高中物理弹簧专题典型例题
高中物理“轻弹簧”类问题汇总解析
高中物理“轻弹簧”类问题汇总解析一、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型.由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大.故轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.弹簧一端受力为F ,另一端受力一定也为F ,若是弹簧秤,则弹簧秤示数为F . 【例1】如图3-7-1所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能忽略,弹簧及挂钩质量不计,施加弹簧上水平方向的力1F 和称外壳上的力2F ,且12F F >,则弹簧秤沿水平方向的加速度为 ,弹簧秤的读数为 .【解析】 以整个弹簧秤为研究对象,利用牛顿运动定律得: 12F F ma -=,即12F F a m-=仅以轻质弹簧为研究对象,则弹簧两端的受力都1F ,所以弹簧秤的读数为1F .说明:2F 作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的. 【答案】12F F a m-=1F 二、质量不可忽略的弹簧【例2】如图3-7-2所示,一质量为M 、长为L 的均质弹簧平放在光滑的水平面,在弹簧右端施加一水平力F 使弹簧向右做加速运动.试分析弹簧上各部分的受力情况.【解析】 弹簧在水平力作用下向右加速运动,据牛顿第二定律得其加速度Fa M=,取弹簧左部任意长度x 为研究对象,设其质量为m 得弹簧上的弹力为:x x F x T ma M F L M L=== 【答案】x x T F L=三、弹簧的弹力不能突变(弹簧弹力瞬时)问题弹簧(尤其是软质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变. 即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变. 【例3】如图3-7-3所示,木块A 与B 用轻弹簧相连,竖直放在木块C 上,三者静置于地面,A B C 、、的质量之比是1:2:3.设所有接触面都光滑,当沿水平方向迅速抽出木块C 的瞬时,木块A 和B 的加速度分别是A a = 与B a = 【解析】由题意可设A B C 、、的质量分别为23m m m 、、,以木块A 为研究对象,抽出木块C 前,木块A 受到重力和弹力一对平衡力,抽出木块C 的瞬时,木块A 受到重力和弹力的大小和方向均不变,故木块A 的瞬时加速度为0.以木块A B 、为研究对象,由平衡条件可知,木块C 对木块B 的作用力3CB F mg =.以木块B 为研究对象,木块B 受到重力、弹力和CB F 三力平衡,抽出木块C 的瞬时,木块B 受到重力和弹力的大小和方向均不变,CB F 瞬时变为0,故木块C 的瞬时合外力为3mg ,竖直向下,瞬时加速度为1.5g . 【答案】0说明:区别于不可伸长的轻质绳中张力瞬间可以突变.【例4】如图3-7-4所示,质量为m 的小球用水平弹簧连接,并用倾角为030的光滑木板AB 托住,使小球恰好处于静止状态.当AB图 3-7-2图 3-7-1 图 3-7-3突然向下撤离的瞬间,小球的加速度为 ( ) A.0B.大小为233g ,方向竖直向下 C.大小为233g ,方向垂直于木板向下D. 大小为233g , 方向水平向右【解析】 末撤离木板前,小球受重力G 、弹簧拉力F 、木板支持力N F 作用而平衡,如图3-7-5所示,有cos N mgF θ=. 撤离木板的瞬间,重力G 和弹力F 保持不变(弹簧弹力不能突变),而木板支持力N F 立即消失,小球所受G 和F 的合力大小等于撤之前的N F (三力平衡),方向与N F 相反,故加速度方向为垂直木板向下,大小为23cos 3N F g a g m θ=== 【答案】 C.四、弹簧长度的变化问题设劲度系数为k 的弹簧受到的压力为1F -时压缩量为1x -,弹簧受到的拉力为2F 时伸长量为2x ,此时的“-”号表示弹簧被压缩.若弹簧受力由压力1F -变为拉力2F ,弹簧长度将由压缩量1x -变为伸长量2x ,长度增加量为12x x +.由胡克定律有: 11()F k x -=-,22F kx =. 则:2121()()F F kx kx --=--,即F k x ∆=∆说明:弹簧受力的变化与弹簧长度的变化也同样遵循胡克定律,此时x ∆表示的物理意义是弹簧长度的改变量,并不是形变量. 【例5】如图3-7-6所示,劲度系数为1k 的轻质弹簧两端分别与质量为1m 、2m 的物块1、2拴接,劲度系数为2k 的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态.现将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了 ,物块1的重力势能增加了 .【解析】由题意可知,弹簧2k 长度的增加量就是物块2的高度增加量,弹簧2k 长度的增加量与弹簧1k 长度的增加量之和就是物块1的高度增加量.由物体的受力平衡可知,弹簧2k 的弹力将由原来的压力12()m m g +变为0,弹簧1k 的弹力将由原来的压力1m g 变为拉力2m g ,弹力的改变量也为12()m m g + .所以1k 、2k 弹簧的伸长量分别为:1211()m m g k +和1221()m m g k +故物块2的重力势能增加了221221()m m m g k +,物块1的重力势能增加了21121211()()m m m g k k ++【答案】221221()m m m g k + 21121211()()m m m g k k ++五、弹簧形变量可以代表物体的位移弹簧弹力满足胡克定律F kx =-,其中x 为弹簧的形变量,两端与物体相连时x 亦即物体的位移,因此弹簧可以与运动学知识结合起来编成习题.【例6】如图3-7-7所示,在倾角为θ的光滑斜面上有两个用轻质图 3-7-5图 3-7-6弹簧相连接的物块A B 、,其质量分别为A B m m 、,弹簧的劲度系数为k ,C 为一固定挡板,系统处于静止状态,现开始用一恒力F 沿斜面方向拉A 使之向上运动,求B 刚要离开C 时A 的加速度a 和从开始到此时A 的位移d (重力加速度为g ).【解析】 系统静止时,设弹簧压缩量为1x ,弹簧弹力为1F ,分析A 受力可知:11sin A F kx m g θ==解得:1sin A m g x kθ=在恒力F 作用下物体A 向上加速运动时,弹簧由压缩逐渐变为伸长状态.设物体B 刚要离开挡板C 时弹簧的伸长量为2x ,分析物体B 的受力有:2sin B kx m g θ=,解得2sin B m g x kθ=设此时物体A 的加速度为a ,由牛顿第二定律有:2sin A A F m g kx m a θ--=解得:()sin A B AF m m g a m θ-+=因物体A 与弹簧连在一起,弹簧长度的改变量代表物体A 的位移,故有12d x x =+,即()sin AB m m g d kθ+= 【答案】()sin A B m m g d kθ+=六、弹力变化的运动过程分析弹簧的弹力是一种由形变决定大小和方向的力,注意弹力的大小与方向时刻要与当时的形变相对应.一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置及临界位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,弹性势能也是与原长位置对应的形变量相关.以此来分析计算物体运动状态的可能变化.结合弹簧振子的简谐运动,分析涉及弹簧物体的变加速度运动,往往能达到事半功倍的效果.此时要先确定物体运动的平衡位置,区别物体的原长位置,进一步确定物体运动为简谐运动.结合与平衡位置对应的回复力、加速度、速度的变化规律,很容易分析物体的运动过程. 【例7】如图3-7-8所示,质量为m 的物体A 用一轻弹簧与下方地面上质量也为m 的物体B 相连,开始时A 和B 均处于静止状态,此时弹簧压缩量为0x ,一条不可伸长的轻绳绕过轻滑轮,一端连接物体A 、另一端C 握在手中,各段绳均刚好处于伸直状态,物体A 上方的一段绳子沿竖直方向且足够长.现在C 端施加水平恒力F 使物体A 从静止开始向上运动.(整个过程弹簧始终处在弹性限度以内).(1)如果在C 端所施加的恒力大小为3mg ,则在物体B 刚要离开地面时物体A 的速度为多大?(2)若将物体B 的质量增加到2m ,为了保证运动中物体B 始终不离开地面,则F 最大不超过多少?【解析】 由题意可知,弹簧开始的压缩量0mgx k =,物体B 刚要离开地面时弹簧的伸长量也是0mgx k=.(1)若3F mg =,在弹簧伸长到0x 时,物体B 离开地面,此时弹簧弹性势能与施力前相等,F 所做的功等于物体A 增加的动能及重力势能的和.即:201222F x mg x mv ⋅=⋅+得: 022v gx =(2)所施加的力为恒力0F 时,物体B 不离开地面,类比竖直弹簧振子,物体A 在竖直方向上除了受变化的弹力外,再受到恒定的重力和拉力.故物体A 做简谐运动.在最低点有:001F mg kx ma -+=,式中k 为弹簧劲度系数,1a 为在最低点物体A 的加速度.图 3-7-8在最高点,物体B 恰好不离开地面,此时弹簧被拉伸,伸长量为02x ,则: 002(2)k x mg F ma +-=而0kx mg =,简谐运动在上、下振幅处12a a =,解得: 032mgF =也可以利用简谐运动的平衡位置求恒定拉力0F .物体A 做简谐运动的最低点压缩量为0x ,最高点伸长量为02x ,则上下运动中点为平衡位置,即伸长量为所在处.由002x mg k F +=,解得: 032mgF =. 【答案】022gx32mg说明: 区别原长位置与平衡位置.和原长位置对应的形变量与弹力大小、方向、弹性势能相关,和平衡位置对应的位移量与回复大小、方向、速度、加速度相关. 七.与弹簧相关的临界问题通过弹簧相联系的物体,在运动过程中经常涉及临界极值问题:如物体速度达到最大;弹簧形变量达到最大时两个物体速度相同;使物体恰好要离开地面;相互接触的物体恰好要脱离等.此类问题的解题关键是利用好临界条件,得到解题有用的物理量和结论.【例8】如图3-7-9所示,A B 、两木块叠放在竖直轻弹簧上,已知木块A B 、的质量分别为0.42kg 和0.40kg ,弹簧的劲度系数100/k N m =,若在A 上作用一个竖直向上的力F ,使A 由静止开始以20.5/m s 的加速度竖直向上做匀加速运动(210/g m s =)求:(1) 使木块A 竖直做匀加速运动的过程中,力F 的最大值;(2)若木块由静止开始做匀加速运动,直到A B 、分离的过程中,弹簧的弹性势能减少了0.248J ,求这一过程中F 对木块做的功.【解析】 此题难点在于能否确定两物体分离的临界点.当0F =(即不加竖直向上F 力)时,设木块A B 、叠放在弹簧上处于平衡时弹簧的压缩量为x ,有:()A B kx m m g =+,即()AB m m gx k+= ① 对木块A 施加力F ,A 、B 受力如图3-7-10所示,对木块A 有: A A F N m g m a +-=②对木块B 有: 'B B kx N m g m a --= ③可知,当0N ≠时,木块A B 、加速度相同,由②式知欲使木块A 匀加速运动,随N 减小F 增大,当0N =时, F 取得了最大值m F ,即: () 4.41m A F m a g N =+=又当0N =时,A B 、开始分离,由③式知,弹簧压缩量'()B kx m a g =+,则()'Bm a g x k+=④ 木块A 、B 的共同速度:22(')v a x x =- ⑤ 由题知,此过程弹性势能减少了0.248P P W E J ==设F 力所做的功为F W ,对这一过程应用功能原理,得:21()()(')2F A B A B P W m m v m m g x x E =+++-- 联立①④⑤⑥式,且0.248P E J =,得: 29.6410F W J -=⨯【答案】(1) 4.41m F N = 29.6410F W J -=⨯【例9】如图3-7-11所示,一质量为M 的塑料球形容器,在A 处与水平面接触.它的内部有一直立的轻弹簧,弹簧下端固定于容器内部底部,上端系一带正电、质量为m 的小球在竖直方向振动,当加一向上的匀强电场后,弹簧正好在原长时,小球恰好有最大速度.在振动过程中球形容器对桌面的最小压力为0,求小球振动的最图 3-7-10 图 3-7-9大加速度和容器对桌面的最大压力.【解析】 因为弹簧正好在原长时小球恰好速度最大,所以有:=qE mg ① 小球在最高点时容器对桌面的压力最小,有:=kx Mg ②此时小球受力如图3-7-12所示,所受合力为qE kx mg F -+= ③ 由以上三式得小球的加速度mMg a =.显然,在最低点容器对桌面的压力最大,由振动的对称性可知小球在最低点和最高点有相同的加速度, 解以上式子得:Mg kx =所以容器对桌面的压力为:Mg kx Mg F N 2=+=.【答案】Mgm2Mg八、弹力做功与弹性势能的变化问题弹簧伸长或压缩时会储存一定的弹性势能,因此弹簧的弹性势能可以与机械能守恒规律综合应用,我们用公式212P E kx =计算弹簧势能,弹簧在相等形变量时所具有的弹性势能相等一般是考试热点.弹簧弹力做功等于弹性势能的减少量.弹簧的弹力做功是变力做功,一般可以用以下四种方法求解:(1)因该变力为线性变化,可以先求平均力,再用功的定义进行计算; (2)利用F x -图线所包围的面积大小求解;(3)用微元法计算每一小段位移做功,再累加求和; (4)根据动能定理、能量转化和守恒定律求解.由于弹性势能仅与弹性形变量有关,弹性势能的公式高考中不作定量要求,因此,在求弹力做功或弹性势能的改变时,一般从能量的转化与守恒的角度来求解.特别是涉及两个物理过程中的弹簧形变量相等时,往往弹性势能的改变可以抵消或替代求解.【例10】如图3-7-13所示,挡板P 固定在足够高的水平桌面上,物块A 和B 大小可忽略,它们分别带有A Q +和B Q +的电荷量,质量分别为A m 和B m .两物块由绝缘的轻弹簧相连,一个不可伸长的轻绳跨过滑轮,一端与B 连接,另一端连接轻质小钩.整个装置处于场强为E 、方向水平向左的匀强电场中,A 、B 开始时静止,已知弹簧的劲度系数为k ,不计一切摩擦及A 、B 间的库仑力, A 、B 所带电荷量保持不变,B 不会碰到滑轮. (1)若在小钩上挂质量为M 的物块C 并由静止释放,可使物块A 对挡板P 的压力恰为零,但不会离开P ,求物块C 下降的最大距离h .(2)若C 的质量为2M ,则当A 刚离开挡板P 时, B 的速度多大?【解析】 通过物理过程的分析可知,当物块A 刚离开挡板P 时,弹力恰好与A 所受电场力平衡,弹簧伸长量一定,前后两次改变物块C 质量,在第(2)问对应的物理过程中,弹簧长度的变化及弹性势能的改变相同,可以替代求解.设开始时弹簧压缩量为1x ,由平衡条件1B kx Q E =,可得1B Q Ex k= ①设当A 刚离开挡板时弹簧的伸长量为2x ,由2A kx Q E =,可得: 2A Q Ex k= ②故C 下降的最大距离为: 12h x x =+ ③ 由①②③三式可得: ()A B Eh Q Q k=+ ④ (2)由能量守恒定律可知,物块C 下落过程中,C 重力势能的减少量等于物块B 电势能的增量和弹簧弹性势能的增量以及系统动能的增量之和.图 3-7-13 图 3-7-12当C 的质量为M 时,有:B MgH Q Eh E =+∆弹 ⑤当C 的质量为2M 时,设A 刚离开挡板时B 的速度为v ,则有:212(2)2B B MgH Q Eh E M m v =+∆++弹 ⑥由④⑤⑥三式可得A 刚离开P 时B 的速度为:2()(2)A B B MgE Q Q v k M m +=+ ⑦【答案】(1)()A B Eh Q Q k=+(2)2()(2)A B B MgE Q Q v k M m +=+ 【例11】如图3-7-14所示,质量为1m 的物体A 经一轻质弹簧与下方地面上的质量为2m 的物体B 相连,弹簧的劲度系数为k ,物体A B 、都处于静止状态.一不可伸长的轻绳一端绕过轻滑轮连接物体A ,另一端连接一轻挂钩.开始时各段绳都处于伸直状态,物体A 上方的一段绳沿竖直方向.现给挂钩挂一质量为2m 的物体C 并从静止释放,已知它恰好能使物体B 离开地面但不继续上升.若将物体C 换成另一质量为12()m m +的物体D ,仍从上述初始位置由静止释放,则这次物体B 刚离地时物体D 的速度大小是多少?已知重力加速度为g【解析】 开始时物体A B 、静止,设弹簧压缩量为1x ,则有:11kx m g = 悬挂物体C 并释放后,物体C 向下、物体A 向上运动,设物体B 刚要离地时弹簧伸长量为2x ,有22kx m g =B 不再上升表明此时物体A 、C 的速度均为零,物体C 己下降到其最低点,与初状态相比,由机械能守恒得弹簧弹性势能的增加量为:212112()()E m g x x m g x x ∆=+-+物体C 换成物体D 后,物体B 离地时弹簧势能的增量与前一次相同,由能量关系得:22211211211211()()()()22m m v m v m m g x x m g x x E ++=++-+-∆联立上式解得题中所求速度为:2112122()(2)m m m g v m m k+=+【答案】2112122()(2)m m m g v m m k+=+说明: 研究对象的选择、物理过程的分析、临界条件的应用、能量转化守恒的结合往往在一些题目中需要综合使用. 九、弹簧弹力的双向性弹簧可以伸长也可以被压缩,因此弹簧的弹力具有双向性,亦即弹力既可能是推力又可能是拉力,这类问题往往是一题多解.【例12】如图3-7-15所示,质量为m 的质点与三根相同的轻弹簧相连,静止时相邻两弹簧间的夹角均为0120,已知弹簧a b 、对质点的作用力均为F ,则弹簧c 对质点作用力的大小可能为 ( ) A 、0 B 、F mg + C 、F mg - D 、mg F -【解析】 由于两弹簧间的夹角均为0120,弹簧a b 、对质点作用力的合力仍为F ,弹簧a b 、对质点有可能是拉力,也有可能是推力,因F 与mg 的大小关系不确定,故上述四个选项均有可能.正确答案:ABCD 【答案】 ABCD 十、弹簧振子弹簧振子的位移、速度、加速度、动能和弹性势能之间存在着特殊关系,弹簧振子类问题通常就是考查这些关系,各物理量的周期性变化也是考查的重点.图 3-7-14图 3-7-15【例13】如图3-7-16所示,一轻弹簧与一物体组成弹簧振子,物体在同一竖直线上的A B 、间做简谐运动, O 点为平衡位置;C 为AO 的中点,已知OC h =,弹簧振子周期为T ,某时刻弹簧振子恰好经过C 点并向上运动,则从此时刻开始计时,下列说法中正确的是 ( )A 、4Tt =时刻,振子回到C 点 B 、2Tt ∆=时间内,振子运动的路程为4hC 、38Tt =时刻,振子的振动位移为0D 、38Tt =时刻,振子的振动速度方向向下【解析】 振子在点A C 、间的平均速度小于在点C O 、间的平均速度,时间大于8T,选项A C 、错误;经2T 振子运动O 点以下与点C 对称的位置,总路程为4h ,选项B 正确;经38Tt =振子在点O B 、间向下运动,选项D 正确.【答案】 B D十一、弹簧串、并联组合弹簧串联或并联后劲度系数会发生变化,弹簧组合的劲度系数可以用公式计算,高中物理不要求用公式定量分析,但弹簧串并联的特点要掌握:弹簧串联时,每根弹簧的弹力相等;原长相同的弹簧并联时,每根弹簧的形变量相等.【例14】 如图3-7-17所示,两个劲度系数分别为12k k 、的轻弹簧竖直悬挂,下端用光滑细绳连接,并有一光滑的轻滑轮放在细线上;滑轮下端挂一重为G 的物体后滑轮下降,求滑轮静止后重物下降的距离.【解析】 两弹簧从形式上看似乎是并联,但因每根弹簧的弹力相等,故两弹簧实为串联;两弹簧的弹力均2G,可得两弹簧的伸长量分别为112G x k =,222G x k =,两弹簧伸长量之和12x x x =+,故重物下降的高度为:1212()24G k k x h k k +==【答案】1212()4G k k k k +十二、通电的弹簧【例15】如图3-7-18所示装置中,将金属弹簧的上端固定,下端恰好浸入水银,水银与电源负极相连,弹簧上端通过开关S 与电源正极相连.当接通开关S 后,弹簧的运动情况如何?【解析】 通电弹簧相邻两匝线圈相互平行且电流同向,两匝线圈相互吸引,从而使弹簧收缩;弹簧收缩后下端离开水银,切断了电流吸引力消失,弹簧又向下恢复原长,与水银面接触而接通电路,然后又在吸引力作用下收缩.如此反复,弹簧就不断地上下振动.十三、物体沿弹簧螺旋运动【例16】如图3-7-19所示,长度为L 的光滑钢丝绕成高度为H 的弹簧,将弹簧竖直放置.一中间有孔的小球穿过钢丝并从弹簧的最高点A 由静止释放,求经多长时间小球沿弹簧滑到最低点B .图 3-7-17图 3-7-18图 3-7-16【解析】 小球沿光滑弹簧下滑时机械能守恒,可以假想在不改变弹簧上各处倾角的条件下将弹簧拉成一条倾斜直线,如图3-7-20所示,小球沿此直线下滑的时间与题中要求的时间相等.小球沿直线下滑的加速度为sin a g θ= 由几何知识可得:sin HL θ=;由位移公式可知:212L at =,联立上式解得:2t LgH= 【答案】2LgH十四、生产和生活中的弹簧弹簧在生产和生活中有着广泛的应用,近几年高考中也出现了不少有关弹簧应用方面的试题.【例17】如图3-7-21所示表示某同学在科技活动中自制的电子秤原理,利用电压表示数来指示物体质量,托盘与电阻可忽略的弹簧相连,托盘与弹簧的质量均不计,滑动变阻器的滑动头与弹簧上端连接;当托盘中没放物体且S 闭合时,电压表示数为零.设变阻器的总电阻为R 、总长度为L ,电源电动势为E 、内阻为r ,限流电阻阻值为0R ,弹簧劲度系数为k ,不计一切摩擦和其他阻力.(1)推导出电压表示数x U 与所称物体质量m 的关系式. (2)由(1)结果可知,电压表示数与待测物体质量不成正比、不便于进行刻度.为使电压表示数与待测物体质量成正比,请利用原有器材进行改进并完成电路原理图,推导出电压表示数x U 与待测物体质量m 的关系式. 【解析】(1)设变阻器上端至滑动头的长度为x ,据题意得:mg kx =,x xR R L =,0x x x R U E R R r=++解得:0()x mgREU mgR kL R r =++(2)改进后的电路如图3-7-22所示,则有:mg kx =,x xR R L=,解得: 0()x mgREU kL R R r =++ 【答案】(1)0()x mgREU mgR kL R r =++(2)0()x mgREU kL R R r =++图 3-7-20图 3-7-21图 3-7-22。
高中物理专题复习之弹簧模型中的极值问题
在高考复习中,常常遇到有关“弹簧类”问题,由于弹簧总是与其他物体直接或间接地联系在一起,弹簧与其“关联物”之间总存在着力、运动状态、动量、能量方面的联系,因此学生普遍感到困难,本文就此类问题作一归类分析。
一、最大、最小拉力例1. 一个劲度系数为k =600N/m 的轻弹簧,两端分别连接着质量均为m =15kg 的物体A 、B ,将它们竖直静止地放在水平地面上,如图1所示,现加一竖直向上的外力F 在物体A 上,使物体A 开始向上做匀加速运动,经0.5s ,B 物体刚离开地面(设整个加速过程弹簧都处于弹性限度内,且g =10m/s 2)。
求此过程中所加外力的最大和最小值。
图1解析:开始时弹簧弹力恰等于A 的重力,弹簧压缩量∆l mg km ==025.,0.5s 末B 物体刚要离开地面,此时弹簧弹力恰等于B 的重力,∆∆l l m '.==025,故对A 物体有2122∆l at =,代入数据得a m s =42/。
刚开始时F 为最小且F ma N N min ===15460×,B 物体刚要离开地面时,F 为最大且有F mg mg ma max --=,解得F mg ma N max =+=2360。
二、最大高度例2. 如图2所示,质量为m 的钢板与直立弹簧的上端连接,弹簧下端固定在地面上,平衡时弹簧的压缩量为x 0。
一物体从钢板正上方距离为30x 的A 处自由下落打在钢板上,并立即与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动,已知物块质量也为m 时,它们恰能回到O 点,若物体质量为2m 仍从A 处自由下落,则物块与钢板回到O 点时还有向上的速度,求物块向上运动到达的最高点与O 点的距离。
图2解析:物块碰撞钢板前作自由落体运动,设v 0表示物块与钢板碰撞时的速度,则:v gx 006= ①物块与钢板碰撞后一起以v 1速度向下运动,因碰撞时间极短,碰撞时遵循动量守恒,即:mv mv 012= ②刚碰完时弹簧的弹性势能为E p ,当它们一起回到O 点时,弹簧无形变,弹性势能为0,根据机械能守恒有:E m v mgx p +=1222120() ③ 设v 2表示质量为2m 的物块与钢板碰撞后开始向下运动的速度,由动量守恒有:2302mv mv = ④碰撞后,当它们回到O 点时具有一定速度v ,由机械能守恒定律得:E m v mgx m v p +=+12331232202()() ⑤ 当质量为2m 的物块与钢板一起回到O 点时两者分离,分离后,物块以v 竖直上升,其上升的最大高度:h v g=22 ⑥ 解①~⑥式可得h x =02。
高中物理弹簧问题----瞬时问题、平衡问题、非平衡问题、功能问题
图14 高中物理弹簧问题----瞬时问题、平衡问题、非平衡问题、功能问题专项突破典型的热点问题专题归纳:1、弹簧的瞬时问题弹簧的两端都有其他物体或力的约束时,使其发生形变时,弹力不能由某一值突变为零或由零突变为某一值。
2、弹簧的平衡问题这类题常以单一的问题出现,涉及到的知识是胡克定律,一般用f=kx 或△f=k •△x 来求解。
3、弹簧的非平衡问题这类题主要指弹簧在相对位置发生变化时,所引起的力、加速度、速度、功能和合外力等其它物理量发生变化的情况。
4、 弹力做功与动量、能量的综合问题在弹力做功的过程中弹力是个变力,并与动量、能量联系,一般以综合题出现。
它有机地将动量守恒、机械能守恒、功能关系和能量转化结合在一起,以考察学生的综合应用能力。
分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理和功能关系等知识解题。
第一篇:弹簧中的力学问题1.如图,物块质量为M ,与甲、乙两弹簧相连接,乙弹簧下端与地面连接,甲、乙两弹簧质量不计,其劲度系数分别为k 1、k 2。
起初甲弹簧处于自由长度,现用手将甲弹簧的A 端缓慢上提,使乙弹簧产生的弹力大小变为原来的2/3,则A 端上移距离可能是( ) A .(k 1+k 2)Mg/3k 1k 2 B .2(k 1+k 2)Mg/3k 1k 2 C.4(k 1+k 2)Mg/3k 1k 2 D.5(k 1+k 2)Mg/3k 1k 22.(99全国)如右图所示,两木块的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面弹簧上(但不拴接),整个系统处于平衡状态,现缓慢向上提上面的木块,直到它刚离开上面弹簧,在这过程中下面木块移动的距离为( ) A. m 1g/k 1 B. m 2g/ k 1 C. m 1g/k 2 D. m 2g/ k 23、如图14所示,A 、B 两滑环分别套在间距为1m 的光滑细杆上,A 和B 的质量之比为1∶3,用一自然长度为1m 的轻弹簧将两环相连,在 A 环上作用一沿杆方向的、大小为20N 的拉力F ,当两环都沿杆以相同的加速度a 运动时,弹簧与杆夹角为53°。
弹簧模型专题(有答案)
高中物理弹簧模型专题一、弹簧称的示数例1.如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F 的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上;②中弹簧的左端受大小也为 F 的拉力作用;③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动;④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动.若认为弹簧的质量都为零,以 l 1、l 2、l 3、l 4依次表示四个弹簧的伸长量,则判断l 1、l 2、l 3、l 4的大小关系。
变式训练.一个质量为m 的物体在一弹簧称的作用下沿竖直向上做加速度为a 的匀加速直线运动,忽略空气阻力,重力加速度为g ,求弹簧称的示数.规律总结:弹簧称的示数等于轻质弹簧一端的拉力大小,并不一定等于物体的重力二、与物体平衡相关的弹簧问题例2.如图示,两木块的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为 ( C )A.m 1g/k 1B.m 2g/k 2C.m 1g/k 2D.m 2g/k 2三、弹簧的瞬时性问题例3.质量分别为m 和2m 的小球P 、Q 用轻弹簧相连,P 用细线悬挂在天花板下,开始系统处于静止。
求:(1)剪断细线瞬间,P 、Q 的加速度(2)剪断弹簧瞬间,P 、Q 的加速度 变式训练.如图所示,小球P 、Q 质量均为m ,分别用轻弹簧b 和细线c 悬挂在天花板下,再用另一细线d 、e 与左边的固定墙相连,静止时细线d 、e 水平,b 、c 与竖直方向夹角均为θ=37º。
下列判断正确的是A .剪断d 瞬间P 的加速度大小为0.6gB .剪断d 瞬间P 的加速度大小为0.75gC .剪断e 前c 的拉力大小为0.8mgD .剪断e 后瞬间c 的拉力大小为1.25mg规律总结:当弹簧两端都有约束时,弹簧弹力不发生突变;细绳的弹力可以发生突变四、与动力学相关的弹簧问题例4.如图所示,一轻质弹簧竖直放在水平地面上,小球A 由弹簧正上方某高度自由落下,与弹簧接触后,开始压缩弹簧,设此过程中弹簧始终服从胡克定律,那么在小球压缩弹簧的过程中,以下说法中正确的是( BD )A.小球加速度方向始终向上B.小球加速度方向先向下后向上C.小球速度一直减小D.小球速度先增大后减小边式训练:如图所示,轻弹簧下端固定,竖立在水平面上。
高中物理弹簧专题典型例题
高中物理弹簧专题典型例题例如图3-5,木块B与水平桌面间的接触是光滑的,子弹A沿水平方向射入木块后留在木块内,将弹簧压缩到最短。
现将子弹、木块和弹簧合在一起作研究对象,则此系统在从子弹开始射入木块到弹簧压缩到最短的过程中[ ]A.动量守恒,机械能守恒B.动量不守恒,机械能不守恒C.动量守恒,机械能不守恒D.动量不守恒,机械能守恒【错解】以子弹、木块和弹簧为研究对象。
因为系统处在光滑水平桌面上,所以系统水平方向不受外力,系统水平方向动量守恒。
又因系统只有弹力做功,系统机械能守恒。
故A正确。
【错解原因】错解原因有两个一是思维定势,一见光滑面就认为不受外力。
二是规律适用条件不清。
【分析解答】以子弹、弹簧、木块为研究对象,分析受力。
在水平方向,弹簧被压缩是因为受到外力,所以系统水平方向动量不守恒。
由于子弹射入木块过程,发生巨烈的摩擦,有摩擦力做功,系统机械能减少,也不守恒,故B正确。
例质量为m的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上。
平衡时,弹簧的压缩量为x,如图3-15所示。
物块从钢板正对距离为3X0的A处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动。
已知物体质量也为m时,它们恰能回到O点,若物块质量为2m,仍从A处自由落下,则物块与钢板回到O点时,还具有向上的速度,求物块向上运动到最高点与O点的距离。
【错解】物块m从A处自由落下,则机械能守恒设钢板初位置重力势能为0,则向下运动,然后返回O点,此时速度为0,运动过之后物块与钢板一起以v程中因为只有重力和弹簧弹力做功,故机械能守恒。
,与钢板一起向下2m的物块仍从A处落下到钢板初位置应有相同的速度v运动又返回机械能也守恒。
返回到O点速度不为零,设为V则:因为m物块与2m物块在与钢板接触时,弹性势能之比2m物块与钢板一起过O点时,弹簧弹力为0,两者有相同的加速度g。
之后,钢板由于被弹簧牵制,则加速度大于g,两者分离,2m物块从此位置以v为初速竖直上抛上升距离【错解原因】这是一道综合性很强的题。
高中物理力学综合弹簧小专题含答案
⾼中物理⼒学综合弹簧⼩专题含答案弹簧⼩专题(⼀)1.如图所⽰,在倾⾓为θ的光滑固定斜⾯上,劲度系数分别为k1、k2的两个轻弹簧平⾏于斜⾯悬挂着,k1在上 k2在下,两弹簧之间有⼀质量为m1的重物,现⽤⼒F(未知)沿斜⾯向上缓慢推动m2,当两弹簧的总长等于两弹簧的原长之和时,求:(1)k1轻弹簧的形变量(2)m1上移的距离(3)推⼒F的⼤⼩.考点:共点⼒平衡的条件及其应⽤;⼒的合成与分解的运⽤.专题:共点⼒作⽤下物体平衡专题.分析:(1)由题,两弹簧的总长等于两弹簧的原长之和,则知,k1的伸长量与k2的压缩量相等,由m1重物平衡可求出k1轻弹簧的形变量.(2)先求出k1原来的伸长量,再由⼏何关系求出m1上移的距离.(3)根据两弹簧的形变量相等,由胡克定律列⽅程,求出F.2.如图所⽰,倾⾓为θ的光滑斜⾯ABC放在⽔平⾯上,劲度系数分别为k1、k2的两个轻弹簧沿斜⾯悬挂着,两弹簧之间有⼀质量为m1的重物,最下端挂⼀质量为m2的重物,此时两重物处于平衡状态,现把斜⾯ABC 绕A点缓慢地顺时针旋转90°后,重新达到平衡.试求:m1、m2沿斜⾯各移动的距离.考点:共点⼒平衡的条件及其应⽤;⼒的合成与分解的运⽤;胡克定律.专题:共点⼒作⽤下物体平衡专题.分析:在旋转前后,物体均处于平衡状态,则共点⼒的平衡条件可得出物体弹簧弹⼒,由胡克定律可求得弹簧的伸长量,则可得出旋转前后的距离.3.如图所⽰,在倾⾓为θ的光滑斜⾯上放有两块⼩⽊块,劲度系数为k1的轻质弹簧两端分别与质量为m1和m2的物块1、2拴接,劲度系数为k2的轻质弹簧上端与物块2拴接,下端压在挡板上(不拴接),整个系统处于平衡状态.现施⼒将物块1缓慢沿斜⾯向上提,直到下⾯那个弹簧的下端刚脱离挡板.在此过程中,下列说法正确的是()考点:共点⼒平衡的条件及其应⽤;⼒的合成与分解的运⽤.专题:共点⼒作⽤下物体平衡专题.分析:先根据平衡条件和胡克定律求出原来两根弹簧的压缩量.当下⾯的弹簧刚脱离挡板时,再求出弹簧k1的伸长量,由⼏何关系即可求出两物块上升的距离.解答:解:未施⼒将物块1缓慢上提时,根据平衡条件和胡克定律得两根弹簧的压缩量分别为:4.如图所⽰,倾⾓为θ的固定光滑斜⾯底部有⼀直斜⾯的固定档板C.劲度系数为k1的轻弹簧两端分别与质量均为m的物体A和B连接,劲度系数为k2的轻弹簧⼀端与A连接,另⼀端与⼀轻质⼩桶P相连,跨过光滑的滑轮Q放在斜⾯上,B靠在档板C处,A和B均静⽌.现缓慢地向⼩桶P内加⼊细砂,当B与档板C间挤压⼒恰好为零时,⼩桶P内所加⼊的细砂质量及⼩桶下降的距离分别为()5.如图所⽰,在倾⾓为θ的光滑斜劈P的斜⾯上有两个⽤轻质弹簧相连的物块A、B,C为⼀垂直固定在斜⾯上的挡板.A、B质量均为m,斜⾯连同挡板的质量为M,弹簧的劲度系数为k,系统静⽌于光滑⽔平⾯.现开始⽤⼀⽔平恒⼒F作⽤于P,(重⼒加速度为g)下列说法中正确的是()考点:⽜顿第⼆定律;⼒的合成与分解的运⽤;胡克定律.专题:⽜顿运动定律综合专题.分析:先对斜⾯体和整体受⼒分析,根据⽜顿第⼆定律求解出加速度,再分别多次对物体A、B或AB整体受⼒分析,然后根据⽜顿第⼆定律,运⽤合成法列式分析求解.解答:解:A、F=0时,对物体A、B整体受⼒分析,受重⼒、斜⾯的⽀持⼒N1和挡板的⽀持⼒N2,根据共点⼒平衡条件,沿平⾏斜⾯⽅向,有N2-(2m)gsinθ=0,故正确;B、开始时,系统静⽌于⽔平⾯上,合外⼒等于零,当⼒F从零开始缓慢增⼤时,系统所受合外⼒就是⽔平外⼒F,系统产⽣的⽔平加速度缓慢增⼤,物块A也产⽣⽔平向左的加速度,⽀持⼒的⽔平分⼒与弹簧弹⼒的⽔平分⼒不再平衡,⼆者⽔平合⼒向左,必有弹⼒减⼩,因此,⼒F从零开始增加时,A就相对斜⾯向上滑⾏,选项B错误;C、物体B恰好离开挡板C的临界情况是物体B对挡板⽆压⼒,此时,整体向左加速运动,对物体B受⼒分析,受重⼒、⽀持⼒、弹簧的拉⼒,如图考点:共点⼒平衡的条件及其应⽤;⼒的合成与分解的运⽤;胡克定律.专题:共点⼒作⽤下物体平衡专题.分析:当两个弹簧的总长度等于两弹簧原长之和时,上边弹簧的伸长量与下边弹簧的压缩量相等.对m1受⼒分析,有m1g=k1x+k2x,得出伸长量和压缩量x.对物体m2受⼒分析有:F N=m2g+k2x,再结合⽜顿第三定律,求出物体对平板的压⼒F N′.解答:解:当两个弹簧的总长度等于两弹簧原长之和时,下⾯弹簧的压缩量应等于上⾯弹簧的伸长量,设为x,点评:求出本题的关键知道当两个弹簧的总长度等于两弹簧原长之和时,上边弹簧的伸长量与下边弹簧的压缩量相等.7.已知在弹性限度内,弹簧的伸长量△L与受到的拉⼒F成正⽐,⽤公式F=k?△L表⽰,其中k为弹簧的劲度系数(k为⼀常数).现有两个轻弹簧L1和L2,它们的劲度系数分别为k1和k2,且k1=3k2,现按如图所⽰⽅式⽤它们吊起滑轮和重物,如滑轮和重物的重⼒均为G,则两弹簧的伸长量之⽐△L1:△L2为()考点:探究弹簧测⼒计原理的实验.专题:信息给予题.分析:分析图中的装置可知,滑轮两侧的拉⼒均为G,再加上滑轮的重⼒也等于G,所以,顶端的弹簧承担的拉⼒为3G,将这⼀关系与劲度系数的关系都代⼊公式中,就可以求出弹簧伸长量之⽐.解答:解:读图分析可知,底端弹簧所受拉⼒为G,顶端弹簧所受拉⼒为3G,故选A.点评:正确分析两根弹簧所受拉⼒的情况是解决此题的关键,在得出拉⼒关系、劲度系数关系的基础上,代⼊公式即可顺利求取弹簧伸长量的⽐.8.如图所⽰,在⽔平地⾯上固定⼀倾⾓为θ的光滑绝缘斜⾯,斜⾯处于电场强度⼤⼩为E、⽅向沿斜⾯向下的匀强电场中.⼀劲度系数为k的绝缘轻质弹簧的⼀端固定在斜⾯底端,整根弹簧处于⾃然状态.⼀质量为m、带电量为q(q>0)的滑块从距离弹簧上端为S处静⽌释放,滑块在运动过程中电量保持不变.设滑块与弹簧接触过程没有机械能损失,弹簧始终处在弹性限度内,重⼒加速度⼤⼩为g.则()A.当滑块的速度最⼤时,弹簧的弹性势能最⼤B.当滑块的速度最⼤时,系统的机械能最⼤C.当滑块的加速度最⼤时,弹簧的弹性势能最⼤D.当滑块的加速度最⼤时,系统的机械能最⼤考点:机械能守恒定律;弹性势能.专题:机械能守恒定律应⽤专题.分析:滑块向下先做加速度减⼩的加速运动,然后做加速度增⼤的减速运动,到达最低点时,速度为0,此时加速度最⼤.在整个过程中,有动能、重⼒势能、弹性势能、电势能发⽣相互转化,动能、重⼒势能和弹性势能统称为系统的机械能,当电势能减⼩最多时,系统的机械能最⼤.解答:解:A、滑块向下先做加速度逐渐减⼩的加速运动,当加速度为0时,速度最⼤,然后做加速度逐渐增⼤的减速运动,到达最低点,速度减⼩到0,此时加速度最⼤,弹簧的弹性势能最⼤.故A错误,C正确. B、动能、重⼒势能和弹性势能统称为系统的机械能,根据能量守恒定律,电势能减⼩,系统的机械能增⼤,当滑块运动到最低点时,电场⼒做的正功最多,即电势能减⼩最多,此时系统机械能最⼤.故B错误,D正确.故选CD.点评:解决本题的关键知道滑块的运动是向下先做加速度减⼩的加速运动,然后做加速度增⼤的减速运动,到达最低点时,速度为0.知道在最低点时弹簧的弹性势能最⼤.在整个过程中,有动能、重⼒势能、弹性势能、电势能发⽣相互转化,当电势能减⼩最多时,系统的机械能最⼤.9.考点:⽜顿第⼆定律;⽜顿运动定律的应⽤-连接体.专题:⽜顿运动定律综合专题.分析:(1)对⼩滑块受⼒分析,受重⼒、⽀持⼒和拉⼒;再根据⽜顿第⼆定律求出合⼒的⼤⼩和⽅向,然后运⽤正交分解法列式求解;(2)⼩滑块对斜⾯体没有压⼒,则斜⾯体对⼩滑块也没有⽀持⼒,⼩滑块受到重⼒和拉⼒,物体的加速度⽔平向右,故合⼒⽔平向右,运⽤平⾏四边形定则求解合⼒,再根据⽜顿第⼆定律求解加速度;(3)弹簧保持原长,弹⼒为零,⼩滑块受到重⼒和⽀持⼒,物体沿⽔平⽅向运动,加速度⽔平向左,合⼒⽔平向左,运⽤平⾏四边形定则求解合⼒,再根据⽜顿第⼆定律求解加速度的⼤⼩.解答:解:(1)对⼩滑块受⼒分析,受重⼒、⽀持⼒和拉⼒,如图(3)弹簧保持原长,弹⼒为零,⼩滑块受到重⼒和⽀持⼒,物体沿⽔平⽅向运动,加速度⽔平向左,合⼒⽔平向左,运⽤平⾏四边形定则,如图点评:本题关键对⼩滑块受⼒分析后,根据⽜顿第⼆定律,运⽤正交分解法或合成法列式求解.(1)求滑块从静⽌释放到与弹簧上端接触瞬间所经历的时间t1;(2)若滑块在沿斜⾯向下运动的整个过程中最⼤速度⼤⼩为v m,求滑块从静⽌释放到速度⼤⼩为v m的过程中弹簧的弹⼒所做的功W;(3)从滑块静⽌释放瞬间开始计时,请在⼄图中画出滑块在沿斜⾯向下运动的整个过程中速度与时间关系v-t图象.图中横坐标轴上的t1、t2及t3分别表⽰滑块第⼀次与弹簧上端接触、第⼀次速度达到最⼤值及第⼀次速度减为零的时刻,纵坐标轴上的v1为滑块在t1时刻的速度⼤⼩,v m是题中所指的物理量.(本⼩题不要求写出计算过程。
高中物理弹簧弹力问题(含答案)
弹簧问题归类一、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型.由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大.故轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.弹簧一端受力为F ,另一端受力一定也为F ,若是弹簧秤,则弹簧秤示数为F .【例1】如图3-7-1所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能忽略,弹簧及挂钩质量不计,施加弹簧上水平方向的力1F 和称外壳上的力2F ,且12F F >,则弹簧秤沿水平方向的加速度为,弹簧秤的读数为.【解析】以整个弹簧秤为研究对象,利用牛顿运动定律得:12F F ma -=,即12F F a m-=,仅以轻质弹簧为研究对象,则弹簧两端的受力都1F ,所以弹簧秤的读数为1F .说明:2F 作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的.【答案】12F F a m-=1F二、质量不可忽略的弹簧【例2】如图3-7-2所示,一质量为M 、长为L 的均质弹簧平放在光滑的水平面,在弹簧右端施加一水平力F 使弹簧向右做加速运动.试分析弹簧上各部分的受力情况.【解析】弹簧在水平力作用下向右加速运动,据牛顿第二定律得其加速度F a M=,取弹簧左部任意长度x 为研究对象,设其质量为m 得弹簧上的弹力为:,x x F x T ma M F L M L===【答案】x x T F L=三、弹簧的弹力不能突变(弹簧弹力瞬时)问题弹簧(尤其是软质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变.即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变.【例3】如图3-7-3所示,木块A 与B 用轻弹簧相连,竖直放在木块C 上,三者静置于地面,A B C 、、的质量之比是1:2:3.设所有接触面都光滑,当沿水平方向迅速抽出木块C 的瞬时,木块A 和B 的加速度分别是A a =与B a =【解析】由题意可设A B C 、、的质量分别为23m m m 、、,以木块A 为研究对象,抽出木块C前,木块A 受到重力和弹力一对平衡力,抽出木块C 的瞬时,木块A 受到重力和弹力的大小和方向均不变,故木块A 的瞬时加速度为0.以木块A B 、为研究对象,由平衡条件可知,木块C 对木块B 的作用力3CB F mg =.以木块B 为研究对象,木块B 受到重力、弹力和CB F 三力平衡,抽出木块C 的瞬时,木块B 受到重力和弹力的大小和方向均不变,CB F 瞬时变为0,故木块C 的瞬时合外力为3mg ,竖直向下,瞬时加速度为1.5g .【答案】0说明:区别于不可伸长的轻质绳中张力瞬间可以突变.【例4】如图3-7-4所示,质量为m 的小球用水平弹簧连接,并用倾角为030的光滑木板AB 托住,使小球恰好处于静止状态.当AB 突然向下撤离的瞬间,小球的加速度为() A.0B.大小为233g ,方向竖直向下 C.大小为233g ,方向垂直于木板向下D.大小为233g ,方向水平向右【解析】末撤离木板前,小球受重力G 、弹簧拉力F 、木板支持力N F 作用而平衡,如图3-7-5所示,有cos N mgF θ=.撤离木板的瞬间,重力G 和弹力F 保持不变(弹簧弹力不能突变),而木板支持力N F 立即消失,小球所受G 和F 的合力大小等于撤之前的图图图3-7-2图3-7-1图3-7-3N F (三力平衡),方向与N F 相反,故加速度方向为垂直木板向下,大小为23cos 3N F g a g m θ===【答案】C.四、弹簧长度的变化问题设劲度系数为k 的弹簧受到的压力为1F -时压缩量为1x -,弹簧受到的拉力为2F 时伸长量为2x ,此时的“-”号表示弹簧被压缩.若弹簧受力由压力1F -变为拉力2F ,弹簧长度将由压缩量1x -变为伸长量2x ,长度增加量为12x x +.由胡克定律有:11()F k x -=-,22F kx =.则:2121()()F F kx kx --=--,即F k x ∆=∆ 说明:弹簧受力的变化与弹簧长度的变化也同样遵循胡克定律,此时x ∆表示的物理意义是弹簧长度的改变量,并不是形变量.【例5】如图3-7-6所示,劲度系数为1k 的轻质弹簧两端分别与质量为1m 、2m 的物块1、2拴接,劲度系数为2k 的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态.现将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了,物块1的重力势能增加了.【解析】由题意可知,弹簧2k 长度的增加量就是物块2的高度增加量,弹簧2k 长度的增加量与弹簧1k 长度的增加量之和就是物块1的高度增加量.由物体的受力平衡可知,弹簧2k 的弹力将由原来的压力12()m m g +变为0,弹簧1k 的弹力将由原来的压力1m g 变为拉力2m g,弹力的改变量也为12()mm g +.所以1k 、2k 弹簧的伸长量分别为:1211()m m g k +和1221()m m g k +故物块2的重力势能增加了221221()m m m g k +,物块1的重力势能增加了21121211()()m m m g k k ++ 五、弹簧形变量可以代表物体的位移弹簧弹力满足胡克定律F kx =-,其中x 为弹簧的形变量,两端与物体相连时x 亦即物体的位移,因此弹簧可以与运动学知识结合起来编成习题.【例6】如图3-7-7所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A B 、,其质量分别为A B m m 、,弹簧的劲度系数为k ,C 为一固定挡板,系统处于静止状态,现开始用一恒力F 沿斜面方向拉A 使之向上运动,求B 刚要离开C 时A 的加速度a 和从开始到此时A 的位移d (重力加速度为g ).【解析】系统静止时,设弹簧压缩量为1x ,弹簧弹力为1F ,分析A 受力可知:11sin A F kx m g θ==解得:1sin A m g x kθ=在恒力F 作用下物体A 向上加速运动时,弹簧由压缩逐渐变为伸长状态.设物体B 刚要离开挡板C 时弹簧的伸长量为2x ,分析物体B 的受力有:2sin B kx m g θ=,解得2sin B m g x kθ=设此时物体A 的加速度为a ,由牛顿第二定律有:2sin A A F m g kx m a θ--=解得:()sin A B AF m m g a m θ-+=因物体A与弹簧连在一起,弹簧长度的改变量代表物体A 的位移,故有12d x x =+,即()sin A B m m g d kθ+=【答案】()sin A B m m g d kθ+=六、弹力变化的运动过程分析弹簧的弹力是一种由形变决定大小和方向的力,注意弹力的大小与方向时刻要与当时的形变相对应.一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置及临界位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,弹性势能也是与原长位置对应的形变量相关.以此来分析计算物体运动状态的可能变化.结合弹簧振子的简谐运动,分析涉及弹簧物体的变加速度运动,.此时要先确定物体运动的平衡位置,区别物体的原长位置,进一步确定物体运动为简谐运动.结合与平衡位置对应的回复力、加速度、速度的变化规律,很容易分析物体的运动过程.【例7】如图3-7-8所示,质量为m 的物体A 用一轻弹簧与下方地面上质量也为m 的物图图3-7-6 图3-7-8体B 相连,开始时A 和B 均处于静止状态,此时弹簧压缩量为0x ,一条不可伸长的轻绳绕过轻滑轮,一端连接物体A 、另一端C 握在手中,各段绳均刚好处于伸直状态,物体A 上方的一段绳子沿竖直方向且足够长.现在C 端施加水平恒力F 使物体A 从静止开始向上运动.(整个过程弹簧始终处在弹性限度以内).(1)如果在C 端所施加的恒力大小为3mg ,则在物体B 刚要离开地面时物体A 的速度为多大?(2)若将物体B 的质量增加到2m ,为了保证运动中物体B 始终不离开地面,则F 最大不超过多少? 【解析】由题意可知,弹簧开始的压缩量0mg x k =,物体B 刚要离开地面时弹簧的伸长量也是0mgx k=. (1)若3F mg =,在弹簧伸长到0x 时,物体B 离开地面,此时弹簧弹性势能与施力前相等,F 所做的功等于物体A 增加的动能及重力势能的和.即:201222F x mg x mv ⋅=⋅+得:022v gx =(2)所施加的力为恒力0F 时,物体B 不离开地面,类比竖直弹簧振子,物体A 在竖直方向上除了受变化的弹力外,再受到恒定的重力和拉力.故物体A 做简谐运动.在最低点有:001F mg kx ma -+=,式中k 为弹簧劲度系数,1a 为在最低点物体A 的加速度.在最高点,物体B 恰好不离开地面,此时弹簧被拉伸,伸长量为02x ,则:002(2)k x mg F ma +-=而0kx mg =,简谐运动在上、下振幅处12a a =,解得:032mgF =[也可以利用简谐运动的平衡位置求恒定拉力0F .物体A 做简谐运动的最低点压缩量为0x ,最高点伸长量为02x ,则上下运动中点为平衡位置,即伸长量为所在处.由002xmg k F +=,解得:032mgF =.]【答案】022gx 32mg说明:区别原长位置与平衡位置.和原长位置对应的形变量与弹力大小、方向、弹性势能相关,和平衡位置对应的位移量与回复大小、方向、速度、加速度相关. 七.与弹簧相关的临界问题通过弹簧相联系的物体,在运动过程中经常涉及临界极值问题:如物体速度达到最大;弹簧形变量达到最大时两个物体速度相同;使物体恰好要离开地面;相互接触的物体恰好要脱离等.此类问题的解题关键是利用好临界条件,得到解题有用的物理量和结论。
高中物理弹簧类问题专题练习(经典总结附详细答案)
-v 甲 高中物理弹簧类问题专题练习1.图中a 、b 为两带正电的小球,带电量都是q ,质量分别为M 和m ;用一绝缘弹簧联结,弹簧的自然长度很小,可忽略不计,达到平衡时,弹簧的长度为d 0。
现把一匀强电场作用于两小球,场强的方向由a 指向b ,在两小球的加速度相等的时刻,弹簧的长度为d 。
( )A .若M = m ,则d = d 0B .若M >m ,则d >d 0C .若M <m ,则d <d 0D .d = d 0,与M 、m 无关2. 如图a 所示,水平面上质量相等的两木块A 、B 用一轻弹簧相连接,整个系统处于平衡状态.现用一竖直向上的力F 拉动木块A ,使木块A 向上做匀加速直线运动,如图b 所示.研究从力F 刚作用在木块A 的瞬间到木块B 刚离开地面的瞬间这个过程,并且选定这个过程中木块A列图象中可以表示力F 和木块A 的位移x 之间关系的是(3.如图甲所示,一轻弹簧的两端分别与质量为m 1和m 2的两物块相连接,并且静止在光滑的水平面上.现使m 1瞬时获得水平向右的速度3m/s ,以此刻为时间零点,两物块的速度随时间变化的规律如图乙所示,从图象信息可得( )A .在t 1、t 3时刻两物块达到共同速度1m/s 且弹簧都是处于压缩状态B .从t 3到t 4时刻弹簧由伸长状态逐渐恢复原长C .两物体的质量之比为m 1∶m 2 = 1∶2D .在t 2时刻两物体的动量之比为P 1∶P 2 =1∶2 4.如图所示,绝缘弹簧的下端固定在斜面底端,弹簧与斜面平行,带电小球Q (可视为质点)固定在光滑绝缘斜面上的M 点,且在通过弹簧中心的直线ab 上。
现把与Q 大小相同,带电性也相同的小球P ,从直线ab 上的N 点由静止释放,在小球P 与弹簧接触到速度变为零的过程中( )A.小球P 的速度是先增大后减小B.小球P 和弹簧的机械能守恒,且P 速度最大时 所受弹力与库仑力的合力最大C.小球P 的动能、重力势能、电势能与弹簧的弹 性势能的总和不变D.小球P 合力的冲量为零5、如图所示,A 、B 两木块叠放在竖直轻弹簧上,如图所示,已知木块A 、B 质量分别为0.42 kg 和0.40 kg ,弹簧的劲度系数k =100 N/m ,若在木块A 上作用一个竖直向上的力F ,使A 由静止开始以0.5 m/s 2的加速度竖直向上做匀加速运动(g =10 m/s 2).A B C D b(1)使木块A竖直做匀加速运动的过程中,力F的最大值;(2)若木块由静止开始做匀加速运动,直到A、B分离的过程中,弹簧的弹性势能减少了0.248 J,求这一过程F对木块做的功.6、如图,质量为m1的物体A经一轻质弹簧与下方地面上的质量为m2的物体B相连,弹簧的劲度系数为k,A、B都处于静止状态。
高中物理弹簧问题分类全解析
高中物理弹簧问题分类全解析一、有关弹簧题目类型 1、平衡类问题 2、突变类问题3、简谐运动型弹簧问题4、功能关系型弹簧问题5、碰撞型弹簧问题6、综合类弹簧问题 二、分类解析 1、平衡类问题例1.如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m1g/k 1B.m2g/k 2C.m1g/k 2D.m2g/k 2解析:我们把看成一个系统,当整个系统处于平衡状态时,整个系统受重力和弹力,即当上面木块离开弹簧时,受重力和弹力,则【例2】、14、如图所示,与水平面夹角为30°的固定斜面上有一质量m=1.0kg 的物体。
细绳的一端摩擦不计的定滑轮与固定的弹簧秤相连。
物体静止在斜面上,弹簧秤的示数为4.9N 。
关于物体受力的判断(取g=9.8m/s2),下列说法正确的是C A.斜面对物体的摩擦力大小为零B. 斜面对物体的摩擦力大小为4.9N ,方向沿斜面向上C. 斜面对物体的摩擦力大小为4.9N ,方向沿斜面向下D. 斜面对物体的摩擦力大小为4.9N ,方向垂直斜面向上练习1、(2010山东卷)17.如图所示,质量分别为1m 、2m 的两个物体通过轻弹簧连接,在力F 的作用下一起沿水平方向做匀速直线运动(1m 在地面,2m 在空中),力F 与水平方向成 角。
则1m 所受支持力N 和摩擦力f 正确的是ACA .12sin N m g m g F θ=+-B .12cos N m g m g F θ=+-C .cos f F θ=D .sin f F θ=2、在水平地面上放一个竖直轻弹簧,弹簧上端与一个质量为2.0kg 的木板相连。
若在木板上再作用一个竖直向下的力F 使木板缓慢向下移动0.1米,力F 作功2.5J,此时木板再次处于平衡,力F 的大小为50N ,如图所示,则木板下移0.1米的过程中,弹性势能增加了多少?解:由于木板压缩弹簧,木板克服弹力做了多少功,弹簧的弹性势能就增加了多少,即:(木板克服弹力做功,就是弹力对木块做负功),W 弹=-mgx -W F =-4.5J所以弹性势能增加4.5焦耳点评:弹力是变力,缓慢下移,F 也是变力,所以弹力功2、突变类问题例1、一个轻弹簧一端B 固定,另一端C 与细绳的一端共同拉住一个质量为m 的小球,绳的另一端A 也固定,如图所示,且AC 、BC 与竖直方向夹角分别为21θθ、、,求(1)烧断细绳瞬间,小球的加速度(2)在C处弹簧与小球脱开瞬间,小球的加速度解:(1)若烧断细绳的瞬间,小球的所受合力与原来AC 绳拉力TAC 方向等大、反向,即加速度a 1方向为AC 绳的反向,原来断绳前,把三个力画到一个三角形内部,由正弦定理知: mg/sin(180°-θ1-θ2)=T AC /sinθ2,解得T AC =mgsinθ2/sin(180°-θ1-θ2)=mgsinθ2/sin(θ1+θ2), 故由牛顿第二定律知:a 1=T AC /m=gsinθ2/sin(θ1+θ2) 或者: F AC ×cosθ1+F BC ×cosθ2=mg F AC ×sinθ1=F BC ×sinθ2 解之得F AC =mgsinθ2/sin(θ1+θ2)则瞬间加速度大小a 1=gsinθ2/sin(θ1+θ2),方向AC 延长线方向。
高中物理--弹簧相关的受力和运动问题
弹簧相关的受力问题1、如右图所示,两人分别用100 N 的力拉弹簧秤的秤钩和拉环,则弹簧秤的读数为( )A .50 NB .0C .100 ND .200 N2、如图,两弹簧的劲度系数分别为k 1和k 2,弹簧k 1悬挂在天花板上。
两弹簧间连接着质量为m 的物体。
若在k 2的下端A 点再悬挂着一质量为m 的物体,求A点下移的距离是多少?3、如图所示,两木块的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧。
在这过程中下面木块移动的距离为( ) A.11k g m B. 12k g m C. 21k g m D. 22k g m 4、如图所示,一木板B 放在水平地面上,木块A 放在B 的上面,A 的右端通过轻质弹簧秤固定在直立的墙壁上。
用F 向左拉动B ,使它以速度v 运动,这时弹簧秤的示数为T 。
下面说法正确的是( )A.木板受到的滑动摩擦力的大小等于TB.地面受到的滑动摩擦力的大小等于TC.若木板以2v 的速度运动,木块A 受到的摩擦力大小等于2TD.若2F 的力作用在木板上,木块A 所受摩擦力的大小等于T5、如图所示,A 、B 两球完全相同,质量为m ,用两根等长的细线悬挂在O 点,两球之间夹着一根劲度系数为k 的轻弹簧,静止不动时,弹簧位于水平方向,两根细线之间的夹角为θ.则弹簧的长度被压缩了( )A .k mg θtanB .k mg θtan 2C .k mg )2(tan θD .k mg )2(tan 2θ6、L 型木板P (上表面光滑)放在固定斜面上,轻质弹簧一端固定在木板上,另一端与置于木板上表面的滑块Q 相连,如上图所示.若P 、Q 一起沿斜面匀速下滑,不计空气阻力.则木块P 的受力个数为( )A .3B .4C .5D .6第2题图弹簧相关的受力和运动问题1、如图所示,劲度系数为k的轻弹簧竖直放置,下端固定在水平地面上.一质量为m的小球,从离弹簧上端高h处自由下落,接触弹簧后继续向下运动.观察小球从开始下落到小球第一次运动到最低点的过程,下列关于小球的速度v或加速度a随时间t变化的图象中符合实际情况的是( )2、如图所示,一竖直放置的轻弹簧下端固定于桌面,现将一物块放于弹簧上同时对物块施加一竖直向下的外力,并使系统静止,若将外力突然撤去,则物块在第一次到达最高点前的速度-时间图像(图中实线)可能是图中的()3、如图甲所示,一根轻弹簧竖直直立在水平地面上,下端固定。
高中物理中的“弹簧”模型50题精选训练
B.图中所示的角度θ= 30°
C.O点受到的作用力大小为2mg
D.球A对绳子的作用力大小为
19、如图所示,在水平传送带上有三个质量分别为m1、m2、m3的木块1、2、3,1和2及2和3间分别用原长为L,劲度系数为k的轻弹簧连接起来,木块与传送带间的动摩擦因数均为μ,现用水平细绳将木块1固定在左边的墙上,传送带按图示方向匀速运动,当三个木块达到平衡后,1、3两木块之间的距离是()
A. B.
C. D.
14、如图所示为大型电子地磅电路图,电源电动势为E,内阻不计.不称物体时,滑片P在A端,滑动变阻器接入电路的有效电阻最大,电流较小;称物体时,在压力作用下使滑片P下滑,滑动变阻器的有效电阻变小,电流变大,这样把重力值转换成电信号,将电流对应的重力值刻在刻度盘上,就可以读出被称物体的重力值.若滑动变阻器上A、B间距为L,最大阻值等于定值电阻的阻值R0,已知两弹簧的总弹力与形变量成正比,比例系数为k,则所称重物的重力G与电流大小I的关系为()
D.轻绳上拉力与轻弹簧A上拉力的大小之比为 ∶2
3、两个劲度系数分别为k1和k2的轻质弹簧a、b串接在一起,a弹簧的一端固定在墙上,如图所示.开始时弹簧均处于原长状态.现用水平力作用在b弹簧的P端向右拉动弹簧,当a弹簧的伸长量为L时()
A.b弹簧的伸长量为
B.b弹簧的伸长量也为L
C.P端向右移动的距离为2L
D.P端向右移动的距离为
4、如图所示,质量分别为m1、m2的两个物体通过轻弹簧连接,在力F的作用下一起沿水平方向做匀速直线运动(m1在地面,m2在空中),力F与水平方向成θ角,则m1所受支持力FN和摩擦力Ff正确的是()
A. B.
C. D.
高中物理弹簧类问题试题及答案
1、如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F 的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上,②中弹簧的左端受大小也为F 的拉力作用,③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动,④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动。
若认为弹簧的质量都为零,以l 1、l 2、l 3、l 4依次表示四个弹簧的伸长量,则有 ( D ) A .l 2>l 1 B .l 4>l 3 C .l 1>l 3 D .l 2=l 42、如图所示,a 、b 、c 为三个物块,M ,N 为两个轻质弹簧,R为跨过光滑定滑轮的轻绳,它们连接如图所示并处于静止状态( AD )A.有可能N 处于拉伸状态而M 处于压缩状态B.有可能N 处于压缩状态而M 处于拉伸状态C.有可能N 处于不伸不缩状态而M 处于拉伸状态D.有可能N 处于拉伸状态而M 处于不伸不缩状态3、如图所示,在一直立的光滑管内放置一轻质弹簧,上端O 点与管口A 的距离为2x 0,一质量为m 的小球从管口由静止下落,将弹簧压缩至最低点B ,压缩量为x 0,不计空气阻力,则( AD ) A.小球运动的最大速度大于20gxB.小球运动中最大动能等于2mgx 0C.弹簧的劲度系数为mg/x 0D.弹簧的最大弹性势能为3mgx 04、如图所示,A 、B 质量均为m ,叠放在轻质弹簧上,当对A 施加一竖直向下的力,大小为F ,将弹簧压缩一段,而且突然撤去力F 的瞬间,关于A 的加速度及A 、B 间的相互作用力的下述说法正确的是( B )A 、加速度为0,作用力为mg 。
B 、加速度为m F 2,作用力为2Fmg +C 、速度为F/m ,作用力为mg+FD 、加速度为mF2,作用力为2mgF +5、如图所示,一根轻弹簧上端固定,下端挂一质量为m 1的箱子,箱中有一质量为m 2的物体.当箱静止时,弹簧伸长L 1,向下拉箱使弹簧再伸长L 2时放手,设弹簧处在弹性限度内,则放手瞬间箱对物体的支持力为:( A ) A..g m L L 212)1(+B..g m m L L))(1(2112++ C.g m L L 212 D.g m m L L)(2112+m 2k 1m 1k 26、如图所示,在一粗糙水平面上有两个质量分别为m 1和m 2的木块1和2,中间用一原长为L 、劲度系数为K 的轻弹簧连接起来,木块与地面间的滑动摩擦因数为μ。
高考物理含弹簧的物理模型专题分析(答案)
含弹簧的物理模型纵观历年的高考试题,和弹簧有关的物理试题占有相当的比重,高考命题者常以弹簧为载体设计出各类试题,这类试题涉及静力学问题、动力学问题、动量守恒和能量守恒问题、振动问题、功能问题等。
几乎贯穿整个力学的知识体系。
对于弹簧,从受力角度看,弹簧上的弹力是变力;从能量角度看,弹簧是个储能元件。
因此,弹簧问题能很好地考查学生的综合分析能力,故备受高考命题者的亲睐。
题目类型有:静力学中的弹簧问题,动力学中的弹簧问题,与动量和能量相关的弹簧问题。
1.静力学中的弹簧问题(1)胡克定律:F =kx ,ΔF =k ·Δx(2)对弹簧秤的两端施加(沿轴线方向)大小不同的拉力,弹簧秤的示数一定等于挂钩上的拉力。
例题1:一根轻质弹簧一端固定,用大小为F 1的力压弹簧的另一端,平衡时长度为l 1;改用大小为F 2的力拉弹簧,平衡时长度为l 2。
弹簧的拉伸或压缩均在弹性限度内,该弹簧的劲度系数为CA .2121F F l l B .2121F F l l C .2121F F l l D .2121F F l l 例题2:如图所示,两木块A 、B 的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,两弹簧分别连接A 、B ,整个系统处于平衡状态。
现缓慢向上提木块A ,直到下面的弹簧对地面的压力恰好为零,在此过程中A 和B 的重力势能共增加了A .212221)(k k g m m B .)(2)(212221k k gm m C .)()(21212221k k k k g m m D .22221)(k g m m +12211)(k gm m m 解析:取A 、B 以及它们之间的弹簧组成的整体为研究对象,则当下面的弹簧对地面的压力为零时,向上提A 的力F 恰好为:F =(m 1+m 2)g设这一过程中上面和下面的弹簧分别伸长x 1、x 2,由胡克定律得:x 1=121)(k g m m ,x 2=221)(k g m m 故A 、B 增加的重力势能共为:ΔE P =m 1g(x 1+x 2)+m 2gx 2=22221)(k g m m +12211)(k gm m m 答案:D【点评】计算上面弹簧的伸长量时,较多的同学会先计算原来的压缩量,然后计算后来的伸长量,再将两者相加,但不如上面解析中直接运用Δx =kF进行计算更快捷方便。
弹簧(高中物理)
弹簧1.(13分)一个劲度系数为K=800N/m 的轻弹簧,两端分别连接着质量均为m=12kg 物体A 和B ,将它们竖直静止地放在水平地面上,如图所示。
施加一竖直向上的变力F 在物体A 上,使物体A 从静止开始向上做匀加速运动,当t=0.4s 时物体B 刚离开地面(设整个匀加速过程弹簧都处于弹性限度内,取g=10m/s 2).求:(1)此过程中物体A 的加速度的大小。
(2)此过程中所加外力F 所做的功。
解:(1)开始时弹簧被压缩X 1,对A :KX 1=m A g ①(1分)B 刚要离开地面时弹簧伸长X 2,对B :KX 2=m B g ②(2分) 又m A =m B =m 代入①②得:X 1=X 2整个过程A 上升:S=X 1+X 2=2mg/K=0.3米 (2分)根据运动学公式:221at S =物体A 的加速度:)/(75.3222s m tsa ==(2分) (2)设A 末速度为V t 则由:t V V S t 20+=得:)/(5.12s m tSV t ==(2分) ∵X 1=X 2 ∴此过程初、末位置弹簧的弹性势能不变,弹簧的弹力做功为零。
设此过程中所加外力F 做功为W ,根据动能定理:221t mV mgs W =-(3分) )(5.49212J mV mgs W t =+=(1分)2.(15分)如图所示,光滑水平面上放有A 、B 、C 三个物块,其质量分别为m A =2.0gk ,m B =m C =1.0kg ,用一轻弹簧连接A 、B 两物块,现用力压缩弹簧使三物块靠近,此过程外力做功72J ,然后释放,求: (1)释放后物块B 对物块C 一共做了多少功?(2)弹簧第二次被压缩时,弹簧具有的最大弹性势能为多大? 解:(1)释放后,在弹簧恢复原长的过程中B 和C 和一起向左运动,当弹簧恢复原长后B 和C 的分离,所以此过程B 对C 做功。
选取A 、B 、C 为一个系统,在弹簧恢复原长的过程中动量守恒(取向右为正向):0)(=+-C C B A A v m m v m ① (3分)系统能量守恒:J W v m m v m C C B A A 72)(212122==++ ② (2分) ∴B 对C 做的功:221C C v m W =' ③ (2分) 联立①②③并代入数据得:J W 18=' (1分)(2)B 和C 分离后,选取A 、B 为一个系统,当弹簧被压缩至最短时,弹簧的弹性势能最大,此时A 、B 具有共同速度v ,取向右为正向,由动量守恒:)()(C B B A B B A A v v v m m v m v m =+=-④ (3分)弹簧的最大弹性势能:222)(212121v m m v m v m E B A B B A A P +-+=⑤(2分) 联立①②④⑤并代入数据得:E p =48J (2分)3.(19分)如图所示,将质量为g m A 100=的平台A 连结在劲度系数m N k /200=的弹簧上端,弹簧下端固定在地上,形成竖直方向的弹簧振子,在A 的上方放置A B m m =的物块B ,使A 、B 一起上下振动,弹簧原子为5cm.A 的厚度可忽略不计,g 取10./2s m 求:(1)当系统做小振幅简谐振动时,A 的平衡位置离地面C 多高? (2)当振幅为0.5cm 时,B 对A 的最大压力有多大?(3)为使B 在振动中始终与A 接触,振幅不能超过多大? 解:(1)振幅很小时,A 、B 间不会分离,将A 和B 整体作为振子,当它们处于平衡位置时,根据平衡条件得g m m kx B A )(0+=(1分)得形变量cm m m k g m m x B A 101.020010)1.01.0()(0==⨯+=+=(2分)平衡位置距地面高度cm cm x l h 4)15(00=-=-=(2分)(2)当A 、B 运动到最低点,有向上的最大加速度,此时A 、B 间相互作用力最大,设振幅为A 最大加速度220/5/1.01.0005.0200)()(s m s m m m kA m m g m m x A k a B A B A B A m =⨯⨯=+=++-+=(3分)取B 为研究对象,有m B B a m g m N =-(2分)得A 、B 间相互作用力N N a g m a m g m N m B m B B 5.1)510(1.0)(=+⨯=+=+=(2分) 由牛顿第三定律知,B 对A 的最大压力大小为N N N 5.1=='(1分)(3)为使B 在振动中始终与A 接触,在最高点时相互作用力应满足:0≥N (2分)取B 为研究对象,a m N g m B B =-,当N=0时,B 振动的加速度达到最大值,且最大值2/10s m g a m =='(方向竖直向下)(1分)因g a a mB mA ='=',表明A 、B 仅受重力作用,此刻弹簧的弹力为零,弹簧处于原长(1分)cm x A 10==' 振幅不能大于1cm (2分)4.(14分)在科技活动中某同学利用自制的电子秤来称量物体的质量。
高中物理弹簧弹力问题(含答案)
弹簧问题归类一、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型.由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大.故轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.弹簧一端受力为F ,另一端受力一定也为F ,若是弹簧秤,则弹簧秤示数为F .【例1】如图3-7-1所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能忽略,弹簧及挂钩质量不计,施加弹簧上水平方向的力1F 和称外壳上的力2F ,且12F F >,则弹簧秤沿水平方向的加速度为 ,弹簧秤的读数为 .【解析】 以整个弹簧秤为研究对象,利用牛顿运动定律得: 12F F ma -=,即12F F a m-=,仅以轻质弹簧为研究对象,则弹簧两端的受力都1F ,所以弹簧秤的读数为1F .说明:2F 作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的.【答案】12F F a m-= 1F二、质量不可忽略的弹簧【例2】如图3-7-2所示,一质量为M 、长为L 的均质弹簧平放在光滑的水平面,在弹簧右端施加一水平力F 使弹簧向右做加速运动.试分析弹簧上各部分的受力情况.【解析】 弹簧在水平力作用下向右加速运动,据牛顿第二定律得其加速度F a M=,取弹簧左部任意长度x 为研究对象,设其质量为m 得弹簧上的弹力为:,x x F xT ma M F L M L===【答案】x x T F L=三、弹簧的弹力不能突变(弹簧弹力瞬时)问题弹簧(尤其是软质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变. 即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变.【例3】如图3-7-3所示,木块A 与B 用轻弹簧相连,竖直放在木块C 上,三者静置于地面,A B C 、、的质量之比是1:2:3.设所有接触面都光滑,当沿水平方向迅速抽出木块C 的瞬时,木块A 和B 的加速度分别是A a = 与B a =【解析】由题意可设A B C 、、的质量分别为23m m m 、、,以木块A 为研究对象,抽出木块C前,木块A 受到重力和弹力一对平衡力,抽出木块C 的瞬时,木块A 受到重力和弹力的大小和方向均不变,故木块A 的瞬时加速度为0.以木块A B 、为研究对象,由平衡条件可知,木块C 对木块B 的作用力3CB F mg =.以木块B 为研究对象,木块B 受到重力、弹力和CB F 三力平衡,抽出木块C 的瞬时,木块B 受到重力和弹力的大小和方向均不变,CB F 瞬时变为0,故木块C 的瞬时合外力为3mg ,竖直向下,瞬时加速度为1.5g .【答案】0 说明:区别于不可伸长的轻质绳中张力瞬间可以突变.【例4】如图3-7-4所示,质量为m 的小球用水平弹簧连接,并用倾角为030的光滑木板AB 托住,使小球恰好处于静止状态.当AB 突然向下撤离的瞬间,小球的加速度为 ( ) A.0 B.大小为233g ,方向竖直向下C.大小为233g ,方向垂直于木板向下 D. 大小为233g , 方向水平向右【解析】 末撤离木板前,小球受重力G 、弹簧拉力F 、木板支持力N F 作用而平衡,如图3-7-5所示,有cos N mgF θ=.撤离木板的瞬间,重力G 和弹力F 保持不变(弹簧弹力不能突变),而木板支持力N F 立即消失,小球所受G 和F 的合力大小等于撤之前的N F(三力平衡),方向与N F 相反,故加速度方向为垂直木板向下,大小为图 3-7-4图图3-7-2图 3-7-1图3-7-323cos 3N F g a g m θ=== 【答案】 C. 四、弹簧长度的变化问题设劲度系数为k 的弹簧受到的压力为1F -时压缩量为1x -,弹簧受到的拉力为2F 时伸长量为2x ,此时的“-”号表示弹簧被压缩.若弹簧受力由压力1F -变为拉力2F ,弹簧长度将由压缩量1x -变为伸长量2x ,长度增加量为12x x +.由胡克定律有: 11()F k x -=-,22F kx =.则:2121()()F F kx kx --=--,即F k x ∆=∆ 说明:弹簧受力的变化与弹簧长度的变化也同样遵循胡克定律,此时x ∆表示的物理意义是弹簧长度的改变量,并不是形变量.【例5】如图3-7-6所示,劲度系数为1k 的轻质弹簧两端分别与质量为1m 、2m 的物块1、2拴接,劲度系数为2k 的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态.现将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了 ,物块1的重力势能增加了 . 【解析】由题意可知,弹簧2k 长度的增加量就是物块2的高度增加量,弹簧2k 长度的增加量与弹簧1k 长度的增加量之和就是物块1的高度增加量.由物体的受力平衡可知,弹簧2k 的弹力将由原来的压力12()m m g +变为0,弹簧1k 的弹力将由原来的压力1m g 变为拉力2m g ,弹力的改变量也为12()m m g + .所以1k 、2k 弹簧的伸长量分别为:1211()m m g k +和1221()m m g k + 故物块2的重力势能增加了221221()m m m g k +,物块1的重力势能增加了21121211()()m m m g k k ++ 五、弹簧形变量可以代表物体的位移弹簧弹力满足胡克定律F kx =-,其中x 为弹簧的形变量,两端与物体相连时x 亦即物体的位移,因此弹簧可以与运动学知识结合起来编成习题.【例6】如图3-7-7所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A B 、,其质量分别为A B m m 、,弹簧的劲度系数为k ,C 为一固定挡板,系统处于静止状态,现开始用一恒力F 沿斜面方向拉A 使之向上运动,求B 刚要离开C 时A 的加速度a 和从开始到此时A 的位移d (重力加速度为g ).【解析】 系统静止时,设弹簧压缩量为1x ,弹簧弹力为1F ,分析A 受力可知:11sin A F kx m g θ==解得:1sin A m g x kθ=在恒力F 作用下物体A 向上加速运动时,弹簧由压缩逐渐变为伸长状态.设物体B 刚要离开挡板C 时弹簧的伸长量为2x ,分析物体B 的受力有:2sin B kx m g θ=,解得2sin B m g x kθ=设此时物体A 的加速度为a ,由牛顿第二定律有:2sin A A F m g kx m a θ--= 解得:()sin A B AF m m g a m θ-+=因物体A与弹簧连在一起,弹簧长度的改变量代表物体A 的位移,故有12d x x =+,即()s i n A B m m g d kθ+=【答案】()sin A B m m g d kθ+=六、弹力变化的运动过程分析弹簧的弹力是一种由形变决定大小和方向的力,注意弹力的大小与方向时刻要与当时的形变相对应.一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置及临界位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,弹性势能也是与原长位置对应的形变量相关.以此来分析计算物体运动状态的可能变化.结合弹簧振子的简谐运动,分析涉及弹簧物体的变加速度运动,.此时要先确定物体运动的平衡位置,区别物体的原长位置,进一步确定物体运动为简谐运动.结合与平衡位置对应的回复力、加速度、速度的变化规律,很容易分析物体的运动过程.【例7】如图3-7-8所示,质量为m 的物体A 用一轻弹簧与下方地面上质量也为m的物图 图3-7-6体B 相连,开始时A 和B 均处于静止状态,此时弹簧压缩量为0x ,一条不可伸长的轻绳绕过轻滑轮,一端连接物体A 、另一端C 握在手中,各段绳均刚好处于伸直状态,物体A 上方的一段绳子沿竖直方向且足够长.现在C 端施加水平恒力F 使物体A 从静止开始向上运动.(整个过程弹簧始终处在弹性限度以内).(1)如果在C 端所施加的恒力大小为3mg ,则在物体B 刚要离开地面时物体A 的速度为多大?(2)若将物体B 的质量增加到2m ,为了保证运动中物体B 始终不离开地面,则F 最大不超过多少? 【解析】 由题意可知,弹簧开始的压缩量0mg x k =,物体B 刚要离开地面时弹簧的伸长量也是0mgx k=. (1)若3F mg =,在弹簧伸长到0x 时,物体B 离开地面,此时弹簧弹性势能与施力前相等,F 所做的功等于物体A 增加的动能及重力势能的和.即:201222F x mg x mv ⋅=⋅+得: 022v gx =(2)所施加的力为恒力0F 时,物体B 不离开地面,类比竖直弹簧振子,物体A 在竖直方向上除了受变化的弹力外,再受到恒定的重力和拉力.故物体A 做简谐运动.在最低点有:001F mg kx ma -+=,式中k 为弹簧劲度系数,1a 为在最低点物体A 的加速度.在最高点,物体B 恰好不离开地面,此时弹簧被拉伸,伸长量为02x ,则: 002(2)k x mg F ma +-=而0kx mg =,简谐运动在上、下振幅处12a a =,解得:032mgF =[也可以利用简谐运动的平衡位置求恒定拉力0F .物体A 做简谐运动的最低点压缩量为0x ,最高点伸长量为02x ,则上下运动中点为平衡位置,即伸长量为所在处.由002xmg k F +=,解得:032mg F =.]【答案】022gx 32mg说明: 区别原长位置与平衡位置.和原长位置对应的形变量与弹力大小、方向、弹性势能相关,和平衡位置对应的位移量与回复大小、方向、速度、加速度相关. 七.与弹簧相关的临界问题通过弹簧相联系的物体,在运动过程中经常涉及临界极值问题:如物体速度达到最大;弹簧形变量达到最大时两个物体速度相同;使物体恰好要离开地面;相互接触的物体恰好要脱离等.此类问题的解题关键是利用好临界条件,得到解题有用的物理量和结论。
高中物理:与弹簧相连接的物理问题
高中物理:与弹簧相连接的物理问题一、用胡克定律来分析弹簧和物体相互作用时,致使弹簧伸长或缩短时产生的弹力的大小遵循胡克定律,即或。
显然,弹簧的长度发生变化的时候,必用胡克定律。
例1、劲度系数为k的弹簧悬挂在天花板的O点,下端挂一质量为m的物体,用托盘托着,使弹簧位于原长位置,然后使其以加速度a由静止开始匀加速下降,求物体匀加速下降的时间。
解析:物体下降的位移就是弹簧的形变长度,弹力越来越大,因而托盘施加的向上的压力越来越小,且匀加速运动到压力为零。
由匀变速直线运动公式及牛顿定律得:①②③解以上三式得:。
二、用弹簧的伸缩性质来分析弹簧能承受拉伸的力,也能承受压缩的力。
在分析有关弹簧问题时,要分析弹簧承受的是拉力还是压力。
例2、如图1所示,小圆环重固定的大环半径为R,轻弹簧原长为L(L<2R),其劲度系数为k,接触光滑,求小环静止时。
弹簧与竖直方向的夹角。
解析:以小圆环为研究对象,小圆环受竖直向下的重力G、大环施加的弹力N和弹簧的弹力F。
若弹簧处于压缩状态,小球受到斜向下的弹力,则N的方向无论是指向大环的圆心还是背向大环的圆心,小环都不能平衡。
因此,弹簧对小环的弹力F一定斜向上,大环施加的弹力刀必须背向圆心,受力情况如图2所示。
根据几何知识,“同弧所对的圆心角是圆周角的二倍”,即弹簧拉力N的作用线在重力mg和大环弹力N的角分线上。
所以另外,根据胡可定律:解以上式得:即三、用弹簧隐含的临界条件来分析很多由弹簧设计的物理问题,在其运动的过程中隐含着临界状态等已知条件,只有充分利用这一隐含的条件才能解决问题。
例3、已知弹簧劲度系数为k,物块重为m,弹簧立在水平桌面上,下端固定,上端固定一轻质盘,物块放于盘中,如图3所示。
现给物块一向下的压力F,当物块静止时,撤去外力。
在运动过程中,物块正好不离开盘,求:(1)给物块所受的向下的压力F。
(2)在运动过程中盘对物块的最大作用力。
解析、(1)由于物块正好不离开盘,可知物块振动到最高点时,弹簧正好处在原长位置,所以有:由对称性,物块在最低点时的加速度也为a,因为盘的质量不计,由牛顿第二定律得:物块被压到最低点静止时有:由以上三式得:(2)在最低点时盘对物块的支持力最大,此时有:,解得。
高中物理弹簧问题专练
弹簧问题1.如图所示,一质量为的小球置于半径为的光滑竖直圆轨道最低点处,为轨道最高点,、为圆的水平直径两端点。
轻质弹簧一端固定在圆心点,另一端与小球栓接,已知弹簧的劲度系数,原长为,弹簧始终处于弹性限度内,若给小球一水平初速度,已知重力加速度为,则()。
A.无论多大,小球均不会离开圆轨道B.若则小球会在、间脱离圆轨道C.只,小球就能做完整的圆周运动D.只要小球能做完整圆周运动,则小球与轨道间的最大压力与最小压力之差与无关2.如图所示,倾角为足够长的光滑斜面下端固定一挡板,质量均为的两物块用轻质弹簧连接静止在光滑斜面上,现用平行斜面向上的恒力作用在物块A上,使A开始向上运动,下列说法正确的是()。
A.若,物块B一定不能离开挡板B.若,物块B一定能离开挡板C.若,弹簧第一次到达最长时,B的加速度一定大于A的加速度D.若,拉力做的功总等于A机械能的增量与弹簧弹性势能增量之和3.如图所示,物体A和带负电的物体B用跨过定滑轮的绝缘且不可伸长的轻绳连接,A、B的质量分别是和,劲度系数为的轻质弹簧一端固定在水平面的左端,另一端与物体A相连,倾角为的斜面处于沿斜面向上的匀强电场中,整个系统不计一切摩擦。
开始时,对物体B施加一沿斜面向上的外力,其大小,物体B保持静止,且轻绳恰好伸直但是拉力为。
然后撤去外力,直到物体B获得最大速度,且弹簧未超过弹性限度,A物体也未到达定滑轮处,则在此过程中()。
A.B的速度最大时,弹簧的伸长量为B.整个系统机械能的增加量小于物体B电势能的减少量C.撤去外力的瞬间,物体B的加速度D.撤去外力的瞬间,物体B的加速度为4.一钢球从某高度自由下落在一放在水平地面的弹簧上,从钢球与弹簧接触到压缩到最短的过程中,弹簧的弹力、钢球的加速度、重力所做的以及小球的机械能与弹簧压缩量的变化图线如下图(不考虑空气阻力),选小球与弹簧开始接触点为原点,建立图示坐标系,并规定向下为正方向,则下述选项中的图像符合实际的是()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理弹簧专题典型例题例如图3-5,木块B与水平桌面间的接触是光滑的,子弹A沿水平方向射入木块后留在木块内,将弹簧压缩到最短。
现将子弹、木块和弹簧合在一起作研究对象,则此系统在从子弹开始射入木块到弹簧压缩到最短的过程中[ ]A.动量守恒,机械能守恒B.动量不守恒,机械能不守恒C.动量守恒,机械能不守恒D.动量不守恒,机械能守恒【错解】以子弹、木块和弹簧为研究对象。
因为系统处在光滑水平桌面上,所以系统水平方向不受外力,系统水平方向动量守恒。
又因系统只有弹力做功,系统机械能守恒。
故A正确。
【错解原因】错解原因有两个一是思维定势,一见光滑面就认为不受外力。
二是规律适用条件不清。
【分析解答】以子弹、弹簧、木块为研究对象,分析受力。
在水平方向,弹簧被压缩是因为受到外力,所以系统水平方向动量不守恒。
由于子弹射入木块过程,发生巨烈的摩擦,有摩擦力做功,系统机械能减少,也不守恒,故B正确。
例质量为m的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上。
平衡时,弹簧的压缩量为x,如图3-15所示。
物块从钢板正对距离为3X0的A处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动。
已知物体质量也为m时,它们恰能回到O点,若物块质量为2m,仍从A处自由落下,则物块与钢板回到O点时,还具有向上的速度,求物块向上运动到最高点与O点的距离。
【错解】物块m从A处自由落下,则机械能守恒设钢板初位置重力势能为0,则向下运动,然后返回O点,此时速度为0,运动过之后物块与钢板一起以v程中因为只有重力和弹簧弹力做功,故机械能守恒。
,与钢板一起向下2m的物块仍从A处落下到钢板初位置应有相同的速度v运动又返回机械能也守恒。
返回到O点速度不为零,设为V则:因为m物块与2m物块在与钢板接触时,弹性势能之比2m物块与钢板一起过O点时,弹簧弹力为0,两者有相同的加速度g。
之后,钢板由于被弹簧牵制,则加速度大于g,两者分离,2m物块从此位置以v为初速竖直上抛上升距离【错解原因】这是一道综合性很强的题。
错解中由于没有考虑物块与钢板碰撞之后速度改变这一过程,而导致错误。
另外在分析物块与钢板接触位置处,弹簧的弹性势能时,也有相当多的人出错,两个错误都出时,会发现无解。
这样有些人就返回用两次势能相等的结果,但并未清楚相等的含义。
【分析解答】物块从3x位置自由落下,与地球构成的系统机械能守恒。
则有v为物块与钢板碰撞时的的速度。
因为碰撞板短,内力远大于外力,钢板与物块间动量守恒。
设v1为两者碰撞后共同速mv0=2mv1(2)两者以vl向下运动恰返回O点,说明此位置速度为零。
运动过程中机械能守恒。
设接触位置弹性势能为Ep,则同理2m物块与m物块有相同的物理过程碰撞中动量守恒2mv0=3mv2(4) 所不同2m与钢板碰撞返回O点速度不为零,设为v则因为两次碰撞时间极短,弹性形变未发生变化Ep=E’p(6)由于2m物块与钢板过O点时弹力为零。
两者加速度相同为g,之后钢板被弹簧牵制,则其加速度大于g,所以与物块分离,物块以v竖直上抛。
【评析】本题考查了机械能守恒、动量守恒、能量转化的。
守恒等多个知识点。
是一个多运动过程的问题。
关键问题是分清楚每一个过程。
建立过程的物理模型,找到相应解决问题的规律。
弹簧类问题,画好位置草图至关重要。
例如图3-18所示,轻质弹簧竖直放置在水平地面上,它的正上方有一金属块从高处自由下落,从金属块自由下落到第一次速度为零的过程中A.重力先做正功,后做负功B.弹力没有做正功C.金属块的动能最大时,弹力与重力相平衡D.金属块的动能为零时,弹簧的弹性势能最大。
【错解】金属块自由下落,接触弹簧后开始减速,当重力等于弹力时,金属块速度为零。
所以从金属块自由下落到第一次速度为零的过程中重力一直做正功,故A错。
而弹力一直做负功所以B正确。
因为金属块速度为零时,重力与弹力相平衡,所以C选项错。
金属块的动能为零时,弹力最大,所以形变最大,弹性势能最大。
故D正确。
【错解原因】形成以上错解的原因是对运动过程认识不清。
对运动性质的判断不正确。
金属块做加速还是减速运动,要看合外力方向(即加速度方向)与速度方向的关系。
【分析解答】要确定金属块的动能最大位置和动能为零时的情况,就要分析它的运动全过程。
为了弄清运动性质,做好受力分析。
可以从图3-19看出运动过程中的情景。
从图上可以看到在弹力N<mg时,a的方向向下,v的方向向下,金属块做加速运动。
当弹力N等于重力mg时,a=0加速停止,此时速度最大。
所以C选项正确。
弹力方向与位移方向始终反向,所以弹力没有做正功,B选项正确。
重力方向始终与位移同方向,重力做正功,没有做负功,A选项错。
速度为零时,恰是弹簧形变最大时,所以此时弹簧弹性势能最大,故D正确。
所以B,C,D为正确选项。
【评析】对于较为复杂的物理问题,认清物理过程,建立物情景是很重要的。
做到这一点往往需画出受力图,运动草图,这是应该具有的一种解决问题的能力。
分析问题可以采用分析法和综合法。
一般在考试过程中分析法用的更多。
如本题A,B只要审题细致就可以解决。
而C,D就要用分析法。
C选项中动能最大时,速率最大,速率最大就意味着它的变化率为零,即a=0,加速度为零,即合外力为零,由于合外力为mg-N,因此得mg=N,D选项中动能为零,即速率为零,单方向运动时位移最大,即弹簧形变最大,也就是弹性势能最大。
本题中金属块和弹簧在一定时间和范围内做往复运动是一种简运振动。
从简谐运动图象可以看出位移变化中速度的变化,以及能量的关系。
例 A、B球质量均为m,AB间用轻弹簧连接,将A球用细绳悬挂于O点,如图示,剪断细绳的瞬间,试分析AB球产生的加速度大小与方向.分析:开始A球与B球处于平衡状态,其受力图示见右:剪断绳OA瞬间,A、B球均未发生位移变化,故弹簧产生的弹力kx也不会变化,kx=mg,所以剪断绳瞬间,B 受力没发生变化,其加速度a B =0;A 球受到合外力 为kx +mg ,其加速度a A=mmgkx +=2g 竖直向下. 试分析,将上题中绳与弹簧位置互换后悬挂,将绳剪断瞬间,AB 球加速度的大小与方向?(a A =g ,竖直向上;a B =g ,竖直向下)例 光滑斜面倾角θ=30°,斜面上放有质量m =1kg 的物体,物体用劲度系数K =500N/m 的弹簧与斜面连接,如图所示,当斜面以a =3m/s 2的加速度匀加速向右运动时,m 与斜面相对静止,求弹簧的伸长? 分析:对m 进行受力分析 水平方向:设弹力为F Fcos θ-Nsin θ=ma (1) 竖直方向:Fsin θ+Ncos θ-mg =0 (2) 由(1)、(2)式可得F =οοοο3030sin 30cos 30tg ma mgtg ++=6.5N 所以,弹簧伸长x =F/K =5005.6=1.3×10-2米 例 用木板托住物体m ,并使得与m 连接的弹簧处于原长,手持木板M 向下以加速度a (a<g )做匀加速运动,求物体m 与木板一起做匀加速运动的时间.θθ分析:m 在与M 一起向下做匀加速运动过程中,m 受到弹簧的弹力不断增大,板M 对m 的支持力不断减小,重力保持不变.m 与板M 分离的条件为板M 对m 的支持力N 恰好为零,且m 与M 运动的加速度恰还相等(下一时刻将不再相等).设:m 与M 分离经历t 时间,弹簧伸长为x : mg -kx =ma∴x =ka g m)(- 又因为:x =21at 2∴t =aa g m )(2-例 质量为m 的物体A 压在放在地面上的竖直轻弹簧B 上,现用细绳跨过定滑轮将物体A 与另一轻弹簧C 连接,当弹簧C 处在水平位置且右端位于a 点时,它没有发生形变,已知弹簧B 和弹簧C 的劲度系数分别为k 1和k 2,不计定滑轮、细绳的质量和摩擦,将弹簧C 的右端由a 点沿水平方向拉到b 点时,弹簧B 刚好没有形变,求a 、b 两点间的距离.答案:⎪⎪⎭⎫⎝⎛+2111K K mg 解析:.,,111X m B K mgX B ∆=∆上升距离为无形变时当弹簧被压缩长度开始弹簧 弹簧C 弹力⎪⎪⎭⎫⎝⎛+=∆+∆∴=∆=∆2112222211,K K mg X X b a K mg X mg X K 间距离为【例3】如图所示,在一粗糙水平面上有两个质量分别为m 1和m 2的木块1和2,中间用一原长为l 、劲度系数为k 的轻弹簧连结起来,木块与地面间的滑动摩擦因数为μ。
现用一水平力向右拉木块例 当两木块一起匀速运动时两木块之间的距离是 ( ) A.g m kl 1μ+ B.g m m kl )(21++μC.g m kl 2μ+D. g m m m m k l )(2121++μ【分析】本题有多种方法,最简单的做法是考虑m 1做匀速运动时的受力平衡。
设x 表示弹簧的伸长量,立刻可得出kx=μm 1g.所以1、2之间的距离应为 l+x=g m kl 1μ+.即选项A 正确若不去求解,只由四个选项也可以进行判断。
设木块2的质量m 2→0,则外力相当于直接加在弹簧右端,要使m 1匀速运动,则弹簧必然伸长,因此1、2间的距离应大于l.所以选项C 和D 都是错误的(m 2→0时,距离→l )。
再设想m 1→0时,则弹簧将保持原长,可见选项B 也是错误的。
因此已知四个选项中有一个正确的,所以只能是A 。
如果不知道有没有正确的选项,那只应按正常的办法求解。
例如图(3)所示甲、乙两装置,所用的器材都相同,只是接法不同,其中的绳为不可伸长的轻绳,弹簧不计质量,当用剪子剪断甲图中弹簧,乙图中的绳子的瞬间,A物体是否受力平衡?分析:要注意分析物理图景,有条件的同学可以模仿题中做法自己尝试一下.看是不是这样的情况.甲图,剪断弹簧B球下落,A球仍保持静止;乙图,剪断绳子B球下落,A球会向上运动.显然乙图中的A球受力不平衡.为什么会这样呢?首先我们先画出在剪断之前两图中A的受力分析:用剪子剪断弹簧是F2突然消失,剪断绳子是FT2突然消失,由剪断前的受力平衡条件可得出F2= FT2之所以出现差别,关键在于绳上的弹力与弹簧上的弹力不同.绳上张力大小,与外界拉它的力的大小有关,在静力问题中,拉绳子的力越大绳子上的弹力也越大;拉绳子的力越小,绳子上的弹力也越小;拉绳子的力为零,绳子上的弹力为零.方向总是指向绳的收缩方向,即绳子上的弹力可以发生突变.弹簧的弹力大小,由胡克定律可知,与它的形变量有关,形变是不能突然回复的,即弹簧上的弹力不能发生突变.所FT1在剪断弹簧后变为FT1’=GA,而乙图中的F1却不能发生突变.。