聚氨酯弹性体研究
热塑性聚氨酯弹性体性能的研究
保密论文注释:本学位论文属于保密范围,在——年解密后适用本授
权书。非保密论文注释:本学位论文不属于保密范围,适用本授权书。 作者签名: 导师签名:
删
日期: 日期:
II
第一章绪论
第一章绪论
第1.1节聚氨酯概述
1.1.1聚氨酯简介
聚氨酯(Polyurethane)是指在分子链中含有异氰酸酯基(-NCO)或氨基甲酸酯 基团(-NHC00.)的聚合物,是一种含软链段和硬链段的嵌段共聚物,软链段由聚合物多
polystyrene
and 25%,SPUS possessed
the
A series of thermal polyurethane based
on
polyether polyols
as
soft
segments,Diphenylmethylene diatomic alcohol
as
diisocyanate(MDI)and micromolecular
polystyrene,SPUS
V
北京化工大学硕上研究生论文
北京化工大学位论文原创性声明
本人郑重声明:
所呈交的学位论文,是本人在导师的指导下,独立
进行研究工作所取得的成果。除文中已经注明引用的内容外,本论文不含 任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重 要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声 明的法律结果由本人承担。
北京化工大学硕士研究生论文
以聚合物多元醇为软段,4,4’.二苯基甲烷二异氰酸酯(MDI)和不同小 分子的二元醇为硬段,采用预聚体法合成热塑性聚氨酯。本文讨论了异氰 酸酯指数、不同扩链剂、以及混合扩链剂的摩尔比对热塑性聚氨酯性能的 影响。结果表明当异氰酸酯指数为O.99时,热塑性聚氨酯的综合性能最 佳;一缩二乙二醇和聚己二酸丁二醇酯为原料合成的TPU具有最佳的力 学性能;双酚A做扩链剂合成出来的TPU具有优异的熔体流动性;当双 酚A与一缩二乙二醇摩尔比为1/3时,聚醚型热塑性聚氨酯在保持一定力 学强度的同时又具有较好的熔体流动性。
聚氨酯弹性体的制备及性能研究
聚氨酯弹性体的制备及性能研究在现代材料科学中,高分子材料的制备技术一直是研究的重点。
其中,聚氨酯弹性体是一种具有优良力学性能和化学稳定性的高分子材料,具有广泛的应用前景。
本文将详细介绍聚氨酯弹性体的制备及性能研究。
一、聚氨酯弹性体的制备聚氨酯弹性体的制备有多种方法,常用的方法有溶液聚合法、弱酸催化法和溶胶-凝胶法等。
下面介绍其中的两种方法。
1. 溶液聚合法溶液聚合法是最简单和实用的制备聚氨酯弹性体的方法之一。
将聚酯多元醇、聚醚多元醇和异氰酸酯按一定比例混合,溶于有机溶剂中,然后加入催化剂和其他助剂后,在高温下进行聚合反应,最终得到聚氨酯弹性体。
这种方法可根据需要选择不同的聚酯多元醇和聚醚多元醇,以调节聚氨酯弹性体的力学性能。
2. 溶胶-凝胶法溶胶-凝胶法是一种制备高分子材料的传统方法,适用于制备物质的纯度较高。
该方法首先将有机溶液中的低分子物质聚合成固体凝胶,然后通过热处理、烧结等方法将凝胶转化为无定形或晶体高分子。
聚氨酯弹性体的制备通过选择不同的溶剂、催化剂和反应条件,可以得到不同形态、组织和性质的聚氨酯弹性体。
二、聚氨酯弹性体的性能研究聚氨酯弹性体具有许多独特的力学和物理性质,因此在各种领域都有广泛的应用。
下面介绍其中的一些性能。
1. 强度和韧性聚氨酯弹性体具有优异的强度和韧性,可以根据不同的应用需要来调节。
通常的方法包括调节聚酯多元醇和聚醚多元醇的比例和分子量,以及控制反应温度、时间和催化剂浓度等。
聚氨酯弹性体的强度和韧性对其对撞、振动、冲击负载等应力下的表现至关重要。
2. 耐磨性和耐老化性聚氨酯弹性体具有良好的耐磨性和耐老化性能,这种性能可以通过添加耐磨、耐氧化和抗紫外线等助剂来改善。
在涵盖了耐磨性具有重要意义的应用领域中,比如鞋底、轮胎内层、导管、密封件、涡轮叶片等,涂层具有好的附着性和磨损耐用性。
3. 去极化性和导电性聚氨酯弹性体在水、盐等极性溶剂中易发生质子化,导致其导电性能受到一定影响。
聚氨酯弹性体的制备与应用研究
聚氨酯弹性体的制备与应用研究引言聚氨酯弹性体是一种具有良好弹性和耐磨性的材料,广泛应用于各个领域。
近年来,随着科学技术的不断进步,对聚氨酯弹性体的制备方法和应用领域进行了深入研究。
本文将从聚氨酯弹性体的制备方法和应用领域两个方面进行探讨。
一、聚氨酯弹性体的制备方法聚氨酯弹性体的制备方法主要包括溶液共混法、热固化法和溶胶-凝胶法。
1. 溶液共混法溶液共混法是聚氨酯弹性体较为常用的制备方法之一。
该方法通过将聚氨酯树脂和溶剂一起混合搅拌,并加入适量的交联剂,在一定的温度下反应一段时间后,得到弹性体。
这种制备方法的优点是工艺简单,适用于大规模生产。
但是由于溶剂的使用,对环境造成一定的污染。
2. 热固化法热固化法是一种无溶剂制备聚氨酯弹性体的方法。
在该方法中,将聚氨酯树脂和交联剂混合搅拌,然后通过加热使其发生交联反应,最终得到弹性体。
这种方法具有工艺简单、无需使用溶剂、对环境无污染等优点。
然而,相比于溶液共混法,热固化法的工艺要求更高,反应时间和温度需要更加精确控制。
3. 溶胶-凝胶法溶胶-凝胶法是一种制备纳米聚氨酯弹性体的方法。
首先,在溶液中形成胶体颗粒,然后通过溶胶-凝胶转化使颗粒固化成聚氨酯弹性体。
这种方法的优点是可以制备出具有纳米级结构的弹性体,拥有更好的力学性能和稳定性。
然而,该方法的制备过程较为复杂,需要较长时间和专业设备。
二、聚氨酯弹性体的应用领域聚氨酯弹性体因其良好的物理性质和化学稳定性,被广泛应用于以下领域。
1. 汽车工业聚氨酯弹性体在汽车工业中应用广泛。
它可以用于汽车座椅、悬挂系统、密封件等部件的制造,具有优异的耐磨性和减震性能,提高了汽车的舒适性和安全性。
2. 医疗领域聚氨酯弹性体在医疗领域具有重要的应用价值。
它可以用于制造人工关节、心脏起搏器、皮肤修复材料等医疗器械,具有生物兼容性好、耐磨性高的特点,有效提高了医疗器械的使用寿命。
3. 体育器材聚氨酯弹性体广泛用于制造体育器材,如跑鞋、运动垫等。
《聚氨酯弹性体静动态力学性能及本构关系的研究》
《聚氨酯弹性体静动态力学性能及本构关系的研究》篇一一、引言聚氨酯弹性体作为一种高性能的聚合物材料,在众多领域中得到了广泛的应用。
其独特的力学性能,包括静动态力学性能,使得聚氨酯弹性体在橡胶、塑料、涂料以及生物医学等多个领域有着不可替代的作用。
为了更深入地了解其力学特性及本构关系,本文对聚氨酯弹性体的静动态力学性能及本构关系进行了详细的研究。
二、聚氨酯弹性体的静力学性能研究聚氨酯弹性体的静力学性能主要包括其在静态负载下的形变和应力响应。
在实验中,我们采用了一系列不同硬度的聚氨酯弹性体样品,通过静态拉伸试验,得到了其应力-应变曲线。
实验结果表明,聚氨酯弹性体在静态负载下表现出良好的弹性和较高的拉伸强度。
随着硬度的增加,其拉伸强度和模量也相应提高。
此外,我们还发现聚氨酯弹性体在形变过程中表现出明显的非线性行为,这与其独特的分子结构和微观结构密切相关。
三、聚氨酯弹性体的动力学性能研究与静力学性能不同,动力学性能主要研究的是材料在动态负载下的响应。
我们通过动态力学分析(DMA)技术,对聚氨酯弹性体在不同频率、不同温度下的动态性能进行了研究。
实验结果显示,聚氨酯弹性体在动态负载下表现出良好的能量吸收能力和优异的阻尼性能。
此外,其动态模量和内耗随温度和频率的变化呈现出明显的变化规律,这为其在振动控制、隔音材料等领域的应用提供了重要的理论依据。
四、聚氨酯弹性体的本构关系研究本构关系是描述材料应力-应变关系的数学模型。
为了更好地描述聚氨酯弹性体的力学行为,我们采用了超弹性本构模型(如Neo-Hookean模型、Yeoh模型等)对其进行了研究。
通过对比不同模型的拟合效果,我们发现Yeoh模型能够较好地描述聚氨酯弹性体的应力-应变关系。
此外,我们还发现聚氨酯弹性体的本构关系受其硬度、温度和频率等因素的影响。
因此,在实际应用中,需要根据具体的使用条件选择合适的本构模型。
五、结论通过对聚氨酯弹性体的静动态力学性能及本构关系的研究,我们得到了以下结论:1. 聚氨酯弹性体在静态和动态负载下均表现出良好的力学性能;2. 聚氨酯弹性体在形变过程中表现出明显的非线性行为,其硬度、温度和频率等因素对其力学性能和本构关系产生影响;3. Yeoh模型能够较好地描述聚氨酯弹性体的应力-应变关系,为其在不同领域的应用提供了重要的理论依据;4. 在实际应用中,需要根据具体的使用条件选择合适的本构模型和材料。
基于ABAQUS的聚氨酯弹性体本构关系研究
基于ABAQUS的聚氨酯弹性体本构关系研究【摘要】为准确地描述聚氨酯弹性体材料属性,进而精确地预测聚氨酯制品的力学性能,从统计热力学方法和唯象法出发,采用试验和仿真分析相结合的方法,从各种类型的材料试验中收集数据,用若干组数据通过拟合方程,确立适合聚氨酯弹性体材料的本构关系。
在聚氨酯弹性体数值分析和工程化应用中,该方法用于各种配方的聚氨酯弹性体本构关系研究均具有较好的适用性,有一定的借鉴意义。
【关键词】聚氨酯;本构关系Abstract:To accurately describe the polyurethane elastomer material properties,and accurately predict the mechanical properties of polyurethane products,starting from the statistical thermodynamic method and the phenomenological method,adoptting the method of experiment and simulation analysis,experiment data is collected from various types of material,with several groups of data by fitting equation,this paper establishs the constitutive relation that is suitable for polyurethane elastomer material.In polyurethane elastomer numerical analysis and engineering application,this method that is applied to various formulations of polyurethane elastomer constitutive relation research has good applicability,and has a certain reference significance.Key Words:polyurethane elastomer;the constitutive relation聚氨酯弹性体是一种主链上含有较多氨基甲酸酯基团的高分子合成材料,其性能主要取决于不同的异氰酸酯基团、固化剂、软段聚合物、反应条件、相分离度以及链段间的相互作用等,其中某一因素的改变,将使聚氨酯性能随之发生改变[1]。
聚氨酯弹性体耐热性能研究进展
下 ,它 的长 期 使 用 温 度 不 能 超 过 8 ℃ , 期 使 用 0 短 温 度 不 能 超 过 1 0I 2 c =,这 大 大 限 制 了 它 的 应 用 范
围 ¨. 因此 开 发 高 耐 热 特 种 聚 氨 酯 弹 性 体 日益 成
为 聚 氨 酯 研 究 的 前 沿 问 题 . 文 综 述 了 国 内外 学 本 者 和 科 研 机 构 在 耐 热 P 弹 性 体 研 究 方 面 的 工 U
洛阳帅范学 院学报 2 1 0 1年第 1 期 1
苏 丽 丽 ,石雅 琳 ,张振 江 ,韦永继 , 赵 岩
( 明化工研究 院 , 黎 河南 洛阳 4 10 ) 7 0 0 摘 要 :本文 简述 了聚氨 酯弹性体 的热降解及热 氧 降解 的原 理和提 高其 耐热性 能的 常用 方法 ,主要 包括选择
耐热原材料 、分子 中引入有机 杂环 、使 用耐热填料和 形成互穿聚合物 网络 (IN) P 结构等.
2l年 1 月 01 1 第3 0卷 第 1 期 1
洛 阳 师 范 学 院学 报
J u n lo u y n r lU ie st o r a fL o a g No ma n v r i y
NO V.. Ol 2 1 Vo . No. 130 11
聚 氨 酯 弹 性 体 耐 热 性 能 研 究 进 展
关 键 词 :聚 氨 酯 ;弹 性体 ;耐 热
中图分类号 : Q 3. T 341
文献标识码: A
文章编号 : 0 9— 9 0 2 1 ) 1— 0 8— 4 10 4 7 ( 0 1 1 0 2 0
聚 氨 酯 弹 性 体 ( U) 有 高 强 度 、高 弹 性 、 P 具
1 2 聚 氨酯 弹性 体 的热 氧化 降解 .
聚氨酯弹性体的合成及性能研究
聚氨酯弹性体的合成及性能研究1. 引言聚氨酯弹性体是一种重要的高分子材料,具有优异的弹性、耐磨、耐腐蚀、耐老化等优异性能,在汽车、建筑、航空等领域得到广泛应用。
本文将对聚氨酯弹性体的合成及性能进行详细探讨。
2. 聚氨酯弹性体的合成聚氨酯弹性体的合成过程包括聚氨酯前体的合成、分散剂的添加、发泡、固化等步骤。
其中,聚氨酯前体的合成是整个合成过程的关键。
聚氨酯前体一般由异氰酸酯和多元醇通过缩合反应合成。
异氰酸酯分子中含有两个异氰基(-N=C=O),多元醇分子中含有两个或多个羟基(-OH),两者反应后形成聚氨酯链。
在聚氨酯前体的合成过程中,还需加入催化剂和助剂等辅助材料,以促进缩合反应和调节聚氨酯的性能。
例如,加入有机锡催化剂可以促进异氰酸酯和多元醇的缩合反应。
3. 聚氨酯弹性体的性能聚氨酯弹性体具有优异的力学性能和耐久性能,因此在汽车、建筑、航空等领域广泛应用。
3.1 力学性能聚氨酯弹性体具有优异的弹性和回复性能,能够承受大的变形和冲击负载而不破坏。
另外,聚氨酯弹性体还具有高强度、高韧性和耐磨性等优异性能。
3.2 耐久性能聚氨酯弹性体不易老化、不易变形、不易腐蚀,能够在恶劣环境下长期稳定运行。
另外,聚氨酯弹性体还具有耐油、耐水、耐化学品等优异性能。
4. 影响聚氨酯弹性体性能的因素聚氨酯弹性体的性能受多种因素的影响,包括聚氨酯前体的成分比例、催化剂的种类和用量、发泡过程中的温度、压力等。
4.1 聚氨酯前体成分比例聚氨酯前体的成分比例直接影响聚氨酯弹性体的性能。
如果多元醇的含量较高,则聚氨酯弹性体的弹性较好;如果异氰酸酯的含量较高,则聚氨酯弹性体的硬度较高。
4.2 催化剂种类和用量催化剂可以促进聚氨酯前体的缩合反应,催化剂种类和用量对聚氨酯弹性体的性能影响较大。
例如,有机锡催化剂可以促进缩合反应,但如果用量过大,会导致聚氨酯弹性体的耐久性能降低。
4.3 发泡过程中的温度、压力发泡过程中的温度和压力也对聚氨酯弹性体的性能影响较大。
聚氨酯弹性体分析
聚氨酯弹性体分析首先,聚氨酯弹性体的硬度一般为 Shore A 10-100 范围内,可以通过改变聚氨酯材料中的硬度调节剂的含量来调节其硬度。
硬度的不同可以使聚氨酯材料具有不同的弹性特性,满足不同应用领域的需求。
其次,聚氨酯弹性体的弹性模量比较高,一般为40-200MPa。
弹性模量的高低直接影响材料的弹性恢复能力,也影响其在受力时的变形程度。
聚氨酯弹性体具有良好的弹性恢复能力,可以长时间保持弹性形状,不易变形和老化。
再次,聚氨酯弹性体的拉伸强度较大,一般为20-60MPa。
拉伸强度与聚氨酯材料的分子结构和交联程度有关。
拉伸强度越大,表示聚氨酯材料的抗拉性能越好,可以承受更大的拉力。
此外,聚氨酯弹性体的断裂伸长率一般为300-900%。
断裂伸长率是材料在断裂前能够拉伸的程度,也是评价材料韧性的重要指标。
聚氨酯弹性体具有较大的断裂伸长率,说明它具有很好的耐疲劳性能和弹性形变能力。
最后,聚氨酯弹性体具有耐磨性好的特点。
它的耐磨性主要表现在它可以承受较大的摩擦力而不易磨损。
这使得聚氨酯弹性体在一些需要经常摩擦的领域中有着广泛的应用,比如汽车悬挂系统、鞋底等。
聚氨酯弹性体的制备方法主要有溶液法、熔融法和共聚法等。
其中,溶液法是通过在有机溶剂中溶解聚氨酯原料,并通过控制温度和浓度来调节聚氨酯的形态和性能。
熔融法是将两种或多种反应物在一定温度下熔融反应,形成聚合物。
共聚法是将两种或多种含有活性基团的单体通过共聚反应聚合而成。
聚氨酯弹性体的应用非常广泛。
在汽车领域,聚氨酯弹性体用于制造汽车悬挂系统、密封件和减震垫等,可以提高汽车行驶的平稳性和舒适性。
在家具领域,聚氨酯弹性体用于制造沙发、床垫等,可以提供舒适的坐卧体验。
在鞋类领域,聚氨酯弹性体用于鞋底的制造,具有良好的耐磨性和弹性,可以增加鞋子的使用寿命。
总结而言,聚氨酯弹性体是一种具有优异弹性和耐磨性的弹性体材料。
它的性能和应用领域广泛,制备方法简单灵活。
随着科技的进步和应用需求的增加,聚氨酯弹性体在未来有着更加广阔的发展前景。
聚氨酯弹性体的合成研究
聚氨酯弹性体 的合成研 究
王 亦 农 , 俊 远 秦
( . 西 教 育 学 院理 学 分 院 , 西 南 昌 3 0 2 ; . 西省 建 筑 材 料 工 业科 学研 究设 计 院 , 西 南 昌 3 0 0 ; 1江 江 30 9 2江 江 301) 摘 要 : 以 己 二 酸 ( A) 1 4 丁 二 醇 ( O , 二 醇 ( G) 别 采 用 一 步 法 、 步 法 合 成 分 子 量 为 3 0 A ,,一 B O) 乙 E 分 二 0 0的 聚 酯
反应 , 有支链结构一No 。 。 o 一生成; P E — HI 。 c 一 I N !H I c 且 A B A与 M 1 D 反应程度较高, 游离的异氰酸酯基较少。
关键 词 : 聚 酯 多 元 醇 ; 氨 酯 ; 聚 次级 反应 ; 链 结 构 支 中图分类号: 0 2. 61 3 文献 标 识 码 : A 文章 编 号 : 1 0 0 5—3 3 ( 0 1 0 6 8 2 1 ) 6—0 0 —0 01 3
p re t rnR n ec n. a d HNMR h wst a h y t e i o oy r t a e e i s w t e o d r e c in t e e a e b a c e - s o h tt e s n h ss fp lu e h n xs i s c n a y r a t . o g n r t r n h d t h o c an s u t r n t e p l u eh n tu t r . P B- a d 4 4 一 i h n l t a e d i c a ae r a t h g e a A h i t cu e i h o y r t a e sr cu e r AE A n , d p e ymeh n i o y n t e c s ih rt n P EB— s h R n a d MDI S , N r u is cai n i U- AE A i s a U— AE R. . o - CO g o p o d so it n P P B- f o sl st n P P B— e h Ke o d y W r s: p l e t r oy l; oy rt a es c n a y r a t n b a c e - h i t cu e o y s lo s p lu e h n ; o d r e c i ; r n h d c an sr tr e p e o u
脂肪族透明聚氨酯弹性体的结构与性能研究
脂肪族透明聚氨酯弹性体的结构与性能研究摘要本文采用六亚甲基二异氰酸酯(HDI)、异佛尔酮二异氰酸酯(IPDI)、4,4一二环己基甲烷二异氰酸酯(HMDI)与聚四氢呋哺二醇(PTMEG)分别进行预聚反应,经多元醇(三羟甲基丙烷TMP、1,4一丁二醇BDO)扩链。
高温固化后得到脂肪族系列用于飞机层合风挡的透明聚氨酯弹性体。
通过改变异氰酸酯种类、硬段含量、催化剂含量及扩链剂配比,对几种脂肪族透明聚氨酯(PU)弹性体的力学性能、耐热性、透明性、工艺性以及与基材的粘接性的影响进行了讨论。
通过FTIR、DSC、TGA、DMA等多种手段分析了IPDI型PU和HMDI型PU的结构及微相分离,并首次对HMDI型PU弹性体热老化机理进行了探讨,得到以下结论:随着体系硬段含量的增加,脂肪族PU弹性体的硬度、拉伸强度和撕裂强度都逐渐增加,PU的断裂伸长率下降,在材料使用温度范围内的耐热性有所提高.高温热稳定性下降,透光率、雾度变化不大,而与AC、PC基材的粘接强度有所提高;随硬段含量增加,在DSC、DMA曲线上,PU的主转变峰逐渐移向高温,体系发生了较为彻底的微相分离;IPDI型PU与HMDI型PU透明弹性体性能的变化趋势~致。
增加扩链剂(CITE)中TMP含量,除拉伸强度和撕裂强度提高外,PU的硬度迅速提高,断裂伸长率下降。
耐热性的研究表明,在使用温度范围内,含双环结构的HMDI型PU的耐热性要高于单环结构的IPDI型PU,两者的耐热性又高于HDI型Pu,但高温的热稳定性结果则相反。
HMDI型PU(H132)经150℃长时间热老化后,醚键的氧化和断裂是其在FTIR、13CNMR、DSC等曲线上以及材料表面状态发生变化的主要原因,醚键氧化主要生成酯基以及其它一些羰基衍生物。
实验确定PTMEG:HMDI:cHE摩尔比为1:3:2,扩链剂l,4--BDO与TMP摩尔比为3:1催化剂相对含量为2%时的配方为较佳配方。
关键词:脂肪族,透弱聚氨酯,微相分离,热老化,中间层,层合风挡TheStructureandPerformanceofAliphaticTransparentPolyurethaneElastomersAbstractTheprepolymersofpolyurethane(PU)weresynthesizedbasedonpolytetrahydrofuranglycol(PTMEG)anddiisocyanate一【1,6-Hexylmethylenediisocyanate(HDI),Isophoronediisocyanate(IPDI),4,4’一dicyclohexylmethanediisocyanate(HMDI)extendedwithmixtureoftrimethylolpropane(TMP)andl,4-butanediol(1,4-BDO).AseriesofaliphatictransparentPUelastomersusedforlaminatedwindshieldwouldbepreparedaftertheprepolymerswerecuredathightemperatureforalongtime.Therelationshipbetweenmechanicalproperties,heatresistance,transparencyandprocessingpropertywiththevariousofdiisocyanate,themolarratiobetweendiisoeyanateandPTMEGthemolarratiobetweenTMPand1,4-BDOandthecontentofcatalysthadbeendiscussed.Thestructureandmicro-phaseseparationofPUbasedonHMDIandIPDlwereanalyzedbyFT-IR,DSC,TGA,”CNMR,DMAandetc.ThechangesofstrucmresandpropertiesofheatagedPUbasedellHMDIhadbecastudiedforthefirsttime.Itwasconcludedthatwiththeincreaseofcontentofhardsegments,thehardness,tensilestrength,tearingstrengthofPUelastomerincreased,andtheheatresistanceincreasedsimultaneouslywithinservicetemperature,buttheelongationatbreakandthethermalstabilitydecreased.ThetransparencyandhazeofPUweren’tvariedonthewhole,andtheadhesionstrengthbetweenAC/PCandPUwasimproved.ThemaintransitionDeakOfthePUbased0nHMDIandIPDIshowedintheDSCandDMAcurvesshiftedtohightemperaturewiththeincreaseofcontentofhardsegments.Completemicro-phBseseparationoccurredinthePUsystem.ThetendencyofthevariationsofpropertieswassalneinthePUHMDIand1PDI.systembasedonWiththeincreaseofTMPcontentinextender,thehardnessofPUincreasesquickly,tensilestrengthandtearingstrengthincreasedtoo,elongationatbreakdecreased.ThecomparativetestsofheatresistanceindicatedthatthedicyclohexylmethaneringstroctureofHMDIhadsuperiorheatresistancetothesinglecyclicringofIPDIandthelinearHDlwithinservicetemperature,butthethermalstabilitywasonthecontrary砒decompositiontemperature.H132wasagedat150℃foralongtime.ThebreakandoxidationofetherbondswerethemaincausesofthechangeofFT-IR,DSC,“CNMRCurvesandsurfacepropertiesofthePU.Theoxidationandmanyotherearbonylderivatives.productswereesterbondsPTMEG:HMDI:CHE=l:3:2,TMP"1,4-BDO=1:3,andwith2%Cat.wasabetterformulationforP【』Keywords:aliphatie,transparentpolyurethane,micro-phaseseparation,thermalaging,interlayer,laminatedwindshield736969北京化工大学学位论文原创性声明本人郑重声明:所呈交的学位论文,是本人在导师的指导下,独立进行研究工作所取得的成果。
不同多元醇聚氨酯弹性体宏观性能的研究
不同多元醇聚氨酯弹性体宏观性能的研究罗建勋;靳昊;毛立新;张立群【摘要】Four kinds of polyurethane (PU) elastomers were synthesized from polytetrahydrofuran polyols (PTMG), polycaprolactone polyol (PCL), and 4, 4′-diphenylmethane diisocyanate with 1,4-butanediol as a chain extender and trihydroxy polyether polyols as a crosslinker. The effects of the alteration of the PTMG and PCL molecular weight on the mechanical, thermal, and rheological properties of the PU elastomers were studied by means of unversal testing machine, dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC), and ARES rheometer. It was revealed that PCL-based PU elastomers had higher tensile strength, hardness, plateau modulus, soft segment glass transition temperature, and the apparent viscosity of reaction system than PTMG-based PU elastomers, while PTMG-based PU elastomers showed higher hysteresis loss. it was also found that the above properties depended on the molecular weight of polyols in PU eiastomers synthesized from the same kind of polyols.%以聚四氢呋喃多元醇(PTMG)、聚己内酯多元醇(PCL)、4,4′-二苯基甲烷二异氰酸酯、1,4-丁二醇和三羟基聚醚多元醇等为主要原料制备了4种聚氨酯(PU)弹性体。
聚氨酯弹性体的制备和性能研究
聚氨酯弹性体的制备和性能研究近年来,聚氨酯弹性体被广泛应用于各种领域,例如医学、建筑、汽车等。
它以其卓越的性能备受青睐,而制备和性能研究是其应用的基础。
一、聚氨酯弹性体制备的方法聚氨酯弹性体的制备方法有两种:预聚体法和反应注射法。
预聚体法是指将聚醚、聚酯或聚醚酯与异氰酸酯进行加成反应来制备预聚体。
然后,将预聚体与水、交联剂和氧化剂进行混合,通过发泡反应制备出聚氨酯弹性体。
该方法具有制备成本低、反应条件温和等优点。
但由于长时间的反应,会生产出有害副产品,如CO2、NCO等。
反应注射法是指在反应开始时一次性混合聚醚、聚酯或聚醚酯、硬质接枝剂、氧化剂和交联剂,然后注入硬质聚氨酯预制件中。
由于反应速度很快,从而减少了反应时间。
因此,该方法具有制备时间短、产品质量好等优点。
但该方法里面保持着反应注射的高度运用,操作化简也非常的复杂。
二、聚氨酯弹性体的性能聚氨酯弹性体的性能主要包括力学性能、耐热性能、耐久性能等。
力学性能是指材料承受外力下的变形和断裂的能力。
聚氨酯弹性体具有优异的力学性能,它的弹性模量可以在0.1-100MPa之间,而且具有极高的拉伸强度和超弹性。
这是由于聚氨酯弹性体的弹性是由其内部三维网状结构所决定的。
耐热性能是指材料在高温下的性能。
聚氨酯弹性体的耐热性能较好。
其耐热温度可以达到200°C。
但当超过此温度时,聚氨酯弹性体的力学性能会下降。
耐久性能是指材料经过一定使用寿命后,仍然能够保持原有的性能水平。
聚氨酯弹性体具有优秀的耐久性能,因为它能够长期维持其优异的拉伸强度和超弹性。
三、聚氨酯弹性体的应用聚氨酯弹性体的应用已涵盖了医学、建筑、汽车等领域。
在医学方面,它被广泛应用于心脏起搏器、人工心脏、仿生器官等医疗器械中。
在建筑领域,聚氨酯弹性体被用作绝热、密封材料、涂料、防水层等。
在汽车领域,它被应用于轮胎、减震器、座椅垫等部件中。
总之,聚氨酯弹性体作为一种优秀的高分子材料,其制备和性能的研究对其应用具有重要意义。
研究新型聚氨酯弹性体的合成和应用
研究新型聚氨酯弹性体的合成和应用近年来,随着人们对材料性能要求的不断提高,新型聚氨酯弹性体作为一种新型高性能材料,逐渐引起了广泛的研究和应用。
本文将就新型聚氨酯弹性体的合成和应用方面进行深入探讨。
一、聚氨酯弹性体的合成聚氨酯弹性体的合成大致可以分为以下两种方法:1、溶液聚合法溶液聚合法是将异佛尔酮类异氰酸酯(IPDI)与丙二醇(BD)反应,形成预聚物。
接着,用聚醚双酯醇(PTMG)加入体系,进一步进行聚合反应。
聚合过程中,需要考虑各种条件,如反应时间、反应温度、催化剂种类及用量等。
2、熔融聚合法熔融聚合法是将预聚物与交联剂混合在一起,将混合物在高温下熔融混合,然后在模具中进行固化,形成聚氨酯弹性体。
这种方法具有反应速度快、合成效率高的优点。
二、聚氨酯弹性体的应用新型聚氨酯弹性体具有弹性好、形变大、回弹力强、耐磨性好等特点,因此广泛应用于各种领域。
1、橡胶方面新型聚氨酯弹性体在橡胶领域中应用广泛,如汽车轮胎、电梯滑轮等方面。
其优良的耐磨性和强韧性,使其成为替代传统橡胶材料的最佳选择。
2、建筑材料方面新型聚氨酯弹性体可以作为建筑材料中的填缝材料或减震材料。
其具有优良的抗压性和耐用性,在建筑结构中可以提供更好的保护和支撑作用。
3、医疗保健方面聚氨酯弹性体在医疗保健领域中也有广泛应用,如人造心脏瓣膜、人工肢体等方面。
其材质柔软、具有良好的生物相容性,可以更好地适应人体需要。
4、家电制造方面新型聚氨酯弹性体在家电制造领域中应用也越来越广泛。
如电风扇、吸尘器、除湿机等电器产品中,聚氨酯弹性体可以作为减震垫等零部件,起到更好的减震噪音作用。
总之,新型聚氨酯弹性体具有很大的市场前景,其合成方法和应用领域也在不断地得到改善和拓宽。
在未来,我们相信新型聚氨酯弹性体一定会在更多的领域中得到广泛的应用。
聚氨酯弹性体的特性及应用
聚氨酯弹性体的【2 】特征与运用1.聚氨酯弹性体的特征聚氨酯弹性体的分解机能出众,任何其他橡胶和塑料都无与伦比.并且聚氨酯弹性体可依据加工成型的请求进行加工,几乎能用高分子材料的任何一种常规工艺加工,如混炼模压.液体浇注.熔融打针.挤出.压延.吹塑.胶液涂覆.纺丝和机械加工等.聚氨酯弹性体的用处十分普遍,产品几乎遍及多用范畴.聚氨酯弹性体分解机能出众,重要表如今弹性体兼备了从橡胶到塑料的很多宝贵特征.(1)硬度规模宽.并且在高硬度下仍具有优胜的橡胶弹性和伸长率.(2)强度高.在橡胶硬度下他们的拉伸强度和扯破强度比通用橡胶高得多;在塑料硬度下,他们的冲击强度和曲折强度又比塑料高得多.(3)机能的可调节规模大.多项物理机械机能指标均可经由过程对原材料的选择和配方的调剂,在必定规模内变化,从而知足用户对成品机能的不同请求(4)耐磨.有“耐磨橡胶”的佳称.特殊是在有水.油等润湿介质消失的工作前提下,其耐磨性往往是通俗橡胶材料的几倍到几十倍.金属材料如钢铁等固然很坚硬,但并不必定耐磨,如黄河浇灌区的大型水泵,其过流部件金属口环和破坏圈经由大量泥沙的冲刷,用不了几百小时就轻微磨损漏水,而采用聚氨酯弹性体包覆的口环和破坏圈则持续运行1800小进仍未磨损.其它如碾米用的砻谷机胶辊.选煤用的振动筛筛板.活动场的径竞走道.吊车铲车用的动态油密封圈.电梯轮和旱冰鞋轮等等也都是聚氨酯弹性体的用武之地.在此需提到的一点是,要进步中低硬度聚氨酯弹性体系体例件的摩擦系数,改良在承载负荷下的耐磨机能,可在这类聚氨酯弹性体中添加少量二硫化铝.石墨或硅油等润滑剂.(5)耐油.聚酯型聚氨酯弹性体的耐油性不低于丁腈橡胶,与聚硫橡胶相当. (6)耐臭氧机能优秀.(7)吸震.抗辐射和耐透气机能好.(8)加工方法多样,实用性普遍.聚氨酯弹性体既可跟通用橡胶一样采用塑炼.混炼.硫化工艺成型(指MPU);也可以制成液体橡胶,浇注模压成型或喷涂.灌封.离心成型(指CPU);还可以制成颗粒料,与通俗塑料一样,用打针.挤出.压延.吹塑等工艺成型(指CPU).模压或打针成型的制件,在必定的硬度规模内,还可以进行切割.修磨.钻孔等机械加工.加工的多样性,使聚氨酯弹性体的实用性十分普遍,运用范畴不断扩展.这些长处恰是聚氨酯弹性体在军工.航天.声学.生物学等范畴获得普遍运用的原因.聚氨酯弹性体的不足方面:(1)内生热大,耐高温机能一般,特殊是耐湿热机能不好.正常运用温度规模是-40~120℃运用.若需在高频振荡前提或高温前提下长期感化,则必须在构造设计或配方上采取响应改性措施.(2)不耐强极性溶剂和强酸碱介质.在必定温度下,醇.酸.酮会使聚氨酯弹性体溶胀和降解,氯仿.二氯甲烷.二甲基甲酰胺.三氯乙烯等溶剂在常温下就会使聚氨酯弹性体溶胀下面具体介绍聚氨酯弹性体的重要机能.1.1硬度通俗橡胶的硬度规模为邵A20至邵A90,塑料的硬度规模约为邵A95至邵D100,而聚氨酯弹性体的硬度规模低至邵A10,高至邵D80,并且不须要填料的关心.尤其宝贵的是弹性体在塑料硬度下仍具有优胜的橡胶弹性和伸长率,而通俗橡胶只有靠添加大量填料,并以大幅度降低弹性和延长率作为代价才能获得较高的硬度.据报道,当硬度高于75D时,其弹性将轻微损掉,当硬度高于85D时,就不成弹性材料了.1.2机械强度聚氨酯弹性体的机械强度高,表如今杨氏模量.扯破强度和承载力等方面. 1.2.1 杨氏模量和拉伸强度在弹性限度内,拉伸应力与形变之比叫做杨氏模量(E)或者成为弹性模量.聚氨酯弹性体和其他弹性体一样,只有在低伸长时(约2.5%)才遵守胡克定理.但是它的杨氏模量要比其他弹性体高得多.并且聚氨酯弹性体的杨氏模量规模遍及橡胶和塑料,规模之宽,其他材料无可比拟.1.2.2扯破强度聚氨酯弹性体的扯破强度很高,尤其是聚酯型,约为自然橡胶的2倍以上. 1.2.3承载才能固然在低硬度下聚氨酯弹性体的紧缩强度也不高,但是聚氨酯弹性体可以在保持橡胶弹性的前提下进步硬度,从而达到很高的承载才能.而其他橡胶的硬度受到很大的局限,所以承载才能无法大幅度的进步.1.3耐磨机能聚氨酯弹性体的耐磨机能异常凸起,测试成果一般在0.03~0.20mm3/m规模内,约为自然橡胶的3~5倍.现实运用中,因为润滑剂等身分的影响,其后果往往更好.耐磨性与材料的扯破强度和表面状态等关系很大.聚氨酯弹性体的扯破强度比其他橡胶高得多,但是他本身的摩擦系数并不低,一般在0.5以上,这就须要在现实运用中留意添加油类润滑剂,或加少量二硫化钼或石墨.硅油.四氟乙烯粉等,以降低摩擦系数,削减摩擦生热.此外,摩擦系数还与材料硬度和表面温度等身分有关.在所有情形下,摩擦系数都随硬度的降低而进步,随表面温度的升高而上升.约60℃达到最大值.1.4耐油和耐药品机能聚氨酯弹性体,特殊是聚酯型聚氨酯弹性体,是一种强极性高分子材料.和非极性矿物油的亲和性小,在燃料油(如石油.汽油)和机械油(如液压油.机油.润滑油等)中几乎不受侵蚀,比通用橡胶好的多,可以与丁腈橡胶媲美.但是,在醇.酯.酮类及芳烃中溶胀较大,高温下逐渐损坏.在卤代烃中溶胀明显,有时还产生降解.聚氨酯弹性体浸在无机物溶液中,假如没有催化剂的感化,和浸在水中类似.在弱酸.弱碱溶液中降解比在水中快, 强酸强碱对聚氨酯的浸蚀感化更大.聚氨酯弹性体在油中的运用温度为110℃以下,比空气中的运用温度高.但是,在多工程运用中,油老是被水污染的.实验表明,只要油中含有0.02%的水,水几乎可全体转移到弹性体中,这时,运用后果就会产生明显差异.1.5耐水机能聚氨酯弹性体在常温下的耐水机能是好的,一二年内不会产生明显水解感化,尤其是聚丁二烯型.聚醚型和聚碳酸酯型.经由过程强化耐水实验,用外推法得出,在25℃的常温水中,拉伸强度损掉一半所须要的时光,聚酯型弹性体(聚己二酸乙二醇丙二醇酯-TDI-MOCA)为10年,聚醚型弹性体(PTMG-TDI-MOCA)为50年,即聚醚型为聚酯型的5倍.1.6耐热和耐氧化机能聚氨酯弹性体在惰性气体(如氮气)中的耐热机能尚好,常温下耐氧和耐臭氧机能也很好,尤其是聚酯型.但是高平和氧的同时感化就会加速聚氨酯的老化过程.一般的聚氨酯弹性体在空气中长时光持续运用的温度上限是80-90℃,短时光运用可达到120℃,对热氧化变现消失明显影响的温度约为130℃.按品种来说,聚酯型的耐热氧化机能比聚醚型的好.在聚酯型中,聚己二酸己二醇酯型的好于一般聚酯型.在聚醚型中,PTMG又好于PPG型,并且均随弹性体硬度进步而改良.此外一般的聚氨酯弹性体在高温情形下强度降低明显.1.7低温机能聚氨酯弹性体有优胜的低温机能,重要表如今脆性温度一般都很低(-50~-70℃),有的配方(如PCL-TDI-MOCA)甚至更低的温度也不脆化.同时小数品种(如PTMG-TDI-MOCA)的低温弹性也很好.-45℃的紧缩耐寒系数可达到0.2-0.5的程度,但是多半品种,特殊是一些大宗品种,如一般的聚酯型弹性体,低温结晶偏向比较大,低温弹性不好,作为密封件运用,在-20℃一下轻易初相漏油的现象.跟着温度的降低,聚氨酯弹性体的硬度.拉伸强度.扯破强度和扭转刚性明显增大,回弹和伸长率降低.1.8吸振机能聚氨酯弹性体对交变应力的感化表现出明显的滞后现象.在这一过程中外力感化的一部分能量消费于弹性体的分子的内摩擦,改变成为热能.这种特征叫做材料的吸振机能,也称为能量接收机能或阻尼机能.吸振机能平日用衰减系数表示.衰减系数表示产生形变的材料能接收施加给它的能量的百分数.它除了与材料的性质有关外,还与情形温度.振动频率有关.温度越高,衰减系数越低,振动频率越高,接收能量越大.当频率与大分子的松懈时光邻近时,接收的能量最大.室温下的聚氨酯弹性体可接收振动能量的10%-20%,比丁腈橡胶还好.适于在形变幅度小时接收大的冲击力,而在形变幅度大的接收小的冲击力.此外,滞后现象产生内生热,使弹性体温度升高.因为弹性体温度上升,其回弹性进步,减震机能降低,所以,在设计减振件时必定要斟酌诸机能的均衡.1.9电机能聚氨酯弹性体的电绝缘机能在一般工作温度下是比较好的,大体相当于氯丁橡胶和酚醛树脂的程度.因为它既可以浇注成型,又可热塑成型,故常用作电器元件灌封和电缆护套等材料.聚氨酯弹性体因为其分子极性比较大,对水有亲和性,所以其电机能随情形温度变化比较大,同时也不实用于高频电器材料运用.此外,聚氨酯弹性体的电机能随温度的上升而降低,随材料的硬度上升而进步.1.10耐辐射机能在合成高分子材估中,聚氨酯弹性体的耐高能射线的机能是很好的.在105-106Gy辐射剂量下仍具有知足的运用机能.但是对于淡色或者透明的弹性体在射线的感化下会消失变色现象,与在热空气或大气老化实验时不雅察到的现象类似.1.11耐霉菌机能聚醚型聚氨酯的耐霉菌机能还好,测试等级为0-1级,即根本不长霉菌.但聚酯型聚氨酯不耐霉菌,测试成果为轻微长霉,不适于热带.亚热带野外运用和在湿热的前提下存放.在野外和湿热情形中运用的聚酯型聚氨酯弹性体,在配方中都要添加防霉剂(如八羟基喹啉铜.BCM等,一般用量在0.1%-0.5%)一改良其耐霉菌机能.1.12生物医学性聚氨酯材料具有极好的生物相容性,急慢性毒理实验和动物实验证实,医用聚氨酯材料无毒,无至畸变感化,无过敏反响,无局部激性,蒙昧热源性,是最具有价值的合成医用高分子材料之一.2.聚氨酯弹性体的运用和开辟综上所述,聚氨酯弹性体的分解机能是十分优胜的.近年来,列都城在依据市场需求情形增强其运用开辟研讨,开辟的重点在以下几个方面:2.1汽车用聚氨酯弹性体现今的汽车工业正在向高机能.低重量.舒适与安全的偏向成长.橡塑合成材料正在慢慢代替金属材料,这就为聚氨酯弹性体的运用开拓了极为辽阔的远景.美国Goodrich公司开辟出第二代TPU,其商务名为Estaloc.该产品保持了第一代TPU Estaloc的特征,并采用中空玻璃球作填料,使光泽度进步了15%以上,可用于制造汽车边板和减震垫等.在汽车上安装安全气囊,是现代汽车工业成长的须要,对破坏驾驶员的性命安全有重大感化.这种气囊必须具备必定强度才能经受高速冲击,还要有较好的低温顺性,合实用聚氨酯制造,每个气囊用胶量约300克.我国大部分汽车尚未安装气囊,市场需求量很大.运用聚氨酯弹性体的高强度和高承载才能.可制造中低速载重车辆用轮胎,强度和高承载才能,可制造中低速载重车辆用轮胎,其承载才能是用自然胶制造的同规格轮胎的7倍.近年来,一种新型绿色聚氨酯复合轮胎正在研讨开辟之中,它是以新旧橡胶光胎为基体,浇注上必定厚度的高耐磨.耐刺扎的聚氨酯橡胶胶面层,今朝正处于里程实验阶段,不久后有望投入指临盆.2.2建筑用聚氨酯弹性体传统的沥青油毡防水材料已慢慢被牢固耐用.整体施工的聚氨酯防水材料所替代;活动场的跑道在10年前只有国度级的正式竞赛场地才用聚氨酯铺装材料,而如今大部分省市体育场.大中专院校,甚至一些中小学也都铺上了聚氨酯塑胶跑道;大型桥梁的伸缩缝.飞机场跑道及高速公路的嵌缝也开端采用常温固化的聚氯酯弹性体系体例作高速铁路的轨枕是十分幻想的材料,日本新干线铁路经由过程的地道和桥梁上所铺的轨枕就是采用了聚氯酯弹性体材料.这一新的运用充分施展了聚氯酸弹性体质轻.吸震性好.耐老化等特色,很好推广价值.2.3矿山用聚氯酯弹性体煤矿.金属及非金属矿山对高耐磨.高强度而又富有弹性的非金属材料需求量很大.近10年来,很多选择煤厂用聚氯酯弹性筛选板代替了轻盈的金属筛板,不仅大大延长了筛板的运用寿命,并且明显降低了操作情形的噪音,节能降耗后果明显.其它如用于制造固体分别的旋流器.阻燃抗静电的耐磨运输带.矿用单轨吊车的实芯轮.煤矿喷浆机用联合板.万吨电动轮自卸车上的油密封圈.高压电缆护套的冷补胶等也都为矿山扶植施展了伟大感化.今朝还有很多矿山用耐磨弹性成品正等待我们去开辟和推广.2.4鞋用聚氯酯弹性体自从台商纷纭来到大陆,我国的制鞋业成长敏捷.聚氯酯弹性具有缓冲机能好.质轻.耐磨.防滑等长处,现已成为制鞋工业中一种重要的配套材料,高尔夫球鞋.棒球鞋.足球鞋.滑雪鞋.旅游鞋.安全鞋等很多鞋的鞋底.鞋跟.鞋头.鞋垫等重要配件都是用聚氯酯弹性体系体例成的,不仅美不雅大方,并且舒适耐用,还能进步活动成绩.2.5医用聚氨酯弹性体优胜的生物相容性.血液相容性.无各类添加剂是TPU和CPU材料在医疗范畴获得运用的重要原因.今朝已开辟成功的医用弹性体系体例品有:气管套管.假肢.筹划生育用的栓堵剂.颅骨缺损修补材料.安全套等等,其在医疗卫生范畴运用的远景还十分辽阔.2.6新型聚氨酯复合板材英国正在开辟一种称为SPS夹板层体系的聚氨酯复合板材,将给造船业带来一场革命.它包括两层9mm厚的钢板和被注入它们中央的40mm厚的聚氨酯弹性体,一旦开辟成功,可代替传统造船业用的增强钢板材料,其长处是:节俭制造时光.勤俭钢板.减轻船体重量.抗冲击.耐疲惫.减震.消音.隔热.一旦未来采用SPS体系的复合材料来造船的话,造船业所耗用的聚氨酯弹性体将是一个十分惊人的数字.。
热塑性聚氨酯弹性体耐热性能研究
热塑性聚氨酯弹性体耐热性能研究热塑性聚氨酯弹性体耐热性能研究引言热塑性聚氨酯弹性体(TPU)是一种由聚酯型双组分聚合物制成的弹性体材料,其独特的性能使其在许多领域得到广泛应用。
然而,随着高温工况的不断增加,TPU的耐热性能逐渐成为一个关键的研究焦点。
本文旨在系统地研究TPU在高温环境下的耐热性能,并探讨其热性质、热分解行为以及热稳定性的影响因素。
1. TPU的热性质热性质是评估TPU耐热性能的重要指标之一。
研究表明,TPU在高温下具有较高的热膨胀系数,这使得其在应用中可能出现尺寸变化和形状失真问题。
此外,随着温度的升高,TPU的硬度和拉伸强度可能会下降。
因此,了解TPU在不同温度下的热性质对于优化和改进其耐热性能至关重要。
2. TPU的热分解行为热分解行为是研究TPU耐高温性能的另一个重要方面。
研究发现,TPU在高温下会发生热分解,产生一些插层气体和固体残留物。
这可能导致TPU材料的性能下降甚至失效。
因此,了解TPU的热分解行为有助于预测其在高温环境下的使用寿命,同时也为改进材料提供了理论依据。
3. 影响TPU热稳定性的因素研究表明,TPU的热稳定性受多种因素的影响,包括材料的成分、分子结构、添加剂等。
改变TPU的成分和添加特定的稳定剂,可以显著改善其耐热性能。
此外,研究还发现,TPU的形状和尺寸对其热稳定性也具有一定的影响。
这些结果为进一步优化TPU的热稳定性提供了方向和理论依据。
4. 提高TPU耐热性能的方法针对TPU在高温下的耐热性能不足,研究人员提出了一些改进方法。
其中包括添加耐热稳定剂、调整材料成分以及纳米填料的引入等。
这些方法在提高TPU的热稳定性方面取得了很好的效果,并为其在高温环境下的应用提供了可行的解决方案。
结论通过对热塑性聚氨酯弹性体(TPU)在高温环境下的耐热性能的研究,我们可以深入了解其热性质、热分解行为以及影响其热稳定性的因素。
通过改进材料成分、添加稳定剂以及其他方法,我们可以有效提高TPU的耐热性能,并推动其在高温环境中的应用。
聚氨酯弹性体的分子结构设计与阻尼性能研究的开题报告
聚氨酯弹性体的分子结构设计与阻尼性能研究的开题报告一、研究背景和意义随着工业技术的不断发展,机械设备的运动状态越来越高频、高速,振动和噪音问题也越来越突出。
为解决这一问题,弹性材料被广泛应用于工业生产领域中。
而聚氨酯弹性体由于其具有优异的抗冲击、耐热、耐寒、耐酸碱、耐油、耐磨损等性能,以及可制备出多种硬度和拉伸强度的产品,被广泛应用于汽车、军工、建筑、电子、航空、电力等领域中。
然而,聚氨酯弹性体在实际使用中面临着振动和噪音问题,需要进一步提高其阻尼性能。
因此,通过优化聚氨酯弹性体的分子结构设计,可以进一步增强其阻尼性能,提高其在高频、高速下的工作效率,减少能源消耗,降低环境噪声。
二、研究内容和方法本课题将采用聚氨酯弹性体的分子结构设计方法,通过控制分子内部结构的多样性,优化聚氨酯弹性体的性能,使其在高频、高速下表现出更好的阻尼性能。
具体研究内容包括:1、分析聚氨酯弹性体的分子结构组成,研究分子内部结构对阻尼性能的影响。
2、设计和制备聚氨酯弹性体样品,通过物理和化学方法进行材料表征和性能测试,如拉伸强度、硬度、压缩强度、动态力学测试等。
3、通过对阻尼性能测试数据的分析和处理,研究不同分子结构对聚氨酯弹性体阻尼性能的影响,并提出改进建议。
研究方法包括理论模拟、实验制备和测试等多种方法,具体操作流程如下:1、收集聚氨酯弹性体相关文献,了解其分子结构组成以及阻尼性能的相关知识。
2、通过理论模拟方法,建立聚氨酯弹性体的分子模型,并对其进行分析和优化,探究分子结构对阻尼性能的影响。
3、根据优化后的分子结构,设计和制备聚氨酯弹性体样品,并进行常见物理和化学测试,如机械性能测试、成分分析、热重分析、扫描电子显微镜等测试。
4、对样品进行动态力学测试,从而获取样品的阻尼性能数据,并进行分析和处理。
5、根据测试分析结果,总结聚氨酯弹性体分子结构优化对阻尼性能的影响,并提出改进建议。
三、预期研究结果本研究将探究聚氨酯弹性体的分子结构优化对其阻尼性能的影响,并提出改进建议。
NDI基聚氨酯弹性体及其研究进展
能 。第 2 J 2页表 3列出了采用 14丁二醇 、D 以 ,. NI 及不同多元醇制备 的聚氨酯 弹性体的性能 J 。。与 所有 聚氨酯 弹性体一样 , 多元醇 、 扩链 剂 的种类 、 NI D 在配方中的用量以及异氰酸酯指数等均会在很 大程度上影 响聚氨酯的性能。这是 由于, 多元醇作 为软链段, 扩链剂 和异氰酸酯作为硬链段 , 软链段的
刘 菁
( 西省 化 工研 究院 , 西 山 山 太原 0 02 ) 30 1
摘要 :D 基 聚氨酯具有高耐磨 、 NI 高耐热 、 耐腐 蚀及动态 性能优异 等特点 , 主要 用在高 动态载荷 和
耐热场合 。介绍了 N I D 基聚氨酯 弹性体 的应用 、 合成及研究进展情况 以及 N I D 基聚氨酯 弹性 体性 能 的影响 因素 。同时 , N I 对 D 基聚氨酯弹性体和基 于其他二异氰酸酯 的聚氨酯弹性 体的性 能进行
聚 己二酸 乙二醇 丙二 醇 酯 等 ) 聚 四氢 呋 喃醚 ; 己 ; 聚
3 N I D 基聚氯酯弹 性体性 能的影响 因素
第2 2页表 2为 N I 聚氨 酯 的典 型 配 方 及性 D基
内酯 ; 聚碳酸酯。 使用混合二元醇聚酯( 如聚己二酸
乙二 醇 丁二 醇酯 和聚 己二 酸 乙二 醇丙 二 醇 酯 ) 的作 用 在 于减小 P 的 结 晶 性 , 善 其 低 温性 能 J U 改 。对
响 。而 N I P D 基 U的储 能模 量在 0c =~10℃ 保持 【 4 不变 , 动态载 荷下 的内生 热 低 、 永久 变形 小 , 能保 且
收稿 日期 :0 1 8 1 2 1 -7 作者简介 : 刘 菁 , ,9 4年 出生 ,9 9年毕业于太 原理工大学 , 女 17 19 学
聚氨酯弹性体研究应用
中 图分 类号 : Q 3 . T 3 49
文献 标 志码 : A
文章 编号 :0 8 16 (0 10 — 0 — 4 10— 2 72 1 )10 90
Ther s a c & a e e r h pplc to fpo y e ha l s o e i a i n o l ur t nee a t m r
t e i. h ss Ke y wor :p lur t a ee a t me ; r pe t sc mpo iem ae il ds o y e h n lso rp o ri ;o e st t ra s
聚氨 酯 弹性 体 是 指 在 大 分 子 主 链 上 含 有 重 复
的 氨基 甲酸 酯 链 段 ( N — c — 0 ) 一 H 0 一 的一 类 弹 性
机理 、 研究其对农作物生长过程的影响是今后研究 脱 硫石 膏 土地 化利 用 的一 个 方 向 。另外 , 硫 石 膏 脱
因燃 煤煤 质 及脱 硫 工 艺 的运 行 等 原 因 而 具 有差 异 性, 目前 普 遍 适 用性 不 足 , 因此 在 脱 硫 石 膏 的 土地 化 利用 时 , 不仅 要 根据 土壤 性 质 的不 同合 适 选择 脱 硫石 膏 的用 量及 施 用 方法 , 同时也 要 考 虑脱 硫石 膏 的个 体 差异 。另 外 应该 针 对 土壤性 质 , 取 适 当 的 选
化 土壤 的效 果 研 究 生 态 环 境 学 报 ,00 1 ( :3 — 3 . 2 1 ,92 4 3 4 7 )
-— - —卜 + - +- - -一4- +- - _- + - 一- ・
体 聚合物 , 聚氨 酯大 分 子主链 是 由玻璃 化 温度 低 于 室温 的柔 性链 段 ( 称 软链 段 或 软 段 ) 玻 璃 化 温 亦 和 度 高 于 室 温 的 刚性 链 段 ( 亦称 硬 链 段 或 硬 段 ) 段 嵌
聚氨酯弹性体研究进展
聚氨酯弹性体研究进展摘要:聚氨酯弹性体(PUE)又称聚氨基甲酸酯弹性体或聚氨酯橡胶,简称PUE,是一种大分子主链中含有重复氨酯基的嵌段共聚物。
作为一种综合性能优异的聚氨酯(PU)制品,聚氨酯弹性体已被广泛应用于人们生产和生活的方方面面。
本文介绍了聚氨酯弹性体的特点、结构与性能的关系、合成方法及其在一些重要领域的应用,并对其未来发展趋势进行了展望。
关键词:PUE;结构;性能;应用1 聚氨酯弹性体概述PUE由软段和硬段交替排列嵌段而成,软段由低聚物多元醇构成,硬段一般是由异氰酸酯和小分子扩链剂构成。
根据软段结构的不同可将PUE分为聚酯型、聚醚型及聚碳酸酯多元醇型等,根据硬段类型的不同可分为脂肪族及芳香族PUE,根据合成方法的不同可分为混炼型PUE(MPU)、浇注型PUE(CPU)和热塑型PUE(TPU),除此之外还有水性PUE、离子型PUE和微孔PUE等。
PUE性能介于橡胶和塑料之间,是一种综合性能优异的高分子材料,优点如下:(1)耐磨性优良。
在水、油等润湿条件下,其耐磨性通常是一般橡胶的数倍至数十倍[1]。
(2)性能范围宽。
因原料及配方类型多样,制品的性能也各不相同。
(3)强度高。
其拉断强度通常为天然橡胶和合成橡胶的两至三倍,且撕裂强度高于普通橡胶。
(4)耐低温性优越。
在-45 ℃下,其压缩耐寒系数约在0.1和0.5之间。
(5)耐油耐候性优异。
耐油性能优于丁腈橡胶,耐气候老化性能优于天然橡胶。
但PUE在某些方面较为薄弱,如:(1)内生热大。
耐热性尤其是耐湿热性有待提高。
(2)化学稳定性较差。
PUE在强极性溶剂或强酸碱介质中不稳定。
(3)PUE制品较为昂贵【1】。
2 聚氨酯弹性体结构与性能的关系2.1 微相分离结构PUE的硬段间存在较强的引力,易聚集而形成微区。
PUE的微相分离结构是指硬段微区均匀分布在软段相中所形成的结构。
PUE存在这种结构,主要原因是软段和硬段的不相容。
软硬段的微相分离程度会对PUE性能产生影响,适度的微相分离可改善其性能。
聚氨酯弹性体耐疲劳性能的测试方法研究
聚氨酯弹性体耐疲劳性能的测试方法研究聚氨酯弹性体是一种非常重要的材料,它具有优越的弹性和耐磨损性能,被广泛应用于汽车、建筑、家具、鞋材等领域。
然而,随着人们对材料性能要求的提高,聚氨酯弹性体的耐疲劳性能也愈发受到重视。
本文将从测试方法出发,探讨聚氨酯弹性体的耐疲劳性能研究。
一、背景聚氨酯弹性体由于其成分和结构的不同,在弹性、硬度、耐磨性等方面表现出不同的性能。
其中,弹性是其最主要的性能之一。
弹性体材料的耐疲劳性能是指其在长期经历重复的应力变化下,材料仍能保持其初步的性能,不会产生塑性变形或者损坏。
而聚氨酯弹性体的应用领域一般都需要其在长期的使用过程中能够保证耐疲劳性能。
因此,聚氨酯弹性体的耐疲劳性能的测试方法就成为了一个非常重要的研究课题。
二、现有测试方法在目前的聚氨酯弹性体疲劳试验中,常用的测试方法有:拉伸试验、剪切试验和弯曲试验。
其中,拉伸试验是最为常见的一种测试方法,通过拉力机对聚氨酯弹性体进行拉伸,以观察材料在重复的拉伸力作用下是否会发生变化。
拉伸试验相对简单,适用于大部分聚氨酯弹性体的耐疲劳性能测试。
剪切试验则是通过结构设计制作出聚氨酯弹性体材料,并通过更改材料的套筒或接口的数量来模拟实际使用条件下的疲劳过程,观察试件是否在疲劳周期中发生疲劳破坏和失效的情况。
弯曲试验相对复杂,其主要是通过使用动态弯曲机对聚氨酯弹性体材料进行弯曲试验,观测其在长期的弯曲下的弯曲变形和疲劳性能表现。
这种测试方法不仅需要相应的测试设备,而且需要专业的技术人员进行操作和数据分析。
三、改进测试方法虽然现有测试方法可以对聚氨酯弹性体材料的耐疲劳性能进行一定程度的测试,但是这些方法还有一些缺陷。
首先,这些测试方法对测试环境、测试仪器等设备的要求较高,测试过程比较复杂,且存在不确定因素。
其次,这些测试方法很难实现真实的模拟测试环境,一些应用特定条件下的疲劳测试很难实现。
因此,这些常用测试方法存在一些缺陷和不足。
近年来,有研究人员尝试通过使用有限元软件对聚氨酯弹性体材料的耐疲劳性进行测试。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
石油、化学、 套管,轴承,水里旋流器,浮标,清管器,刮刀,挡泥板,阀座 海洋 胶 辊 钢铁厂胶辊,造纸胶辊、印刷,输送带胶辊,龚骨胶辊,罐涂层等
涉及行业 密封和衬垫 鞋 业
应
用
范
围
轴封和油封,隔膜,各种机械液压件的密封 鞋底,底部模制隔膜,穿图版,缓冲内底 叉车轮胎,重工业脚轮,电动扶梯轮子,旱冰轮,刀刃滑冰轮子 隔层膜,涂层 坦克履带,炮管,防弹玻璃,潜水艇 防腐,防水,高铁,潜水防腐,地下铁路,地下深处防水 球场,跑道,保钢板等,家具涂料 高铁,胶带,矿山冷补胶,电缆,高速公路钦缝胶 枕木,防震块
轮子和轮胎 飞 军 聚 机 事 脲
体育运动 涂 料
胶粘剂 铁 路
举例:聚酯+TDI+MOCA,这是最常见,最早 应用推广的生产方法之一是密封圈,它属于刚性 的产品(但不耐水解),综合性能非常,性价比 最优。 MDI系列 PTMG+MDI 50+HQEE/HER 这套 工艺做出的制品柔性、扭曲率、撕拉率、拉伸强 度以及伸长率等各项性能指标大大优于TDI系列。 以上将大范围的系列情况做了介绍。 接下来我将以大家经常做的预聚体工艺为例, 并给予相关提示: 聚酯+TDI+MOCA PPG+TDI+MOCA 这样的合成预聚体,如何合成为好呢?如果 预聚体合成不好,做出来的制品将会有许多残留 异氰酸酯味,对环境对人体都会产生不健康因素。
聚醚—是被推荐应用于承受重压的零件原料, 因为它产生较低的内部热量,它在回弹、低温性 能和耐水解性能方面具有优势,其次聚醚还拥有 较低的粘性和比重的特性。 聚酯—则具有优异的抗切削、抗撕裂、耐油 性、耐溶剂性。 MDI类型产品与TDI类型相比,异氰酸酯味道 小,有优异的耐水解性和更好的回弹性能。 TDI相对于MDI类型的产品,TDI类型对水分 比较敏感,与MDI相比较,拥有较短的脱模时间 和较低的凝结晶度的表现。 区别PU类别最普通的方法,是根据它们的硬 度: 邵氏A 橡胶 20——90A PU 10——100A 邵氏D PU 10——60(高尔夫球 85D (骨硬)
弹性体在各方面取代金属、橡胶、木材和塑料应用范围大致如下:
涉及行业 汽车业 建筑业 涂层织物 电子工业 工程组件 食品业 矿 业
应
用
范
围
密封圈,轴套,衬套,弹性联轴器,保险杠,皮革,封条,装饰板 混凝土模,门密条,混凝土泵组件,喷沙管等 输送带,燃料储罐,能量发送带,同步带 封装,绝缘体,灌装,线路板,电缆衔接胶,电子板涂层 压弯机衬垫,链轮,轨道齿轮,切割板,机械带,联轴器,分馏柱 塔板,罗拉片 滑道内衬,谷类储存,输送带 铲斗内垫,输道滚轴,刮片,浮选槽叶轮,泵衬,筛网,管道内衬
聚氨酯弹性体
一、概 述
自20世纪30年代发明了PUR 聚氨酯橡胶。由于其性能 优异,故产量增长很快,同时它也促进了聚氨酯弹性体的 快速发展。其杨氏模型介于橡胶与塑料之间,具有耐磨性、 耐油性、耐撕裂、耐化学腐蚀,耐射线辐射,与其材质粘 接性能好,弹性高,吸震力强等优异性能。因此在国民经 济许多领域中获得广泛应用。 我国聚氨酯弹性体从上世纪70年代渐渐应用于国民经 济中,到90年代发展开始加快,每年增长25-40%。日本、 台湾、美国及欧盟国家从90年代开始先后进入中国市场, 旱冰轮风靡全国。2000年以后每年均以15-25%的速度增 长,而且在全球金融危机十分严峻的情况下,全国聚氨酯 弹性体工业企业仍没有受到影响,各企业在危机中体会到 了高分子、高科技含量产品的生命力之强。
4、盖模时间早与晚会产生问题。早,产生低湿现象; 晚,会产生干白、龟裂现象。
5、模料要称量正确。MOCA溶解温度不要超过 120℃,盛MOCA杯,称重时一定注意留在杯中的 残量,否则制品会出现缺陷。预聚体也同样。
6、硫化时间,一般小制件25-30分钟,大制件按实 用预聚体MOCA总量熟化需要来定,但后硫化,不 管大小制件一定要在80-85℃时硫化16小时,方可 测性能,否则所测重量不精确。
除以上原因之外,还有模具上的缘由,盖模时间 长短,脱模剂涂层厚薄。由于脱模时是人工操作,后 硫化温度过高或过低等都会产生不良结果。 以上讲了预聚体+MOCA浇注后可能产生的问题, 另外还有模具的问题。 模具—要做好制品,制品母体很重要,除尺寸 精确之外,还需从以下几个方面做好: 1、母体模具的光洁度,要求做到角6,乌黑发亮。 2、使用前先加热,使残余的脱模剂挥发,然后把脱 模油全部抹干净,再用干净的脱模剂抹一遍,加热到 130-140℃。 3、浇注时,一定要考虑模盖与常温之间的温差,会 造成制品缺陷。
PU有以下特性:
1、硬度 2、耐磨损性 3、压缩特性 4、机械性能 5、拉力特性 6、撕裂强度 7、回弹性 8、弯曲特性 9、低温特性 10、耐干热性 一般90℃工作,特殊配置可在120℃工 作
11、抗水性 抗水性0.3%—1% 12、电子特性,绝缘 13、氧气和臭氧抵制力较强 14、耐油、酸、碱与化学性抵制力强 15、抗辐射能力优良 16、防火 17、防霉菌与真菌 18、耐磨 19、机械制造能力强 20、与其他材料粘着力强 21、降低噪声,减震 以上仅讲何谓聚氨酯,以及聚氨酯弹性体应用领 域的一些基本特征 。
二、聚氨酯弹性体
聚氨酯弹性体是含有多羟基化合物和异氰酸酯反 应而产生的氨基甲酸酯集团(NH—CO—O—)的聚 合体物质。 它们因各方面优异的特性而被生产业垂青,并被 制成诸多优异的产品。PU弹性体是一种具有独特设计 和结构的物质,其拥有的橡胶延长性能,是结合了硬 塑胶料、金属和陶瓷制品等多种产品的优点,。虽然 这并不表明聚氨酯解决了所有问题,但他们所具有的 多种优异性能是他们广泛使用和用途持续扩大的关键。 聚氨酯有以下四个基本类型: 1、聚醚 (PPG,PTMG,聚己内酯)/TDI 2、聚酯 /TDI 3、聚醚 (PPG,PTMG,聚己内酯)/MDI 4、聚酯 /MDI
从前人的经验知道,80℃硫化后,结构熟化是 未彻底完善,真正性能要在常温下21天后方才稳定。