2015届高三一轮文科数学“基础题每日一练”(含精析)01

合集下载

2015届高三一诊模拟数学(文)试题及答案

2015届高三一诊模拟数学(文)试题及答案
2015 届高三一诊模拟数学(文)试题
一 .选择题 (共 10 小题 ,每小题 5 分 ,满分 50 分 )
1.已知集合 A { x || x 1| 2} , B { x | log 2 x 2} ,则 A B (
A. ( 1,4)
B. ( 1,3)
C. (0,3)
a 3i
2.若复数
(a
1 2i
A. 6
,对其加工的零件进行检测 ,若两人
加工的合格零件个数之和大于 17 ,则称该车间“质量合格” ,求该车间“质量合格”的概率 .[来源:]
(注 :方差
s2=
1 [(
x1
x)2
( x2
x) 2
n
(xn x)2] ,其中 x 为数据 x1, x2 , , xn 的平均数 ).
19.(本小题满分 12 分 )
6
x02 ,
∴方程①为 x2 2 x0 x x02 0 ,即
0 ,∴直线 l 与椭圆 C 有唯一的公共点 .
(ⅱ )∵ F ( 2,0) ,∴过点 F 且与 l 垂直的直线方程为 3 y0 y x0x 6 0 .
∵联立方程组
x
3y0 y x0x 6 0
,∴
x0 x 3y0 y 6 0
y
6x0 18 y02 x0 2 9 y02
③ x2 f ( x1) x1 f ( x2 ) ;
④当 ln x1 1时 , x1 f ( x1) x2 f ( x2 ) 2x2 f (x1) .
其中所有正确命题的序号为
.
三 .解答题 (本大题共 6 小题 ,共 75 分 .解答应写出文字说明、证明过程或演算步骤 )
16.(本小题满分 12 分 )
l ,垂足为 A , | PF | 4,则直线 AF 的倾斜角等于 ( )

2015届甘肃省部分普通高中高三第一次联考文科数学试卷(带解析)

2015届甘肃省部分普通高中高三第一次联考文科数学试卷(带解析)

2015届甘肃省部分普通高中高三第一次联考文科数学试卷(带解析)1 / 181.设集合}023|{2<++=x x x M ,集合⎭⎬⎫⎩⎨⎧≤=4)21(x x N , 则=N M ( ) A .{|2}x x ≥- B .}1|{->x x C .}1|{-<x x D .}2|{-≤x x2.下面是关于复数iz -=12的四个命题: 1p :2z =, 2:p 22z i = 3:p z 的共轭复数为i +-1 4:p z 的虚部为1其中真命题为( )A .23,p pB .12,p pC .24,p pD .34,p p3.下列推断错误的是( )A.命题“若2320,x x -+=则1x = ”的逆否命题为“若1x ≠则2320x x -+≠”B.命题:p 存在R x ∈0,使得20010x x ++<,则非:p 任意R x ∈,都有210x x ++≥C.若p 且q 为假命题,则q p ,均为假命题D.“1x <”是“2320x x -+>”的充分不必要条件4.若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如下图所示,则这个棱柱的体积为( )俯视图侧视图正视图A .312B .336C .327D .65.已知平面向量b a 与的夹角为3π,1,223,b a b a =+==且则( ) A .1 B .3 C .2 D .36.函数1(01)x y a a a -=>≠,的图象恒过定点A ,若点A 在直线10(0)mx ny mn +-=>上,则11m n +的最小值为( ) A .3 B .4 C . 5 D .67.等比数列{}n a 中,452,5a a ==,则数列{lg }n a 的前8项和等于( )A .6B .5C .3D .48.已知集合⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧≥-≥+≤-+00042),(y x y x y x y x 表示的平面区域为Ω,若在区域Ω内任取一点P (x,y ),则点P 的坐标满足不等式x 2+y 2≤2的概率为( ) (A ) 163π (B )16π (C )32π (D )323π 9.已知函数()f x 的定义域为[1,4]-,部分对应值如下表,()f x 的导函数()y f x '=的图象如右图所示.当12a <<时,函数()y f x a =-的零点的个数为( )A.1B.2C.3D.410.定义行列式运算:12142334a a a a a a a a =-.若将函数-sin cos ()1x x f x =的图象向左平移m (0)m >个单位后,所得图象对应的函数为奇函数,则m 的最小值是( )A .32πB .3πC .6πD .π65 11.已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y .若点M 到该抛物线焦点的距离为3,则||OM =( )A、 B、、4 D、12.设()f x 是定义在R 上的恒不为零的函数,对任意实数,x y R ∈,都有()()()f x f y f x y ⋅=+,若()()11,2n a a f n n N *==∈,则数列{}n a 的前n 项和nS 的取值范围是( ) A. 1,22⎡⎫⎪⎢⎣⎭ B. 1,22⎡⎤⎢⎥⎣⎦ C. 1,12⎡⎫⎪⎢⎣⎭ D. 1,12⎡⎤⎢⎥⎣⎦13.定义某种运算⊗,S a b =⊗的运算原理如右图:则式子5324⊗+⊗=_________.2015届甘肃省部分普通高中高三第一次联考文科数学试卷(带解析)3 / 1814. 若tan θ+1tan θ=4,则sin2θ=_________. 15. 已知双曲线x 2 - y 2 =1,点F 1,F 2为其两个焦点,点P 为双曲线上一点,若P F 1⊥P F 2,则∣P F 1∣+∣P F 2∣的值为___________________. 16.已知曲线()33ln y a x x =-+存在垂直于y 轴的切线,且函数32()31f x x ax x =--+在[]1,2上单调递减,则a 的范围为 .17.(本题满12分)在ABC ∆中,角C B A ,,的对边分别为c b a ,,且B c B a C b cos cos 3cos -=(1)求B cos 的值;(2)若2=⋅BC BA ,且22=b ,求c a 和的值.18.(本小题满分12分)为了了解甘肃省各景点在大众中的熟知度,随机对15~65岁的人群抽样了n 人,回答问题“甘肃省有哪几个著名的旅游景点?”统计结果如下图表.(1)分别求出a ,b ,x ,y 的值;(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,求第2,3,4组每组各抽取多少人?(3)在(2)抽取的6人中随机抽取2人,求所抽取的人中恰好没有第3组人的概率.19.(本题满分12分)已知四棱锥P-ABCD ,底面ABCD 是 60=∠A 、边长为a 的菱形,又ABCD PD ⊥底面,且PD=CD ,点M 、N 分别是棱AD 、PC 的中点.C A(1)证明:DN//平面PMB ;(2)证明:平面PMB ⊥平面PAD ;(3)求点A 到平面PMB 的距离.20.(本题满分12分)已知椭圆C 的对称中心为原点O ,焦点在x 轴上,左右焦点分别为1F 和2F ,且2||21=F F ,点)23,1(在该椭圆上.(1)求椭圆C 的方程;(2)过1F 的直线l 与椭圆C 相交于B A ,两点,若B AF 2∆的面积为7212,求以2F 为圆心且与直线l 相切圆的方程.21.(本小题满分12分)已知函数x xx m m x f -++=1ln )1()(,其中常数0>m . (1)当2=m 时,求函数()f x 的极大值;(2)试讨论()f x 在区间)1,0(上的单调性;(3)当),3[+∞∈m 时,曲线)(x f y =上总存在相异两点))(,(11x f x P ,))(,(22x f x Q ,使得曲线)(x f y =在点Q P ,处的切线互相平行,求21x x +的取值范围.22.(本小题满分10分)选修4—1:几何证明选讲 如图所示,PA 为圆O 的切线,A 为切点,两点,于交圆C B O PO ,20PA =,10,PB =BAC ∠的角平分线与BC 和圆O 分别交于点D 和E .(1)求证AB PC PA AC ⋅=⋅(2)求AD AE ⋅的值.2015届甘肃省部分普通高中高三第一次联考文科数学试卷(带解析)5 / 1823.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,圆C 的参数方程1cos (sin x y ϕϕϕ=+⎧⎨=⎩为参数).以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求圆C 的极坐标方程;(2)直线l的极坐标方程是2sin()3πρθ+=:3OM πθ=与圆C 的交点为P 、O ,与直线l 的交点为Q ,求线段PQ 的长.24.(本小题满分l0分)选修4—5:不等式选讲已知函数()|21|,()||f x x g x x a =+=+(1)当0=a 时,解不等式()()f x g x ≥;(2)若存在R x ∈,使得,)()(x g x f ≤成立,求实数a 的取值范围.2015届甘肃省部分普通高中高三第一次联考文科数学试卷(带解析)1 / 18参考答案1.A【解析】试题分析:由0232<++x x ,得12-<<-x ,{}12|-<<-=x x M ,由221421-⎪⎭⎫ ⎝⎛=≤⎪⎭⎫ ⎝⎛x ,得2-≥x ,{}{}2|12|-≥-<<-=∴x x x x N M {}2|-≥=x x ,故答案为A.考点:1、解不等式;2、集合的并集.2.C【解析】试题分析:()()()i i i i i z +=-++=-=1111212,211=+=∴z ,()i i i i z 2211222=++=+=,z 的共轭复数为i z -=1,z 的虚部为1,真命题是2p ,4p ,故答案为C.考点:1、复数的概念;2、复数的基本运算.3.C【解析】试题分析:命题“若2320,x x -+=则1x = ”的逆否命题为“若1x ≠则2320x x -+≠”,正确;命题:p 存在R x ∈0,使得20010x x ++<,则非:p 任意R x ∈,都有012≥++x x ,正确;若p 且q 为假命题,则q p ,可能都是假命题,也可能一真一假,错误;当1<x 时,能得到0232>+-x x ;当0232>+-x x2>x 或1<x ,故答案为C.考点:命题真假性的判断.4.B【解析】试题分析:该几何体为一个三棱柱,棱柱的高是4,底面正三角形的高是33,设底面边长为x , 则3323=⋅x ,6=∴x ,故三棱柱的体积336433621=⋅⋅⋅,故答案为B. 考点:由三视图求体积.5.C【解析】32==+,1cos32a b ab aπ⋅=⋅=,因124=++,08=-+,由于0a>2=,故答案为C.考点:平面向量的数量积.6.B【解析】试题分析:函数()1,01≠>=-aaay x图象恒过点()1,1A,代入直线方程得1=+nm,()=+⋅⎪⎭⎫⎝⎛+=+∴nmnmnm11114222=⋅+≥++nmmnnmmn,nm11+的最小值为4,故答案为B.考点:1、函数过定点;2、基本不等式的应用.7.D【解析】试题分析:821lglglg aaa+++ ()()=⋅=⋅⋅=454821lglg aaaaa 410lg4=,故答案为D.考点:1、对数的运算;2、等比数列的性质.8.D【解析】试题分析:满足不等式组的区域如图ABO∆内部(含边界),由于直线xy=与xy-=垂直,ABO∆与圆222=+yx的公共部分如图阴影部分是41圆,则点P落在圆222≤+yx内的概率为⎪⎭⎫⎝⎛+⨯⨯⨯==∆434221241πABOSSP扇形323π=,故答案为D.答案第2页,总12页2015届甘肃省部分普通高中高三第一次联考文科数学试卷(带解析)3 / 18考点:1、线性规划的应用;2、几何概型的概率计算公式.9.D【解析】试题分析:根据导函数图象,知2是函数的1极小值点,函数()x f y =的大致图象如图所示,由于()()230==f f ,21<<a ,所以()a x f y -=的零点个数为4个,故答案为D.考点:1、导函数与函数的关系;2、函数零点的个数.10.C【解析】试题分析:()x x x f cos s in 3-=⎪⎪⎭⎫ ⎝⎛-=x x c os 21s in 232⎪⎭⎫ ⎝⎛-=6s in 2πx ,向左平移()0>m m 个单位后得到函数⎪⎭⎫ ⎝⎛+-=m x y 6sin 2π,由于是奇函数,因此⎪⎭⎫ ⎝⎛-=6sin 20πm ,答案第4页,总12页 得ππk m =-6,6ππ+=∴k m当0=k 时,m 的最小值是6π,故答案为C. 考点:1、三角函数的化简;2、奇函数的应用.11.B【解析】试题分析:由题意设抛物线的标准方程()022>=p px y ,由抛物线的性质抛物线上的点到焦点的距离等于到准线的距离得322=+p ,得2=p ,抛物线方程x y 42=,820=∴y ,32420=+=∴y OM ,故答案为B.考点:抛物线的几何性质.12.C【解析】试题分析:令1,==y n x 得()()()11+=⋅n f f n f ,即121+=⋅n n a a ,数列{}n a 以21为首项,21为公比的等比数列,()21121121111-⎪⎭⎫ ⎝⎛-=--=∴n n n q q a S 1211<-=n ,各项都为正数,211=≥S S n ,故答案为C. 考点:1、等比数列的判断;2、等比数列的前n 项和公式.13.14【解析】试题分析:由于35>,故5⊗3()10135=-⨯=,42<,故2⊗4()4124=-⨯=,故结果是14.考点:新定义在程序框图的应用.14.21 【解析】 试题分析:θθθθθθsin cos cos sin tan 1tan +=+4cos sin cos sin 22=⋅+=θθθθ,因此41cos sin =⋅θθ,212sin =θ. 考点:1、同角三角函数的基本关系;2、二倍角的正弦公式.15.32【解析】2015届甘肃省部分普通高中高三第一次联考文科数学试卷(带解析)试题分析:由双曲线的定义得221=-PF PF ,8422221==+c PF PF ,()⋅-+=-∴122212212PF PF PF PF PF 42=PF ,4221=⋅∴PF PF ,()122212221221=⋅++=+∴PF PF PF PF PF PF ,3221=+∴PF PF .考点:双曲线的简单几何性质. 16.⎪⎭⎫⎢⎣⎡3,49 【解析】试题分析:曲线()x x a y ln 33+-=存在垂直于y 轴的切线,()xx a y 1332+-='∴()01333=+-=x x a 在0>x 时有解,因此()01333=+-x a ,此时03<-a ,得3<a ,函数()1323+--=x ax x x f 在[]2,1上单调递减,则()0≤'x f ,()03232≤--='∴ax x x f 恒成立,即xx x x a 333322-=-≥, 函数x x y 33-=在区间[]2,1上单调递增,最大值为29236=-,满足292≥a ,49≥∴a ,因此349<≤a .考点:1、利用导数研究函数的性质;2、恒成立的问题. 17.(1)31cos =B ;(2)6==c a .【解析】 试题分析:(1)熟悉三角公式的整体结构,灵活变换,要熟悉三角公式的代数结构,更要掌握公式中角和函数名称的特征,要体会公式间的联系,掌握常见的公式变形;(2)在三角形中处理边角关系时,一般全部转化为角的关系,或全部转化为边的关系.题中若出现边的一次式一般采用正弦定理,出现边的二次式一般采用余弦定理,应用正弦、余弦定理时,注意公式变形的应用,解决三角形问题时,注意角的限制范围,在三角形中,注意隐含条件π=++C B A (3)解决三角形问题时,根据边角关系灵活的选用定理和公式. 试题解析:(1)由正弦定理得C R c B R b A R a sin 2,sin 2,sin 2===, 则R B A R C B R 2cos sin 6cos sin 2-=B C cos sin 故B C B A C B cos sin cos sin 3cos sin -= 可得B A B C C B cos sin 3cos sin cos sin =+ 即()B A C B cos sin 3sin =+因此得B A A cos sin 3sin =,0sin ≠A ,得31cos =B 解:由2=⋅BC BA ,可得2cos =B ac ,又31cos =B ,故6=ac ,由B ac c a b cos 2222-+=,得1222=+c a ,()02=-∴c a 所以6==c a .考点:正余弦定理的应用.18.(1)5=a ,27=b ,9.0=x ,2.0=y ;(2)2,3,1;(3)51=P . 【解析】 试题分析:(1)解决频率分布直方图的问题,关键在于找出图中数据之间的关系,这些数据中,比较明显的有组距、组距频率,间接的有频率,小长方形的面积,合理使用这些数据,再结合两个等量关系:小长方形的面积等于频率,小长方形的面积之和等于1,因此频率之和为1;(2)古典概型的概率问题,关键是正确找出基本事件总数和所求事件包含的基本事件数,然后利用古典概型的概率计算公式计算;当基本事件总数较少时,用列举法把所有的基本事件一一列举出来,要做到不重不漏,有时可借助列表,树状图列举. 试题解析:(1)由频率表中第4组数据可知,第4组总人数为2536.09=, 再结合频率分布直方图可知=n 10010025.025=⨯, ∴ =a 100×0.01×10×0.5=5,=b 100×0.03×10×0.9=27, 2.0153,9.02018====y x 4分(2)因为第2,3,4组回答正确的人数共有54人,所以利用分层抽样在54人中抽取6人,每组分别抽取的人数为:第2组:265418=⨯人;第3组:365427=⨯人;第4组:16549=⨯人 8分 (3)设第2组2人为:A 1,A 2;第3组3人为:B 1,B 2,B 3;第4组1人为:C 1.则从6人中随机抽取2人的所有可能的结果为:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,C 1), (A 2,B 1),(A 2,B 2),(A 2,B 3),(A 2,C 1),(B 1,B 2),(B 1,B 3),(B 1,C 1),(B 2,B 3),(B 2,C 1),(B 3,C 1)共15个基本事件,其中恰好没有第3组人共3个基本事件, . 10分 ∴ 所抽取的人中恰好没有第3组人的概率是:51153==P . . 12分 考点:1、古典概型的概率计算公式;2、频率分布直方图的应用. 19.(1)证明见解析;(2)证明见解析;(3)55a【解析】 试题分析:(1)解决立体几何的有关问题,空间想象能力是非常重要的,但新旧知识的迁移融合也很重要,在平面几何的基础上,把某些空间问题转化为平面问题来解决,有时很方便;(2)证明线面平行常用方法:一是利用线面平行的判定定理,二是利用面面平行的性质定理,三是利用面面平行的性质,证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中的一条垂直于这个平面,则另一条也垂直于这个平面.解题时,注意线线、线面与面面关系的相互转化;(3)证明两个平面垂直,2015届甘肃省部分普通高中高三第一次联考文科数学试卷(带解析)首先考虑直线与平面垂直,也可以简单记为“证面面垂直,找线面垂直”,是化归思想的体现,这种思想方法与空间中的平行关系的证明类似,掌握化归与转化思想方法是解决这类题的关键. 试题解析:(1)证明:取PB 中点Q ,连结MQ 、NQ ,因为M 、N 分别是棱AD 、PC 中点,所以 QN//BC//MD ,且QN=MD ,于是DN//MQ.PMB DN PMB DN PMB MQ MQDN 平面平面平面////⇒⎪⎭⎪⎬⎫⊄⊆ 4分 (2)MB PD ABCD MB ABCD PD ⊥⇒⎭⎬⎫⊆⊥平面平面又因为底面ABCD 是 60=∠A 、边长为a 的菱形,且M 为AD 中点, 所以AD MB ⊥.又所以PAD MB 平面⊥..PAD PMB PMB MB PAD MB 平面平面平面平面⊥⇒⎭⎬⎫⊆⊥ 8分(3)因为M 是AD 中点,所以点A 与D 到平面PMB 等距离.过点D 作PM DH ⊥于H ,由(2)平面PMB ⊥平面PAD ,所以PMB DH 平面⊥. 故DH 是点D 到平面PMB 的距离..55252a a aa DH =⨯=所以点A 到平面PMB 的距离为a 55. 12分考点:1、直线与平面平行的判定;2、平面与平面垂直的判定;3、点到平面的距离.20.(1)13422=+y x ;(2)()2122=+-y x 【解析】试题分析:(1)设椭圆的方程,若焦点明确,设椭圆的标准方程,结合条件用待定系数法求出22,b a 的值,若不明确,需分焦点在x 轴和y 轴上两种情况讨论;(2)解决直线和椭圆的综合问题时注意:第一步:根据题意设直线方程,有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,可由点斜式设直线方程.第二步:联立方程:把所设直线方程与椭圆的方程联立,消去一个元,得到一个一元二次方程.第三步:求解判别式∆:计算一元二次方程根.第四步:写出根与系数的关系.第五步:根据题设条件求解问题中结论. 试题解析:(1)由题知1=c , 椭圆的焦点()0,11-F ,()0,12F42349222=++=a ∴椭圆C 的方程为13422=+y x (4分)①当直线l ⊥x 轴时,可得A (-1,-23),B (-1,23),B AF 2∆的面积为3,不符合题意. (6分) ②当直线l 与x 轴不垂直时,设直线l 的方程为()1+=x k y .代入椭圆方程得:01248)43(2222=-+++k x k x k ,显然∆>0成立,设A ),(11y x ,B ),(22y x ,则2221438k k x x +-=+,222143128k k x x +-=⋅,可得|AB|=2243)1(12k k ++ (10分)又圆2F 的半径=r 21||2k k +,∴B AF 2∆的面积=21=r AB 22431||12k k k ++=7212,化简得:174k +2k -18=0,得k=±1,∴r =2,圆的方程为2)1(22=+-y x (12分)考点:1、椭圆的标准方程;2、直线与椭圆的综合问题. 21.(1)232ln 25-; (2)当10<<m 时,()x f 在()m ,0上单调递减,在()1,m 上单调递增, 当1=m 时,()x f 在()1,0单调递减,当1>m 时,()x f 在⎪⎭⎫ ⎝⎛m 1,0上单调递减,在⎪⎭⎫ ⎝⎛1,1m 上单调递增; (3)⎪⎭⎫ ⎝⎛+∞,56. 【解析】试题分析:(1)求函数()x f 的极值的一般步骤:(1)确定函数的定义域;(2)求导数()x f ';(3)解方程()0='x f ,求出函数定义域内的所有根;(4)列表检验()x f '在()0='x f 的根2015届甘肃省部分普通高中高三第一次联考文科数学试卷(带解析)0x 左右两侧的符号,如果在0x 附近的左侧()0>'x f ,右侧()0<'x f ,那么()0x f 是极大值;如果在0x 附近的左侧()0<'x f ,右侧()0>'x f ,那么()0x f 是极小值;(2)函数()x f y =在某个区间内可导,则若()0>'x f ,则()x f 在这个区间内单调递增,若()0<'x f ,则()x f 在这个区间内单调递减;(3)对于恒成立的问题,常用到两个结论:(1)()x f a ≥恒成立()max x f a ≥⇔,(2)()x f a ≤恒成立()min x f a ≤⇔.试题解析:(1)当2=m 时,()x xx x f -+=1ln 25,()()()()02122112522>---=--='x x x x x x x f , 由()0<'x f 得2>x 或210<<x ,由()0>'x f 得221<<x ,因此函数()x f 在区间⎪⎭⎫⎝⎛21,0和()+∞,2单调递减,在区间⎪⎭⎫ ⎝⎛2,21上单调递增,故()x f 的极大值为()232ln 252-=f ()xx m m x f 11-+='()()0,0112>>⎪⎭⎫ ⎝⎛--=-m x x m x m x 当10<<m 时,()x f 在()m ,0上单调递减,在()1,m 上单调递增 当1=m 时,()x f 在()1,0单调递减 当1>m 时,()x f 在⎪⎭⎫ ⎝⎛m 1,0上单调递减,在⎪⎭⎫⎝⎛1,1m 上单调递增 (3)由题意,可得)()(2'1'x f x f =(2121,0,x x x x ≠>)既=--+111211x x m m 2121222)1(111x x m m x x x x m m +=+⇒--+mm x x x x m m x x 14)2)(1(2122121+>+⇒++<+∴对),3[+∞∈m 恒成立另)3(1)(≥+=m m m m g 则)(m g 在),3[+∞上单调递增,310)3()(=≥∴g m g故56)3(414=≤+g mm ,从而56)3(421=>+g x x 21x x +∴的取值范围是),56(+∞. 考点:1、利用导数求函数极值;2、利用导数求函数的单调性;3、恒成立的问题.22.(1)证明见解析;(2)360. 【解析】 试题分析:(1)从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线,平分两条切线的夹角;(2)判断三角形相似:一是平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似;二是如果一个三角形的两个角与另一个三角形的两个角对应相等, 那么这两个三角形相似;三是如果两个三角形的两组对应边的比相等,并且相应的夹角相等, 那么这两个三角形相似;四是如果两个三角形的三组对应边的比相等,那么这两个三角形相似;五是对应角相等,对应边成比例的两个三角形叫做相似三角;(3)切割线定理:切割线定理,是圆幂定理的一种,从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.试题解析:(1)∵ PA 为圆O 的切线, ,PAB ACP ∴∠=∠又P ∠为公共角, PCA PAB ∆∆∽AB PAAC PC∴=. 4分 (2)∵PA 为圆O 的切线,BC 是过点O 的割线, 2,PA PB PC ∴=⋅40,30PC BC ∴== 又∵022290,900CAB AC AB BC ∠=∴+==又由(1)知12AB PA AC AB AC PC ==∴==连接EC ,则,CAE EAB ∠=∠ADB ACE ∆∆∽,则ACADAE AB =,∴AD AE AB AC 360⋅=⋅==. 10分 考点:1、切割线定理的应用;2、三角形相似的应用. 23.(1)θρcos 2=;(2)2.【解析】 试题分析:(1)将参数方程转化为直角坐标系下的普通方程,需要根据参数方程的结构特征,选取恰当的消参方法,常见的消参方法有:代入消参法、加减消参法、平方消参法;(2)将参数方程转化为普通方程时,要注意两种方程的等价性,不要增解、漏解,若y x ,有范围限制,要标出y x ,的取值范围;(3)直角坐标方程化为极坐标方程,只需把公式θρcos =x 及θρsin =y 直接代入并化简即可;而极坐标方程化为极坐标方程要通过变形,构造形如θρcos ,θρsin ,2ρ的形式,进行整体代换,其中方程的两边同乘以(或同除以)ρ及2015届甘肃省部分普通高中高三第一次联考文科数学试卷(带解析)方程的两边平方是常用的变形方法.试题解析:圆C 的普通方程为1)1(22=+-y x ,又θθρsin ,cos ==y x 所以圆C 的极坐标方程为θρcos 2= (5分)设),(11θρP ,则有⎪⎩⎪⎨⎧==3cos 2πθθρ解得3,111πθρ==设),(22θρQ ,则有⎪⎩⎪⎨⎧==+333)cos 3(sin πθθθρ解得3,322πθρ== 所以2||=PQ . (10分) 考点:极坐标方程的应用.24.(1)(]⎪⎭⎫⎢⎣⎡+∞--∞-,311, ;(2)21-≥a 【解析】试题分析:(1)理解绝对值的几何意义,x 表示的是数轴的上点x 到原点离.(2)对于恒成立的问题,常用到以下两个结论:(1)()x f a ≥恒成立()max x f a ≥⇔,(2)()x f a ≤恒成立()min x f a ≤⇔(3)b a b a b a +≤+≤-的应用.(4)掌握一般不等式的解法:()()a x a x a a x -≤≥⇔>≥或01,()()a x a a a x ≤≤-⇔>≤02.试题解析:当0=a 时,由()()x g x f ≥得x x ≥+12,两边平方整理得01432≥++x x , 解得1-≤x 或31-≥x ,因此原不等式的解集为(]⎪⎭⎫⎢⎣⎡+∞--∞-,311, 由()()x g x f ≤得x x a -+≥12,令()x x x h -+=12,则()⎪⎪⎪⎩⎪⎪⎪⎨⎧≥+<<-+-≤--=0,1021,1321,1x x x x x x x h故()2121min -=⎪⎭⎫⎝⎛-=h x h ,从而所求实数a 的范围21-≥a .考点:1、含绝对值不等式的解法;2、恒成立的问题.。

宁夏银川一中2015届高三第一次模拟考试数学(文)(附答案)

宁夏银川一中2015届高三第一次模拟考试数学(文)(附答案)

2015年普通高等学校招生全国统一考试文 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~24题为选考题,其它题为必考题。

考生作答时,将答案答在答题卡上,在本试卷上答题无效。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。

2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。

3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。

4.保持卡面清洁,不折叠,不破损。

5.做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑。

参考公式:S 圆台侧面积=L R r )(+π第I 卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}a x x A <=,{}21<≤=x x B ,且()R B C A R =⋃,则实数a 的取值范围是A .1≤aB .1<aC .2≥aD .2>a 2.复数ii-22所对应的点位于复平面内 A .第一象限B .第二象限C .第三象限D .第四象限3.已知等差数列{}n a 的公差为(0)d d ≠,且36101332a a a a +++=,若8m a =,则m 的值为 A .8B .12C .6D .44.下列命题中为真命题的是 A .若21,0≥+≠xx x 则 B .命题:若12=x ,则1=x 或1-=x 的逆否命题为:若1≠x 且1-≠x ,则21x ≠C .“1=a ”是“直线0=-ay x 与直线0=+ay x 互相垂直”的充要条件D .若命题012<+-∈∃x x x P ,R :,则012>+-∈∀⌝x x x P ,R : 5.设0x >,且1x x b a <<,则A .01b a <<<B .01a b <<<C .1b a <<D .1a b <<6.设()00,M x y 为抛物线2:8C y x =上一点,F 为抛物线C 的焦点,若以F 为圆心,FM 为半径的圆和抛物线C 的准线相交,则0x 的取值范围是A.(2,)+∞B.(4,)+∞C.(0,2)D.(0,4)7.如果下面的程序执行后输出的结果是11880,那么在程序 UNTIL 后面的条件应为A .10i <B .10i ≤C .9i ≤D . 9i < 8.若[]2,2-∈k ,则k 的值使得过)1,1(A 可以做两条直线与圆045222=--++k y kx y x 相切的概率等于 A.41 B. 21 C.43D.不确定 9.一个几何体的三视图如图所示,则该几何体的外接球的 表面积为A.π36B. 8πC.π29 D.π82710.设n m ,为空间两条不同的直线,βα,为空间两个不同的平面,给出下列命题: ①若βα//,//m m ,则βα//; ②若βα//,m m ⊥,则βα⊥; ③若n m m //,//α则α//n ; ④若βαα//,⊥m ,则β⊥m . 其中的正确命题序号是A .③④B .①②C .②④D . ①③11.函数()sin()f x A x ωϕ=+(其中0,||2A πϕ><)的图象如图所示,为了得到()cos 2g x x =的图象,则只要将()f x 的图象A .向右平移6π个单位长度 B .向右平移12π个单位长度C .向左平移6π个单位长度D .向左平移12π个单位长度 12.设函数[],0(),(1),0x x x f x f x x -≥⎧=⎨+<⎩其中][x 表示不超过x 的最大整数,如[ 1.2]-=-2,]2.1[=1,]1[=1,若直线(0)y kx k k =+>与函数y=)(x f 的图象恰有三个不同的交点,则k 的取值范围是A .]31,41( B .]41,0( C .]31,41[ D .)31,41[第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13.在平面直角坐标系中,若不等式组101010x y x ax y +-≥⎧⎪-≤⎨⎪-+≥⎩(a 为常数)所表示平面区域的面积等于2,则a 的值 .14.等比数列}{n a 的前n 项和为n S ,若231,,S S S 成等差数列,则}{n a 的公比=q .15.若等腰梯形ABCD 中,//AB CD ,3AB =,BC =45ABC ∠=,则AC BD ⋅ 的值为________.16.已知函数1)(+-=mx e x f x的图像为曲线C ,若曲线C 存在与直线ex y =垂直的切线,则实数m 的取值范围为 .三、解答题:解答应写出文字说明.证明过程或演算步骤 17.(本小题满分12分)已知ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,21cos cos sin 32=-C C C ,且3=c (1)求角C ;(2)若向量)sin ,1(A m =与)sin ,2(B n =共线,求a 、b 的值.18.(本小题满分12分)如图1,在直角梯形ABCD 中,90ADC ∠=︒,//CD AB ,122AD CD AB ===, 点E 为ACACD图2EBACD图1E中点.将ADC ∆沿AC 折起, 使平面ADC ⊥平面ABC ,得到几何体D ABC -,如图2所示. (1)在CD 上找一点F ,使//AD 平面EFB ; (2)求点C 到平面ABD 的距离.19.(本小题满分12分)某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.(1)求选取的2组数据恰好是相邻两个月的概率;(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y 关于x 的线性回归方程y bx a =+;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?(参考公式: 1122211()(),()n ni iiii i nniii i x y nx y x x y y b a y bx xnxx x ====---===---∑∑∑∑)20.(本小题满分12分)已知A (-2,0),B (2,0)为椭圆C 的左、右顶点,F 为其右焦点,P 是椭圆C 上异于A ,B 的动点,△APB 面积的最大值为(1)求椭圆C 的标准方程; (2)若直线AP 的倾斜角为34π,且与椭圆在点B 处的切线交于点D ,试判断以BD 为直径的圆与直线PF 的位置关系,并加以证明.21.(本小题满分12分) 设a ∈R ,函数f (x )=ln x -ax .(1)讨论函数f (x )的单调区间和极值;(2)已知1x e 为自然对数的底数)和x 2是函数f (x )的两个不同的零点,求a 的值并证明:x 2>e 23.请考生在第22、23、24三题中任选一题作答,并用2B 铅笔将答题卡上所选题目对应的题号方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分;不涂,按本选考题的首题进行评分。

2015届高三一轮文科数学“基础题每日一练”(含精析)11

2015届高三一轮文科数学“基础题每日一练”(含精析)11

江西省吉安市永新县永新五中2015届高三一轮文科数学“基础题每日一练”(含精析)11 姓名: 训练日期: 完成时间:________一.单项选择题。

(本部分共5道选择题)1.若直线a ∥直线b ,且a ∥平面α,则b 与α的位置关系是( ) A .一定平行 B .不平行 C .平行或相交 D .平行或在平面内 解析 直线在平面内的情况不能遗漏,所以正确选项为D. 答案 D2.若a >0,b >0,则不等式-b <1x<a 等价于( ).A .-1b <x <0或0<x <1aB .-1a <x <1bC .x <-1a 或x >1bD .x <-1b 或x >1a解析 由题意知a >0,b >0,x ≠0, (1)当x >0时,-b <1x <a ⇔x >1a;(2)当x <0时,-b <1x<a ⇔x <-1b.综上所述,不等式-b <1x <a ⇔x <-1b 或x >1a.答案 D3.已知数列{a n }的通项公式是a n =1n +n +1,若前n 项和为10,则项数n 为( ).A .11B .99C .120D .121解析:通过分母有理化,得出结果为120,即选择C 答案为C4.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值点( ).A.1个 B.2个 C.3个 D.4个答案 A5.已知地铁列车每10 min(含在车站停车时间)一班,在车站停1 min,则乘客到达站台立即乘上车的概率是( )A.110B.19C.111D.18解析试验的所有结果构成的区域长度为10 min,而构成事件A的区域长度为1 min,故P(A)=1 10 .答案 A二.填空题。

(本部分共2道填空题)1.如图,在平行四边形ABCD中,AP⊥BD,垂足为P,3AP且AP AC= .答案 182.某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取_______名学生.解析根据分层抽样的方法步骤,按照一定比例抽取,样本容量为50,那么根据题意得:从高三一共可以抽取人数为:1510350=⨯人.答案 15三.解答题。

天水市2015届高三一轮复习数学(文)考试题及答案

天水市2015届高三一轮复习数学(文)考试题及答案

一、选择题〔本大题共12个小题,每题5分,共计60分〕 1.集合{}{}20,1,2,3,30=M N x x x M N ==-<⋂,则〔 〕 A.{}0 B.{}0x x < C.{}3x x 0<< D.{}1,2 2.=-=⎪⎭⎫ ⎝⎛∈ααππα2tan ,55cos 23,,〔 〕 A.34 B.34-C.2-D.23.假设双曲线的离心率为2,那么其渐近线的斜率为〔 〕A .B .C .D .4.i 是虚数单位,假设复数()()12ai i ++是纯虚数,那么实数a 等于〔 〕 A.2 B.12 C.12- D.2- 5.设,x y 满足约束条件0103x y x y y -≤⎧⎪+-≥⎨⎪≤⎩,那么2z x y =+的最小值为〔 〕A .1B .32 C . 2 D . 526.程序框图如下列图所示,那么输出的值为〔 〕S 55±33±3±5±22221x y a b -=A .15B .21C .22D .287. 9.01.17.01.1,9.0log ,8.0log ===c b a 的大小关系是 〔 〕A. c a b >>B. a b c >>C. b c a >>D.c b a >>8.在锐角△ABC中,角所对应的边分别为,假设,那么角等于〔 〕A. B. C. D.9.过抛物线28y x = 的焦点作直线交抛物线于11(,)A x y ,22(,)B x y 两点,如果21x x +=6,那么AB = 〔 〕 A .6 B .8 C .9D .1010.数列{}n a 的前n 项和为n S ,11a =,12n n S a +=,,那么n S =〔 〕 A .12-n B.121-n C.1)32(-n D.1)23(-n11.函数的图像大致是〔 〕12.不等式对任意恒成立,那么实数的取值范围是〔 〕开场1,0n S ==6?n ≤否S S n =+1n n =+是输出S完毕x ,(0,)a b ∈+∞2162a b x x b a +<+||y x x =75604530A 2sin b a B =,,a b c B C 、、AA. B . C . D .二、填空题〔本大题共4个小题,每题5分,共计20分〕13.,,假设,那么 .14.设(5,0)M -,(5,0)N ,△MNP 的周长是36,那么MNP ∆的顶点P 的轨迹方程为___ 15.函数,,在R 上的局部图像如下图,那么.16.ABC 的三个顶点在以O 为球心的球面上,且 ,BC=1,AC=3,三棱锥O-ABC 的体积为O 的外表积为 .三、解答题〔本大题共6个小题,共计70分〕 〔注意:请考生在第22—24三题中任选一题作答,如果多做,那么按所做的第一题记分,并在答题卡上写明所选题号。

2015年高三一模数学(文)北京市朝阳区试题Word版带解析

2015年高三一模数学(文)北京市朝阳区试题Word版带解析

北京市朝阳区高三年级第一次综合练习数学试卷(文史类)2015.4一、选择题:(1)已知全集{,,,}U a b c d =,集合{,},{,}A a b B b c ==,则()UA B 等于( )A .{}bB .{}dC .{,,}a c dD .{,,}a b c【难度】1【考点】集合的运算 【答案】B 【解析】 由题意得:{},,A B a b c =,所以{}()U A B d =故选B(2)已知命题:p x ∀∈R ,sin 1x ≤,则( )A .:p ⌝x ∀∈R ,sin 1x ≥B .:p ⌝x ∀∈R , sin 1x >C .:p ⌝0x ∃∈R , 0sin 1x ≥D .:p ⌝ 0x ∃∈R ,0sin 1x > 【难度】1【考点】全称量词与存在性量词 【答案】D 【解析】全称命题的否定是存在性命题,所以命题:p x ∀∈R ,sin 1x ≤的否定为::p ⌝ 0x ∃∈R ,0sin 1x >故选D(3)若抛物线22(0)y px p =>的焦点与双曲线222x y -=的右焦点重合,则p 的值为( )A B .2 C .4 D .【难度】1 【考点】抛物线 【答案】C 【解析】由题意得:抛物线22(0)y px p =>的焦点为(,0)2p双曲线222x y -=的右焦点为(2,0) 所以,4p = 故选C(4)如图所示的程序框图表示的算法功能是( )A .计算123456S =⨯⨯⨯⨯⨯的值B .计算12345S =⨯⨯⨯⨯的值C .计算1234S =⨯⨯⨯的值D .计算1357S =⨯⨯⨯的值 【难度】2【考点】算法和程序框图 【答案】B 【解析】程序执行过程如下:1,2S t ==,符合条件100S ≤,进入循环体; 122,3S t =⨯==,符合条件100S ≤,进入循环体; 236,4S t =⨯==,符合条件100S ≤,进入循环体; 6424,5S t =⨯==,符合条件100S ≤,进入循环体; 245120,6S t =⨯==,不符合条件100S ≤,跳出循环体;输出120S =;所以该程序是计算12345S =⨯⨯⨯⨯的值, 故选B (5)已知113log 2x =,1222x -=,3x 满足3331()log 3x x =,则( )A .123x x x <<B .132x x x <<C .213x x x <<D .312x x x << 【难度】2【考点】零点与方程 【答案】A 【解析】 分别作出13log y x =,2x y =,1()3x y =,3log y x =的图象有图可知:110x -<<,201x <<,312x << 所以,123x x x << 故选A(6)函数ππ()2sin()cos()66f x x x =--图象的一条对称轴方程是( )A .π6x =B. π3x =C. 5π12x =D. 2π3x = 【难度】2【考点】三角函数的图像与性质 【答案】C 【解析】把选项依次代入函数ππ()2sin()cos()66f x x x=--只有C选项得到的值为1故选C(7)已知实数x,y满足20,20,0,x yx yy t+≥⎧⎪-≤⎨⎪≤≤⎩其中0t>.若3z x y=+的最大值为5,则z的最小值为()A.52B.1C.0D.1-【难度】2【考点】线性规划【答案】D【解析】作出可行域如下图:由题意可知当z取最大值时,目标函数为:35y x=-+联立235y xy x=⎧⎨=-+⎩得:(1,2);所以2t=联立22y xy=-⎧⎨=⎩得:(1,2)-,代入目标函数可求得:min1z=-故选D(8)已知边长为3的正方形ABCD与正方形CDEF所在的平面互相垂直,M为线段CD上的动点(不含端点),过M作//MH DE交CE于H,作//MG AD交BD于G,连结GH.设CM x=(03)x<<,则下面四个图象中大致描绘了三棱锥C GHM-的体积y与变量x变化关系的是()【难度】3 【考点】函数综合 【答案】A【解析】如图所示:由题意得:CM MH x ==,3DM GM x ==-;11(3)22GMH S GM MH x x ∆=⋅=-231111(3)(3)3326C MGH GMH V S CM x x x x x -∆=⋅=⋅-⋅=-1()(2)2V x x x '=-,所以x(0,2) 2 (2,3)3()f x '+-()f x(0)0f =单增单减(3)0f =故选A 二、填空题:(9)i 为虚数单位,计算1i1i+-= . 【难度】1【考点】复数综合运算 【答案】i【解析】1i (1i)(1+i)21i (1i)(1+i)2ii ++===-- 故答案为i(10)已知平面向量a ,b 满足1==a b ,a 与b 的夹角为60︒,则()⋅+=a a b . 【难度】1【考点】数量积的应用 【答案】32【解析】2()cos ,a a b a a b a a b a b ⋅+=+⋅=+⋅⋅<>1311122=+⨯⨯= 故答案为32(11)圆22:(2)(2)8C x y -+-=与y 轴相交于,A B 两点,则弦AB 所对的圆心角的大小为 . 【难度】2【考点】直线与圆的位置关系 【答案】90 【解析】由题意得:令0y =,解得:0x =或4x =即(0,0)A ,(4,0)B ,4AB =,又CA CB ==所以,ABC ∆为等腰直角三角形,其中90BCA ∠= 故答案为90(12)一个四棱锥的三视图如图所示,其中侧视图为正三角形,则该四棱锥的体积是 ,四棱锥侧面中最大侧面的面积是 .【难度】2【考点】空间几何体的三视图与直观图【答案】36;74【解析】由三视图可知,该几何体是一个四棱锥,直观图如下:其中底面是边长为1的正方形,高为32 PH=其体积为13311326V=⨯⨯⨯=;由直观图可知,四个侧面分别为:,,,PAB PBC PCD PDA∆∆∆∆这四个三角形均可看成以P为顶点的三角形,显然,PBC∆的高PE是四个三角形最长的高,所以2113711222PBCS BC PE∆⎛⎫==⨯+=⎪⎪⎝⎭37(13)稿酬所得以个人每次取得的收入,定额或定率减除规定费用后的余额为应纳税所得额,每次收入不超过4000元,定额减除费用800元;每次收入在4000元以上的,定率减除20%的费用.适用20%的比例税率,并按规定对应纳税额减征30%,计算公式为:(1)每次收入不超过4000元的:应纳税额=(每次收入额-800)×20%×(1-30%) (2)每次收入在4000元以上的:应纳税额=每次收入额×(1-20%)×20%×(1-30%). 已知某人出版一份书稿,共纳税280元,这个人应得稿费(扣税前...)为 元. 【难度】3 【考点】函数综合 【答案】2800 【解析】由题意得:设此人应得稿费(扣税前...)为x 元 先假设此人一份书稿稿费(扣税前...)符合条件(1),即4000x ≤ 则:280(800)20%(130%)x =-⨯⨯-, 解得:28004000x =≤,符合条件(1)再假设此人一份书稿稿费(扣税前...)符合条件(2),即4000x > 则:280(120%)20%(130%)x =⋅-⨯⨯-, 解得:25004000x =≤,不符合条件(2) 故答案为2800(14)记12x x -为区间12[,]x x 的长度.已知函数2xy =,x ∈[]2,a -(0a ≥),其值域为[],m n ,则区间[],m n 的长度的最小值是 . 【难度】3【考点】函数的定义域与值域 【答案】3 【解析】由题意得,函数2xy =的图像如图所示:当01a ≤≤时,函数2xy =的值域为[1,4],此时[],m n 的长度为3;当1a >时,函数2xy =的值域为[1,()]f a ,此时[],m n 的长度大于3;故答案为3 三、解答题:(15)在ABC ∆中,π3A =,6cos 3B =,6BC =. (Ⅰ)求AC 的长; (Ⅱ)求ABC ∆的面积. 【难度】3【考点】解斜三角形 【答案】见解析 【解析】(Ⅰ)因为6cos 3B =,(0,)B ∈π,又22sin cos 1B B +=, 所以3sin 3B =.由正弦定理得,sin sin AC BC B A =.33=. 所以4AC =.(Ⅱ)在ABC ∆中,sin sin(60)C B =+sin cos60cos sin 60B B =+13sin 2B B ==133623+32.所以1sin 2ABC S AC BC C ∆=⋅=1462⨯⨯⨯3+32=23+62. (16)某次考试结束后,为了解甲、乙两所学校学生的数学考试情况,随机抽取甲、乙两校各10名学生的考试成绩,得茎叶图如图所示(部分数据不清晰):(Ⅰ)请根据茎叶图判断哪个学校的数学成绩平均水平较高(直接写出结果);(Ⅱ)若在抽到的这20名学生中,分别从甲、乙两校随机各抽取1名成绩不低于90分的学生,求抽到的学生中, 甲校学生成绩高于乙校学生成绩的概率.【难度】3 【考点】概率综合 【答案】见解析 【解析】解:(Ⅰ)从茎叶图可以看出,乙校10名学生的考试成绩的平均分 高于甲校10名学生的考试成绩平均分,故乙校的数学成绩整体水平较高. (Ⅱ)设事件M :分别从甲、乙两校随机各抽取1名成绩不低于90分的同学, 抽到的学生中,甲校学生成绩高于乙校学生成绩. 由茎叶图可知,甲校成绩不低于90分的同学有2人,从小到大依次记为12,A A ;乙校成绩不低于90分的同学有5人, 从小到大依次记为12345,,,,B B B B B . 其中121234592,93,90,91,95,96,98.A A B B B B B分别从甲、乙两校各随机抽取1名成绩不低于90分的同学共有11121314152122232425,,,,,,,,,A B A B A B A B A B A B A B A B A B A B 这10种可能.其中满足“抽到的学生中,甲校学生成绩高于乙校学生成绩”共有11122122,,,A B A B A B A B 这4种可能.所以42()105P M ==. 即分别从甲、乙两校随机各抽取1名成绩不低于90分的同学, 抽到的学生中,甲校学生成绩高于乙校学生成绩的概率为25. (17)如图,在三棱柱111C B A ABC -中,各个侧面均是边长为2的正方形,D 为线段AC 的中点. (Ⅰ)求证:BD ⊥平面11A ACC ;(Ⅱ)求证:直线1AB ∥平面D BC 1;(Ⅲ)设M 为线段1BC 上任意一点,在D BC 1内的平面区域(包括边界)是否存在点E ,使CE ⊥DM ,并说明理由.【难度】3【考点】立体几何综合【答案】见解析【解析】(Ⅰ)证明:因为三棱柱的侧面是正方形,所以11,CC BC CC AC ,BC AC C . 所以1CC 底面ABC . 因为BD 底面ABC ,所以1CC BD .由已知可得,底面ABC 为正三角形.因为D 是AC 中点,所以BDAC . 因为1AC CC C ,所以BD平面11ACC A . (Ⅱ)证明:如图,连接1B C 交1BC 于点O ,连接OD .显然点O 为1B C 的中点.因为D 是AC 中点, 所以1//AB OD .又因为OD平面1BC D ,1AB 平面1BC D , 所以直线1//AB 平面1BC D .(Ⅲ)在D BC 1内的平面区域(包括边界)存在一点E ,使CE ⊥DM .此时点E 是在线段1C D 上.证明如下:过C 作1CE C D ⊥交线段1C D 于E ,由(Ⅰ)可知BD平面11ACC A ,而CE ⊂平面11ACC A , 所以BD CE .又1CE C D ⊥,1BDC D D ,所以CE 平面D BC 1. 又DM ⊂平面D BC 1,所以CE ⊥DM .(18)设数列{}n a 的前n 项和为n S ,且14a =,1n n a S +=,n *∈N .(Ⅰ)写出2a ,3a ,4a 的值;(Ⅱ)求数列{}n a 的通项公式;(Ⅲ)已知等差数列{}n b 中,有22b a =, 33b a =,求数列{}n n a b ⋅的前n 项和n T .【难度】3【考点】数列综合应用【答案】见解析【解析】(Ⅰ)解:因为14a =,1n n a S +=,所以2114a S a ===,3212448a S a a ==+=+=,4312344816a S a a a ==++=++=.(Ⅱ)当2n ≥时,11222n n n n n n a S S +-=-=-=.又当1n =时,114a S ==.所以4,1,2, 2.n n n a n =⎧=⎨≥⎩(Ⅲ)依题意,224b a ==,338b a ==.则由11428b d b d +=⎧⎨+=⎩得,10b =,4d =,则4(1)n b n =-. 所以20,1,(1)2, 2.n n n n a b n n +=⎧⋅=⎨-≥⎩所以2(1)2(*)n n n a b n n +⋅=-∈N .因为n T =1122334411...n n n n a b a b a b a b a b a b --++++++456120122232...(2)2(1)2n n n n ++=+⨯+⨯+⨯++-⨯+-⨯,所以567232122232...(2)2(1)2n n n T n n ++=⨯+⨯+⨯++-⨯+-⨯.所以4567232222...2(1)2n n n T n ++-=+++++--⨯41332(12)(1)216(2)212n n n n n -++-=--⨯=---⨯- . 所以316(2)2n n T n +=+-⨯.(19)已知椭圆2222:1(0)x y C a b a b +=>>的两个焦点分别为12(2,0),(2,0)F F -2F 的直线l (斜率不为0)与椭圆C 交于,A B 两点,线段AB 的中点为D ,O 为坐标原点,直线OD 交椭圆于,M N 两点.(Ⅰ)求椭圆C 的方程;(Ⅱ)当四边形12MF NF 为矩形时,求直线l 的方程.【难度】4【考点】圆锥曲线综合【答案】见解析【解析】解:(Ⅰ)由题意可得2222,,3,c c a a b c =⎧⎪⎪=⎨⎪=+⎪⎩解得a =b =故椭圆的方程为22162x y +=. (Ⅱ)由题意可知直线l 斜率存在,设其方程为(2)y k x =-,点11(,)A x y ,22(,)B x y ,33(,)M x y ,33(,)N x y --, 由221,62(2),x y y k x ⎧+=⎪⎨⎪=-⎩得2222(13)121260k x k x k +-+-=, 所以21221213k x x k +=+. 因为121224(4)13k y y k x x k-+=+-=+, 所以AB 中点22262(,)1313k k D k k-++. 因此直线OD 方程为30x ky +=0k .由2230,1,62x ky x y +=⎧⎪⎨+=⎪⎩解得232213y k =+,333x ky =-. 因为四边形12MF NF 为矩形,所以220F M F N ⋅=,即3333(2,)(2,)0x y x y -⋅---=.所以223340x y --=. 所以222(91)4013k k+-=+.解得k =.故直线l的方程为2)y x =-. (20)已知函数()()e xa f x x x =+,a ∈R .(Ⅰ)当0a =时,求曲线()y f x =在点(1,(1))f 处的切线方程;(Ⅱ)当1a =-时,求证:()f x 在(0,)+∞上为增函数;(Ⅲ)若()f x 在区间(0,1)上有且只有一个极值点,求a 的取值范围.【难度】4【考点】导数的综合运用【答案】见解析【解析】 解:函数()f x 定义域为{0}x x ≠,322()e x x x ax a f x x++-'=. (Ⅰ)当0a =时,()e x f x x =⋅,()f x '=(1)e x x +.所以(1)e,(1)2e f f '==.所以曲线()y f x =在点(1,(1))f 处的切线方程是e 2e(1)y x -=-,即2e e =0x y --.(Ⅱ) 当1a =-时,()f x '=3221e x x x x x +-+. 设()g x =321x x x +-+,则2()321(31)(1)g x x x x x '=+-=-+.令()(31)(1)0g x x x '=-+>得,13x >或1x <-,注意到0x >,所以13x >. 令()(31)(1)0g x x x '=-+<得,注意到0x >,得103x <<. 所以函数()g x 在1(0,)3上是减函数,在1(,)3+∞上是增函数. 所以函数()g x 在13x =时取得最小值,且122()0327g =>. 所以()g x 在(0,)+∞上恒大于零.于是,当(0,)x ∈+∞,()f x '=3221e 0x x x x x+-+>恒成立. 所以当1a =-时,函数()f x 在()0,+∞上为增函数.(Ⅱ)问另一方法提示:当1a =-时,()f x '=3221e x x x x x +-+. 由于3210x x x +-+>在()0,+∞上成立,即可证明函数()f x 在()0,+∞上为增函数.(Ⅲ)(Ⅱ)322()e ()xx x ax a f x x ++-'=. 设()h x =32x x ax a ++-,2()32h x x x a '=++.(1) 当0a >时,()0h x '>在(0,)+∞上恒成立,即函数()h x 在(0,)+∞上为增函数.而(0)0h a =-<,(1)20h =>,则函数()h x 在区间()0,1上有且只有一个零点0x , 使0()0f x '=,且在0(0,)x 上,()0f x ,在0,1x 上,()0f x ,故0x 为函数()f x 在区间()0,1上唯一的极小值点;(2)当0a =时,当x ()0,1时,2()320h x x x '=+>成立,函数()h x 在区间()0,1上为增函数,又此时(0)0h =,所以函数()0h x >在区间()0,1恒成立,即()0f x ,故函数()f x 在区间()0,1为单调递增函数,所以()f x 在区间()0,1上无极值;(3)当0a <时,()h x =3232(1)x x ax a x x a x ++-=++-. 当()0,1x ∈时,总有()0h x >成立,即()0f x '>成立, 故函数()f x 在区间()0,1上为单调递增函数,所以()f x 在区间()0,1上无极值.综上所述0a >.。

山东省菏泽市2015届高三第一次模拟考试文数

山东省菏泽市2015届高三第一次模拟考试文数

高三数学(文)试题第Ⅰ卷一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知复数,则等于( )A. B. C. D.2、设集合,则( )A. B. C. D.3、给定函数① ② ③ ④,其中在区间上单调递减的函数序号是()A.①② B.②③ C.③④ D.①④4、在中,若,则的形状是( )A.等腰三角形 B.正三角形 C.直角三角形 D.等腰直角三角形5、为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(10分制)的频率分布直方图如图所示,假设得分值的中位数为,众数,平均数为,则( )A. B.C. D.6、已知平面,直线,且有,给出下列命题:①若,则;②若,则;③若,则;④若,则,其中正确命题个数有()A.1 B.2 C.3 D.47、若函数的图象如图所示,则的范围为( )A. B. C. D.8、设双曲线的离心率为2,且一个焦点与抛物线的交点相同,则此双曲线的方程为( )A. B. C. D.9、已知函数,若函数在R上有两个零点,则的取值范围是( )A. B. C. D.10、若函数,并且,则下列各结论正确的是( )A. B.C. D.第Ⅱ卷二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卷的横线上。

.11、圆心在直线上的圆与y轴交于两点,则该圆的标准方程为12、已知满足不等式组,则的最大值与最小值的比为13、定义在实数集R上的函数满足,且,现有以下三种叙述①8是函数的一个周期;②的图象关于直线对称;③是偶函数。

其中正确的序号是14、执行如图中的程序框图,如果输入的,则输出的所在区间是15、在实数集R中,我们定义的大小关系“”为全体实数排了一个“序”类似的,我们在平面向量上也可以定义一个称“序”的关系,记为“”,定义如下:对于任意两个向量,“”当且仅当“”或“且”,按上述定义的关系“”,给出如下四个命题:①若,则②若,则;③对于,则对于任意;④对于任意向量,若,则其中真命题的序号为三、解答题:本大题共6小题,满分75分,解答应写出文字说明、证明过程或演算步骤16、(本小题满分12分)已知函数,且当时,的最小值为2,(1)求的值,并求的单调递增区间;(2)先将函数的图象上的点纵坐标不变,横坐标缩小到原来的,再Ian 个所得的图象向右平移个单位,得到函数的图象,求方程在区间上所有根之和。

2015高考数学(文)一轮复习题有答案解析阶段示范性金考卷二

2015高考数学(文)一轮复习题有答案解析阶段示范性金考卷二

阶段示范性金考卷二一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 2=-1,则复数z =i3i -i 2014在复平面内对应的点位于( )A .第一象限C .第三象限解析:z =-i i +1=-i (1-i )(1+i )(1-i )-12).答案:Dsin(π+θ)=3,则cos(π-2θ)=( )B .-1225 D.725cos θ=35,cos(π-2θ)=-cos2θ,由1=2×(35)2-1=-725,所以cos(π-2θ)=-cos2θ=725,故选D.答案:D3.已知向量a =(3,-1),向量b =(sin α,cos α) ,若a ⊥b ,则sin 2α-2cos 2α的值为( )A.710B .-1710C.1710 D .-710解析:由a ⊥b 可得3sin α=cos α,故tan α=13;sin 2α-2cos 2α=sin 2α-2cos 2αsin 2α+cos 2α=tan 2α-2tan 2α+1=-1710. 答案:B4.已知正三角形ABC 的边长为1,点P 是AB 边上的动点,点Q 是AC 边上的动点,且AP →=λAB →,AQ →=(1-λ)AC →,λ∈R ,则BQ →·CP →的最大值为( )B. -32 D. -38解析:BQ ·CP =(BA +AQ )·(CA +AP →) =[BA →+(1-λ)AC →]·(CA →+λAB →)=[AB →·AC →-λAB 2→+(λ-1)AC 2→+λ(1-λ)AB →·AC →] =(λ-λ2+1)×1×1×cos60°-λ+λ-1=12(-λ2+λ)-12 =-12(λ-12)2-38(λ≤R ).当λ=12时,则BQ →·CP →的最大值为-38.故选D 项. 答案:D5.将函数y =sin2x 位,所得函数图象对应的解析式为(A .y =sin(2x -π4)+1 C .y =2sin 2x解析:函数y =sin2x -π4)1个单位,所得函数图象(1-2sin 2x )+1=2sin 2x ,故选C.)(ω>0,-π2<φ<π2) 的图象关于直线x φ=( ).-π3 B .-π6 C.π6D.π3解析:π3-π12≥14×2πω,解得ω≥2,故当ω取最小值时,f (x )=sin(2x +φ),根据f (π12)=0,得sin(π6+φ)=0,由于-π2<φ<π2,所以φ=-π6.答案:B7.已知向量a ,b 满足a ·(a +b )=3,且|a |=2,|b |=1,则向量a 与b 的夹角为( )A.π6B.π3C.2π3D.5π6解析:由a ·(a +b )=3得,|a |21.cos 〈a ,b 〉=a ·b |a |·|b |=-12.故向量a 答案:C8.若函数f (x )=sin(2x -π4)+间为( )B .[0,π2] D .[-π2,0]x +3π4)=sin(2x -π4)-cos(2x -π4)=2sin(2cos x 的一个单调递减区间是[0,π],,π2].答案:B9.已知函数f (x )=sin(ωx +φ)(x ∈R )(ω>0,|φ|<π2)的部分图象如图所示,如果x 1,x 2∈(-π6,π3),且f (x 1)=f (x 2),则f (x 1+x 2)=( )A.12 C.32解析:由图象可知T =2[π3-(x +φ),又f (x )过点(-π6,0),|φ|<π2,.∵x 1,x 2∈(-π,π),且f (x 1)=f 212=π6,且满足|3AM →-AB →-AC →|=( )B.14C.13D.12解析:由|3AM →-AB →-AC →|=0得→+AC →).如图,AB →+AC →=AD →,由于=13AD →,所以S △ABM =13S △ABD =13S △ABC .=35,则sin(2x +π6)的值为( ) B.1325 D.725x cos π6-cos x sin π6=35,32sin x -12cos x =35,两边平方得12sin 2x +14-34sin2x =925,∴12·1-cos2x 2+14-34sin2x =925,即sin2x ·32+cos2x ·12=725,∴sin(2x +π6)=725.答案:D12.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若3(a cos B+b cos A )=2c sin C ,a +b =4(a ,b 在变化),且△ABC 的面积最大值为3,则此时△ABC 的形状是( ) A .锐角三角形 B .直角三角形 C .等腰三角形D .正三角形解析:由正弦定理得3(sin A cos B +cos A sin B )=2sin 2C ,即3sin(A +B )=3sin C =2sin 2C ,即sin C =3,积S =12ab sin C =34ab ≤34(a +b 2)2此时a =b =2,选择C.答案:C二、填空题(本大题共4在题中的横线上),x=(x,1),其中x >0,若(a -2b )∥(2a +,2a +b =(16+x ,x +1),由题意得(8x 2=16,又∵x >0,∴x =4.,OA →=a -b ,OB →=a +b ,若△OAB 是以O 为直角顶点的等腰直角三角形,则△OAB 的面积为________.解析:由题意得,|a |=1,又△OAB 是以O 为直角顶点的等腰直角三角形,所以OA →⊥OB →,|OA →|=|OB →|.由OA →⊥OB →得(a -b )·(a +b )=|a |2-|b |2=0,所以|a |=|b |,由|OA →|=|OB →|得|a -b |=|a +b |,所以a ·b =0.所以|a +b |2=|a |2+|b |2=2,所以|OB →|=|OA →|=2,故S △OAB =12×2×2=1.答案:115.[2013·海淀区期末练习]函数f (x )=A sin(2x +φ)(A >0,φ∈R )的部分图象如图所示,那么f (0)=________.解析:由图可知,A =2,f (π)=2, )=1,=-π6+2k π(k ∈Z ), π)=2×(-12)=-1. |a |=|b |=|c |=1,则a ·(b +c )=________.解析:依题意得|3a |=3,|4b |=4,|5c |=5,又3a +4b +5c =0,所以向量3a 、4b 、5c 首尾相接构成一个直角三角形,因此有a ·b =0,a ·(b +c )=a ·b +a ·c =a ·c =|a |·|c |cos θ=cos θ=-35(其中θ为向量a 与c 的夹角).答案:-35三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)[2014·河北高三质检]已知在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且a cos C +32c =b .(1)求角A ;(2)若a =1,且3c -2b =1解:(1)由a cos C +32c =b ,得∵sin B =sin(A +C )=sin A cos C +∴32sin C =cos A sin C ,又sin Cb =a ,即3sin C -2sin B =sin A . ∴B +π6=π3,即B =π6.18.(本小题满分12分)已知函数f (x )=3sin x cos x +sin 2x -32,将函数f (x )的图象向左平移π6个单位长度后得函数g (x )的图象,设△ABC 的三个角A ,B ,C 的对边分别为a ,b ,c ;(1)若f (C )=0,c =6,2sin A =sin B ,求a ,b 的值.(2)若g (B )=0且m =(cos A ,cos B ),n =(1,sin A -cos A tan B ),求m ·n 的取值范围.解:(1)f (x )=3sin x cos x +sin 2x -32=32sin2x +12(1-cos2x )-32=32sin2x -12cos2x -1=sin(2x -π6)-1.f (C )=sin(2C -π6)-1=0∵2sin A =sin B 由余弦定理知:a 2+b 2-2由①②解得:a =23,b =(2)由题意知g (x )=sin(2x +π6)sin(2B +π6)=1,∴B =π6, -33cos A )=12cos A +32sin A =sin(A +π6)A +π6∈(π6,π). +π6)(0,1].19.(本小题满分12分)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,已知(2a +b )cos C +c cos B =0.(1)求角C 的大小;(2)若c =4,求使△ABC 面积取得最大值时的a ,b 的值. 解:(1)由已知及由正弦定理得(2sin A +sin B )cos C +sin C cos B =0,所以2sin A cos C +(sin B cos C +sin C cos B )=0,所以sin(B +C )+2sin A cos C =0,即sin A +2sin A cos C =0.因为0<A <π,sin A >0,所以cos C =-12,所以C =2π3.(2)因为△ABC 的面积为S =12ab sin C =34ab ,若使得S 取得最大值,只需要ab 取得最大值.由余弦定理可得,c 2=a 2+b 2-即16=a 2+b 2+ab ≥3ab ,故ab故使得△ABC 20.(本小题满分12分)-12(的图象上两相邻对称轴间的距离为π4.的图象向右平移π8个单位,再将所得图象上各点的),得到函数y =g (x )的图象,求g (cos 2ωx -12=32sin2ωx +cos2ωx +12-12=sin(2ωx +π6),由题意知f (x )的最小正周期T =π2,T =2π2ω=πω=π2,ω=2,所以f (x )=sin(4x +π6).由2k π+π2≤4x +π6≤2k π+3π2(k ∈Z ),得k π2+π12≤x ≤k π2+π3(k ∈Z ),所以函数f (x )的单调递减区间为[k π2+π12,k π2+π3](k ∈Z ).(2)将f (x )的图象向右平移π8个单位后,得到y =sin[4(x -π8)+π6]=sin(4x -π3)的图象,再将所得图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,得到y =sin(2x -π3).因为0≤x ≤π2,所以-π3≤2x -π3≤当2x -π3=-π3,即x =0时,g (当2x -π3=π2,即x =5π12时,g (x )21.(本小题满分12分)[2014·长沙一模]风景秀美的凤凰湖畔有四棵高大的银杏树,记作A 、B 、P 、Q ,欲测量P 、Q 两棵树和A 、P 两棵树之间的距离,但湖岸部分地方围有铁丝网不能靠近,现可测得A 、B 两点间的距离为100 m ,如图,同时也能测量出∠P AB =75°,∠QAB =45°,∠PBA =60°,∠QBA =90°,则P 、Q 两棵树和A 、P 两棵树之间的距离各为多少?解:在△P AB 中,∠APB =180°-(75°+60°)=45°,由正弦定理得AP sin60°=100sin45°,解得AP =50 6.在△QAB 中,∠ABQ =90°,∴AQ =100 2.又∠P AQ =75°-45°=30°,由余弦定理得PQ 2=AP 2+AQ 2-2AP ·AQ ·cos ∠P AQ =(506)2+(1002)2-2×506×1002×∴PQ =5000=50 2.∴P 、Q 两棵树之间的距离为为50 6 m.22.(本小题满分12分)设角A 知向量m =(sin A +sin C ,sin B -sin m ⊥n . 2B 2),求|s +t |的取值范围.C )+(sin 2B -sin A sin B )=0, a ,b ,c 为内角A ,B ,C ab ,=12,∵0<C <π,∴C =π3.(2)∵s +t =(cos A,2cos 2B 2-1)=(cos A ,cos B ),∴|s +t |2=cos 2A +cos 2B=cos 2A +cos 2(2π3-A )=1+cos2A 2+1+cos (4π3-2A )2=14cos2A -34sin2A +1 =-12sin(2A -π6)+1,∵0<A <2π3,∴-π6<2A -π6<7π6,∴-12<sin(2A -π6)≤1,∴12≤|s +t |2<54,∴22≤|s +t新课标第一网系列资料 。

2015届高三文科数学综合测试(一)参考答案.doc

2015届高三文科数学综合测试(一)参考答案.doc

2015届高三文科数学综合测试(一)参考答案一、选择题1-5,CBBDB 6-10,CBCBC 二、填空题11、150 12、-9 13、3 14、213- 15、 12三、解答题16、解:(1)(0)2sin()16f π=-=- 4分(2)110(3)2sin[(3)]2sin 232613f πππααα+=+-==,即5sin 13α= 6分16(32)2sin[(32)]2sin()3625f ππβπβπβ+=+-=+=,即3c o s 5β= 8分 ∵,0,2παβ⎡⎤∈⎢⎥⎣⎦,∴212cos 1sin 13αα=-=,24sin 1cos 5ββ=-= 10分∴5312463sin()sin cos cos sin 13513565αβαβαβ+=+=⨯+⨯= 12分 17、解: ⑴优秀 非优秀 合计 甲班 10 50 60 乙班 20 30 50 合计3080110………………………3分(2)假设成绩与班级无关,则()22211010302050()7.5()()()()30805060n ad bc K a b c d a c b d ⨯-⨯-==≈++++⨯⨯⨯则查表得相关的概率为99%,故没达到可靠性要求。

………………………8分(3)设“抽到9或10号”为事件A ,先后两次抛掷一枚均匀的骰子,出现的点数为),(y x .所有的基本事件有:)1,1(、)2,1(、)3,1(、 、)6,6(共36个. ………………………10分事件A 包含的基本事件有:)6,3(、)5,4(、)4,5(、)3,6(、)5,5(、)6,4(、)4,6(共7个………………… …12分所以367)(=A P ,即抽到9号或10号的概率为367. ………………………13分18、(1)证明:∵⊥PB 底面ABC ,且⊂AC 底面ABC , ∴AC PB ⊥ …………………1分由90BCA ∠=,可得CB AC ⊥ ………………………2分又 PB CB B = ,∴AC ⊥平面PBC …………………………3分 注意到⊂BE 平面PBC , ∴AC BE ⊥ ……………4分BC PB = ,E 为PC 中点,∴BE PC ⊥…………………………5分 PCAC C =, ∴BE ⊥平面PAC ……………………6分(2)取AF 的中点G ,AB 的中点M ,连接,,CG CM GM ,∵E 为PC 中点,2FA FP =,∴//EF CG . ……………7分 ∵CG ⊄平面,BEF EF ⊂平面BEF , ∴//CG 平面BEF .…………8分 同理可证://GM 平面BEF .又CG GM G =, ∴平面//CMG 平面BEF . …………9分 ∵CD ⊂平面CDG ,∴//CD 平面BEF . …………10分 (3)由(1)可知BE ⊥平面PAC ,又由已知可得22=BE .238213131=⋅⨯==∆∆PC AC S S PAC AEF …………11分∴93231=⋅==∆--BE S V V AEF AEF B ABE F …………12分所以三棱锥ABE F -的体积为932. …………13分19、解:(1)由已知和得,当2≥n 时,23))1(21)1(23()2123(221-=-----=-=-n n n n n S S b n n n ……2分又21311-⨯==b ,符合上式。

2015年高考文科数学(新课标1)精彩试题及问题详解(word版)

2015年高考文科数学(新课标1)精彩试题及问题详解(word版)

2015年普通高等学校招生全国统一考试文科数学第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合{|32,}A x x n n N ==+∈, {6,8,12,14}B =, 则集合A B ⋂中元素的个数为 (A )5(B )4(C )3(D )2(2)已知点A (0,1),B (3,2),向量AC =(-4,-3),则向量BC =(A )(-7,-4) (B )(7,4) (C )(-1,4) (D )(1,4)(3)已知复数z 满足(1)1z i i -=+,则z =(A )2i -- (B )2i -+ (C )2i - (D )2i +(4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为 (A )103 (B )15 (C )110 (D )120(5)已知椭圆E 的中心在坐标原点,离心率为12,E 的右焦点与抛物线C :28y x =的焦点重合,A ,B是C 的准线与E 的两个焦点,则|AB|=(A )3 (B )6 (C )9 (D )12(6)《九章算术》是我国古代容极为丰富的数学名著,书中有如下问题:“今有委米依垣角,下周八尺,高五尺。

问:积及为米几何?”其意思为:“在屋墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有A.14斛B.22斛C.36斛D.66斛(7)已知错误!未找到引用源。

是公差为1的等差数列,错误!未找到引用源。

错误!未找到引用源。

=4错误!未找到引用源。

,则错误!未找到引用源。

=(A )错误!未找到引用源。

(B )错误!未找到引用源。

(C )10 (D )12 (8)函数()cos()f x x ωϕ=+的部分图像如图所示,则()f x 的单调递减区间为(A )13(,)()44k k k Z ππ-+∈ (B )13(2,2)()44k k k Z ππ-+∈(C )13(,)()44k k k Z -+∈(D )13(2,2)()44k k k Z -+∈(9)执行右面的程序框图,如果输入的0.01t =,则输出的n =(A )5 (B )6 (C )7 (D )8(10)已知函数1222,1()log (1),1x x f x x x -⎧-≤=⎨-+>⎩错误!未找到引用源。

2015年全国高考文科数学试题和答案word精校版(新课标1卷)

2015年全国高考文科数学试题和答案word精校版(新课标1卷)

2015年全国高考文科数学试题和答案word精校版(新课标1卷)2015年普通高等学校招生全国统一考试(新课标1卷)文科一、选择题:每小题5分,共60分1.已知集合 $A=\{x|x=3n+2,n\in N\}$,$B=\{6,8,10,12,14\}$,则集合 $A$ 中的元素个数为()A)5 (B)4 (C)3 (D)22.已知点 $A(0,1)$,$B(3,2)$,向量$\overrightarrow{AC}=(-4,-3)$,则向量$\overrightarrow{BC}$ 为()A)$(-7,-4)$ (B)$(7,4)$ (C)$(-1,4)$ (D)$(1,4)$3.已知复数 $z$ 满足 $(z-1)i=1+i$,则 $z$ 等于()A)$-2-i$ (B)$-2+i$ (C)$2-i$ (D)$2+i$5.已知椭圆 $E$ 的中心为坐标原点,离心率为$\frac{1}{2}$,$E$ 的右焦点与抛物线$C:y=8x$ 的焦点重合,$A,B$ 是 $C$ 的准线与 $E$ 的两个交点,则 $AB$ 的长度为()A)3 (B)6 (C)9 (D)126.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A)14斛(B)22斛(C)36斛(D)66斛7.已知 $\{a_n\}$ 是公差为1的等差数列,$S_n$ 为$\{a_n\}$ 的前 $n$ 项和,若 $S_8=4S_4$,则 $a_{10}$ 等于()A)17 (B)22 (C)10 (D)128.函数 $f(x)=\cos(\omega x+\varphi)$ 的部分图像如图所示,则 $f(x)$ 的单调递减区间为()A)$(k\pi-\frac{13}{4},k\pi+\frac{4}{4}),k\in Z$B)$(2k\pi-\frac{1}{4},2k\pi+\frac{3}{4}),k\in Z$C)$(k-\frac{1}{4},k+\frac{3}{4}),k\in Z$D)$(2k-\frac{1}{4},2k+\frac{3}{4}),k\in Z$9.执行右面的程序框图,如果输入的 $t=0.01$,则输出的$n$ 等于()A)5 (B)6 (C)7 (D)810.已知函数 $f(x)=\begin{cases} 2x-1-2,&x\le 1\\ -\log_2(x+1),&x>1 \end{cases}$,且 $f(a)=-3$,则 $f(6-a)$ 等于()A)$-\frac{7}{4}$ (B)$-\frac{5}{4}$11、圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r=()C)412、设函数y=f(x)的图像与y=2x+a的图像关于直线y=-x对称,且f(-2)+f(-4)=1,则a=()A)-113、数列{an}中a1=2,an+1=2an,Sn为{an}的前n项和,若Sn=126,则n=6.14.已知函数f(x)=ax+x+1的图像在点(1,f(1))的处的切线过点(2,7),则a=3.15.若x,y满足约束条件{x+y-2≤0.x-2y+1≤0.2x-y+2≥0},则z=3x+y的最大值为5.16.已知F是双曲线C:x-8^2-y^2=1的右焦点,P是C左支上一点,A(0,6),当△APF周长最小时,该三角形的面积为24.17.(本小题满分12分)已知a,b,c分别是△ABC内角A,B,C的对边,sinB=2sinAsinC.I)若a=b,求cosB;II)若B=90,且a=2,求△ABC的面积.18.(本小题满分12分)如图四边形ABCD为菱形,G为AC与BD交点,BE⊥平面ABCD。

山东省济南市2015届高三下学期第一次模拟考试数学(文)试题(有答案)

山东省济南市2015届高三下学期第一次模拟考试数学(文)试题(有答案)

参考公式:柱体的体积公式:V Sh =,其中S 是柱体的底面积,h 是柱体的高.第I 卷(共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}2230,1,1,3,M x x x N M N =+-==-⋃=则 A.{}1,3-B.{}1,1,3-C.{}1,1,3,3--D.{}1,1,3--2.已知复数z 满足()1i z i -=(i 是虚数单位),则z 在复平面内对应的点所在象限为 A.第一象限 B.第二象限C.第三象限D.第四象限3.函数()3log 21y x =-的定义域为A.[)1,+∞B.()1,+∞C.1,2⎛⎫+∞⎪⎝⎭D.1,12⎛⎫⎪⎝⎭4.“1cos 2α=”是“3πα=”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件 5.已知,,a b c R ∈,那么下列命题中正确的是 A.若a b <,则22ac bc <B.若0,0a b c >><,则c c a b< C.若a b >,则()()22a cbc +>+D.若0ab >,则2a bb a+≥ 6.执行如图所示的程序框图,输出的S 值为 A.9 B.16 C.25 D.367.已知,x y 满足约束条件13223x x y z x y x y ≥⎧⎪+≤=+⎨⎪-≤⎩,若的最大值和最小值分别为,a b ,则a b +=A.7B.6C.5D.48.已知函数()y f x =是R 上的偶函数,当()12,0,x x ∈+∞时,都有()()()12120x x f x f x -⋅-<⎡⎤⎣⎦.设()21ln,ln ,ln a b c πππ===,则A.()()()f a f b f c >>B. ()()()f b f a f c >>C. ()()()f c f a f b >>D. ()()()f c f b f a >>9. 已知12,F F 是双曲线()222210,0x y a b a b-=>>的两个焦点,以12F F 为直径的圆与双曲线一个交点是P ,且12F PF ∆的三条边长成等差数列,则此双曲线的离心率是A.2B.3C.2D.510.设函数()f x 的定义域为R ,若存在常数()0f x x ωω>≤,使对一切实数x 均成立,则称()f x 为“条件约束函数”.现给出下列函数:①()4f x x =;②()22f x x =+;③()2225xf x x x =-+;④()f x 是定义在实数集R 上的奇函数,且对一切12,x x 均有()()12124f x f x x x -≤-.其中是“条件约束函数”的有A.1个B.2个C.3个D.4个第II 卷(共100分)二、填空题:本大题共5个小题,每小题5分,共25分. 11.100名学生某次数学测试成绩(单位:分)的频率分布直方图如图所示,则模块测试成绩落在[)50,70中的学生人数是_________.12.已知ABC ∆中,角A,B,C 所对的边分别为,,a b c ,若sin :sin :sin 1:2:3A B C =,则角C=__________.13.某圆柱切割获得的几何体的三视图如图所示,其中俯视图是中心角为3π的扇形,则该几何体的体积为__________.14.设,,a b c 是单位向量,且()()0a b a c b c ⋅=-⋅-,则的最大值为________.15.已知P 是直线34100x y +-=上的动点,PA ,PB 是圆222440x y x y +-++=的两条切线,A,B 是切点,C 是圆心,那么四边形PACB 面积的最小值为________. 三、解答题:本大题共6小题,共75分. 16.(本小题满分12分)设函数()223cos 2sin 3f x x x ωω=+-(其中0ω>),且()f x 的最小正周期为2π. (I )求ω的值;(II )将函数()y f x =图象上各点的横坐标缩短为原来的12,纵坐标不变,得到函数()y g x =的图象,求函数()g x 的单调增区间.17. (本小题满分12分)某在元宵节活动上,组织了“摸灯笼猜灯谜”的趣味游戏.已知在一个不透明的箱子内放有大小和形状相同的标号分别为1,2,3的小灯笼若干个,每个灯笼上都有一个谜语,其中标号为1的小灯笼1个,标号为2的小灯笼2个,标号为3的小灯笼n 个.若参赛者从箱子中随机摸取1个小灯笼进行谜语破解,取到标号为3的小灯笼的概率为14. (I )求n 的值;(II )从箱子中不放回地摸取2个小灯笼,记第一次摸取的小灯笼的标号为a ,第二次摸取的小灯笼的标号为b.记“4a b +≥”为事件A ,求事件A 的概率.18. (本小题满分12分)如图,平面PBA ⊥平面ABCD ,90,,DAB PB AB BF PA ∠==⊥,点E 在线段AD 上移动.(I )当点E 为AD 的中点时,求证:EF//平面PBD ;(II )求证:无论点E 在线段AD 的何处,总有PE BF ⊥.19. (本小题满分12分)数列{}n a 满足()111,2n n a a a n N *+==∈,nS为其前n 项和.数列{}n b 为等差数列,且满足1143,b a b S ==.(I )求数列{}{},n n a b 的通项公式; (II )设2221log n n n c b a +=⋅,数列{}n c 的前n 项和为n T ,证明:1132n T ≤<.20. (本小题满分13分)已知函数()()0xf x e ax a a R a =+-∈≠且.(I )若函数()0f x x =在处取得极值,求实数a 的值;并求此时()[]21f x -在,上的最大值;(II )若函数()f x 不存在零点,求实数a 的取值范围.21. (本小题满分14分)在平面直角坐标系xoy 中,椭圆()2222:10x y C a b a b+=>>的焦距为2,一个顶点与两个焦点组成一个等边三角形.(I )求椭圆C 的标准方程;(II )椭圆C 的右焦点为F ,过F 点的两条互相垂直的直线12,l l ,直线1l 与椭圆C 交于P ,Q 两点,直线2l 与直线4x =交于T 点. (i )求证:线段PQ 的中点在直线OT 上;(ii )求TFPQ的取值范围.17. 解:(Ⅰ)由题意,1124n n =++,1n ∴=……………………4分(2)记标号为2的小灯笼为1a ,2a ;连续..摸取2个小灯笼的所有基本事件为:(1, 1a ),(1, 2a ),(1,3),(1a ,1),(2a ,1),(3,1),(1a ,2a ), (1a ,3),(2a ,1a ), (3,1a ),(2a ,3),(3, 2a )共12个基本事件. ……………………8分A 包含的基本事件为: (1,3), (3,1),(1a ,2a ),(2a ,1a ),(1a ,3),(3, 1a ), (2a ,3),(3, 2a )……………………10分8()12P A ∴=23= ……………………12分 18. (Ⅰ)证明: 在三角形PBA 中,,PB AB BF PA =⊥,所以F 是PA 的中点,连接EF , ………………………………2分 在PDA ∆中,点,E F 分别是边,AD PA 的中点, 所以//EF PD …………………………………4分又EF PBD ⊄平面,PD PBD ⊂平面 所以EF //平面PBD .……………………………6分(Ⅱ)因为平面PBA ⊥平面ABCD ,平面PBA 平面ABCD AB =, 90DAB ∠=,DA AB ⊥ ,DA ABCD ⊂平面所以DA ⊥平面PBA …………………… 8分又BF PBA ⊂平面 ,所以DA BF ⊥,又BF PA ⊥,PA DA A =,,PA DA PDA ⊂平面,所以BF PDA ⊥面 ……………………………………10分 又PE PDA ⊂平面 所以BF PE ⊥所以无论点E 在线段AD 的何处,总有PE ⊥BF . …………………………12分19. 解:(Ⅰ)由题意,{}n a 是首项为1,公比为2的等比数列,11121--⋅=⋅=∴n n n q a a . ∴12n n a -=,21n n S =-, …………………3分设等差数列{}n b 的公差为d ,111b a ==,4137b d =+=,∴2d = ∴1(1)221n b n n =+-⨯=-. …………………6分 (II )∵212222log =log 221n n a n ++=+,∴22211111()log (21)(21)22121n n n c b a n n n n +===-⋅-+-+,…………………7分∴11111111(1...)(1)2335212122121n nT n n n n =-+-++-=-=-+++ . …………………9分①当0>a 时,)(,0)('x f x f >是增函数,…………………7分 且当1>x 时,0)1()(>-+=x a e x f x.…………………8分 当0<x 时,取a x 1-=,则0)11(1)1(<-=--+<-a aa a f , 所以函数)(x f 存在零点,不满足题意.…………9分 ②当0<a 时,)ln(,0)('a x a e x f x-==+=.在))ln(,(a --∞上)(,0)('x f x f <单调递减,在)),(ln(+∞-a 上)(,0)('x f x f >单调递增,所以)ln(a x -=时)(x f 取最小值.………………11分函数)(x f 不存在零点,等价于0)ln(2)ln())(ln()ln(>-+-=--+=--a a a a a a e a f a ,解得02<<-a e .综上所述:所求的实数a 的取值范围是02<<-a e .………………13分21. 解:(Ⅰ)由题意1222c a c ⎧=⎪⎨⎪=⎩,………………1分解得3,1,2===b c a ,………………3分所求椭圆C 的标准方程为13422=+y x ;………………4分 (Ⅱ)解法一:(i )设:1PQ l x my =+,221431x y x my ⎧+=⎪⎨⎪=+⎩,消去x ,化简得096)43(22=-++my y m . 09)43(43622>⋅++=∆m m设),,(),,(2211y x Q y x P PQ 的中点00(,)G x y ,则436221+-=+m m y y ,439221+-=m y y ,……………6分 43322210+-=+=m m y y y ,4341200+=+=m my x , 即2243(,)3434mG m m -++,……………7分 4344343322mm m m k OG -=+⋅+-=,设)1(:--=x m y l FT ,得T 点坐标(m 3,4-),43mk OT -= ,所以OT OG k k =,线段PQ 的中点在直线OT 上.……………9分(ii) 当0=m 时,PQ 的中点为F ,)0,4(T .1||||,32||,3||2====PQ TF a b PQ TF .……………10分当0m ≠时,13)3()14(||222+=-+-=m m TF ,||11||122y y k PQ PQ -+= =-+⋅+=2122124)(1y y y y m 4394)436(12222+-⋅-+-⋅+m m m m4311222++⋅=m m .……………11分)1113(411243113||||22222+++⋅=+⋅++=m m m m m PQ TF3:(1)PQ l y x m-=- ⎪⎪⎩⎪⎪⎨⎧--==+)1(313422x m y y x ,消去x 化简得22(12)6270m y my +--=. 027)12(43622>⋅++=∆m m设),,(),,(2211y x Q y x P PQ 的中点00(,)G x y ,则126221+=+m m y y .1227221+-=m y y ,……………6分 12322210+=+=m my y y ,121231200+=-=m my x , 即)123,1212(22++m mm G ,……………7分 4121212322m m m m k OG =+⋅+=,又4mk OT = .所以OT OG k k =,线段PQ 的中点在直线OT 上.……………9分 (ii) 当0m = 时,632PQ == , 413TF =-=,1TF PQ= ……………10分 当0m ≠时,9)14(||222+=+-=m m TF ,||11||12y y k PQ PQ-+=.=-+⋅+=2122124)(91y y y y m 12274)126(912222+-⋅-+⋅+m m m m 129422++⋅=m m .……………11分)939(4141299||||22222+++⋅=+⋅++=m m m m m PQ TF令92+=m t .则)3)(3(41||||>+⋅=t t t PQ TF .令)3)(3(41)(>+⋅=t tt t g 则函数()g t 在()3,+∞上为增函数,……………13分 所以1)3()(=>g t g .所以当||||PQ TF 的取值范围是[1,)+∞.……………14分解法三:(i )当直线PQ l 斜率不存在时,PQ 的中点为F ,)0,4(T ,符合题意. ……………5分 当直线PQ l 斜率存在时,若斜率为0,则2l 垂直于 x 轴,与 x=4不能相交,故斜率不为0 设)1(:-=x k y l PQ ,(0k ≠)⎪⎩⎪⎨⎧-==+)1(13422x k y y x ,消去y ,化简得. 2222(34)84120k x k x k +-+-= 4222644(34)(412)144(1)0k k k k ∆=-+-=+> 设),,(),,(2211y x Q y x P PQ 的中点00(,)G x y ,则2221438k k x x +=+,222143124k k x x +-=,……………6分222104342k k x x x +=+=,200433)1(k k x k y +-=-=, 即)433,434(222k kk k G +-+,……………7分 kk k k k k OG 43443433222-=+⋅+-=, 设)1(1:--=x k y l FT ,得T 点坐标(k 3,4-),kk OT 43-=,所以OT OG k k =,线段PQ 的中点在直线OT 上.……………9分(ii) 当直线PQ l 斜率不存在时,PQ 的中点为F ,)0,4(T .1||||,32||,3||2====PQ TF a b PQ TF .……………10分 当直线PQ l 斜率存在时,222213)3()14(||k k k TF +=-+-=,||1||122x x k PQ -+=. =-+⋅+=2122124)(1x x x x k 222222431244)438(1kk k k k +-⋅-+⋅+ 2243112k k ++⋅=.……………11分2222||34)||12(1)114TF k k PQ k k +==+++=⋅ 令211kt +=.则)1)(13(41||||>+⋅=t t t PQ TF .令)1)(13(41)(>+⋅=t t t t g 则函数()g t 在()1,+∞上为增函数,……………13分 所以1)1()(=>g t g . 所以||||PQ TF 的取值范围是),1[+∞.……………14分。

江西省吉安市永新县永新五中2015届高考数学一轮复习基础题每日一练1(含解析)文

江西省吉安市永新县永新五中2015届高考数学一轮复习基础题每日一练1(含解析)文

江西省吉安市永新县永新五中2015届高三一轮文科数学“基础题每日一练”(含精析)01一.单项选择题。

(本部分共5道选择题)1.给定函数①y =x12 ,②y =log 12(x +1),③y =|x -1|,④y =2x +1,其中在区间(0,1)上单调递减的函数的序号是( )A .①②B .②③C .③④D .①④解析: ①y =x 12 为增函数,排除A 、D ;④y =2x +1为增函数,排除C ,故选B.答案:B2..数列{a n }:1,-58,715,-924,…的一个通项公式是( )A .a n =(-1)n +12n -1n 2+n (n ∈N +)B .a n =(-1)n -12n +1n 3+3n (n ∈N +)C .a n =(-1)n +12n -1n 2+2n (n ∈N +)D .a n =(-1)n -12n +1n 2+2n (n ∈N +)解析 观察数列{a n }各项,可写成:31×3,-52×4,73×5,-94×6,故选D.答案 D3.与直线2x -y +4=0平行的抛物线y =x 2的切线方程是( ).A .2x -y +3=0B .2x -y -3=0C .2x -y +1=0D .2x -y -1=0解析 设切点坐标为(x 0,x 20),则切线斜率为2x 0,由2x 0=2得x 0=1,故切线方程为y -1=2(x -1),即2x -y -1=0.答案 D4.执行下面的程序框图,如果输入的N 是6,那么输出的p 是().A .120B .720C .1 440D .5 040解析 由题意得,p =1×1=1,k =1<6;k =1+1=2,p =1×2=2,k =2<6;k =2+1=3,p =2×3=6,k =3<6;k =3+1=4,p =6×4=24,k =4<6;k =4+1=5,p =24×5=120,k =5<6;k =5+1=6,p =120×6=720,k =6不小于6,故输出p =720.答案 B5.不等式x -2y >0表示的平面区域是( ).解析 将点(1,0)代入x -2y 得1-2×0=1>0.答案 D二.填空题。

洛阳市2015届高三一练word答案数学文

洛阳市2015届高三一练word答案数学文

洛阳市2014———2015学年高中三年级统一考试数学试卷参考答案(文)一、选择题DBAACDABBACD二、填空题13.250014.槡315.1216.{λ|λ>-3}三、解答题17.(1)由题意知,F1(-1,0),F2(1,0).线段F1F2的中点为坐标原点O,设点O关于直线x+y-2=0对称的点C的坐标为(x0,y0),则y0x0=1,x02+y02-2=0烅烄烆.C(2,2).……3分半径为|F1F2|2=1,……4分所以圆C的方程为(x-2)2+(y-2)2=1.……5分(2)切线长=|PC|2-槡1,……6分当|PC|最小时,切线长取得最小值,当PC垂直于x轴,即点P位于(2,0)处时,取|PC|min=2,……9分此时切线长取最小值22-槡1=槡3.……10分18.(1)当n=1时,a1=12³32-32=3,……2分当n≥2时,an=Sn-Sn-1=(12³3n+1-32)-(12³3n-32)=3n,……5分且a1=3=31,所以{an}的通项公式为an=3n.……6分(2)bn=log3an81=n-4,……8分令bn≥0,即n-4≥0,得n≥4,即{bn}从第四项开始各项均非负,所以当n≥5时,Tn=-b1-b2-b3-b4+b5+b6+…+bn=3+2+1+0+(n-4)[1+(n-4)]2=12n2-72n+12.……12分书书书洛阳市2014———2015学年高中三年级统一考试数学试卷参考答案(文)一、选择题DBAACDABBACD二、填空题13.250014.槡315.1216.{λ|λ>-3}三、解答题17.(1)由题意知,F1(-1,0),F2(1,0).线段F1F2的中点为坐标原点O,设点O关于直线x+y-2=0对称的点C的坐标为(x0,y0),则y0x0=1,x02+y02-2=0烅烄烆.{.即C(2,2).……3分半径为|F1F2|2=1,……4分所以圆C的方程为(x-2)2+(y-2)2=1.……5分(2)切线长=|PC|2-槡1,……6分当|PC|最小时,切线长取得最小值,当PC垂直于x轴,即点P位于(2,0)处时,取|PC|min=2,……9分此时切线长取最小值22-槡1=槡3.……10分18.(1)当n=1时,a1=12³32-32=3,……2分当n≥2时,an=Sn-Sn-1=(12³3n+1-32)-(12³3n-32)=3n,……5分且a1=3=31,所以{an}的通项公式为an=3n.……6分(2)bn=log3an81=n-4,……8分令bn≥0,即n-4≥0,得n≥4,即{bn}从第四项开始各项均非负,所以当n≥5时,Tn=-b1-b2-b3-b4+b5+b6+…+bn=3+2+1+0+(n-4)[1+(n-4)]2=12n2-72n+12.……12分1(2)设CD=a,在△ACE中,CEsin∠CAE=AEsin∠ACECE=2asin15°sin30°=(槡6-槡2)a.……8分在△CED中,CDsin∠CED=CEsin∠CDEsin∠CDE=CEsin∠CEDCD=槡3-1.……10分cos∠DAB=cos(∠CDE-90°)=sin∠CDE=槡3-1.……12分20.(1)证明:∵A1D⊥ 平面ABC,A1D平面ACC1A1,∴平面ACC1A1⊥ 平面ABC,且交线为AC.∵BC平面ABC,且BC⊥AC,∴BC⊥ 平面ACC1A1.∵AC1平面ACC1A1,∴BC⊥AC1,……3分又AA1=AC,∴ACC1A1为菱形.∴AC1⊥A1C.∵A1C,BC平面A1BC,且A1C∩BC=C,∴AC1⊥ 平面A1BC,……5分,∵BA1平面A1BC,∴BA1⊥AC1……6分(2)VB1-A1DB=VD-A1B1B=12VC-A1B1B=12VC1-A1B1B=12VB-A1B1C1=16VABC-A1B1C1=16³2³2³12³槡3=槡33.……12分21.(1)设A(x1,y1),B(x2,y2),直线l的方程为x=my+p2,由x=my+p2,y2=2px烅烄烆.消去x得y2-2pmy-p2=0.所以y1+y2=2pm,y1y2=-p2.……2分∵→=-3,∴x1x2+y1y2=-3.x1x2=y122p²y222p=p24,所以p24-p2=-3,p2=4.∵p>0,∴p=2.……4分(2)由(1)y1+y2=4m,y1y2=-4,则(y1-y2)2=(y1+y2)2-4y1y2=16(m2+1).|AB|2=(y1-y2)2+(x1-x2)2=(y1-y2)2+(y12-y224)2=(y1-y2)2[1+(y1+y24)2]=16(m2+1)2.……6分∴|AB|=4(m2+1).∵|AC|,|CD|,|BD|成等差数列,∴2|CD|=|AC|+|BD|=|AC|+|BC|-|CD|=|AB|-|CD|.∴|AB|=3|CD|.……9分又CD为圆x2+y2-2x=0的直径,∴|CD|=2.∴4(m2+1)=6,m=±槡22.……11分即l的方程为槡2x±y-槡2=0.……12分22.(1)f′(x)=k+4kx-4x2-1=-x2-(k+4k)x+4x2=-(x-k)(x-4k)x2,(x>0,k>0)……1分①当0<k<2时,4k>k>0,且4k>2,∴x∈ (0,k),f′(x)<0,x∈ (k,2),f′(x)>0.∴函数f(x)在(0,k)上单调递减,在(k,2)上单调递增;……3分② 当k=2时,4k=k=2,f′(x)=-(x-2)2x2<0恒成立,∴函数f(x)在(0,2)上单调递减;……4分③ 当k>2时,0<4k<2,k>4k>0.∴x∈ (0,4k),f′(x)<0,x∈ (4k,2),f′(x)>0.∴函数在(0,4k)上单调递减,在(4k,2)上单调递增.……6分(2)由题意,f′(x1)=f′(x2)(x1,x2>0,且x1≠x2),即k+4kx1-4x12-1=k+4kx2-4x22-1,化简得4(x1+x2)=(k+4k)x1x2,而x1x2<(x1+x22)2,∴4(x1+x2)<(k+4k)(x1+x22)2,即x1+x2>16k+4k对k∈[4,+∞)恒成立.……8分令g(k)=k+4k,g′(k)=1-4k2=(k+2)(k-2)k>0对k∈[4,+∞)恒成立,∴g(k)≥g(4)=5.∴16k+4k≤165.∴x1+x2>165.即x1+x2的取值范围是(165,+∞).……12分。

2015届高三一轮文科数学“基础题每日一练”(含精析)12

2015届高三一轮文科数学“基础题每日一练”(含精析)12

江西省吉安市永新县永新五中2015届高三一轮文科数学“基础题每日一练”(含精析) 姓名: 训练日期: 完成时间:________一.单项选择题。

(本部分共5道选择题)1.下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行答案 C5.函数f (x )=ln(4+3x -x 2)的单调递减区间是( ) A .(-∞,32]B .[32,+∞)C .(-1,32]D .[32,4)解析: 由4+3x -x 2>0得,函数f (x )的定义域是(-1,4),u (x )=-x 2+3x +4=-(x -32)2+254的减区间为[32,4),∵e >1,∴函数f (x )的单调减区间为[32,4).答案: D3.2+1与2-1两数的等比中项是( ) A .1 B .-1 C .±1D.12解析:设等比中项为x ,则x 2=(2+1)(2-1)=1,即x =±1. 答案:C4.设a ,b 满足2a +3b =6,a >0,b >0,则2a +3b的最小值为( )A.256B.83C.113D .4解析 由a >0, b >0,2a +3b =6得a 3+b2=1,∴2a +3b =(2a +3b )(a 3+b 2)=23+32+b a +a b ≥136+2 b a ·a b =136+2=256. 当且仅当b a =a b 且2a +3b =6,即a =b =65时等号成立.即2a +3b 的最小值为256. 答案 A5.直线l :4x +3y -2=0关于点A(1,1)对称的直线方程为( ) A .4x +3y -4=0 B .4x +3y -12=0 C .4x -3y -4=0 D .4x -3y -12=0 解析 在对称直线上任取一点P(x ,y),则点P 关于点A 对称的点P ′(x ′,y ′)必在直线l 上. 由⎩⎨⎧x ′+x =2,y ′+y =2,得P ′(2-x,2-y),∴4(2-x)+3(2-y)-2=0,即4x +3y -12=0. 答案 B二.填空题。

2015年广东省揭阳市高考一模【文科数学】试题+答案

2015年广东省揭阳市高考一模【文科数学】试题+答案

揭阳市2015年高中毕业班第一次高考模拟考试数学(文科)试题 第1页(共4页)通知: 各位”羽十俱进”的队员,为了更好地开展协会活动,提高整体羽毛球水平,请各位进行搭档组合展开针对性更强的训练,项目包括男双、女双、混双,每人至少报一项,限报两项(有兴趣的也可另报单打),女队员至少报一项女双。

希望大家尽快找好自己的搭档(名单详见收件人),周三前将组合名单报至卢华处。

报名统计完毕后将分组每周展开定时训练和比赛,每周训练时间为周一和周四,报名的时候顺便报一下你这个组合哪天有空参加训练。

谢谢支持!绝密★启用前揭阳市2015年高中毕业班高考第一次模拟考试数学(文科)本试卷共4页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须填写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 参考公式:棱锥的体积公式:13V Sh =.其中S 表示棱锥的底面积,h 表示棱锥的高. 导数公式: 若()sin(1)f x x =-,则'()cos(1)f x x =-; 若()cos(1)f x x =-,则'()sin(1)f x x =--.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{4,5,6,8},{3,5,7,8}A B ==,则A B 中元素的个数为A .5B .6C .7D .8 2.已知复数(87)(3)z i i =---,则z 在复平面内对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限3.“a b >”是 “22a b >”的A.充分不必要条件B.必要不充分条件C. 充要条件D. 既不充分也不必要条件揭阳市2015年高中毕业班第一次高考模拟考试数学(文科)试题 第2页(共4页)4.双曲线222214x y a a -=(0)a >的离心率为A.C.2D. 5.已知(sin ,cos ),2,1a b αα==(-),若a b ⊥,则tan α的值为 A. 2- B. 2 C.12 D. 12- 6.已知函数log a y x =(0,1)a a >≠的图象经过点1(2,)2,则其反函数的解析式为A. 4x y =B.4log y x =C.2x y =D. 1()2xy =7.某单位200名职工的年龄分布情况如图1示,该单位为了 解职工每天的睡眠情况,按年龄用分层抽样方法从中抽取 40名职工进行调查.则应从40-50岁的职工中抽取的人数为 A.8 B.12 C.20 D.30 8.不等式组5315+15 3.x y y x x y +≤⎧⎪≤⎨⎪-≤⎩,,表示的平面区域的面积为 图1A. 14B.5C. 3D. 79.设,l m 是两条不同的直线,,αβ是两个不同的平面,则下列命题为真命题的是 A.若//,//,//m l m l αα则; B.若,,//m l m l αα⊥⊥则;C.若//,,//,l m l m αβαβ⊥⊥则;D.若,//,,//,//m m l l αββααβ⊂⊂则.10. 对任意的a 、b R ∈,定义:min{,}a b =,().()a a b b a b <⎧⎨≥⎩;max{,}a b =,().()a ab b a b ≥⎧⎨<⎩.则下列各式中恒成立的个数为①min{,}max{,}a b a b a b =++ ②min{,}max{,}a b a b a b =--③(min{,})(max{,})a b a b a b =⋅⋅ ④(min{,})(max{,})a b a b a b =÷÷ A. 1 B. 2 C. 3 D. 4二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11-13题)11.不等式23100x x --<的解集为 .揭阳市2015年高中毕业班第一次高考模拟考试数学(文科)试题 第3页(共4页)3648788451162139496612413415910288757145699398109977546196183120703612601 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3080日期(AQI )指数4012016020012.在△ABC 中,A B C ∠∠∠、、的对边分别为a b c 、、,若3a =,2B A ∠=∠,cos A =, 则b = .13.已知函数3()f x x =对应的曲线在点(,())()k k a f a k N *∈处的切线与x 轴的交点为1(,0)k a +,若11a =31010(1()3f a ++=- .(二)选做题(14、15题,考生只能从中选做一题)14. (坐标系与参数方程选做题) 在极坐标系中,直线sin(ρθ+被圆=4ρ截得的弦长为 . 15.(几何证明选讲选做题)如图2,BE 、CF△ABC 的两条高,已知1,AE =3,AB CF ==则BC 边的长为 . 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数()2sin()(0,)6f x x x R ωωπ=+>∈的最小正周期为π. (1)求ω的值; (2)若2()3f α=,(0,)8πα∈,求cos 2α的值.17.(本小题满分12分)图3是某市今年1月份前30天空气质量指数(AQI )的趋势图.图3(1)根据该图数据在答题卷中完成频率分布表,并在图4中补全这些数据的频率分布直方图;揭阳市2015年高中毕业班第一次高考模拟考试数学(文科)试题 第4页(共4页)(2)当空气质量指数(AQI )小于100时,表示空气质量优良.某人随机选择当月(按30天计)某一天到达该市,根据以上信息,能否认为此人到达当天空气质量优良的可能性超过60%?(图中纵坐标1/300即1300,以此类推)图418.(本小题满分14分)如图5,已知BCD ∆中,90,1BCD BC CD ∠===,AB =AB ⊥平面BCD ,E 、F 分别是AC 、AD 的中点.(1)求证:平面BEF ⊥平面ABC ;(2)设平面BEF 平面BCD l =,求证//CD l ; (3)求四棱锥B-CDFE 的体积V .图519. (本小题满分14分)已知n S 为数列{}n a 的前n 项和,3(1)n n S na n n =--(*n N ∈),且212a =.(1)求1a 的值;(2)求数列{}n a 的通项公式; (3)求证:1211113n S S S +++<. 20. (本小题满分14分)已知抛物线C :22(0)x py p =>的焦点为F ,点P 是直线y x =与抛物线C 在第一象限的交点,且||5PF =. (1)求抛物线C 的方程;(2)设直线:l y kx m =+与抛物线C 有唯一公共点M ,且直线l 与抛物线的准线交于点Q ,揭阳市2015年高中毕业班第一次高考模拟考试数学(文科)试题 第5页(共4页)试探究,在坐标平面内是否存在点N ,使得以MQ 为直径的圆恒过点N ?若存在,求出点N 的坐标,若不存在,说明理由. 21. (本小题满分14分)已知函数()f x ax =,()ln g x x =,其中a R ∈.(1)若函数()()()F x f x g x =-,当1a =时,求函数()F x 的极值;(2)若函数()(sin(1))()G x f x g x =--在区间(0,1)上为减函数,求a 的取值范围;(3)证明:11sinln(1)1nk n k =<++∑. 2015揭阳市数学(文科)参考答案一、选择题:BBDAC ABDCB解析:10. 由定义知⑴、⑶恒成立,⑵⑷不恒成立,正确答案B.二、填空题: 11. {|25}x x -<<;12.13. 3;14..解析:13.由2'()3f x x =得曲线的切线的斜率23k k a =,故切线方程为323()k k k y a a x a -=-,令0y =得123k k a a +=123k k a a +⇒=,故数列{}n a 是首项11a =,公比23q =的等比数列,又310(f f f a +++101011210(1)3(1)1a q a a a q q-=+++==--,所以31010(31()3f a ++=-.15.依题意得BE =BEA ∽△CFA得AE BE ABAF FC AC==,所以2,AF =6,AC = BC =三、解答题: 16.解:(1)由2ππω=得=2ω----------------------------------------------------2揭阳市2015年高中毕业班第一次高考模拟考试数学(文科)试题 第6页(共4页)(2)解法1:由π2()2sin(2)63f αα=+= 得π1sin(2)63α+= -----------------------3分∵(0,)8πα∈,∴5π2(,)6612ππα+∈, --------------------------------------------4分∴πcos(2)6α+==-----------------------------------------6分 ∴cos 2cos[(2)]66ππαα=+-----------------------------------------------------8分 cos(2)cos sin(2)sin 6666ππππαα=+++ ----------------------------------------10分11132326=+⋅=----------------------------------------------------12分 [解法2:由π2()2sin(2)63f αα=+= 得π1sin(2)63α+=,--------------------------3分即1sin 2coscos 2sin663ππαα+=-------------------------------------------------5分⇒2cos 2sin 2αα-=①---------------------------------6分 将①代入22sin 2cos 21αα+=并整理得24cos 212cos 2230αα--=,---------------8分解得:121cos 2726α±±==--------------------②---------------------10分 ∵(0,)8πα∈ ∴024πα<<,∴cos 20α>,故②中负值不合舍去,----------------11分∴1cos 26α+=.-----------------------------------------------------------12分] 17.解:(1)揭阳市2015年高中毕业班第一次高考模拟考试数学(文科)试题 第7页(共4页)---4分 ----8分(2) 由频率分布表知,该市本月前30天中空气质量优良的天数为19,------------------9分 故此人到达当天空气质量优良的概率:190.63>0.630P =≈-------------------------------------------------------------11分 故可以认为此人到达当天空气质量优良的可能性超过60% ----------------------------12分 18.解:(1)证明:AB ⊥平面BCD ,CD ⊂平面BCD A B C D ∴⊥,----------------1分又BC CD ⊥, ABBC B =, CD ∴⊥平面ABC ,------------------------------2分又E 、F 分别是AC 、AD 的中点,∴//.EF CD ---------------------------------------3分 ∴EF ⊥平面ABC又EF ⊂平面BEF ,∴平面BEF ⊥平面ABC -----------------------------------------4分 (2)CD // EF ,CD ⊄平面BEF ,EF ⊂平面BEF∴//CD 平面BEF ,----------------------------6分 又CD ⊂平面BCD ,且平面BEF平面BCD l =∴//CD l .------------------------------------8分 (3)解法1:由(1)知EF //CD ∴AEFACD ∆∆------------------------------9分1,4AEF ACD S S ∆∆∴= ∴14B AEF B ACD V V --=------------------11分 331444B ACD A BCD BCD V V V S AB --∆∴===⋅111142=⨯⨯⨯=------------------14分[解法2:取BD 中点G ,连结FC 和FG ,则FG//AB ,-----9分 ∵AB ⊥平面BCD ,∴FG ⊥平面BCD ,-----------------10分揭阳市2015年高中毕业班第一次高考模拟考试数学(文科)试题 第8页(共4页)由(1)知EF ⊥平面ABC , ∴F EBC F BCD V V V --=+1133EBC BCD S EF S FG ∆∆=⋅+⋅------12分1111113232=+⨯⨯⨯=.----------------14分]19.解:(1)由2122232(21)S a a a =+=-⨯-和212.a =可得16a =,------------------2分(2)解法1:当2n ≥时,由1n n n a S S -=-得13(1)(1)3(1)(2)n n n a na n n n a n n -=-------,---------------------------------4分⇒1(1)(1)6(1)n n n a n a n ----=-16(2,)n n a a n n N *-⇒-=≥∈---------------------6分∴数列{}n a 是首项16a =,公差为6的等差数列,∴16(1)6n a a n n =+-=-------------8分 [解法2:当2n ≥时,由13(1)()3(1)n n n n S na n n n S S n n -=--=---------------------4分 可得1(1)3(1)n n n S nS n n ---=- 131n n S S n n -∴-=-,---------------------------------6分 ∴数列{}n S n 为首项161S=,公差为3的等差数列, 63(1)33nS n n n∴=+-=+,即233n S n n =+. ∴6n a n =---------------------------------------------------------------------8分] (3)证明:由(2)知1()3(1)2n n n a a S n n +==+-----------------------------------10分 11111()3(1)31n S n n n n ==-++--------------------------------------------------12分 12111111111[(1)()()]32231n S S S n n ∴+++<-+-++-+111(1)313n =-<+, 命题得证.---------------------------------------------------------------------14分揭阳市2015年高中毕业班第一次高考模拟考试数学(文科)试题 第9页(共4页)20.解:(1)解法1: ∵点P 是直线y x =与抛物线C 在第一象限的交点,∴设点(,)(0)P m m m >,----------------------------------------------------------1分 ∵抛物线C 的准线为2p y =-,由||5PF =结合抛物线的定义得52pm +=-------①-----2分 又点P 在抛物线C 上,∴22m pm =(0)m >⇒2m p =.----------------------②-----3分 由①②联立解得2p =,∴所求抛物线C 的方程式为24x y =.-------------------------5分 [解法2:∵点P 是直线y x =与抛物线C 在第一象限的交点,∴设点(,)(0)P m m m >,----------------------------------------------------------1分∵抛物线C 的焦点为(0,)2p F ,由||5PF =5=, 即22()252p m m +-=,-------------------------------------------①-------------2分 又点P 在抛物线C 上,∴22m pm =(0)m >⇒2m p =.--------------②-------------3分由①②联立解得2p =,∴所求抛物线C 的方程式为24x y =.-------------------------5分](2)解法1:由抛物线C 关于y 轴对称可知,若存在点N ,使得以MQ 为直径的圆恒过点N , 则点N 必在y 轴上,设(0,)N n ,--------------------------------------------------6分又设点20(,)4x M x ,由直线:l y kx m =+与抛物线C 有唯一公共点M 知,直线l 与抛物线C 相切, 由214y x =得1'2y x =,∴001'|2x x k y x ===,---------------------------------------7分 ∴直线l 的方程为2000()42x xy x x -=-,--------------------------------------------8分 令1y =-得2022x x x -=,∴Q 点的坐标为002(,1)2x x --,-----------------------------9分揭阳市2015年高中毕业班第一次高考模拟考试数学(文科)试题 第10页(共4页)200002(,),(,1)42x x NM x n NQ n x ∴=-=-----------------------------------------10分∵点N 在以MQ 为直径的圆上,∴22220002(1)()(1)20(*)244x x x NM NQ n n n n n ⋅=--+-=-++-=--------------12分要使方程(*)对0x 恒成立,必须有21020n n n -=⎧⎨+-=⎩解得1n =,-------------------------13分∴在坐标平面内存在点N ,使得以MQ 为直径的圆恒过点N ,其坐标为(0,1).--------14分 [解法2:设点00(,)M x y ,由:l y kx m =+与抛物线C 有唯一公共点M 知,直线l 与抛物线相切,由214y x =得1'2y x =,∴001'|2x x k y x ===,-----------------------------------6分 ∴直线l 的方程为000()2xy y x x -=-,---------------------------------------------7分令1y =-得002(1)y x x -=,∴Q 点的坐标为002(1)(,1)y x --,-------------------------8分 ∴以MQ 为直径的圆方程为:00002(1)()(1)()[]0y y y y x x x x --++--=--------③----10分 分别令02x =和02x =-,由点M 在抛物线C 上得01y =,将00,x y 的值分别代入③得:(1)(1)(2)0y y x x -++-=-------------------------------④(1)(1)(2)0y y x x -+++=--------------------------------------------------------⑤④⑤联立解得0,1.x y =⎧⎨=⎩或0,1.x y =⎧⎨=-⎩,-----------------------------------------------12分∴在坐标平面内若存在点N ,使得以MQ 为直径的圆恒过点N ,则点N 必为(0,1)或(0,1)-, 将(0,1)的坐标代入③式得,揭阳市2015年高中毕业班第一次高考模拟考试数学(文科)试题 第11页(共4页)左边=00002(1)2(1)()[]y y x x --+--002(1)2(1)0y y =-+-==右边, 将(0,1)-的坐标代入③式得,左边=00002(1)()[]2(1)y x y x ---=-不恒等于0,------------------------------------13分 ∴在坐标平面内是存在点N ,使得以MQ 为直径的圆恒过点N ,点N 坐标为为(0,1).--14分]21.解:(1)∵当1a =时, 函数()ln F x x x =-,(0)x > ∴11'()1x F x x x-=-=,---------------------------------------------------------1分 令'()0F x =得1x =,当(0,1)x ∈时'()0F x <,当(1,)x ∈+∞时,'()0F x >,即函数()F x 在(0,1)单调递减,在(1,)+∞单调递增,---------------------------------------------------------------3分 ∴函数()F x 在1x =处有极小值,∴()F x 极小1ln11=-=.----------------------------------------------------------4分(2)解法1:∵函数()(sin(1))()G x f x g x =--=sin(1)ln a x x --在区间(0,1)上为减函数 ∴1'()cos(1)0G x a x x =--≤在(0,1)上恒成立1cos(1)a x x ⇔≤-在(0,1)上恒成立,----5分 设1()cos(1)H x x x =-,则()()()()()2222c o s 1s i n 1s i n 1c o s 1'()c o s (1)c o s (1)x x x x x x H x x x x x -------==-- ---7分当()0,1x ∈时,()sin 10x -<,()cos 10x ->所以'()0H x <在()0,1上恒成立,即函数()H x 在()0,1上单调递减,-------------------8分 ∴当()0,1x ∈时,()(1)1H x H >=,∴1a ≤.-----------------------------------------------------------------------9分[解法2:∵函数()(sin(1))()G x f x g x =--=sin(1)ln a x x --在区间(0,1)上为减函数揭阳市2015年高中毕业班第一次高考模拟考试数学(文科)试题 第12页(共4页) ∴对(0,1)x ∀∈ ,1'()cos(1)0G x a x x=--≤-----------(*)恒成立,--------------5分 ∵(0,1)x ∈,∴cos(1)0x ->, 当0a ≤时,(*)式显然成立;----------------------------------------------------6分当0a >时,(*)式⇔1cos(1)x x a≥-在(0,1)上恒成立, 设()cos(1)h x x x =-,易知()h x 在(0,1)上单调递增,-------------------------------7分 ∴()(1)1h x h <=, ∴11a≥01a ⇒<≤,------------------------------------------------------------8分 综上得(,1]a ∈-∞.-------------------------------------------------------------9分](3)由(2)知,当1a =时,()sin(1)ln G x x x =--(1)0G >=,sin(1)ln x x ⇒->1sin(1)ln x x⇒-<,------------------------②----------------10分 ∵对k N *∀∈有(0,1)1k k ∈+, 在②式中令1k x k =+得11sin(1)sin ln 11k k k k k+-=<++,--------------------------12分 ∴11131sin sin sin ln 2ln ln 2312n n n++++<++++ 341ln(2)ln(1)23n n n+=⋅⋅⋅=+, 即11sin ln(1)1n k n k =<++∑.-------------------------------------------------------14分。

山东青岛市2015届高三下学期第一次高考模拟考试(文科数学)(WORD版含答案)

山东青岛市2015届高三下学期第一次高考模拟考试(文科数学)(WORD版含答案)

山东青岛市2015届高三下学期自主练习数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟. 注意事项:1.答卷前,考生务必用2B 铅笔和0.5毫米黑色签字笔(中性笔)将姓名、准考证号、考试科目、试卷类型填涂在答题卡规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试题卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔(中性笔)作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.参考公式:球的表面积24S R π=.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集=R U ,集合{|0}A x x =>,{|01}B x x =<<,则()U C A B =A .{01}x x <<B .{0}x x ≤C .{1}x x <D .R2.复数31iz i+=-(i 为虚数单位)在复平面内对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.下列命题的否定为假命题的是 A .2R,220x x x ∃∈++≤B .任意一个四边形的四个顶点共圆C .所有能被3整除的整数都是奇数D .22R,sin cos 1x x x ∀∈+=4.函数4x y e x =+-的零点所在区间为 A .(1,0)-B .(0,1)C .(1,2)D .(2,3)5.点(,)M a b 在圆221x y +=上,则直线1ax by +=与圆221x y +=的位置关系是 A. 相交B. 相切C. 相离D. 不确定6.执行右面的程序框图,若输出结果为3,则可输入的 实数x 值的个数为 A .1B .2C .3D .4开始 输出y输入x否是>2?x21y x =-2log y x=7.若变量,x y 满足约束条件280403x y x y +≤⎧⎪≤≤⎨⎪≤≤⎩,则2z x y =+的最大值等于 A .7B .8C .10D .118.已知函数()3sin cos (0)f x x x ωωω=+>的图象与 直线2y =-的两个相邻公共点之间的距离等于π,则()f x 的单调递减区间是 A .2[,],Z 63k k k ππππ++∈ B .[,],Z 36k k k ππππ-+∈ C .4[2,2],Z 33k k k ππππ++∈D .5[2,2],Z 1212k k k ππππ-+∈9.一个几何体的三视图如图所示,其中俯视图与左视图均为半径是2的圆,则这个几何体的表面积是A .24πB .16πC .12πD .8π 10.已知函数()f x 满足(1)(1)f x f x +=-,且当211x x >≥时,总有2121()()0f x f x x x ->-恒成立,则(2)x f 与(3)x f 的大小关系为A. (3)(2)x x f f ≥B. (3)(2)x x f f ≤C. (3)(2)x x f f < D .不确定第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分. 11.已知抛物线2y ax =的准线方程为12y =-,则实数a = . 12.在样本频率分布直方图中,样本容量为160,共有11个小长方形,若中间一个小长方形的面积等于其他10个小长方形面积和的14,且则中间一组的频数为 .第9题图正视图俯视图左视图13.已知实数,x y 均大于零,且24x y +=,则22log log x y +的最大值为 . 14.已知向量,a b 满足3,2,5a b a b ==+=,则向量a 与b 夹角的余弦值为 . 15.如图:正六边形的两个顶点为某双曲线的两个焦点,其余 四个顶点都在该双曲线上,则该双曲线的离心率为 .三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤. 16. (本小题满分12分)某车间要加工某种零件,现将10名技工平均分为甲、乙两组,分别标记为1,2,3,4,5号,在单位时间内每个技工加工零件若干,其中合格零件的个数如下表:1号技工 2号技工 3号技工 4号技工 5号技工甲组 45 7 9 10 乙组5 6789(Ⅰ)分别求出甲、乙两组技工在单位时间内完成合格零件的平均数及方差,并由此比较两组技工的技术水平;(Ⅱ)质检部门从该车间甲、乙两组中各随机抽取1名技工,对其加工的零件进行检测,若两人完成合格零件个数之和超过12件,则称该车间“质量合格”,求该车间“质量合格”的概率.17.(本小题满分12分)在ABC ∆中,内角,,A B C 的对边分别为,,a b c 且a b >,已知4cos 5C =,32c =,2221sin cos sin cos sin 222B A A BC ++=. (Ⅰ)求a 和b 的值; (Ⅱ)求cos()B C -的值.18.(本小题满分12分)如图,平面ABCD ⊥平面ADEF ,其中ABCD 为矩形,ADEF 为梯形,//AF DE ,GADB C第15题图AF FE ⊥,2AF AD DE ==,G 为BF 中点.(Ⅰ)求证://EG 平面ABCD ; (Ⅱ)求证:AF DG ⊥.19.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,10a =,1231n n a a a a n a ++++++=,*n ∈N .(Ⅰ) 求证:数列{1}n a +是等比数列;(Ⅱ) 设数列{}n b 的前n 项和为n T ,11b =,点1(,)n n T T +在直线112x y n n -=+上,若不等式1212911122n n nb b bm a a a a +++≥-++++对于*n ∈N 恒成立,求实数m 的最大值.20.(本小题满分13分)已知函数1()x x f x e+=. (Ⅰ)求函数()f x 的极大值;(Ⅱ)设定义在[0,1]上的函数()()()(R)x g x xf x tf x e t -'=++∈的最大值为M ,最小值为N ,且2M N >,求实数t 的取值范围.21.(本小题满分14分)已知椭圆:C 22221(0)x y a b a b +=>>的右焦点为(1,0)F ,且点3(1,)2P 在椭圆C 上,O 为坐标原点.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设过定点(0,2)T 的直线l 与椭圆C 交于不同的两点A 、B ,且AOB ∠为锐角,求直线l 的斜率k 的取值范围;(Ⅲ)过椭圆1:C 2222153x y a b +=-上异于其顶点的任一点P ,作圆:O 3422=+y x 的两条切线,切点分别为,M N (,M N 不在坐标轴上),若直线MN 在x 轴、y 轴上的截距分别为m 、n ,证明:22113m n +为定值.高三自主练习数学(文科)参考答案及评分标准一、选择题:本大题共10小题.每小题5分,共50分. C A D C B C C A B A二、填空题:本大题共5小题,每小题5分,共25分. 11.1212. 32 13. 1 14.36- 15.13+三、解答题:本大题共6小题,共75分,,写出必要的文字说明、证明过程或演算步骤. 16.(本小题满分12分)解:(Ⅰ)依题意,1=(457910)75x ++++=甲,1=(56789)75x ++++=乙……2分222222126=[(47)(57)(77)(97)(107)] 5.255S -+-+-+-+-==甲2222221=[(57)(67)(77)(87)(97)]25S -+-+-+-+-=乙……………………4分因为=x x 甲乙,22S S >乙甲,所以两组技工的总体水平相同,甲组技工的技术水平差异比乙组大,乙组更稳定.………………………………6分(Ⅱ)记该车间“质量合格”为事件A ,则从甲、乙两组中各抽取1名技工完成合格零件个数的基本事件为:(4,5),(4,6),(4,7),(4,8),(4,9),(5,5),(5,6),(5,7),(5,8),(5,9),(7,5),(7,6),(7,7),(7,8),(7,9),(9,5), (9,6),(9,7),(9,8),(9,9),(10,5),(10,6),(10,7),(10,8), (10,9)共25种 ……………………………9分事件A 包含的基本事件为:(4,9),(5,8),(5,9), (7,6),(7,7),(7,8),(7,9),(9,5),(9,6),(9,7),(9,8),(9,9),(10,5),(10,6),(10,7),(10,8),(10,9)共17种所以 “质量合格”的概率为17()25P A =…………………………12分17. (本小题满分12分) 解:(Ⅰ)因为4cos 5C =,32c =,由余弦定理得:2222cos c a b ab C =+- 所以228185a b ab +-=①………………2分 由2221sin cossin cos sin 222B A A BC ++=可得 1cos 1cos 21sin sin sin 222B A A BC +++⋅+⋅=, …………………………3分 化简得sin sin cos sin sin cos (21)sin A A B B B A C +++=+.因为sin cos cos sin (si sin )n A B A B A B C =+=+, ………………………4分 所以sin sin 2sin A B C +=. 由正弦定理可知26a b c +==.② ……………………………………………6分由①②结合a b >,解得5,1a b ==.……………………………………………7分(Ⅱ)因为04cos 5C => 所以02C π<< 所以23sin 1cos 5C C =-=………………8分由正弦定理知sin sin b c B C =,所以sin sin b C B c =210=, …………………………9分 因为a b >,所以02B π<<所以272cos 1sin 10B B =-=,……………………………10分 所以cos()B C -cos cos sin sin B C B C =+ …………………………………………11分72423105105=⨯+⨯31250=. ………………………………………………………12分 18.(本小题满分12分)证明:(Ⅰ)取AB 的中点O ,连接ODG ADB CO因为,O G 分别是AB ,BF 的中点, 所以OG=12AF ,………………………2分 又因为//AF DE ,2AF DE = 所以OG=DE ,四边形ODEG 为平行四边形所以//EG OD ………………………………4分 因为OD ⊂平面ABCD ,EG ⊄平面ABCD所以//EG 平面ABCD ………………………………………………………5分(Ⅱ)取AF 的中点H ,连接DH 、GH 因为,G H 分别是BF ,AF 的中点,所以//GH AB ,………………………………………………………………7分 因为平面ABCD ⊥平面ADEF ,AB AD ⊥ 所以AB ⊥平面ADEF ,AB AF ⊥所以AF GH ⊥…………………………………………………………………9分因为//AF DE ,2AF DE = 所以四边形EFHD 为平行四边形,//EF DH又AF FE ⊥,所以AF DH ⊥………………………………………………11分 因为GH DH H = 所以AF ⊥平面DGH所以AF DG ⊥ …………………………………………………………12分19.(本小题满分12分) 解:(Ⅰ)由1231n n a a a a n a ++++++=,得12311(2)n n a a a a n a n -+++++-=≥ ,两式相减得121n n a a +=+,………………………… 2分 所以112(1)n n a a ++=+ (2n ≥),因为10a =,所以111a +=,2111a a =+=,2112(1)a a +=+所以1{1}a +是以1为首项,公比为2的等比数列. ………………4分 (Ⅱ)由(Ⅰ)得121n n a -=-,因为点1(,)n n T T +在直线112x y n n -=+上,所以1112n n T T n n +-=+, 故{}n T n是以111T =为首项,12为公差的等差数列, …………………………6分则11(1)2n T n n =+-,所以(1)2n n n T +=, 当2n ≥时,1(1)(1)22n n n n n n n b T T n -+-=-=-=, 因为11b =满足该式,所以n b n = …………………………8分所以不等式1212911122n n nb b bm a a a a +++≥-++++, 即为2123912222n n n m -+++≥-, 令21231222n n n R -=+++,则23112322222n nnR =+++, 两式相减得231111112(1)122222222n n n n n n R -+-=++++-=-,所以1242n n n R -+=-…………………………10分由92n n R m ≥-恒成立,即2542nn m --≥恒成立, 又11232527(4)(4)222n n n n n n ++------=, 故当3n ≤时,25{4}2n n --单调递减;当3n =时,323531428⨯--=; 当4n ≥时,25{4}2n n --单调递增;当4n =时,4245614216⨯--=; 则2542n n --的最小值为6116,所以实数m的最大值是6116…………………………12分20.(本小题满分13分)解:(Ⅰ)()x xf x e-'=当0x ≥时,()0f x '≤,所以()f x 在区间[0,)+∞上为减函数, 当0x <时,()0f x '>,所以()f x 在区间(,0]-∞上为增函数, 所以()(0)1f x f ==极大值 ……………………………………………4分(Ⅱ)因为2(1)1()xx t x g x e +-+=所以()(1)()xx t x g x e ---'= ……………………………………………6分① 当1t ≥时,()0g x '≤,()g x 在[0,1]上单调递减, 由2N M <, 所以2(1)(0)g g <,即321te-⋅<,得32e t >- ………………………………………………8分② 当0t ≤时,()0g x '≥,()g x 在[0,1]上单调递增, 所以2(0)(1)g g <即32t e-<,得32t e <- ………………………………10分③ 当01t <<时,在[0,)x t ∈,()0g x '<,()g x 在[0,]t 上单调递减,在(,1]x t ∈,()0g x '>,()g x 在[,1]t 上单调递增所以2()max{(0),g(1)}g t g < 即132max{1,}t t te e+-⋅< (*) 由(Ⅰ)知1()tt f t e +=在(0,1)t ∈上单调递减 故1421t t e e +⨯>>,而334t e e e-<< 所以不等式(*)无解 ……………………………………12分综上所述,(,32)(3,)2et e ∈-∞--+∞. ………………………………13分21.(本小题满分14分)解:(Ⅰ)由题意得:1c = 所以221a b =+ ……………………2分又因为点3(1,)2P 在椭圆C 上,所以221914ab+=,可解得224,3a b ==所以椭圆标准方程为22143x y +=.………………………………4分 (Ⅱ)设直线l 方程为2y kx =+,设11(,)A x y 、22(,)B x y由221432x y y kx =+=+⎧⎪⎨⎪⎩得:22(43)1640k x kx +++=,因为21230k ∆=->,所以214k >, ……………………………6分 又1221643k x x k -+=+,122443x x k =+ 因为AOB ∠为锐角,所以0OA OB ⋅>, 即12120x x y y +>, 所以1212(2)(2)0x x kx kx +++>,所以21212(1)2()40k x x k x x ++++>.………………………………8分 所以222416(1)2404343kk k k k -+⋅+⋅+>++即221216043k k -+>+,所以243k <. 所以21443k <<,解得23132k -<<-或12323k <<………………………………9分 (Ⅲ)由题意:1:C 223144x y +=设点11(,)P x y ,22(,)M x y ,33(,)N x y , 因为,M N 不在坐标轴上,所以221PM OMx k k y =-=-直线PM 的方程为2222()x y y x x y -=-- 化简得:2243x x y y +=--------------④ ………………………………11分 同理可得直线PN 的方程为3343x x y y +=---------------⑤把P 点的坐标代入④、⑤得212131314343x x y y x x y y ⎧+=⎪⎪⎨⎪+=⎪⎩所以直线MN 的方程为1143x x y y +=,………………………………12分 令0y =,得143m x =,令0x =得143n y =, 所以143x m =,143y n =又点P 在椭圆1C 上, 所以2244()3()433m n +=, 即2211334m n +=为定值. (14)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江西省吉安市永新县永新五中
2015届高三一轮文科数学“基础题每日一练”(含精析)01姓名:训练日期:完成时间:________一.单项选择题。

(本部分共5道选择题)
1.给定函数①y=x 1
2,②y=log1
2
(x+1),③y=|x-1|,④y=2x+1,其中在区间(0,1)上单调递
减的函数的序号是( )
A.①②B.②③C.③④D.①④
解析:①y=x 1
2为增函数,排除A、D;④y=2x+1为增函数,排除C,故选B.
答案:B
2..数列{a n}:1,-5
8

7
15
,-
9
24
,…的一个通项公式是( )
A.a n=(-1)n+12n-1
n2+n
(n∈N+)
B.a n=(-1)n-12n+1
n3+3n
(n∈N+)
C.a n=(-1)n+12n-1
n2+2n
(n∈N+)
D.a n=(-1)n-12n+1
n2+2n
(n∈N+)
解析观察数列{a n}各项,可写成:
3
1×3
,-
5
2×4

7
3×5
,-
9
4×6
,故选D.
答案 D
3.与直线2x-y+4=0平行的抛物线y=x2的切线方程是( ).A.2x-y+3=0 B.2x-y-3=0 C.2x-y+1=0 D.2x-y-1=0 解析设切点坐标为(x0,x20),则切线斜率为2x0,
由2x0=2得x0=1,故切线方程为y-1=2(x-1),
即2x-y-1=0.
答案 D
4.执行下面的程序框图,如果输入的N 是6,那么输出的p 是
( ).
A .120
B .720
C .1 440
D .5 040
解析 由题意得,p =1×1=1,k =1<6;k =1+1=2,p =1×2=2,k =2<6;k =2+1=3,p =2×3=6,k =3<6;k =3+1=4,p =6×4=24,k =4<6;k =4+1=5,p =24×5=120,k =5<6;k =5+1=6,p =120×6=720,k =6不小于6,故输出p =720. 答案 B
5.不等式x -2y >0表示的平面区域是( ).
解析 将点(1,0)代入x -2y 得1-2×0=1>0. 答案 D
二.填空题。

(本部分共2道填空题)
1.三棱锥PABC 中,PA ⊥底面ABC ,PA =3,底面ABC 是边长为2的正三角形,则三棱锥
PABC 的体积等于________.
解析 依题意有,三棱锥PABC 的体积V =13S △ABC ·|PA |=13×3
4×22×3= 3.
答案
3
2.设函数f (x )=x (e x
+1)+12
x 2
,则函数f (x )的单调增区间为________.
解析:因为f (x )=x (e x
+1)+12
x 2

所以f ′(x )=e x +1+x e x +x =(e x +1)·(x +1). 令f ′(x )>0,即(e x +1)(x +1)>0,解得x >-1. 所以函数f (x )的单调增区间为(-1,+∞). 答案:(-1,+∞)
三.解答题。

(本部分共1道解答题)
已知函数f (x )=x 3+ax 2+bx +c ,曲线y =f (x )在点x =1处的切线为l : 3x -y +1=0,若x =2
3时,y =f (x )有极值.
(1)求a ,b ,c 的值;
(2)求y =f (x )在[-3,1]上的最大值和最小值. 解析:(1)由f (x )=x 3+ax 2+bx +c , 得f ′(x )=3x 2+2ax +b ,
当x =1时,切线l 的斜率为3,可得2a +b =0.① 当x =2
3时,y =f (x )有极值,
则f ′⎝ ⎛⎭⎪⎫
23=0,可得4a +3b +4=0.②
由①②解得a =2,b =-4.
由于切点的横坐标为x =1,∴f (1)=4, ∴1+a +b +c =4,∴c =5. ∴a =2,b =-4,c =5.
(2)由(1)可得f (x )=x 3+2x 2-4x +5, ∴f ′(x )=3x 2+4x -4,
令f ′(x )=0,得x 1=-2,x 2=2
3
.
当x变化时,y、y′的取值及变化如下表:
. ∴y=f(x)在[-3,1]上的最大值为13,最小值为
27。

相关文档
最新文档