1.教学方法:
-讲授法:教师在课堂上讲解不规则图形面积估算的理论知识和方法。
-案例研究:教师提供实际案例,让学生分析和估算不规则图形的面积。
-项目导向学习:学生分组完成不规则图形面积估算的项目,培养合作和问题解决能力。
-讨论法:教师引导学生进行小组讨论,分享估算方法和经验,促进学生之间的交流和学习。
-教师给予学生个性化的反馈,指出学生的优点和需要改进的地方,鼓励学生积极改进和学习。
-教师与学生进行一对一的交流,了解学生的学习需求和困难,提供针对性的指导和支持。
-教师鼓励学生提出问题和反馈,及时解答学生的疑惑和问题,促进学生的学习进步。
内容逻辑关系
1.不规则图形面积估算的基本概念和方法:
-重点知识点:不规则图形面积估算的定义和基本方法。
详细介绍不规则图形面积估算的组成部分或功能,使用图表或示意图帮助学生理解。
3.不规则图形面积估算案例分析(20分钟)
目标:通过具体案例,让学生深入了解不规则图形面积估算的特性和重要性。
过程:
选择几个典型的不规则图形面积估算案例进行分析。
详细介绍每个案例的背景、特点和意义,让学生全面了解不规则图形面积估算的多样性或复杂性。
5.课堂展示与点评(15分钟)
目标:锻炼学生的表达能力,同时加深全班对不规则图形面积估算的认识和理解。
过程:
各组代表依次上台展示讨论成果,包括主题的现状、挑战及解决方案。
其他学生和教师对展示内容进行提问和点评,促进互动交流。
教师总结各组的亮点和不足,并提出进一步的建议和改进方向。
6.课堂小结(5分钟)
5.课堂小结:总结本节课所学内容,强调不规则图形面积估算的方法和技巧。
6.课后作业:布置课后作业,巩固所学知识。
不规则图形的面积(教案)2023-2024学年数学五年级上册

不规则图形的面积(教案)20232024学年数学五年级上册在今天的数学课上,我们将学习一个有趣且实用的话题——不规则图形的面积。
一、教学内容我们使用的教材是五年级上册的《数学》,今天我们将学习第9章“几何图形”,特别是第9.2节“不规则图形的面积”。
这部分内容主要包括不规则图形面积的定义、估算和计算方法。
二、教学目标通过本节课的学习,我希望学生们能够理解不规则图形面积的概念,学会使用不同的方法估算和计算不规则图形的面积,并能将所学知识应用到实际问题中。
三、教学难点与重点重点是让学生掌握不规则图形面积的计算方法,包括分割、近似和数字化处理。
难点在于如何引导学生理解并运用这些方法。
四、教具与学具准备为了帮助学生更好地理解不规则图形的面积,我准备了若干不规则图形纸片、直尺、剪刀和计算器。
五、教学过程1. 引入:我先向学生展示一些日常生活中的不规则图形,如树叶、石子等,让他们试着估算这些图形的面积。
2. 讲解:接着,我详细讲解不规则图形面积的定义,以及如何使用分割、近似和数字化处理等方法来计算不规则图形的面积。
3. 演示:我利用教具进行现场演示,让学生亲眼看到如何将不规则图形分割成简单几何图形,然后计算这些几何图形的面积,求和得到不规则图形的面积。
4. 练习:学生们分成小组,互相剪切和计算不同形状的不规则图形,练习如何求解它们的面积。
5. 应用:我给学生提出一些实际问题,让他们运用所学知识解决。
例如:“请你计算一下教室地板的面积。
”六、板书设计板书设计主要包括不规则图形面积的定义、计算方法和实例。
我会用清晰的图形和文字展示计算过程,让学生一目了然。
七、作业设计1. 一个不规则三角形,底边长为6cm,高为4cm。
2. 一个不规则圆形,直径为10cm。
答案:1. 面积= 1/2 × 底边长× 高= 1/2 × 6cm × 4cm = 12cm²2. 面积= π × 半径² = π × (10cm / 2)² = 78.5cm²八、课后反思及拓展延伸课后,我会反思这节课的教学效果,看看学生们是否掌握了不规则图形面积的计算方法。
6.5解决问题(不规则图形的面积)(教案)2023-2024学年数学五年级上册-人教版

6.5解决问题(不规则图形的面积)(教案)20232024学年数学五年级上册人教版作为一名经验丰富的教师,我深知教学不仅要注重知识的传授,还要培养学生的实践能力和创新思维。
今天,我要分享的是关于“6.5解决问题——不规则图形的面积”的教案,让我们一起走进这个充满挑战和乐趣的世界吧!一、教学内容本节课的教学内容涉及人教版数学五年级上册第六章第五节,主要讲解如何计算不规则图形的面积。
通过这一节的学习,让学生能够运用数学知识解决实际问题,培养他们的观察能力、动手能力和创新能力。
二、教学目标1. 让学生掌握不规则图形面积的计算方法;2. 培养学生观察、分析、解决问题的能力;3. 培养学生的团队协作精神和动手实践能力。
三、教学难点与重点1. 难点:如何将不规则图形分割成规则图形,并计算出面积;2. 重点:掌握不规则图形面积的计算方法,能够灵活运用到实际问题中。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔;2. 学具:剪刀、彩纸、直尺、圆规、三角板。
五、教学过程1. 实践情景引入:让学生观察教室里的物品,找出不规则形状的物品,并尝试计算其面积。
2. 理论知识讲解:介绍不规则图形面积的计算方法,讲解如何将不规则图形分割成规则图形,并计算出面积。
3. 例题讲解:以一个不规则三角形为例,演示如何将其分割成两个规则三角形,并计算出面积。
4. 随堂练习:让学生动手实践,尝试计算给定的不规则图形的面积。
5. 小组讨论:让学生分组讨论,分享彼此的解题方法,互相学习。
六、板书设计1. 不规则图形面积计算方法;2. 实例演示:不规则三角形分割成规则三角形;3. 注意事项:如何灵活运用所学知识解决实际问题。
七、作业设计1. 题目:计算下面不规则图形的面积。
答案:2. 题目:找出生活中的不规则图形,尝试计算其面积,并拍照。
答案:根据实际情况,学生照片,教师进行评价。
八、课后反思及拓展延伸我还会在课后进行拓展延伸,查找相关资料,为学生提供更多不规则图形面积计算的实例,以便他们在课后继续巩固所学知识,提高自己的综合素质。
人教五年级数学上册8方格图中不规则图形的面积估算

1. 集体力量是强大的,你们小组合作了吗?你能将这个原理应用于生活吗?你的探究目标制定好了吗? 2. 自学结束,请带着疑问与同伴交流。 3. 学习要善于观察,你从这道题中获取了哪些信息? 4. 请把你的想法与同伴交流一下,好吗? 5. 你说的办法很好,还有其他办法吗?看谁想出的解法多? 二、赏识类
1. 说得太好了,老师佩服你,为你感到骄傲! 2. 你的设计(方案、观点)富有想象力,极具创造性。 3. 我非常欣赏你的想法,请说具体点,好吗? 4. 某某同学的解题方法非常新颖,连老师都没想到,真厉害! 5. 让我们一起为某某喝彩!同学们在学习过程中,也要敢于猜想,善于猜想,这样才能有所发现,有所创造! 三、表扬类
可以在图上标一标、画一画,想好后再和你的同桌进行交流,看 哪组同学的方法最多。
一、自主探究不规则图形的面积
(四)学生探究,教师搜集资源。
(五)暴露资源,组织研讨:
预设一:
先在叶子上画出所有的方格线,
我发现满格的一共有18格,所以它
的面积一定大于18cm2,不是满格的
也有18格,这片叶子的面积一定小
绿色圃中小学教育网 绿色圃中小学教育网 绿色圃中小学教育网
追问:你还有其它的办法吗?
一、自主探究不规则图形的面积
(五)暴露资源,组织研讨:
预设三:
我是用转化的方法,将叶子的图 形近似转化成长方形,然后求出长方 形的面积是30cm2,因此,叶子的面 积大约是30cm2。
1、“读”是我们学习语文最基本的方法之一,古人说,读书时应该做到“眼到,口到,心到”。我看,你们今天达到了这个要求。 2、大家自由读书的这段时间里,教室里只听见琅琅书声,大家专注的神情让我感受到什么叫“求知若渴”,我很感动。 3、经过这么一读,这一段文字的意思就明白了,不需要再说明什么了。 4、请你们读一下,将你的感受从声音中表现出来。 5、读得很好,听得出你是将自己的理解读出来了。特别是这一句,请再读一遍。
人教版(2024)五年级上册《不规则图形的面积》说课PPT(共22张PPT)

教法分析
基于以上教材分析、学情分析、教学目标 的设定和教学重难点的确立,我将本节课的教 学方法设置为——探究式引导为主、讲练结合 为辅。重在对性质的理解和掌握,旨在培养学 生几何学习的探究方法和逻辑思维。
学法分析
情境创设法
用自编诗引
课堂活动调动学 生参与度,巩固 基础知识。
数学实验法
课件、学习卡
作用:生动的展示出各个教学环节,帮助学 生学习。丰富课堂教学形式,提升课堂教学 效果。
我们已经会计算组合图形的面积了,那么生活中遇到 不规则图形我们如何来估算它的面积呢?
右图中每个小方格的面积是 1 cm2 , 请你估计这片叶子的面积。
[教材P98 例5]
你发现了什么?
策略
教师需要注重引导 学生理解估算的原 理,培养学生的估 算意识和能力。
用学生核心素养和学科核心素养把握方向, 生成了这节课的教学目标
1.通过与同伴交流估算面积的方法,培养合作意识 ,借助操作等实践活动自主解决问题。 2.在估计不规则图形面积的过程中,培养空间观念 以及估算意识和能力。 3.学习用数方格的方法计算不规则图形的面积,能 估计不规则图形面积的大小,并能用不同的方法灵 活估算面积。
整节课是以问题解决思考线索展开,在教学中关注 学生思考和活动的经验积累。而“寻找区间”的设计, 则注重学生估算意识和方法的培养。选择合适的“估算” 单位是引导学生进行有效估算的方法,通过学生对上界、 下界的确定,帮助学生找到合适的估算区间,最终使学 生获得的是一种思想和经验。
恳请各位老师提出宝 贵意见!
利用问卷创建学情调查
制定问卷 收集信息 分析学情
学情分析 教学难点:能用不同的方法灵活
估算不规则图形的面积。
知识储备
五年级数学上册不规则图形的面积(共21张PPT)

在研究植物生长情况的时候,少不了要考虑 到它的叶子面积。特别是研究丰产经验的时候, 常要算一下叶子的面积是多少。
快乐作业:
完成课本第102页的第8题、第10 题。
科学家们认为:“ 叶面 的形状是以曲线为周界的。 当然可以用求面积仪或者 用微积分来计算出它的面 积来,但在求大量叶面积 的时候,不很切合实用, 更不要说仪器不凑手或者 微积分没学过等问题了。”
植物生理学家经常用一 个简捷公式来算:叶面积 等于长乘宽除以1.2。
在有阳光时,大约每25平方米的树叶能在一 天释放足够一个人呼吸所需的氧气。
7 8
15
9
1413 12 11 10
1平方厘米
18cm²
例5:图中每个小方格的面积是1cm2,请你估计这 片叶子的面积。
1cm 活动要求: 1. 估计叶子的面积, 在图中标记号,简单 记录想法。 2.小组交流“估的结 果”和“你的想法”。
回顾与反思:
(1)我们经历哪些活动? (2)你有什么收获? (3)还有什么疑问?
人教版义务教育教科书《数学》五年级上册
估计不规则图形的面积
1分米 1平方分米
3个1平方分米
3平方分米
4个1平方分米
4平方分米
ቤተ መጻሕፍቲ ባይዱ
1平方厘米
1平方厘米
12 3 4
56 7 89 10 11 12 13 14 15 16 17 18
1平方厘米
18cm²
1平方厘米
1234 5
18
6
17 16
18cm²
请你估计这个人工湖的面积。 (得数保留整数)
20.1m 43m
请你估计这片银杏叶的面积。
小组合作活动要求: 1.小组讨论,确定方法。 2.分工合作,选择工具进行估计。
五年级上册不规则图形的面积(人教版)(15张PPT)

3.会选择合适的算法来计算和解决生活中的相关问题,逐步形成优化意识。
《义务教育数学课程标准(2011年版)》在“学段目标”的“第二学段”中提出“体验随机事件和事件发生的等可能性”。
(用的学具大小要一样)
叶子的面积大
约是30cm2。
返回
不规则图形的面积
小结
通过刚才的学习,今后我们再遇到不规则 的图形,我们可以怎样估计它的面积呢?
不人规教则版图形数的学面积五年级 上册
6 多边形的面积
不规则图形的面积
情境导入
探究新知
课堂练习
课堂小结
课后作业
不规则图形的面积
情境导入
我们已经会计算组合图形的面积了, 那么生活中遇到不规则图形我们如何 来估算它的面积呢?
返回
不规则图形的面积
探究新知
例题5
图中每个小方格的面 积是1cm2 ,请你估 计这片叶子的面积。
近似转化成长方形 8×4 = 32(m2) 阴影部分面积大约 是 32m2。
返回
不规则图形的面积
2.图中每个小方格的面积为1m2,请你估计这个 池塘的面积。
S =ab =12×8 =96(m2 )
这个池塘的面积 大约是96m2。
返回
不规则图形的面积
课堂小结
这节课你们都学会了哪些知识?
不规则 图形的 面积估 算
数方格的方法 进行估算
把不规则的图形 转化为学过的图 形进行估算
返回
不规则图形的面积
课后作业 1.从教材课回
返回
不规则图形的面积
思考
知道小方格 的面积,求 叶子的面积。
1cm
这片叶子的形 状不规则,怎 么计算面积呢?
返回
不规则图形的面积
五年级上册数学2方格纸中不规则图形面积的估算课件

估算不规则图形的面积
例1
例1 图中每个小方格的面积是1 cm²,请你估计这片叶子的面积.
这片叶子的形状不规则, 怎么计算面积呢?
1 cm
思路引导
方格纸上满格的 一共18格,不满格 的也有18格.
叶子的面积在18 cm²~36 cm²之间.
如果把不满格的都按半格计算, 这片叶子的面积大约是27 cm².
涂色部分中间是空的,涂 色部分面积应该用转化成的长方形 减去中间空的部分转化成的正方形.
方格纸中不规则图形面积的估算
数格法
先数有多少个满格, 再数有多少个不满1 格的,不满一格的都
按半格计算.
01
转化法
把不规则图形转 化为学过的图形
进行估算.
02
谢谢聆听
空 白 演 示 单 击 输 入 您 的 封 面 副 标 题
将这片叶子的图形近似 转化成平行四边形,底 是5 cm,高是6 cm.
S=ah=5×6=30(cm²) 答:这片叶子的面积约为30 cm².
将这片叶子的图形近 似转化成长方形,长 是6 cm,宽是5 cm.
S=ab=5×6=30(cm²) 答:这片叶子的面积约为30 cm².
例2 图中每个小格的面积是1 m²,请你估计这个池塘的面积.
思路引导
将这个池塘的图形近:这个池塘的面积大约是96 m².
图中小方格的边长是1 cm,请你估计涂色部分的面积.
正解: 8×7-3×3 =56-9=47(cm²)
答:涂色部分的面积是47 cm².
错解: 8×7=56(cm²) 答:涂色部分的面积是56 cm².
部编人教版五年级数学上册不规则图形的面积例5

-- 不规则图形的面积例5
学习目标:
1.初步掌握“把不规则地图形 转化为近 似的多边形 来求图形的面积”。 2.用数格子方法 和转化近似的图形求面 积法 估测不规则图形的面积。
不规则图形的面积
2.估计一片树叶面积的大小.
3.估计一片树叶面积的大致范围 4、如何更精确的来估计该怎么办?
教师组织研讨3
方法3: 我是用转化的方法,将叶子的图形近似转化成 长方形,然后求出长方形的面积大约是30cm2,因 此,叶子的面积大约是3则的图形,我们可以怎样 估算它的
面积呢?
1)用数方格的方法估算不规则的图形的面
积。先数出满格的面积,再估出不是满格的面 积,最后再加起来;
方法1: 在叶子上画出所有的方格线; 先数满格的有18格,所以它的面积一定大于18cm2; 再数不是满格的也有18格,把不满一格的都按半格计算 大约有9cm2; 所以:这片叶子的面积大约有: ( )+ ( )=( )cm2。
教师组织研讨2:
方法2:
我是用转化的方法,先将叶子的图形近似 转化成平行四边形,后求出平行四边形的面 积大约是(列式). . . 请问:你还有其它的办法吗?
2)用转化的方法把不规则的图形转化为 学过的图形进行估算。
二、练习
图中每个小方格的面积为1m2, 请你估计这个池塘的面积。
又快又对的奖
三、课堂小结
回顾一下,今天我们是如何 学习求不规则图形面积的,还有 什么问题吗?
四、布置作业
又快又对的奖
作业:第102页练习二十二,
第7题、8,9,第10题。
一、合作探究
1.情境:
图中每个小方格的面积是1cm2 ,请你 估计 这片形状不规则叶子的面积。 问:说一说你观察图后发现了 一些什么情况?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不满格:18
面积范围: 18cm2——36cm2
2个不满格的当做1 个满格: 18÷2=9 18+9=27(cm2) 答:叶子的面积大约是 27cm2。
思——还有其它方法吗?(
转化?图形
)
5×6=30 cm2 6
1cm2
5
还有其它方法吗?(
转化?图形
)
5×6=30 cm2 6
1cm2
5
还有其它方法吗?(
转化?图形
)
6×6=36 cm2 6
1cm2
6
特点梳理
通过刚才的学习,今后我们再遇到不规则的图形,我 们可以怎样估计它的面积呢?
1.通过数方格确定图形面积的范围,然后再 估算图形的面积. 2.把不规则的图形转化为学过的图形进行估算。
如果要想估计得更准呢? 通过数方格的方法,分别数出满格的和不是满格的 面积,最后再加起来。
4 5
3
10 11 12 13 14 13 2 15 16 17 18 14 1
1cm2
18 17 16 15
满格:18
6 7 8 9 10 5 1 2 3 4 11 4 5 6 7 8 9 12 3 10 11 12 13 14 13 2 15 16 17 18 14 1 18 17 16 15
正方形
长方形
平行四边形
梯 形
三角形
它们的面积怎么计算?
长 方 形 的 面 积 = 长 ×宽 正 方 形 的 面 积 = 边长×边长
S=ab S=a2 S=ah S=ah÷2 S=(a+b)h的 面 积 = 底×高÷2
梯 形 的 面 积 = (上底+下底)×高÷2
• 方法二:转化
• 不规则图形的面积可 以转化为学过的图形 来估算。
3
效果梳理
1、基础练习,估计不规则图形的面积范围:选一选
A 5cm2~50cm2
B 12cm2~32cm2
C 32cm2~40cm2
练习: 1.有一块地近似平行四边形,底是43 m, 高是20.1 m。这块地的面积约是多少平方 米?(得数保留整数。)
2 、提高练习,估计更大、更复杂的事物的面积。 图中每个小方格的面积为1m2,请你估计这 个池塘的面积。
3
• 先数整格的,再数不 满整格的,不满整格 的按半格计算。 • 55+36÷2=73(公顷)
• 转化成长方形 • 11×7=77(公顷)
估计一下,左 图中树叶的面 积大约是多少 平方厘米? (每个小方格 表示1平方厘米)
练习 2.图中每个小方格的面积是1 cm2, 计算阴影部分的面积。
3.图中每个小方格的面积为1 m2, 请你估计这个池塘的面积。
这两块地砖的面 正方形地砖 边长是4分米。 积各是多少平方 分米?
左边地砖的面积:
右边地砖的面积:
4×4=16(dm2)
16÷2=8(dm2)
这枚树叶的面积 怎么求呢?
例5:图中每个小方格的面积是1cm2, 请你估计这片叶子的面积。
1cm
6 5
1 6
7 2 7
8
3 8
9 4
9
10 11 12
3.图中每个小方格的面积为1 m2, 请你估计这个池塘的面积。
4.你能像这样估一估手掌的面积吗?
5.图中小方格的边长是1 m,请你估 计涂色部分的面积。
合作探究
1、图中每个小方格的面积是1平方厘米,计算阴影部分的面积。
估计不规则图形的面积
• 方法一:数方格 把不规则图形放在方格纸上 • 先数整格的; • 再数不满整格的,不满整 格的按半格计算。