八年级下册数学直角三角形的性质(一)
湘教版八年级下册数学
一、直角三角形1、直角三角形的性质定理①“直角三角形的两个锐角互余”②“直角三角形斜边上的中线等于斜边的一半”③“在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半”④“直角三角形两直角边a ,b的平方和,等于斜边c的平方。
”【勾股定理】互余:直角三角形中,两个锐角互余。
(两角之和等于90°)互补:两直线平行,同旁内角互补。
(两角之和等于180°)2、直角三角形的判定定理①“有两个角互余的三角形是直角三角形”②“如果三角形的三条边长a ,b ,c满足关系:a²+b²=c²,那么这个三角形是直角三角形”【勾股定理的逆定理】3、直角三角形全等的判定“斜边、直角边定理斜边和一条直角边对应相等的两个直角三角形全等”【简称:斜边、直角边或“HL”】4、两个三角形全等的判定方法:【六种】①平移、旋转②AAS③ASA(两角及其夹边)④SSS (三边)⑤SAS(两边及其夹角)⑥HL(斜边、直角边)5、角平分线的性质①角平分线的性质定理:“角的平分线上的点到角的两边的距离相等”②角平分线的性质定理的逆定理:“角的内部到角的两边距离相等的点在角的平分线上”6、线段垂直平分线:垂直且平分一条直线的线段。
①线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等。
②线段垂直平分线的性质定理的逆定理:到线段两端点距离相等的点在线段的垂直平分线上7、等腰三角形的性质:①等腰三角形是轴对称图形,对称轴是顶角平分线所在的直线。
②等腰三角形底边上的高、中线及顶角平分线重合。
(简称:三线合一)③等腰三角形的两底角相等(简称:等边对等角)8、完全平方式:(a+b)²=a²﹢2ab+b²【(a+b)²=(a+b)╳(a+b)=a╳a+2╳a╳b+b╳b = a²﹢2ab+b²】(a-b)²=a²-2ab+b²平方差公式:a²-b²=(a+b)╳(a-b)二、四边形多边形:在平面内,由一些线段首尾顺次相接组成的封闭图形。
八年级下册数学直角三角形的性质1
直角三角形的性质教学目标:1、掌握直角三角形的两个性质定理,能运用直角三角形有关性质解决简单的数学问题。
2、进一步领会利用添加辅助线的方法来证明有关几何问题。
3、经历探索直角三角形性质的过程,体会研究图形性质的方法。
4、通过图形的变换,引导学生进行类比联想,促进学生的四维想多层次方位发散。
5、在定理证明的过程中,体会交流的重要性,同时共同分享成功的喜悦。
教学要点:1、教学重点:让学生掌握直角三角形的两个性质定理。
DB本课的主要任务是让学生掌握直角三角形的性质定理,尤其是学生经历探索直角三角性质的过程,体会研究图形性质的方法。
新课标的基本理念是以学生发展为本,坚持全体学生的全面发展,关注学生个性的健康发展,所以我积极倡导让学生亲身经历猜想、探究为主的学习活动,培养学生的好奇性和探究欲,使他们学会探究解决问题的策略。
教学设计上,引导学生动眼、动脑、动手、动嘴、主动探索、主动发现,主动获取新的知识,并在学生的自主活动中逐步培养和发展他们的创造能力和良好的个性品质。
直角三角形是人们日常生活中常见的一种几何图形,学生在前一节课已经学习了直角三角形的特殊判定定理,由此引起学生对性质的特殊性思考。
对于性质定理1没有耗费太多的时间,由学生通过算一算直接得到。
练习中的找一找让学生对于等腰直角三角形这一特殊情况引起大胆的猜想,借助几何画板去伪存真,得出直角三角形的中线性质。
在这一过程中,让学生逐步体会从特殊到一般的研究问题的策略。
接着就是命题的证明过程,对于证明思路的分析事先做好充分的准备,抓住中线的特点,运用几何画板演示旋转过程,引导学生得出辅助线的添加方法,再有学生独立完成证明过程。
例题的选择上也源于教材,旨在让学生抓住图形的特点学会运用性质解决几何图形。
整个课堂设计,通过“算一算”、“找一找”、“想一想”、“猜一猜”、“证一证”、“练一练”、“变一变”等一系列活动的参与,让学生去想,去说,去做,去表达,去体会成功的喜悦。
八年级下册数学直角三角形
八年级下册数学直角三角形一、直角三角形的定义与性质。
1. 定义。
- 有一个角为90°的三角形叫做直角三角形。
直角所对的边称为斜边,另外两条边称为直角边。
2. 性质。
- 直角三角形的两个锐角互余。
即若ABC中,∠ C = 90^∘,则∠ A+∠ B = 90^∘。
- 勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方,即a^2+b^2=c^2。
例如,一个直角三角形的两条直角边分别为3和4,那么斜边c=√(3^2) + 4^{2}=√(9 + 16)=√(25) = 5。
- 在直角三角形中,30^∘角所对的直角边等于斜边的一半。
例如,在ABC 中,∠ C = 90^∘,∠ A=30^∘,设斜边AB = c,则BC=(1)/(2)c。
- 直角三角形斜边上的中线等于斜边的一半。
如在ABC中,∠ C = 90^∘,D 为AB中点,则CD=(1)/(2)AB。
二、直角三角形的判定。
1. 定义判定。
- 直接看三角形中是否有一个角为90^∘,如果有,则这个三角形是直角三角形。
2. 勾股定理的逆定理。
- 如果三角形的三边长a、b、c满足a^2+b^2=c^2,那么这个三角形是直角三角形。
例如,三角形三边分别为5、12、13,因为5^2+12^2=25 + 144=169 = 13^2,所以这个三角形是直角三角形。
3. 一个三角形,如果一条边上的中线等于这条边的一半,那么这个三角形是直角三角形。
- 例如,在ABC中,D为AB中点,CD=(1)/(2)AB,则∠ ACB = 90^∘。
三、直角三角形全等的判定(HL定理)1. HL定理内容。
- 斜边和一条直角边对应相等的两个直角三角形全等(简写成“斜边、直角边”或“HL”)。
2. 应用示例。
- 已知ABC和DEF都是直角三角形,∠ C=∠ F = 90^∘,AB = DE,AC = DF,根据HL定理,可以得出ABC≅ DEF。
四、解直角三角形。
1. 概念。
北师大版八年级数学下册课件.1直角三角形的性质与判定课件
1.2 直角三角形
第1课时 直角三角形的性质与判定
教学目标
1.了解直角三角形两锐角互余及互逆命题的转化 2.运用勾股定理逆定理判定直角三角形
重难点
1.熟练掌握勾股定理逆定理的证明方法 2.互逆命题的真假性判定
提出问题,导入新课
问题1 直角三角形的定义是什么? 有一个是直角的三角形叫直角三角形.
归纳新知
勾股定理:直角三角形两条直角边的平方和等于 斜边的平方.
定理:如果一个三角形两边的平方和等于第三边 的平方,那么这个三角形是直角三角形.
条件和结论互换
上面两个定理的条件和结论有什么关系吗? 与同伴交流.
探求新知
再视察下面三组命题:
如果两个角是对顶角,那么它们相等; 如果两个角相等,那么它们是对顶角.
知识回顾
勾股定理:直角三角形两条直角边的平方和等于斜边的 平方. 即 a2 + b2 = c2. 勾股定理在西方文献中又称为毕达 哥拉斯定理.
a
c
b
勾
弦
股
提出问题 探求新知
勾股定理是一个真命题,那么把这个命题的条件和结论颠 倒过来,形成一个新的命题:
如果一个三角形两边的平方和等于第三边的平方,那么这 个三角形是直角三角形.
解:(1)多边形是四边形.原命题是真,逆 命题是假.(2)同旁内角互补,两直线平行.原 命题是真,逆命题是真.(3)如果那么 a = 0, b = 0,那么 ab = 0.原命题是假,逆命题是真.
课堂小结
角的性质
直角三 角形
边的性质
定理1:直角三角形的两 个锐角互余 定理2:有两个角互余的 三角形是直角三角形
如果小明患了肺炎,那么他一定会发烧; 如果小明发烧,那么他一定患了肺炎.
湘教版数学八年级下册1.1直角三角形的性质和判定(一)课件
Байду номын сангаас.直角三角形的性质定理:
在直角三角形中,斜边上的中线等于斜边 的一半。 8.结合右边图形用数学符号表示直角三角形 的性质定理:
在RtABC中, ACB 900,CD是斜边AB上的中线,则有
CD
AB
或CD BD AD.
9.应用直角三角形性质定理的前提条件 是:在直角三角形中
10.教材中证明直角三角形性质定理的 方法称为: 同一法
再见
若A 400 ,则B
,
ACD
, BCD
.
6. 如右图所示,CD是RtABC斜边AB上的中线, 请用刻 度尺度量并比较CD, AB, AD, BD的长度.
CD 2.1 cm; AD 2.1 cm; BD 2.1 cm; AB 4.2 cm
CD AB.
根据刚才的探究, 你有什么发现?
合作探究一
1.如果三角形一边上的中线等于这条边的一半 求证:这个三角形是直角三角形. 已知: 如图,CD是ABC的AB边上的中线,
且CD 1 AB. 2
求证: ABC是直角三角形.
已知: 如图,CD是ABC的AB边上的中线,
且CD 1 AB. 2
求证: ABC是直角三角形.
合作探究二
2.如图, AB // CD, BAC和ACD的平分线相交于H点, E为AC的中点, 那么:
1 2, 3
4
1 2 3 4
则 1 3
AHC是 直角三角形 ( 有两个角) 互余的三角
若EH 3, 那么AC 6 形是直角三角形
在直角三角形中,斜边上的中
线等于(斜边的一半
)
课堂小结
本堂课我自己学会了: 同学 帮助我学会了: 我帮助同学学会了:
八年级下册数学直角三角形性质(1)
3 、 如 图 , 在 Rt △ ABC 中 , ∠ ACB=90 , CD 是 斜 边 AB 上 的 高 , 那 么 , 与 ∠ B 互 余 的 角 有 有 , 与∠ A 互 余 的 角 有 ,∠A 相等的角有 , 与 ∠ B 相等 的 角 .
C
二、合作与探究
(一)研究直角三角形性质定理 1 如图:∠A 与∠B 有何关系?为什么?
A
A
D
B
4、在△ABC 中, ∠ACB=90 °,CE 是 AB 边上的中线,那么与 CE 相等的线段有_________, 归纳小结:定理 1:直角三角形的两个锐角 (二)研究直角三角形性质定理 2 1、实验操作: 要学生拿出事先画好的直角三角形 (l)量一量斜边 AB 的长度 (3)画出斜边上的中线 (2)找到斜边的中点,用字母 D 表示 (4)量一量斜边上的中线的长度 与∠A 相等的角有_________,若∠A=35°,那么∠ECB= _________. 5、在直角三角形中,斜边及其中线之和为 6,那么该三角形的斜边长为________. 6、已知:∠ABC=∠ADC=90 °,E 是 AC 中点。求证: (1)ED=EB (2)∠EBD=∠EDB (3)图中有哪些等腰三角形?
D
C 三、应用与巩固
1、 在直角三角形中,有一个锐角为 52 ,那么另一个锐角度数为 2、 在 Rt△ABC 中,∠C=90 ,∠A -∠B =30 ,那么∠A=
0 0 0 0
B
; ,∠B= ;
教学过程: 一 、预习与交流
复习提问: (1)什么叫直角三角形? (2 (2)直角三角形是一类特殊的三角形,除了具备三角形的性质外,还具备哪些性质?
C
B
让学生猜想斜边上的中线与斜边长度之间有何关系?
八年级数学下册 随堂训练 1.1 直角三角形的性质和判定(I)(第1课时)课件 (新版)湘教版
B.∠A∶∠B∶∠C=1∶2∶3
C.∠A-∠B=90°
D.∠A=51∠B=16∠C
直角三角形斜边上的中线等于斜边的一半 8.如图,公路 AC、BC 互相垂直,公路 AB 的中点 M 与点 C 被湖隔开,若 测得 AM 的长为 1.2km,则 M、C 两点间的距离为( D )
A.0.5km
B.0.6km
A.8
B.9.5
C.11
D.14
4.如图,在△ABC 中,∠A=90°,点 D 在 AC 边上,DE∥BC.若∠1=155°, 则∠B 的度数为 65° .
5.如图,在△ABC 中,AB=AC=6,AD 是底边上的高,E 为 AC 中点,则 DE= 3 .
6.如图,AD∥BC,∠DAB 和∠ABC 的平分线相交于 CD 边上的一点 E,F 为 AB 边的中点.求证:EF=21AB.
7.如图,四边形 ABCD 中,∠BAD=∠BCD=90°,点 M 为 BD 的中点, 点 N 为 AC 的中点.MN 与 AC 的位置关系如何?证明你的猜想.
解:MN⊥AC.证明:连接 AM、CM,∵∠BAD=90°,点 M 为 BD 中点,∴ AM=21BD.同理:CM=12BD,∴AM=CM.∵点 N 为 AC 中点,∴MN⊥AC.
l2 上,∠ACB=90°,若∠1=15°,则∠2 的度数是( B )
A.35°
B.30°
C.25°
D.20°
2.已知:在 Rt△ABC 中,∠C=90°,∠A-∠B=20°,则∠A= 55° , ∠B= 35° .
3.如图,在△ABC 中,∠ACB=90°,CD⊥AB 于 D,那么与∠A 互余的角 有 ∠ACD、∠B ;与∠A 相等的角有 ∠BCD .
C.0.9km
八年级下册数学直角三角形的性质和判定(1)
教学过程:
共案
个案
(一)知识回顾:
1.在前面我们学习了三角形的哪些概念及性质?
2.三角形按角可分哪几类?什么叫做直角三角形?
3.直角三角形的性质:
课练(一):1.△ABC中,∠A:∠B:∠C=1:2:3,则△ABC是__________三角形。
2.已知△ABC中,∠A=∠B,∠B=∠C,则∠A=________,∠B=_______,∠C=________。
②上述条件拼成的图形有什么特点?仔细观察,回答下面问题:
1.图中有哪些相等线段?
2.点D具备什么特征?
线段CD是△ABC的什么线?
△ABC中AB的中线CD与AB有什么数量关系?
3.△ABC是什么样的三角形?为什么?
结论:
性质定理:直角三角形斜边上的中线等于斜边的一半。
判定定理:如果三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形。
∠C=_________。
3.动手操作及探究:
操作:①画一个Rt△ABC;②找到斜边AB的中点D;③连接CD(CD就是Rt△ABC斜边
上的中线。)④量一量DA、DB、DC的长度,你发现什么结论?
猜想:斜边上的中线与斜边的长度有何关系?怎么证明?
探究:①用两个腰相等,且顶角互补的等腰三角形能拼成一个三角形吗?
课练(三):1.Rt△ABC中,∠C=90°,O为AB的中点,若OC=5则AB=若AB=18,则OC=若AB+OC=18,则AB=OC=.
2.在△ABC中,CE是AB边上的中线,且CE=AE,则△ABC是_________三角形,若∠CEA=80°,则∠B=_________,
∠A=_________。
(2)Rt△ABC中,∠C=90°,∠B=28°,则∠A=_________
八年级数学 第1章 直角三角形 1.1 直角三角形的性质与判定(ⅰ)(第1课时)
∠A=90°-∠B,
④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有
_____①__②__③__(填序号).
世纪金榜导学号
第十七页,共三十四页。
知识点二 直角三角形斜边上中线(zhōngxiàn)的性质 (P3探究拓展)
第十八页,共三十四页。
【典例2】 如图,△ABD是以BD为斜边的等腰直 角三角形,△BCD中,∠DBC=90°, ∠BCD=60°,DC中点为E,AD与BE的延长线交于点F,求∠AFB 度数(dù shu). 世纪金榜导学号
)
C
A.75° B.65° C.55° D.45°
第七页,共三十四页。
2.具备下列条件(tiáojiàn)的△ABC中,不是直角三角形的是 ( D) A.∠A+∠B=∠C
B.∠A-∠B=∠C
第八页,共三十四页。
C.∠A∶∠B∶∠C=1∶2∶3 D.∠A=∠B=3∠C
第九页,共三十四页。
3.(2019·睢宁县期中(qī zhōnɡ))已知一个直角三角形的斜边长 为12,则其斜边上的中线长为_____6_.
第十页,共三十四页。
知识点一直角三角形两锐角(ruìjiǎo)的关系及应用 (P2议一议拓展)
第十一页,共三十四页。
【典例1】如图,在△ABC中, ∠ACB=90°,CD是高. (1)图中有几个直角三角形?是哪几个? (2)∠1和∠A有什么(shén me)关系?∠2和∠A呢?还有哪些
锐角相等?
第二十五页,共三十四页。
【火眼金睛】 如图,△ABC为等腰直角三角形,AD为斜边BC上的高,E,F分 别(fēnbié)为AB和AC的中点,试判断DE和DF的关系.
第二十六页,共三十四页。
第二十七页,共三十四页。
湘教版八年级下册数学教案:1.1直角三角形性质和判定(I)
课题直角三角形性质和判定(1)课时安排2课时教学目标1、了解直角三角形定义,掌握符号语言表示法。
2、探讨直角三角形性质,掌握“两锐角互余”和“斜边上中线等于斜边一半”的性质。
3、能用“有两个角互余的三角形是直角三角形”判定直角三角形。
4、培养逆向思维。
重点直角三角形性质和判定的探索、理解和应用。
难点直角三角形性质“斜边上中线等于斜边一半”的理解和应用。
教学过程复习导入出示问题:①三角形有怎样的性质?(边、角)②直角三角形ABC,角C为90度,用符号语言表述是怎样?学生回答,全班交流。
引入课题:直角三角形性质和判定(1)。
自学指导提出问题,学生带着问题自学教材P2~P3内容:1、直角三角形的角有怎样的性质?2、直角三角形的斜边上中线有怎样的性质?3、用角判定直角三角形的方法是什么?完成学法P1“课前预习”1、⑴;2、⑴⑵。
合作交流讲述:1、直角三角形性质:角的性质:“直角三角形两锐角互余”。
斜边上中线性质:“直角三角形斜边上中线等于斜边一半”。
2、直角三角形判定:“有两个角互余的三角形是直角三角形”注意:数学语言的表述(图形语言和符号语言)。
应用:教材P4 例1(直角三角形的判定定理)。
学法P1 例2(直角三角形斜边上中线性质应用)注意:语言的规范,格式的统一。
练习:教材P4“练习”T1、T2(学生板演)。
小结归纳1、直角三角的性质。
2、直角三角形的判定。
3、注意事项。
4、数学思想。
作业布置必做:教材习题1.1A组P7 T1;T2。
选做:学法P1 “课堂探究”:探究一、变式1和探究二、变式2。
板书设计反思回顾直角三角形(1)课件展示1、角的性质2、斜边中线3、符号语言应用:例1例2学生板演课题直角三角形性质和判定(2)课时安排2课时教学目标1、掌握“直角三角形中若一锐角为30度,则其所对直角边等于斜边一半”和“直角三角形中一直角边等于斜边一半,则其所对叫为30度”的性质。
2、能用“有两个角互余的三角形是直角三角形”判定直角三角形。
湘教版八年级数学下册1.1直角三角形的性质和判定(Ⅰ)课件(共23张)
1.1 直角三角形的性质和判定(Ⅰ)
锦囊妙计
求直角三角形面积的常用 方法 (1)两直角边长度乘积的一半; (2)斜边长度与斜边上高的乘积的一半.
1.1 直角三角形的性质和判定(Ⅰ)
题型四 运用直角三角形中30°角的性质进行有关计算
例题4 如图 1- 1- 18 , 在 R t △ A B C 中 , ∠C=90°, ∠A=30°, BT是
第1章 直角三角形
1.1 直角三角形的性质和判定(Ⅰ)
第1章 直角三角形
1.1 直角三角形的性质 和判定(Ⅰ)
考场对接
1.1 直角三角形的性质和判定(Ⅰ)
考场对接
题型一 利用直角三角形两锐角之间的关系பைடு நூலகம்角度
例题1 如图1-1-14, 在 Rt△ABC中, ∠ACB=90°, CD是 AB边上的
高, 如果∠A=50°, 则 ∠DCB的度数为( ). A
A.50°
B.45°
C.40°
D.25°
图1-1-14
1.1 直角三角形的性质和判定(Ⅰ)
1.1 直角三角形的性质和判定(Ⅰ)
锦囊妙计
直角三角形中的经典图形
在直角三角形中, 斜边上的高分直角所得的 两个锐角与原
直角三角形的两个锐角之间存在 相等或互余的关系, 这是一个常
见的基本图形, 在 解题中应用广泛. 如图1-1-15, ∵∠B+∠A=90°,
例题3 如图1-1-17所示, 在Rt△ABC中, ∠ACB=90°, CD⊥AB 于点D, CE为斜边AB 上的中线, 且CD=4, CE=5, 求Rt△ABC的 面积.
图1-1-17
1.1 直角三角形的性质和判定(Ⅰ)
1.1 直角三角形的性质和判定(Ⅰ)
八年级数学直角三角形(教师讲义带答案)
直角三角形一、直角三角形的性质重点:直角三角形的性质定理及其推论:①直角三角形的性质,在直角三角形中,斜边上的中线等于斜边的一半;②推论:(1)在直角三角形中,如果一个锐角等于30°,则它所对的直角边等于斜边的一半;(2)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角为30°.难点:1.性质定理的证明方法.2.性质定理及其推论在解题中的应用.二、直角三角形全等的判断重点:掌握直角三角形全等的判定定理:斜边、直角边公理:斜边和一条直角边对应相等的两个直角三角形全等(HL)难点:创建全等条件与三角形中各定理联系解综合问题。
三、角平分线的性质定理1.角平分线的性质定理:角平分线上的点到这个角的两边的距离相等.定理的数学表示:如图4,∵ OE是∠AOB的平分线,F是OE上一点,且CF⊥OA于点C,DF⊥OB于点D,∴ CF=DF.定理的作用:①证明两条线段相等;②用于几何作图问题;角是一个轴对称图形,它的对称轴是角平分线所在的直线.2.关于三角形三条角平分线的定理:(1)关于三角形三条角平分线交点的定理:三角形三条角平分线相交于一点,并且这一点到三边的距离相等.定理的数学表示:如图6,如果AP、BQ、CR分别是△ABC的内角∠BAC、∠ ABC、∠ACB的平分线,那么:① AP、BQ、CR相交于一点I;②若ID、IE、IF分别垂直于BC、CA、AB于点D、E、F,则DI=EI=FI.定理的作用:①用于证明三角形内的线段相等;②用于实际中的几何作图问题.(2)三角形三条角平分线的交点位置与三角形形状的关系:三角形三个内角角平分线的交点一定在三角形的内部.这个交点叫做三角形的内心(即内切圆的圆心).3.关于线段的垂直平分线和角平分线的作图:(1)会作已知线段的垂直平分线;(2)会作已知角的角平分线;(3)会作与线段垂直平分线和角平分线有关的简单综合问题的图形.图4四、勾股定理的证明及应用1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则c,b,a ②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数:cbaHG F EDCBAbacbac cabcab a bcc baE D CBA221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解. 8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.常见图形:ABC30°D C BA ADB C10、互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。
湘教版八年级数学下册_1.1 直角三角形的性质和判定(Ⅰ)
感悟新知
知1-练
解题秘方:利用直角三角形的性质与判定证明即可 .
证明: ∵∠ ACB=90°,∴∠ A+ ∠ B=90° . ∵∠ ACD= ∠ B,∴∠ A+ ∠ ACD=90° . ∴△ ACD 为直角三角形,且∠ CDA=90° . ∴ CD ⊥ AB.
感悟新知
拓展 满足下列条件的三角形也是直角三角形: (1)在三角形中,两个内 角之和等于第三个内角; (2)在三角形中,两个内角之差等于第三个内角.
知2-讲
感悟新知
特别提醒
知2-讲
◆直角三角形斜边上的中线把直角三角形分成两个
面积相等的等腰三角形.
◆应用这个性质时要注意“直角三角形” 这一前提,
切不可忽略这一前提而在其他任意三角形中生搬
硬套 .
感悟新知
知2-讲
2. 拓展:如果三角形一边上的中线等于这条边的一半,那么 这个三角形是直角三角形 . 数学语言: 如图 1.1-5,在△ ABC 中,
∵ CD=BD=AD=12 AB, ∴∠ ACB=90°,即△ ABC 是直角三角形 .
感悟新知
知2-练
例4 如图 1.1-6, BD, CE 是△ ABC 的两条高, M, N 分别是 BC, DE 的中点 . 求证: MN ⊥ DE.
感悟新知
知2-练
解题秘方:紧扣“N 为 DE 的中点”这一条件和 “MN ⊥ DE”这一结论,建立等腰三 角形“三线合一”模型, 结合直角三 角形斜边上中线的性质求解 .
在 Rt △ CDB 中,∵ M 为斜边 BC 的中点,
∴
DM=
1 2
BC.
在
Rt
△
BEC
中,∵
M
初中数学八年级下册第1章直角三角形1.1直角三角形的性质和判定Ⅰ
1.1.1 直角三角形的性质教学目标知识与技能:1.理解并掌握直角三角形的判定定理和斜边上的中线性质定理。
2.能运用直角三角形的判定与性质,解决有关的问题。
过程与方法:通过对几何问题的“操作—探究—讨论—交流—讲评”的学习过程,提高分析问题和解决问题的能力。
情感、态度与价值观:感受数学活动中的多向思维、合作交流的价值,主动参与数学思维与交流活动。
教学重点:直角三角形斜边上的中线性质定理的推导与运用。
教学难点:“操作—探究—讨论—交流—讲评”得出直角三角形斜边上的中线性质定理。
教学过程一、教学引入1、三角形的内角和是多少度。
学生回答。
2、什么是直角三角形?日常生活中有哪些物品与直角三角形有关?请举例说明。
3、 等腰三角形有哪些性质?二、探究新知1、探究直角三角形的判定定理:⑴ 观察小黑板上的三角形,由∠A +∠B 的度数,能说明什么?——两个锐角互余的三角形是直角三角形。
⑵ 讨论:直角三角形的性质和判定定理是什么关系?2、探究直角三角形的性质:⑴ 学生画出直角三角形ABC 斜边的中线CD 。
⑵ 测量并讨论斜边上的中线的长度与斜边长度之间的关系。
⑶ 学生猜想:在直角三角形中斜边上的中线等于斜边的一半。
3、 共同探究:例 已知:在Rt △ABC 中,∠ACB =90°,CD 是斜边AB 上的中线。
求证:CD =12AB 。
[教师引导:数学方法——倒推法、辅助线]三、应用迁移 巩固提高练习:如果三角形一边上的中线等于这条边的一半,求证:这个三角形是直角三角形。
即已知CD 是△ABC 的AB 边上的中线,且CD =12AB 。
求证:△ABC 是直角三角形。
提示:倒推法,要证明△ABC 是直角三角形,只有通过定义和判定定理,定义与判定定理都与角有关系。
现在我们只有边的关系,我们学过的边与角能联系起来的就是等腰三角形。
还要找到与90°有关的角,但是我们只知道三角形的内角和为180°。
湘教版八年级数学下册第一章《 直角三角形的性质和判定(Ι)》公开课课件
解 轮船在航行过程中, 如果与A岛的距离始终大于20海里, 则轮船就不会触暗礁.
在图1-8中,过A点作AD⊥OB,垂足为D.
在Rt△AOD中,
AO=30 3海里,∠AOD=30°.
于是AD =
1 2
A
O
北
= 1230 3
≈ 25.98( 海里 ) .
60°
>20(海里)
所以轮船不会触礁.
30 3
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/7/302021/7/302021/7/302021/7/307/30/2021
• 14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年7月30日星期五2021/7/302021/7/302021/7/30
图1-5
证明:因 所为 以C ∠D 1= ∠1 2AA ,B = (等B D 边= 对A 等D ,角)
∠2=∠B .
根据三角形内角和性质,有
∠A+∠B+∠ACB =180°,
即得∠A+∠B+∠1+∠2=180°,
2(∠A+∠B)=180°.
图1-5
所以
∠A+∠B =90°.
根据直角三角形判定定理,所以△ABC是直角三角形.
练习
1.在Rt△ABC中,斜边上的中线CD=2.5cm ,则斜边 AB的长是多少?
解 AB=2CD=2×2.5=5(cm).
2.如图,AB∥CD,∠BAC和∠ACD的平分线相交于H 点,E为AC的中点,EH=2. 那么△AHC是直角三角 形吗?为什么?若是,求出AC的长.
八年级下册数学复习专题
八年级下册数学复习专题八年级下册数学复资料第一章直角三角形1、直角三角形的性质:①直角三角形的两锐角互余。
②直角三角形斜边上的中线等于斜边上的一半。
例如,在直角三角形ABC中,CD是斜边AB的中线,因此CD等于AB的一半。
③在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
例如,在直角三角形ABC中,如果∠A=30°,那么BC等于AB的一半。
例如,在Rt△ABC中,∠C=90°,∠A=30°,则正确的结论是AC²+BC²=AB²。
④在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。
例如,在直角三角形ABC 中,如果BC等于AB的一半,那么∠A=30°。
例如,如果等腰三角形一腰上的高等于腰长的一半,那么顶角的度数是60°。
⑤勾股定理及其逆定理1)勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方,即a²+b²=c²。
求斜边的长度,可以用c=√(a²+b²);求直角边的长度,可以用a=√(c²-b²)或b=√(c²-a²)。
例如,在图中的拉线电线杆示意图中,已知CD⊥AB,∠CAD=60°,那么拉线AC的长度是6m。
例如,如果一个直角三角形的两边长分别为6和10,那么这个三角形的第三条边长是√136.2)逆定理:如果三角形的三边长a、b、c有关系,那么这个三角形是直角三角形。
可以分别计算“a²+b²”和“c²”,如果相等就是直角三角形,不相等就不是直角三角形。
例如,在Rt△ABC中,如果AC=2,BC=7,AB=3,那么正确的结论是∠C=90°。
例如,如果一块木板如图所示,已知AB=4,BC=3,DC=12,AD=13,∠B=90°,那么这块木板的面积是18.例如,某校把一块形状为直角三角形的废地开辟为生物园,如图所示,∠ACB=90°,AC=80米,BC=60米,若线段CD是一条小渠,且D点在边AB上,已知水渠的造价为10元/米,问D点在距A点多远处时,水渠的造价最低?最低造价是多少?直角三角形性质及勾股定理的应用常见于各种图形中。
八年级 下册 数学 PPT课件 精品课件 第一章 三角形的证明 直角三角形(一)
范例讲解 例2、写出命题“如果两个有理数相等,那么它 们的平方相等”的逆命题,这两个命题都是真命 题吗? 解:其逆命题为“如果两个有理数的平方相等,
那么这两个有理数也相等” 原命题是真命题,而逆命题是假命题 训练题:写出下列命题的逆命题,并判断它们是真 命题还是假命题。 (1)两直线平行,同旁内角相等。 (2)如果a是偶数,b是偶数,那么a+b是偶数。 (3)在直角三角形中,如果一个锐角等于30˚,那 么它所对的直角边等于斜边的一半。 (4)等腰三角形的两腰相等。
∴这个三角形不是直角三角形
∴没有与60m长的南北边线垂直的边线
∴没有一条边线为东西向
ⅳ、观察下面两个命题:
直角三角形两条直角边的平方和等于斜边的 平方。
如果一个三角形两边的平方和等于第三边的 平方,那么这个三角形是直角三角形。
它们的条件和结论之间有什么关系?
合作交流 ⅴ、观察下面三组命题:
如果两个角是对顶角,那么它们相等, 如果两个角相等,那么它们是对顶角; 如果小明患了肺炎,那么他一定发烧, 如果小明发烧,那么他一定患了肺炎;
说出下列命题的逆命题,并判断每对命题的真假:
(1)四边形是多边形; (2)两直线平行,同旁内角互补; (3)如果ab=0,那么a=0 b=0
解:(1)多边形是四边形.原命题是真命题, 而逆命题是假命题.
(2)同旁内角互补,两直线平行. 原命题与逆命题同为真命题.
(3)如果a=0,b=0,那么ab=0. 原命题是假命题,而逆命题
是真命题.
1.(钦州·中考)如图是一张直角三角形的纸片, 两直角边AC=6 cm,BC=8 cm,现将△ABC折叠, 使点B与点A重合,折痕为DE,则BE的长为( ) (A)4 cm (B)5 cm
北师版八年级数学下册 1.1 第1课时 直角三角形的性质和判定
∵∠AOB=∠COD,
∴∠A=∠C.
与图有哪 些共同点与 不同点?
B o
D
C 图
例2 如图, ∠C=∠D=90 °,AD,BC相交于点E. ∠CAE与∠DBE有什么关系?为什么?
解:在Rt△ACE中, ∠CAE=90 °- ∠AEC. 在Rt△BDE中,
∠DBE=90 °- ∠BED. A ∵ ∠AEC= ∠BED,
∠A .
2
由此受到启发,在图1-4 的Rt△ABC中,过直
角顶点C作射线CD交AB于D,使 ∠DCA= ∠A ,
则 CD= AD.
图1-3
图1-4
又∵ ∠A +∠B=90° ,DCA+DCB 90 ,
∴ BDCB. ∴ CD= BD.
故得
CD=
AD=
BD=
∴ ∠CAE= ∠DBE.
C E
D
B
【变式题】如图,△ABC中,CD⊥AB于D,BE⊥AC 于E,CD,BE相交于点F,∠A与∠BFC又有什么关 系?为什么? 解:∵CD⊥AB于点D,BE⊥AC于点E,
∴∠BEA=∠BDF=90°, ∴∠ABE+∠A=90°, ∠ABE+∠DFB=90°. ∴∠A=∠DFB. ∵∠DFB+∠BFC=180°, ∴∠A+∠BFC=180°.
问题: 如图,画一个Rt△ABC, 并作出斜边AB上 的中线CD,比较线段CD 与线段AB 之间的数量关 系,你能得出什么结论?
线段CD 比线段 AB短.
我测量后发现
1
CD = 2 AB.
试给出 数学证
明.
猜想:直角三角形斜边上的中线等于斜边的一半.
证一证
如图1-3, 如果中线CD = 1 AB,则有∠DCA =
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题 第一章 直角三角形 直角三角形的性质与判定I (一)
本课(章节)需 10 课时 ,本节课为第1课时,为本学期总第1课时
教学目标 知识与技能:1、体验直角三角形应用的广泛性,理解直角三角形的定义,进一步认识直角三角形;2、学会用符号和字母表示直角三角形;3、经历“直角三角形两个锐角互余”的探讨,掌握直角三角形两个锐角互余的性质;4、会用“两个锐角互余的三角形是直角三角形”这个判定方法判定直角三角形;5、理解和掌握直角三角形性质“斜边上的中线等于斜边的一半。
过程与方法:通过动手,猜想发现直角三角形的性质,引导逆向思维,探索性质的推导方法——同一法。
情感态度与价值观:体会从“一般到特殊”的思维方法和“逆向思维”方法,培养逆向思维能力。
重点 直角三角形性质和判定的探索及运用 难点 直角三角形性质“斜边上的中线等于斜边的一半”的判定探索过程
教学方法 课型
教具
教学过程: 一 、创设情境,导入新课
1、什么叫直角三角形? 从定义可以知道直角三角形具有一个角是直角的性质,要判断一个
三角形是直角三角形需要判断这个三角形中有一个角是直角。
直角三角
形除了有一个角是直角这条性质外还有没有别的性质呢?判断一个三
角形是直角三角形除了判断一个角是直角还有没有别的方法呢?这节
课我们来探究这些问题。
二 、合作交流,探究新知
1、直角三角形两锐角互余
动脑筋:如图,在Rt △ABC 中,两锐角的和 ∠A+∠B=______.为什么?
直角三角形两锐角互余
试试看:(1) 如图:在△ABC 中,∠ACB=90°,CD ⊥AB 于点D ,若∠A=40°,
则∠BCD=_____. [来源:]
(2 )在△ABC 中,∠B=50°高AD 、CE 交于H ,则∠AHC=____
2、利用两锐角互余判断三角形是直角三角形。
动脑筋:如图,在△ABC 中,如果∠A+∠B=90°,那么△ABC 是直个案修改
H B
A j H E D C
B A D
C B A
C
B A
C B A
角三角形吗?为什么?
定理:有两个角互余的三角形是直角三角形。
试试看:如图,AB ∥CD ,∠A 和∠C 的平分线
相交于H 点,那么△AHC 是直角三角形吗?
为什么?
]3、直角三角形斜边上的中线等于斜边的一半的探索过程
(1)按要求作图:画一个直角三角形,并作出
斜边上的中线,
(2)量一量各线段的长度。
(3)猜想:你能猜想出什么结论?
直角三角形斜边上的中线等于斜边的一半。
(4)寻找理论依据:
A 、你能用符号表示上面问题中的条件和结论吗?
已知:Rt △ABC 中,∠C=90°,CD 是中线,问:CD=
12AB 吗?: B 、分析:直接证明很困难,不妨假设CD=
12AB,那么,∠A=∠ACD,因此,考虑作射线C 'D ,使∠A=∠AC 'D ,看看C 'D 有什么特点?
引导学生得出C 'D =A 'D =B 'D =
12AB, C 、比较CD 和C 'D 的位置有什么关系?为什么?
CD 和C 'D 都是Rt △ABC 斜边上的中线,
D .直角三角形斜边上有几条中线?由此你想到什么?
CD 和C 'D 重合。
因此CD=12
AB, (5)归纳:直角三角形斜边上的中线等于斜边的一半。
4 变式训练
例1 如果三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形吗?为什么?(交流讨论)
归纳:若三角形一条边上的中线等于这条边长的一半,那么这个三角形是直角三角形。
三、课堂练习,巩固提高
1、只给你一个圆规和一把直尺,你能
画出一个直角三角形吗? 2、教材P4 练习 1、2
四、反思小结,拓展提高
今天我们学习哪些内容?
(1)直角三角形的性质:①两锐角互余,②斜边上的中线等于斜边的一半。
(2)直角三角形的判定方法:
1、有一个角是直角的三角形是直角三角形;
O C B A
2、两个锐角互余的三角形是直角三角形
3、一条边上的中线等于这条边的一半,这个三角形是直角三角形。
五、作业
教材P7 A组 1、2题。